1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Atmel AT32 and AT91 SPI Controllers 4 * 5 * Copyright (C) 2006 Atmel Corporation 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/clk.h> 10 #include <linux/module.h> 11 #include <linux/platform_device.h> 12 #include <linux/delay.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/dmaengine.h> 15 #include <linux/err.h> 16 #include <linux/interrupt.h> 17 #include <linux/spi/spi.h> 18 #include <linux/slab.h> 19 #include <linux/platform_data/dma-atmel.h> 20 #include <linux/of.h> 21 22 #include <linux/io.h> 23 #include <linux/gpio/consumer.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <trace/events/spi.h> 27 28 /* SPI register offsets */ 29 #define SPI_CR 0x0000 30 #define SPI_MR 0x0004 31 #define SPI_RDR 0x0008 32 #define SPI_TDR 0x000c 33 #define SPI_SR 0x0010 34 #define SPI_IER 0x0014 35 #define SPI_IDR 0x0018 36 #define SPI_IMR 0x001c 37 #define SPI_CSR0 0x0030 38 #define SPI_CSR1 0x0034 39 #define SPI_CSR2 0x0038 40 #define SPI_CSR3 0x003c 41 #define SPI_FMR 0x0040 42 #define SPI_FLR 0x0044 43 #define SPI_VERSION 0x00fc 44 #define SPI_RPR 0x0100 45 #define SPI_RCR 0x0104 46 #define SPI_TPR 0x0108 47 #define SPI_TCR 0x010c 48 #define SPI_RNPR 0x0110 49 #define SPI_RNCR 0x0114 50 #define SPI_TNPR 0x0118 51 #define SPI_TNCR 0x011c 52 #define SPI_PTCR 0x0120 53 #define SPI_PTSR 0x0124 54 55 /* Bitfields in CR */ 56 #define SPI_SPIEN_OFFSET 0 57 #define SPI_SPIEN_SIZE 1 58 #define SPI_SPIDIS_OFFSET 1 59 #define SPI_SPIDIS_SIZE 1 60 #define SPI_SWRST_OFFSET 7 61 #define SPI_SWRST_SIZE 1 62 #define SPI_LASTXFER_OFFSET 24 63 #define SPI_LASTXFER_SIZE 1 64 #define SPI_TXFCLR_OFFSET 16 65 #define SPI_TXFCLR_SIZE 1 66 #define SPI_RXFCLR_OFFSET 17 67 #define SPI_RXFCLR_SIZE 1 68 #define SPI_FIFOEN_OFFSET 30 69 #define SPI_FIFOEN_SIZE 1 70 #define SPI_FIFODIS_OFFSET 31 71 #define SPI_FIFODIS_SIZE 1 72 73 /* Bitfields in MR */ 74 #define SPI_MSTR_OFFSET 0 75 #define SPI_MSTR_SIZE 1 76 #define SPI_PS_OFFSET 1 77 #define SPI_PS_SIZE 1 78 #define SPI_PCSDEC_OFFSET 2 79 #define SPI_PCSDEC_SIZE 1 80 #define SPI_FDIV_OFFSET 3 81 #define SPI_FDIV_SIZE 1 82 #define SPI_MODFDIS_OFFSET 4 83 #define SPI_MODFDIS_SIZE 1 84 #define SPI_WDRBT_OFFSET 5 85 #define SPI_WDRBT_SIZE 1 86 #define SPI_LLB_OFFSET 7 87 #define SPI_LLB_SIZE 1 88 #define SPI_PCS_OFFSET 16 89 #define SPI_PCS_SIZE 4 90 #define SPI_DLYBCS_OFFSET 24 91 #define SPI_DLYBCS_SIZE 8 92 93 /* Bitfields in RDR */ 94 #define SPI_RD_OFFSET 0 95 #define SPI_RD_SIZE 16 96 97 /* Bitfields in TDR */ 98 #define SPI_TD_OFFSET 0 99 #define SPI_TD_SIZE 16 100 101 /* Bitfields in SR */ 102 #define SPI_RDRF_OFFSET 0 103 #define SPI_RDRF_SIZE 1 104 #define SPI_TDRE_OFFSET 1 105 #define SPI_TDRE_SIZE 1 106 #define SPI_MODF_OFFSET 2 107 #define SPI_MODF_SIZE 1 108 #define SPI_OVRES_OFFSET 3 109 #define SPI_OVRES_SIZE 1 110 #define SPI_ENDRX_OFFSET 4 111 #define SPI_ENDRX_SIZE 1 112 #define SPI_ENDTX_OFFSET 5 113 #define SPI_ENDTX_SIZE 1 114 #define SPI_RXBUFF_OFFSET 6 115 #define SPI_RXBUFF_SIZE 1 116 #define SPI_TXBUFE_OFFSET 7 117 #define SPI_TXBUFE_SIZE 1 118 #define SPI_NSSR_OFFSET 8 119 #define SPI_NSSR_SIZE 1 120 #define SPI_TXEMPTY_OFFSET 9 121 #define SPI_TXEMPTY_SIZE 1 122 #define SPI_SPIENS_OFFSET 16 123 #define SPI_SPIENS_SIZE 1 124 #define SPI_TXFEF_OFFSET 24 125 #define SPI_TXFEF_SIZE 1 126 #define SPI_TXFFF_OFFSET 25 127 #define SPI_TXFFF_SIZE 1 128 #define SPI_TXFTHF_OFFSET 26 129 #define SPI_TXFTHF_SIZE 1 130 #define SPI_RXFEF_OFFSET 27 131 #define SPI_RXFEF_SIZE 1 132 #define SPI_RXFFF_OFFSET 28 133 #define SPI_RXFFF_SIZE 1 134 #define SPI_RXFTHF_OFFSET 29 135 #define SPI_RXFTHF_SIZE 1 136 #define SPI_TXFPTEF_OFFSET 30 137 #define SPI_TXFPTEF_SIZE 1 138 #define SPI_RXFPTEF_OFFSET 31 139 #define SPI_RXFPTEF_SIZE 1 140 141 /* Bitfields in CSR0 */ 142 #define SPI_CPOL_OFFSET 0 143 #define SPI_CPOL_SIZE 1 144 #define SPI_NCPHA_OFFSET 1 145 #define SPI_NCPHA_SIZE 1 146 #define SPI_CSAAT_OFFSET 3 147 #define SPI_CSAAT_SIZE 1 148 #define SPI_BITS_OFFSET 4 149 #define SPI_BITS_SIZE 4 150 #define SPI_SCBR_OFFSET 8 151 #define SPI_SCBR_SIZE 8 152 #define SPI_DLYBS_OFFSET 16 153 #define SPI_DLYBS_SIZE 8 154 #define SPI_DLYBCT_OFFSET 24 155 #define SPI_DLYBCT_SIZE 8 156 157 /* Bitfields in RCR */ 158 #define SPI_RXCTR_OFFSET 0 159 #define SPI_RXCTR_SIZE 16 160 161 /* Bitfields in TCR */ 162 #define SPI_TXCTR_OFFSET 0 163 #define SPI_TXCTR_SIZE 16 164 165 /* Bitfields in RNCR */ 166 #define SPI_RXNCR_OFFSET 0 167 #define SPI_RXNCR_SIZE 16 168 169 /* Bitfields in TNCR */ 170 #define SPI_TXNCR_OFFSET 0 171 #define SPI_TXNCR_SIZE 16 172 173 /* Bitfields in PTCR */ 174 #define SPI_RXTEN_OFFSET 0 175 #define SPI_RXTEN_SIZE 1 176 #define SPI_RXTDIS_OFFSET 1 177 #define SPI_RXTDIS_SIZE 1 178 #define SPI_TXTEN_OFFSET 8 179 #define SPI_TXTEN_SIZE 1 180 #define SPI_TXTDIS_OFFSET 9 181 #define SPI_TXTDIS_SIZE 1 182 183 /* Bitfields in FMR */ 184 #define SPI_TXRDYM_OFFSET 0 185 #define SPI_TXRDYM_SIZE 2 186 #define SPI_RXRDYM_OFFSET 4 187 #define SPI_RXRDYM_SIZE 2 188 #define SPI_TXFTHRES_OFFSET 16 189 #define SPI_TXFTHRES_SIZE 6 190 #define SPI_RXFTHRES_OFFSET 24 191 #define SPI_RXFTHRES_SIZE 6 192 193 /* Bitfields in FLR */ 194 #define SPI_TXFL_OFFSET 0 195 #define SPI_TXFL_SIZE 6 196 #define SPI_RXFL_OFFSET 16 197 #define SPI_RXFL_SIZE 6 198 199 /* Constants for BITS */ 200 #define SPI_BITS_8_BPT 0 201 #define SPI_BITS_9_BPT 1 202 #define SPI_BITS_10_BPT 2 203 #define SPI_BITS_11_BPT 3 204 #define SPI_BITS_12_BPT 4 205 #define SPI_BITS_13_BPT 5 206 #define SPI_BITS_14_BPT 6 207 #define SPI_BITS_15_BPT 7 208 #define SPI_BITS_16_BPT 8 209 #define SPI_ONE_DATA 0 210 #define SPI_TWO_DATA 1 211 #define SPI_FOUR_DATA 2 212 213 /* Bit manipulation macros */ 214 #define SPI_BIT(name) \ 215 (1 << SPI_##name##_OFFSET) 216 #define SPI_BF(name, value) \ 217 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) 218 #define SPI_BFEXT(name, value) \ 219 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) 220 #define SPI_BFINS(name, value, old) \ 221 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ 222 | SPI_BF(name, value)) 223 224 /* Register access macros */ 225 #define spi_readl(port, reg) \ 226 readl_relaxed((port)->regs + SPI_##reg) 227 #define spi_writel(port, reg, value) \ 228 writel_relaxed((value), (port)->regs + SPI_##reg) 229 #define spi_writew(port, reg, value) \ 230 writew_relaxed((value), (port)->regs + SPI_##reg) 231 232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 233 * cache operations; better heuristics consider wordsize and bitrate. 234 */ 235 #define DMA_MIN_BYTES 16 236 237 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) 238 239 #define AUTOSUSPEND_TIMEOUT 2000 240 241 struct atmel_spi_caps { 242 bool is_spi2; 243 bool has_wdrbt; 244 bool has_dma_support; 245 bool has_pdc_support; 246 }; 247 248 /* 249 * The core SPI transfer engine just talks to a register bank to set up 250 * DMA transfers; transfer queue progress is driven by IRQs. The clock 251 * framework provides the base clock, subdivided for each spi_device. 252 */ 253 struct atmel_spi { 254 spinlock_t lock; 255 unsigned long flags; 256 257 phys_addr_t phybase; 258 void __iomem *regs; 259 int irq; 260 struct clk *clk; 261 struct platform_device *pdev; 262 unsigned long spi_clk; 263 264 struct spi_transfer *current_transfer; 265 int current_remaining_bytes; 266 int done_status; 267 dma_addr_t dma_addr_rx_bbuf; 268 dma_addr_t dma_addr_tx_bbuf; 269 void *addr_rx_bbuf; 270 void *addr_tx_bbuf; 271 272 struct completion xfer_completion; 273 274 struct atmel_spi_caps caps; 275 276 bool use_dma; 277 bool use_pdc; 278 279 bool keep_cs; 280 281 u32 fifo_size; 282 u8 native_cs_free; 283 u8 native_cs_for_gpio; 284 }; 285 286 /* Controller-specific per-slave state */ 287 struct atmel_spi_device { 288 u32 csr; 289 }; 290 291 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */ 292 #define INVALID_DMA_ADDRESS 0xffffffff 293 294 /* 295 * Version 2 of the SPI controller has 296 * - CR.LASTXFER 297 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) 298 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) 299 * - SPI_CSRx.CSAAT 300 * - SPI_CSRx.SBCR allows faster clocking 301 */ 302 static bool atmel_spi_is_v2(struct atmel_spi *as) 303 { 304 return as->caps.is_spi2; 305 } 306 307 /* 308 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby 309 * they assume that spi slave device state will not change on deselect, so 310 * that automagic deselection is OK. ("NPCSx rises if no data is to be 311 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer 312 * controllers have CSAAT and friends. 313 * 314 * Even controller newer than ar91rm9200, using GPIOs can make sens as 315 * it lets us support active-high chipselects despite the controller's 316 * belief that only active-low devices/systems exists. 317 * 318 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work 319 * right when driven with GPIO. ("Mode Fault does not allow more than one 320 * Master on Chip Select 0.") No workaround exists for that ... so for 321 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, 322 * and (c) will trