1 /* 2 * Driver for Atmel AT32 and AT91 SPI Controllers 3 * 4 * Copyright (C) 2006 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/clk.h> 13 #include <linux/module.h> 14 #include <linux/platform_device.h> 15 #include <linux/delay.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/dmaengine.h> 18 #include <linux/err.h> 19 #include <linux/interrupt.h> 20 #include <linux/spi/spi.h> 21 #include <linux/slab.h> 22 #include <linux/platform_data/atmel.h> 23 #include <linux/platform_data/dma-atmel.h> 24 #include <linux/of.h> 25 26 #include <linux/io.h> 27 #include <linux/gpio.h> 28 #include <linux/pinctrl/consumer.h> 29 #include <linux/pm_runtime.h> 30 31 /* SPI register offsets */ 32 #define SPI_CR 0x0000 33 #define SPI_MR 0x0004 34 #define SPI_RDR 0x0008 35 #define SPI_TDR 0x000c 36 #define SPI_SR 0x0010 37 #define SPI_IER 0x0014 38 #define SPI_IDR 0x0018 39 #define SPI_IMR 0x001c 40 #define SPI_CSR0 0x0030 41 #define SPI_CSR1 0x0034 42 #define SPI_CSR2 0x0038 43 #define SPI_CSR3 0x003c 44 #define SPI_VERSION 0x00fc 45 #define SPI_RPR 0x0100 46 #define SPI_RCR 0x0104 47 #define SPI_TPR 0x0108 48 #define SPI_TCR 0x010c 49 #define SPI_RNPR 0x0110 50 #define SPI_RNCR 0x0114 51 #define SPI_TNPR 0x0118 52 #define SPI_TNCR 0x011c 53 #define SPI_PTCR 0x0120 54 #define SPI_PTSR 0x0124 55 56 /* Bitfields in CR */ 57 #define SPI_SPIEN_OFFSET 0 58 #define SPI_SPIEN_SIZE 1 59 #define SPI_SPIDIS_OFFSET 1 60 #define SPI_SPIDIS_SIZE 1 61 #define SPI_SWRST_OFFSET 7 62 #define SPI_SWRST_SIZE 1 63 #define SPI_LASTXFER_OFFSET 24 64 #define SPI_LASTXFER_SIZE 1 65 66 /* Bitfields in MR */ 67 #define SPI_MSTR_OFFSET 0 68 #define SPI_MSTR_SIZE 1 69 #define SPI_PS_OFFSET 1 70 #define SPI_PS_SIZE 1 71 #define SPI_PCSDEC_OFFSET 2 72 #define SPI_PCSDEC_SIZE 1 73 #define SPI_FDIV_OFFSET 3 74 #define SPI_FDIV_SIZE 1 75 #define SPI_MODFDIS_OFFSET 4 76 #define SPI_MODFDIS_SIZE 1 77 #define SPI_WDRBT_OFFSET 5 78 #define SPI_WDRBT_SIZE 1 79 #define SPI_LLB_OFFSET 7 80 #define SPI_LLB_SIZE 1 81 #define SPI_PCS_OFFSET 16 82 #define SPI_PCS_SIZE 4 83 #define SPI_DLYBCS_OFFSET 24 84 #define SPI_DLYBCS_SIZE 8 85 86 /* Bitfields in RDR */ 87 #define SPI_RD_OFFSET 0 88 #define SPI_RD_SIZE 16 89 90 /* Bitfields in TDR */ 91 #define SPI_TD_OFFSET 0 92 #define SPI_TD_SIZE 16 93 94 /* Bitfields in SR */ 95 #define SPI_RDRF_OFFSET 0 96 #define SPI_RDRF_SIZE 1 97 #define SPI_TDRE_OFFSET 1 98 #define SPI_TDRE_SIZE 1 99 #define SPI_MODF_OFFSET 2 100 #define SPI_MODF_SIZE 1 101 #define SPI_OVRES_OFFSET 3 102 #define SPI_OVRES_SIZE 1 103 #define SPI_ENDRX_OFFSET 4 104 #define SPI_ENDRX_SIZE 1 105 #define SPI_ENDTX_OFFSET 5 106 #define SPI_ENDTX_SIZE 1 107 #define SPI_RXBUFF_OFFSET 6 108 #define SPI_RXBUFF_SIZE 1 109 #define SPI_TXBUFE_OFFSET 7 110 #define SPI_TXBUFE_SIZE 1 111 #define SPI_NSSR_OFFSET 8 112 #define SPI_NSSR_SIZE 1 113 #define SPI_TXEMPTY_OFFSET 9 114 #define SPI_TXEMPTY_SIZE 1 115 #define SPI_SPIENS_OFFSET 16 116 #define SPI_SPIENS_SIZE 1 117 118 /* Bitfields in CSR0 */ 119 #define SPI_CPOL_OFFSET 0 120 #define SPI_CPOL_SIZE 1 121 #define SPI_NCPHA_OFFSET 1 122 #define SPI_NCPHA_SIZE 1 123 #define SPI_CSAAT_OFFSET 3 124 #define SPI_CSAAT_SIZE 1 125 #define SPI_BITS_OFFSET 4 126 #define SPI_BITS_SIZE 4 127 #define SPI_SCBR_OFFSET 8 128 #define SPI_SCBR_SIZE 8 129 #define SPI_DLYBS_OFFSET 16 130 #define SPI_DLYBS_SIZE 8 131 #define SPI_DLYBCT_OFFSET 24 132 #define SPI_DLYBCT_SIZE 8 133 134 /* Bitfields in RCR */ 135 #define SPI_RXCTR_OFFSET 0 136 #define SPI_RXCTR_SIZE 16 137 138 /* Bitfields in TCR */ 139 #define SPI_TXCTR_OFFSET 0 140 #define SPI_TXCTR_SIZE 16 141 142 /* Bitfields in RNCR */ 143 #define SPI_RXNCR_OFFSET 0 144 #define SPI_RXNCR_SIZE 16 145 146 /* Bitfields in TNCR */ 147 #define SPI_TXNCR_OFFSET 0 148 #define SPI_TXNCR_SIZE 16 149 150 /* Bitfields in PTCR */ 151 #define SPI_RXTEN_OFFSET 0 152 #define SPI_RXTEN_SIZE 1 153 #define SPI_RXTDIS_OFFSET 1 154 #define SPI_RXTDIS_SIZE 1 155 #define SPI_TXTEN_OFFSET 8 156 #define SPI_TXTEN_SIZE 1 157 #define SPI_TXTDIS_OFFSET 9 158 #define SPI_TXTDIS_SIZE 1 159 160 /* Constants for BITS */ 161 #define SPI_BITS_8_BPT 0 162 #define SPI_BITS_9_BPT 1 163 #define SPI_BITS_10_BPT 2 164 #define SPI_BITS_11_BPT 3 165 #define SPI_BITS_12_BPT 4 166 #define SPI_BITS_13_BPT 5 167 #define SPI_BITS_14_BPT 6 168 #define SPI_BITS_15_BPT 7 169 #define SPI_BITS_16_BPT 8 170 171 /* Bit manipulation macros */ 172 #define SPI_BIT(name) \ 173 (1 << SPI_##name##_OFFSET) 174 #define SPI_BF(name, value) \ 175 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) 176 #define SPI_BFEXT(name, value) \ 177 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) 178 #define SPI_BFINS(name, value, old) \ 179 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ 180 | SPI_BF(name, value)) 181 182 /* Register access macros */ 183 #ifdef CONFIG_AVR32 184 #define spi_readl(port, reg) \ 185 __raw_readl((port)->regs + SPI_##reg) 186 #define spi_writel(port, reg, value) \ 187 __raw_writel((value), (port)->regs + SPI_##reg) 188 #else 189 #define spi_readl(port, reg) \ 190 readl_relaxed((port)->regs + SPI_##reg) 191 #define spi_writel(port, reg, value) \ 192 writel_relaxed((value), (port)->regs + SPI_##reg) 193 #endif 194 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 195 * cache operations; better heuristics consider wordsize and bitrate. 196 */ 197 #define DMA_MIN_BYTES 16 198 199 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) 200 201 #define AUTOSUSPEND_TIMEOUT 2000 202 203 struct atmel_spi_dma { 204 struct dma_chan *chan_rx; 205 struct dma_chan *chan_tx; 206 struct scatterlist sgrx; 207 struct scatterlist sgtx; 208 struct dma_async_tx_descriptor *data_desc_rx; 209 struct dma_async_tx_descriptor *data_desc_tx; 210 211 struct at_dma_slave dma_slave; 212 }; 213 214 struct atmel_spi_caps { 215 bool is_spi2; 216 bool has_wdrbt; 217 bool has_dma_support; 218 }; 219 220 /* 221 * The core SPI transfer engine just talks to a register bank to set up 222 * DMA transfers; transfer queue progress is driven by IRQs. The clock 223 * framework provides the base clock, subdivided for each spi_device. 224 */ 225 struct atmel_spi { 226 spinlock_t lock; 227 unsigned long flags; 228 229 phys_addr_t phybase; 230 void __iomem *regs; 231 int irq; 232 struct clk *clk; 233 struct platform_device *pdev; 234 235 struct spi_transfer *current_transfer; 236 int current_remaining_bytes; 237 int done_status; 238 239 struct completion xfer_completion; 240 241 /* scratch buffer */ 242 void *buffer; 243 dma_addr_t buffer_dma; 244 245 struct atmel_spi_caps caps; 246 247 bool use_dma; 248 bool use_pdc; 249 /* dmaengine data */ 250 struct atmel_spi_dma dma; 251 252 bool keep_cs; 253 bool cs_active; 254 }; 255 256 /* Controller-specific per-slave state */ 257 struct atmel_spi_device { 258 unsigned int npcs_pin; 259 u32 csr; 260 }; 261 262 #define BUFFER_SIZE PAGE_SIZE 263 #define INVALID_DMA_ADDRESS 0xffffffff 264 265 /* 266 * Version 2 of the SPI controller has 267 * - CR.LASTXFER 268 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) 269 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) 270 * - SPI_CSRx.CSAAT 271 * - SPI_CSRx.SBCR allows faster clocking 272 */ 273 static bool atmel_spi_is_v2(struct atmel_spi *as) 274 { 275 return as->caps.is_spi2; 276 } 277 278 /* 279 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby 280 * they assume that spi slave device state will not change on deselect, so 281 * that automagic deselection is OK. ("NPCSx rises if no data is to be 282 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer 283 * controllers have CSAAT and friends. 284 * 285 * Since the CSAAT functionality is a bit weird on newer controllers as 286 * well, we use GPIO to control nCSx pins on all controllers, updating 287 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us 288 * support active-high chipselects despite the controller's belief that 289 * only active-low devices/systems exists. 290 * 291 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work 292 * right when driven with GPIO. ("Mode Fault does not allow more than one 293 * Master on Chip Select 0.") No workaround exists for that ... so for 294 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, 295 * and (c) will trigger that first erratum in some cases. 296 */ 297 298 static void cs_activate(struct atmel_spi *as, struct spi_device *spi) 299 { 300 struct atmel_spi_device *asd = spi->controller_state; 301 unsigned active = spi->mode & SPI_CS_HIGH; 302 u32 mr; 303 304 if (atmel_spi_is_v2(as)) { 305 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr); 306 /* For the low SPI version, there is a issue that PDC transfer 307 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS 308 */ 309 spi_writel(as, CSR0, asd->csr); 310 if (as->caps.has_wdrbt) { 311 spi_writel(as, MR, 312 SPI_BF(PCS, ~(0x01 << spi->chip_select)) 313 | SPI_BIT(WDRBT) 314 | SPI_BIT(MODFDIS) 315 | SPI_BIT(MSTR)); 316 } else { 317 spi_writel(as, MR, 318 SPI_BF(PCS, ~(0x01 << spi->chip_select)) 319 | SPI_BIT(MODFDIS) 320 | SPI_BIT(MSTR)); 321 } 322 323 mr = spi_readl(as, MR); 324 gpio_set_value(asd->npcs_pin, active); 325 } else { 326 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; 327 int i; 328 u32 csr; 329 330 /* Make sure clock polarity is correct */ 331 for (i = 0; i < spi->master->num_chipselect; i++) { 332 csr = spi_readl(as, CSR0 + 4 * i); 333 if ((csr ^ cpol) & SPI_BIT(CPOL)) 334 spi_writel(as, CSR0 + 4 * i, 335 csr ^ SPI_BIT(CPOL)); 336 } 337 338 mr = spi_readl(as, MR); 339 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr); 340 if (spi->chip_select != 0) 341 gpio_set_value(asd->npcs_pin, active); 342 spi_writel(as, MR, mr); 343 } 344 345 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n", 346 asd->npcs_pin, active ? " (high)" : "", 347 mr); 348 } 349 350 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) 351 { 352 struct atmel_spi_device *asd = spi->controller_state; 353 unsigned active = spi->mode & SPI_CS_HIGH; 354 u32 mr; 355 356 /* only deactivate *this* device; sometimes transfers to 357 * another device may be active when this routine is called. 358 */ 359 mr = spi_readl(as, MR); 360 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) { 361 mr = SPI_BFINS(PCS, 0xf, mr); 362 spi_writel(as, MR, mr); 363 } 364 365 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n", 366 asd->npcs_pin, active ? " (low)" : "", 367 mr); 368 369 if (atmel_spi_is_v2(as) || spi->chip_select != 0) 370 gpio_set_value(asd->npcs_pin, !active); 371 } 372 373 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock) 374 { 375 spin_lock_irqsave(&as->lock, as->flags); 376 } 377 378 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock) 379 { 380 spin_unlock_irqrestore(&as->lock, as->flags); 381 } 382 383 static inline bool atmel_spi_use_dma(struct atmel_spi *as, 384 struct spi_transfer *xfer) 385 { 386 return as->use_dma && xfer->len >= DMA_MIN_BYTES; 387 } 388 389 static int atmel_spi_dma_slave_config(struct atmel_spi *as, 390 struct dma_slave_config *slave_config, 391 u8 bits_per_word) 392 { 393 int err = 0; 394 395 if (bits_per_word > 8) { 396 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 397 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 398 } else { 399 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 400 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 401 } 402 403 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR; 404 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR; 405 slave_config->src_maxburst = 1; 406 slave_config->dst_maxburst = 1; 407 slave_config->device_fc = false; 408 409 slave_config->direction = DMA_MEM_TO_DEV; 410 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) { 411 dev_err(&as->pdev->dev, 412 "failed to configure tx dma channel\n"); 413 err = -EINVAL; 414 } 415 416 slave_config->direction = DMA_DEV_TO_MEM; 417 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) { 418 dev_err(&as->pdev->dev, 419 "failed to configure rx dma channel\n"); 420 err = -EINVAL; 421 } 422 423 return err; 424 } 425 426 static int atmel_spi_configure_dma(struct atmel_spi *as) 427 { 428 struct dma_slave_config slave_config; 429 struct device *dev = &as->pdev->dev; 430 int err; 431 432 dma_cap_mask_t mask; 433 dma_cap_zero(mask); 434 dma_cap_set(DMA_SLAVE, mask); 435 436 as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx"); 437 if (IS_ERR(as->dma.chan_tx)) { 438 err = PTR_ERR(as->dma.chan_tx); 439 if (err == -EPROBE_DEFER) { 440 dev_warn(dev, "no DMA channel available at the moment\n"); 441 return err; 442 } 443 dev_err(dev, 444 "DMA TX channel not available, SPI unable to use DMA\n"); 445 err = -EBUSY; 446 goto error; 447 } 448 449 /* 450 * No reason to check EPROBE_DEFER here since we have already requested 451 * tx channel. If it fails here, it's for another reason. 452 */ 453 as->dma.chan_rx = dma_request_slave_channel(dev, "rx"); 454 455 if (!as->dma.chan_rx) { 456 dev_err(dev, 457 "DMA RX channel not available, SPI unable to use DMA\n"); 458 err = -EBUSY; 459 goto error; 460 } 461 462 err = atmel_spi_dma_slave_config(as, &slave_config, 8); 463 if (err) 464 goto error; 465 466 dev_info(&as->pdev->dev, 467 "Using %s (tx) and %s (rx) for DMA transfers\n", 468 dma_chan_name(as->dma.chan_tx), 469 dma_chan_name(as->dma.chan_rx)); 470 return 0; 471 error: 472 if (as->dma.chan_rx) 473 dma_release_channel(as->dma.chan_rx); 474 if (!IS_ERR(as->dma.chan_tx)) 475 dma_release_channel(as->dma.chan_tx); 476 return err; 477 } 478 479 static void atmel_spi_stop_dma(struct atmel_spi *as) 480 { 481 if (as->dma.chan_rx) 482 dmaengine_terminate_all(as->dma.chan_rx); 483 if (as->dma.chan_tx) 484 dmaengine_terminate_all(as->dma.chan_tx); 485 } 486 487 static void atmel_spi_release_dma(struct atmel_spi *as) 488 { 489 if (as->dma.chan_rx) 490 dma_release_channel(as->dma.chan_rx); 491 if (as->dma.chan_tx) 492 dma_release_channel(as->dma.chan_tx); 493 } 494 495 /* This function is called by the DMA driver from tasklet context */ 496 static void dma_callback(void *data) 497 { 498 struct spi_master *master = data; 499 struct atmel_spi *as = spi_master_get_devdata(master); 500 501 complete(&as->xfer_completion); 502 } 503 504 /* 505 * Next transfer using PIO. 506 */ 507 static void atmel_spi_next_xfer_pio(struct spi_master *master, 508 struct spi_transfer *xfer) 509 { 510 struct atmel_spi *as = spi_master_get_devdata(master); 511 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 512 513 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n"); 514 515 /* Make sure data is not remaining in RDR */ 516 spi_readl(as, RDR); 517 while (spi_readl(as, SR) & SPI_BIT(RDRF)) { 518 spi_readl(as, RDR); 519 cpu_relax(); 520 } 521 522 if (xfer->tx_buf) { 523 if (xfer->bits_per_word > 8) 524 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos)); 525 else 526 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos)); 527 } else { 528 spi_writel(as, TDR, 0); 529 } 530 531 dev_dbg(master->dev.parent, 532 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n", 533 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 534 xfer->bits_per_word); 535 536 /* Enable relevant interrupts */ 537 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES)); 538 } 539 540 /* 541 * Submit next transfer for DMA. 542 */ 543 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master, 544 struct spi_transfer *xfer, 545 u32 *plen) 546 { 547 struct atmel_spi *as = spi_master_get_devdata(master); 548 struct dma_chan *rxchan = as->dma.chan_rx; 549 struct dma_chan *txchan = as->dma.chan_tx; 550 struct dma_async_tx_descriptor *rxdesc; 551 struct dma_async_tx_descriptor *txdesc; 552 struct dma_slave_config slave_config; 553 dma_cookie_t cookie; 554 u32 len = *plen; 555 556 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n"); 557 558 /* Check that the channels are available */ 559 if (!rxchan || !txchan) 560 return -ENODEV; 561 562 /* release lock for DMA operations */ 563 atmel_spi_unlock(as); 564 565 /* prepare the RX dma transfer */ 566 sg_init_table(&as->dma.sgrx, 1); 567 if (xfer->rx_buf) { 568 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen; 569 } else { 570 as->dma.sgrx.dma_address = as->buffer_dma; 571 if (len > BUFFER_SIZE) 572 len = BUFFER_SIZE; 573 } 574 575 /* prepare the TX dma transfer */ 576 sg_init_table(&as->dma.sgtx, 1); 577 if (xfer->tx_buf) { 578 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen; 579 } else { 580 as->dma.sgtx.dma_address = as->buffer_dma; 581 if (len > BUFFER_SIZE) 582 len = BUFFER_SIZE; 583 memset(as->buffer, 0, len); 584 } 585 586 sg_dma_len(&as->dma.sgtx) = len; 587 sg_dma_len(&as->dma.sgrx) = len; 588 589 *plen = len; 590 591 if (atmel_spi_dma_slave_config(as, &slave_config, 8)) 592 goto err_exit; 593 594 /* Send both scatterlists */ 595 rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1, 596 DMA_FROM_DEVICE, 597 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 598 if (!rxdesc) 599 goto err_dma; 600 601 txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1, 602 DMA_TO_DEVICE, 603 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 604 if (!txdesc) 605 goto err_dma; 606 607 dev_dbg(master->dev.parent, 608 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 609 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma, 610 xfer->rx_buf, (unsigned long long)xfer->rx_dma); 611 612 /* Enable relevant interrupts */ 613 spi_writel(as, IER, SPI_BIT(OVRES)); 614 615 /* Put the callback on the RX transfer only, that should finish last */ 616 rxdesc->callback = dma_callback; 617 rxdesc->callback_param = master; 618 619 /* Submit and fire RX and TX with TX last so we're ready to read! */ 620 cookie = rxdesc->tx_submit(rxdesc); 621 if (dma_submit_error(cookie)) 622 goto err_dma; 623 cookie = txdesc->tx_submit(txdesc); 624 if (dma_submit_error(cookie)) 625 goto err_dma; 626 rxchan->device->device_issue_pending(rxchan); 627 txchan->device->device_issue_pending(txchan); 628 629 /* take back lock */ 630 atmel_spi_lock(as); 631 return 0; 632 633 err_dma: 634 spi_writel(as, IDR, SPI_BIT(OVRES)); 635 atmel_spi_stop_dma(as); 636 err_exit: 637 atmel_spi_lock(as); 638 return -ENOMEM; 639 } 640 641 static void atmel_spi_next_xfer_data(struct spi_master *master, 642 struct spi_transfer *xfer, 643 dma_addr_t *tx_dma, 644 dma_addr_t *rx_dma, 645 u32 *plen) 646 { 647 struct atmel_spi *as = spi_master_get_devdata(master); 648 u32 len = *plen; 649 650 /* use scratch buffer only when rx or tx data is unspecified */ 651 if (xfer->rx_buf) 652 *rx_dma = xfer->rx_dma + xfer->len - *plen; 653 else { 654 *rx_dma = as->buffer_dma; 655 if (len > BUFFER_SIZE) 656 len = BUFFER_SIZE; 657 } 658 659 if (xfer->tx_buf) 660 *tx_dma = xfer->tx_dma + xfer->len - *plen; 661 else { 662 *tx_dma = as->buffer_dma; 663 if (len > BUFFER_SIZE) 664 len = BUFFER_SIZE; 665 memset(as->buffer, 0, len); 666 dma_sync_single_for_device(&as->pdev->dev, 667 as->buffer_dma, len, DMA_TO_DEVICE); 668 } 669 670 *plen = len; 671 } 672 673 static int atmel_spi_set_xfer_speed(struct atmel_spi *as, 674 struct spi_device *spi, 675 struct spi_transfer *xfer) 676 { 677 u32 scbr, csr; 678 unsigned long bus_hz; 679 680 /* v1 chips start out at half the peripheral bus speed. */ 681 bus_hz = clk_get_rate(as->clk); 682 if (!atmel_spi_is_v2(as)) 683 bus_hz /= 2; 684 685 /* 686 * Calculate the lowest divider that satisfies the 687 * constraint, assuming div32/fdiv/mbz == 0. 688 */ 689 if (xfer->speed_hz) 690 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz); 691 else 692 /* 693 * This can happend if max_speed is null. 694 * In this case, we set the lowest possible speed 695 */ 696 scbr = 0xff; 697 698 /* 699 * If the resulting divider doesn't fit into the 700 * register bitfield, we can't satisfy the constraint. 701 */ 702 if (scbr >= (1 << SPI_SCBR_SIZE)) { 703 dev_err(&spi->dev, 704 "setup: %d Hz too slow, scbr %u; min %ld Hz\n", 705 xfer->speed_hz, scbr, bus_hz/255); 706 return -EINVAL; 707 } 708 if (scbr == 0) { 709 dev_err(&spi->dev, 710 "setup: %d Hz too high, scbr %u; max %ld Hz\n", 711 xfer->speed_hz, scbr, bus_hz); 712 return -EINVAL; 713 } 714 csr = spi_readl(as, CSR0 + 4 * spi->chip_select); 715 csr = SPI_BFINS(SCBR, scbr, csr); 716 spi_writel(as, CSR0 + 4 * spi->chip_select, csr); 717 718 return 0; 719 } 720 721 /* 722 * Submit next transfer for PDC. 723 * lock is held, spi irq is blocked 724 */ 725 static void atmel_spi_pdc_next_xfer(struct spi_master *master, 726 struct spi_message *msg, 727 struct spi_transfer *xfer) 728 { 729 struct atmel_spi *as = spi_master_get_devdata(master); 730 u32 len; 731 dma_addr_t tx_dma, rx_dma; 732 733 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 734 735 len = as->current_remaining_bytes; 736 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 737 as->current_remaining_bytes -= len; 738 739 spi_writel(as, RPR, rx_dma); 740 spi_writel(as, TPR, tx_dma); 741 742 if (msg->spi->bits_per_word > 8) 743 len >>= 1; 744 spi_writel(as, RCR, len); 745 spi_writel(as, TCR, len); 746 747 dev_dbg(&msg->spi->dev, 748 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 749 xfer, xfer->len, xfer->tx_buf, 750 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 751 (unsigned long long)xfer->rx_dma); 752 753 if (as->current_remaining_bytes) { 754 len = as->current_remaining_bytes; 755 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 756 as->current_remaining_bytes -= len; 757 758 spi_writel(as, RNPR, rx_dma); 759 spi_writel(as, TNPR, tx_dma); 760 761 if (msg->spi->bits_per_word > 8) 762 len >>= 1; 763 spi_writel(as, RNCR, len); 764 spi_writel(as, TNCR, len); 765 766 dev_dbg(&msg->spi->dev, 767 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 768 xfer, xfer->len, xfer->tx_buf, 769 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 770 (unsigned long long)xfer->rx_dma); 771 } 772 773 /* REVISIT: We're waiting for RXBUFF before we start the next 774 * transfer because we need to handle some difficult timing 775 * issues otherwise. If we wait for TXBUFE in one transfer and 776 * then starts waiting for RXBUFF in the next, it's difficult 777 * to tell the difference between the RXBUFF interrupt we're 778 * actually waiting for and the RXBUFF interrupt of the 779 * previous transfer. 780 * 781 * It should be doable, though. Just not now... 782 */ 783 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES)); 784 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); 785 } 786 787 /* 788 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: 789 * - The buffer is either valid for CPU access, else NULL 790 * - If the buffer is valid, so is its DMA address 791 * 792 * This driver manages the dma address unless message->is_dma_mapped. 793 */ 794 static int 795 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) 796 { 797 struct device *dev = &as->pdev->dev; 798 799 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; 800 if (xfer->tx_buf) { 801 /* tx_buf is a const void* where we need a void * for the dma 802 * mapping */ 803 void *nonconst_tx = (void *)xfer->tx_buf; 804 805 xfer->tx_dma = dma_map_single(dev, 806 nonconst_tx, xfer->len, 807 DMA_TO_DEVICE); 808 if (dma_mapping_error(dev, xfer->tx_dma)) 809 return -ENOMEM; 810 } 811 if (xfer->rx_buf) { 812 xfer->rx_dma = dma_map_single(dev, 813 xfer->rx_buf, xfer->len, 814 DMA_FROM_DEVICE); 815 if (dma_mapping_error(dev, xfer->rx_dma)) { 816 if (xfer->tx_buf) 817 dma_unmap_single(dev, 818 xfer->tx_dma, xfer->len, 819 DMA_TO_DEVICE); 820 return -ENOMEM; 821 } 822 } 823 return 0; 824 } 825 826 static void atmel_spi_dma_unmap_xfer(struct spi_master *master, 827 struct spi_transfer *xfer) 828 { 829 if (xfer->tx_dma != INVALID_DMA_ADDRESS) 830 dma_unmap_single(master->dev.parent, xfer->tx_dma, 831 xfer->len, DMA_TO_DEVICE); 832 if (xfer->rx_dma != INVALID_DMA_ADDRESS) 833 dma_unmap_single(master->dev.parent, xfer->rx_dma, 834 xfer->len, DMA_FROM_DEVICE); 835 } 836 837 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as) 838 { 839 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 840 } 841 842 /* Called from IRQ 843 * 844 * Must update "current_remaining_bytes" to keep track of data 845 * to transfer. 846 */ 847 static void 848 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer) 849 { 850 u8 *rxp; 851 u16 *rxp16; 852 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 853 854 if (xfer->rx_buf) { 855 if (xfer->bits_per_word > 8) { 856 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos); 857 *rxp16 = spi_readl(as, RDR); 858 } else { 859 rxp = ((u8 *)xfer->rx_buf) + xfer_pos; 860 *rxp = spi_readl(as, RDR); 861 } 862 } else { 863 spi_readl(as, RDR); 864 } 865 if (xfer->bits_per_word > 8) { 866 if (as->current_remaining_bytes > 2) 867 as->current_remaining_bytes -= 2; 868 else 869 as->current_remaining_bytes = 0; 870 } else { 871 as->current_remaining_bytes--; 872 } 873 } 874 875 /* Interrupt 876 * 877 * No need for locking in this Interrupt handler: done_status is the 878 * only information modified. 879 */ 880 static irqreturn_t 881 atmel_spi_pio_interrupt(int irq, void *dev_id) 882 { 883 struct spi_master *master = dev_id; 884 struct atmel_spi *as = spi_master_get_devdata(master); 885 u32 status, pending, imr; 886 struct spi_transfer *xfer; 887 int ret = IRQ_NONE; 888 889 imr = spi_readl(as, IMR); 890 status = spi_readl(as, SR); 891 pending = status & imr; 892 893 if (pending & SPI_BIT(OVRES)) { 894 ret = IRQ_HANDLED; 895 spi_writel(as, IDR, SPI_BIT(OVRES)); 896 dev_warn(master->dev.parent, "overrun\n"); 897 898 /* 899 * When we get an overrun, we disregard the current 900 * transfer. Data will not be copied back from any 901 * bounce buffer and msg->actual_len will not be 902 * updated with the last xfer. 903 * 904 * We will also not process any remaning transfers in 905 * the message. 906 */ 907 as->done_status = -EIO; 908 smp_wmb(); 909 910 /* Clear any overrun happening while cleaning up */ 911 spi_readl(as, SR); 912 913 complete(&as->xfer_completion); 914 915 } else if (pending & SPI_BIT(RDRF)) { 916 atmel_spi_lock(as); 917 918 if (as->current_remaining_bytes) { 919 ret = IRQ_HANDLED; 920 xfer = as->current_transfer; 921 atmel_spi_pump_pio_data(as, xfer); 922 if (!as->current_remaining_bytes) 923 spi_writel(as, IDR, pending); 924 925 complete(&as->xfer_completion); 926 } 927 928 atmel_spi_unlock(as); 929 } else { 930 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending); 931 ret = IRQ_HANDLED; 932 spi_writel(as, IDR, pending); 933 } 934 935 return ret; 936 } 937 938 static irqreturn_t 939 atmel_spi_pdc_interrupt(int irq, void *dev_id) 940 { 941 struct spi_master *master = dev_id; 942 struct atmel_spi *as = spi_master_get_devdata(master); 943 u32 status, pending, imr; 944 int ret = IRQ_NONE; 945 946 imr = spi_readl(as, IMR); 947 status = spi_readl(as, SR); 948 pending = status & imr; 949 950 if (pending & SPI_BIT(OVRES)) { 951 952 ret = IRQ_HANDLED; 953 954 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) 955 | SPI_BIT(OVRES))); 956 957 /* Clear any overrun happening while cleaning up */ 958 spi_readl(as, SR); 959 960 as->done_status = -EIO; 961 962 complete(&as->xfer_completion); 963 964 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { 965 ret = IRQ_HANDLED; 966 967 spi_writel(as, IDR, pending); 968 969 complete(&as->xfer_completion); 970 } 971 972 return ret; 973 } 974 975 static int atmel_spi_setup(struct spi_device *spi) 976 { 977 struct atmel_spi *as; 978 struct atmel_spi_device *asd; 979 u32 csr; 980 unsigned int bits = spi->bits_per_word; 981 unsigned int npcs_pin; 982 int ret; 983 984 as = spi_master_get_devdata(spi->master); 985 986 /* see notes above re chipselect */ 987 if (!atmel_spi_is_v2(as) 988 && spi->chip_select == 0 989 && (spi->mode & SPI_CS_HIGH)) { 990 dev_dbg(&spi->dev, "setup: can't be active-high\n"); 991 return -EINVAL; 992 } 993 994 csr = SPI_BF(BITS, bits - 8); 995 if (spi->mode & SPI_CPOL) 996 csr |= SPI_BIT(CPOL); 997 if (!(spi->mode & SPI_CPHA)) 998 csr |= SPI_BIT(NCPHA); 999 1000 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs. 1001 * 1002 * DLYBCT would add delays between words, slowing down transfers. 1003 * It could potentially be useful to cope with DMA bottlenecks, but 1004 * in those cases it's probably best to just use a lower bitrate. 1005 */ 1006 csr |= SPI_BF(DLYBS, 0); 1007 csr |= SPI_BF(DLYBCT, 0); 1008 1009 /* chipselect must have been muxed as GPIO (e.g. in board setup) */ 1010 npcs_pin = (unsigned long)spi->controller_data; 1011 1012 if (gpio_is_valid(spi->cs_gpio)) 1013 npcs_pin = spi->cs_gpio; 1014 1015 asd = spi->controller_state; 1016 if (!asd) { 1017 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); 1018 if (!asd) 1019 return -ENOMEM; 1020 1021 ret = gpio_request(npcs_pin, dev_name(&spi->dev)); 1022 if (ret) { 1023 kfree(asd); 1024 return ret; 1025 } 1026 1027 asd->npcs_pin = npcs_pin; 1028 spi->controller_state = asd; 1029 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH)); 1030 } 1031 1032 asd->csr = csr; 1033 1034 dev_dbg(&spi->dev, 1035 "setup: bpw %u mode 0x%x -> csr%d %08x\n", 1036 bits, spi->mode, spi->chip_select, csr); 1037 1038 if (!atmel_spi_is_v2(as)) 1039 spi_writel(as, CSR0 + 4 * spi->chip_select, csr); 1040 1041 return 0; 1042 } 1043 1044 static int atmel_spi_one_transfer(struct spi_master *master, 1045 struct spi_message *msg, 1046 struct spi_transfer *xfer) 1047 { 1048 struct atmel_spi *as; 1049 struct spi_device *spi = msg->spi; 1050 u8 bits; 1051 u32 len; 1052 struct atmel_spi_device *asd; 1053 int timeout; 1054 int ret; 1055 unsigned long dma_timeout; 1056 1057 as = spi_master_get_devdata(master); 1058 1059 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1060 dev_dbg(&spi->dev, "missing rx or tx buf\n"); 1061 return -EINVAL; 1062 } 1063 1064 if (xfer->bits_per_word) { 1065 asd = spi->controller_state; 1066 bits = (asd->csr >> 4) & 0xf; 1067 if (bits != xfer->bits_per_word - 8) { 1068 dev_dbg(&spi->dev, 1069 "you can't yet change bits_per_word in transfers\n"); 1070 return -ENOPROTOOPT; 1071 } 1072 } 1073 1074 /* 1075 * DMA map early, for performance (empties dcache ASAP) and 1076 * better fault reporting. 1077 */ 1078 if ((!msg->is_dma_mapped) 1079 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) { 1080 if (atmel_spi_dma_map_xfer(as, xfer) < 0) 1081 return -ENOMEM; 1082 } 1083 1084 atmel_spi_set_xfer_speed(as, msg->spi, xfer); 1085 1086 as->done_status = 0; 1087 as->current_transfer = xfer; 1088 as->current_remaining_bytes = xfer->len; 1089 while (as->current_remaining_bytes) { 1090 reinit_completion(&as->xfer_completion); 1091 1092 if (as->use_pdc) { 1093 atmel_spi_pdc_next_xfer(master, msg, xfer); 1094 } else if (atmel_spi_use_dma(as, xfer)) { 1095 len = as->current_remaining_bytes; 1096 ret = atmel_spi_next_xfer_dma_submit(master, 1097 xfer, &len); 1098 if (ret) { 1099 dev_err(&spi->dev, 1100 "unable to use DMA, fallback to PIO\n"); 1101 atmel_spi_next_xfer_pio(master, xfer); 1102 } else { 1103 as->current_remaining_bytes -= len; 1104 if (as->current_remaining_bytes < 0) 1105 as->current_remaining_bytes = 0; 1106 } 1107 } else { 1108 atmel_spi_next_xfer_pio(master, xfer); 1109 } 1110 1111 /* interrupts are disabled, so free the lock for schedule */ 1112 atmel_spi_unlock(as); 1113 dma_timeout = wait_for_completion_timeout(&as->xfer_completion, 1114 SPI_DMA_TIMEOUT); 1115 atmel_spi_lock(as); 1116 if (WARN_ON(dma_timeout == 0)) { 1117 dev_err(&spi->dev, "spi transfer timeout\n"); 1118 as->done_status = -EIO; 1119 } 1120 1121 if (as->done_status) 1122 break; 1123 } 1124 1125 if (as->done_status) { 1126 if (as->use_pdc) { 1127 dev_warn(master->dev.parent, 1128 "overrun (%u/%u remaining)\n", 1129 spi_readl(as, TCR), spi_readl(as, RCR)); 1130 1131 /* 1132 * Clean up DMA registers and make sure the data 1133 * registers are empty. 1134 */ 1135 spi_writel(as, RNCR, 0); 1136 spi_writel(as, TNCR, 0); 1137 spi_writel(as, RCR, 0); 1138 spi_writel(as, TCR, 0); 1139 for (timeout = 1000; timeout; timeout--) 1140 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) 1141 break; 1142 if (!timeout) 1143 dev_warn(master->dev.parent, 1144 "timeout waiting for TXEMPTY"); 1145 while (spi_readl(as, SR) & SPI_BIT(RDRF)) 1146 spi_readl(as, RDR); 1147 1148 /* Clear any overrun happening while cleaning up */ 1149 spi_readl(as, SR); 1150 1151 } else if (atmel_spi_use_dma(as, xfer)) { 1152 atmel_spi_stop_dma(as); 1153 } 1154 1155 if (!msg->is_dma_mapped 1156 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) 1157 atmel_spi_dma_unmap_xfer(master, xfer); 1158 1159 return 0; 1160 1161 } else { 1162 /* only update length if no error */ 1163 msg->actual_length += xfer->len; 1164 } 1165 1166 if (!msg->is_dma_mapped 1167 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) 1168 atmel_spi_dma_unmap_xfer(master, xfer); 1169 1170 if (xfer->delay_usecs) 1171 udelay(xfer->delay_usecs); 1172 1173 if (xfer->cs_change) { 1174 if (list_is_last(&xfer->transfer_list, 1175 &msg->transfers)) { 1176 as->keep_cs = true; 1177 } else { 1178 as->cs_active = !as->cs_active; 1179 if (as->cs_active) 1180 cs_activate(as, msg->spi); 1181 else 1182 cs_deactivate(as, msg->spi); 1183 } 1184 } 1185 1186 return 0; 1187 } 1188 1189 static int atmel_spi_transfer_one_message(struct spi_master *master, 1190 struct spi_message *msg) 1191 { 1192 struct atmel_spi *as; 1193 struct spi_transfer *xfer; 1194 struct spi_device *spi = msg->spi; 1195 int ret = 0; 1196 1197 as = spi_master_get_devdata(master); 1198 1199 dev_dbg(&spi->dev, "new message %p submitted for %s\n", 1200 msg, dev_name(&spi->dev)); 1201 1202 atmel_spi_lock(as); 1203 cs_activate(as, spi); 1204 1205 as->cs_active = true; 1206 as->keep_cs = false; 1207 1208 msg->status = 0; 1209 msg->actual_length = 0; 1210 1211 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1212 ret = atmel_spi_one_transfer(master, msg, xfer); 1213 if (ret) 1214 goto msg_done; 1215 } 1216 1217 if (as->use_pdc) 1218 atmel_spi_disable_pdc_transfer(as); 1219 1220 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1221 dev_dbg(&spi->dev, 1222 " xfer %p: len %u tx %p/%pad rx %p/%pad\n", 1223 xfer, xfer->len, 1224 xfer->tx_buf, &xfer->tx_dma, 1225 xfer->rx_buf, &xfer->rx_dma); 1226 } 1227 1228 msg_done: 1229 if (!as->keep_cs) 1230 cs_deactivate(as, msg->spi); 1231 1232 atmel_spi_unlock(as); 1233 1234 msg->status = as->done_status; 1235 spi_finalize_current_message(spi->master); 1236 1237 return ret; 1238 } 1239 1240 static void atmel_spi_cleanup(struct spi_device *spi) 1241 { 1242 struct atmel_spi_device *asd = spi->controller_state; 1243 unsigned gpio = (unsigned long) spi->controller_data; 1244 1245 if (!asd) 1246 return; 1247 1248 spi->controller_state = NULL; 1249 gpio_free(gpio); 1250 kfree(asd); 1251 } 1252 1253 static inline unsigned int atmel_get_version(struct atmel_spi *as) 1254 { 1255 return spi_readl(as, VERSION) & 0x00000fff; 1256 } 1257 1258 static void atmel_get_caps(struct atmel_spi *as) 1259 { 1260 unsigned int version; 1261 1262 version = atmel_get_version(as); 1263 dev_info(&as->pdev->dev, "version: 0x%x\n", version); 1264 1265 as->caps.is_spi2 = version > 0x121; 1266 as->caps.has_wdrbt = version >= 0x210; 1267 as->caps.has_dma_support = version >= 0x212; 1268 } 1269 1270 /*-------------------------------------------------------------------------*/ 1271 1272 static int atmel_spi_probe(struct platform_device *pdev) 1273 { 1274 struct resource *regs; 1275 int irq; 1276 struct clk *clk; 1277 int ret; 1278 struct spi_master *master; 1279 struct atmel_spi *as; 1280 1281 /* Select default pin state */ 1282 pinctrl_pm_select_default_state(&pdev->dev); 1283 1284 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1285 if (!regs) 1286 return -ENXIO; 1287 1288 irq = platform_get_irq(pdev, 0); 1289 if (irq < 0) 1290 return irq; 1291 1292 clk = devm_clk_get(&pdev->dev, "spi_clk"); 1293 if (IS_ERR(clk)) 1294 return PTR_ERR(clk); 1295 1296 /* setup spi core then atmel-specific driver state */ 1297 ret = -ENOMEM; 1298 master = spi_alloc_master(&pdev->dev, sizeof(*as)); 1299 if (!master) 1300 goto out_free; 1301 1302 /* the spi->mode bits understood by this driver: */ 1303 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1304 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16); 1305 master->dev.of_node = pdev->dev.of_node; 1306 master->bus_num = pdev->id; 1307 master->num_chipselect = master->dev.of_node ? 0 : 4; 1308 master->setup = atmel_spi_setup; 1309 master->transfer_one_message = atmel_spi_transfer_one_message; 1310 master->cleanup = atmel_spi_cleanup; 1311 master->auto_runtime_pm = true; 1312 platform_set_drvdata(pdev, master); 1313 1314 as = spi_master_get_devdata(master); 1315 1316 /* 1317 * Scratch buffer is used for throwaway rx and tx data. 1318 * It's coherent to minimize dcache pollution. 1319 */ 1320 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE, 1321 &as->buffer_dma, GFP_KERNEL); 1322 if (!as->buffer) 1323 goto out_free; 1324 1325 spin_lock_init(&as->lock); 1326 1327 as->pdev = pdev; 1328 as->regs = devm_ioremap_resource(&pdev->dev, regs); 1329 if (IS_ERR(as->regs)) { 1330 ret = PTR_ERR(as->regs); 1331 goto out_free_buffer; 1332 } 1333 as->phybase = regs->start; 1334 as->irq = irq; 1335 as->clk = clk; 1336 1337 init_completion(&as->xfer_completion); 1338 1339 atmel_get_caps(as); 1340 1341 as->use_dma = false; 1342 as->use_pdc = false; 1343 if (as->caps.has_dma_support) { 1344 ret = atmel_spi_configure_dma(as); 1345 if (ret == 0) 1346 as->use_dma = true; 1347 else if (ret == -EPROBE_DEFER) 1348 return ret; 1349 } else { 1350 as->use_pdc = true; 1351 } 1352 1353 if (as->caps.has_dma_support && !as->use_dma) 1354 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n"); 1355 1356 if (as->use_pdc) { 1357 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt, 1358 0, dev_name(&pdev->dev), master); 1359 } else { 1360 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt, 1361 0, dev_name(&pdev->dev), master); 1362 } 1363 if (ret) 1364 goto out_unmap_regs; 1365 1366 /* Initialize the hardware */ 1367 ret = clk_prepare_enable(clk); 1368 if (ret) 1369 goto out_free_irq; 1370 spi_writel(as, CR, SPI_BIT(SWRST)); 1371 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1372 if (as->caps.has_wdrbt) { 1373 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS) 1374 | SPI_BIT(MSTR)); 1375 } else { 1376 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); 1377 } 1378 1379 if (as->use_pdc) 1380 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1381 spi_writel(as, CR, SPI_BIT(SPIEN)); 1382 1383 /* go! */ 1384 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n", 1385 (unsigned long)regs->start, irq); 1386 1387 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT); 1388 pm_runtime_use_autosuspend(&pdev->dev); 1389 pm_runtime_set_active(&pdev->dev); 1390 pm_runtime_enable(&pdev->dev); 1391 1392 ret = devm_spi_register_master(&pdev->dev, master); 1393 if (ret) 1394 goto out_free_dma; 1395 1396 return 0; 1397 1398 out_free_dma: 1399 pm_runtime_disable(&pdev->dev); 1400 pm_runtime_set_suspended(&pdev->dev); 1401 1402 if (as->use_dma) 1403 atmel_spi_release_dma(as); 1404 1405 spi_writel(as, CR, SPI_BIT(SWRST)); 1406 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1407 clk_disable_unprepare(clk); 1408 out_free_irq: 1409 out_unmap_regs: 1410 out_free_buffer: 1411 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, 1412 as->buffer_dma); 1413 out_free: 1414 spi_master_put(master); 1415 return ret; 1416 } 1417 1418 static int atmel_spi_remove(struct platform_device *pdev) 1419 { 1420 struct spi_master *master = platform_get_drvdata(pdev); 1421 struct atmel_spi *as = spi_master_get_devdata(master); 1422 1423 pm_runtime_get_sync(&pdev->dev); 1424 1425 /* reset the hardware and block queue progress */ 1426 spin_lock_irq(&as->lock); 1427 if (as->use_dma) { 1428 atmel_spi_stop_dma(as); 1429 atmel_spi_release_dma(as); 1430 } 1431 1432 spi_writel(as, CR, SPI_BIT(SWRST)); 1433 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1434 spi_readl(as, SR); 1435 spin_unlock_irq(&as->lock); 1436 1437 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, 1438 as->buffer_dma); 1439 1440 clk_disable_unprepare(as->clk); 1441 1442 pm_runtime_put_noidle(&pdev->dev); 1443 pm_runtime_disable(&pdev->dev); 1444 1445 return 0; 1446 } 1447 1448 #ifdef CONFIG_PM 1449 static int atmel_spi_runtime_suspend(struct device *dev) 1450 { 1451 struct spi_master *master = dev_get_drvdata(dev); 1452 struct atmel_spi *as = spi_master_get_devdata(master); 1453 1454 clk_disable_unprepare(as->clk); 1455 pinctrl_pm_select_sleep_state(dev); 1456 1457 return 0; 1458 } 1459 1460 static int atmel_spi_runtime_resume(struct device *dev) 1461 { 1462 struct spi_master *master = dev_get_drvdata(dev); 1463 struct atmel_spi *as = spi_master_get_devdata(master); 1464 1465 pinctrl_pm_select_default_state(dev); 1466 1467 return clk_prepare_enable(as->clk); 1468 } 1469 1470 static int atmel_spi_suspend(struct device *dev) 1471 { 1472 struct spi_master *master = dev_get_drvdata(dev); 1473 int ret; 1474 1475 /* Stop the queue running */ 1476 ret = spi_master_suspend(master); 1477 if (ret) { 1478 dev_warn(dev, "cannot suspend master\n"); 1479 return ret; 1480 } 1481 1482 if (!pm_runtime_suspended(dev)) 1483 atmel_spi_runtime_suspend(dev); 1484 1485 return 0; 1486 } 1487 1488 static int atmel_spi_resume(struct device *dev) 1489 { 1490 struct spi_master *master = dev_get_drvdata(dev); 1491 int ret; 1492 1493 if (!pm_runtime_suspended(dev)) { 1494 ret = atmel_spi_runtime_resume(dev); 1495 if (ret) 1496 return ret; 1497 } 1498 1499 /* Start the queue running */ 1500 ret = spi_master_resume(master); 1501 if (ret) 1502 dev_err(dev, "problem starting queue (%d)\n", ret); 1503 1504 return ret; 1505 } 1506 1507 static const struct dev_pm_ops atmel_spi_pm_ops = { 1508 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume) 1509 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend, 1510 atmel_spi_runtime_resume, NULL) 1511 }; 1512 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops) 1513 #else 1514 #define ATMEL_SPI_PM_OPS NULL 1515 #endif 1516 1517 #if defined(CONFIG_OF) 1518 static const struct of_device_id atmel_spi_dt_ids[] = { 1519 { .compatible = "atmel,at91rm9200-spi" }, 1520 { /* sentinel */ } 1521 }; 1522 1523 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids); 1524 #endif 1525 1526 static struct platform_driver atmel_spi_driver = { 1527 .driver = { 1528 .name = "atmel_spi", 1529 .pm = ATMEL_SPI_PM_OPS, 1530 .of_match_table = of_match_ptr(atmel_spi_dt_ids), 1531 }, 1532 .probe = atmel_spi_probe, 1533 .remove = atmel_spi_remove, 1534 }; 1535 module_platform_driver(atmel_spi_driver); 1536 1537 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); 1538 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 1539 MODULE_LICENSE("GPL"); 1540 MODULE_ALIAS("platform:atmel_spi"); 1541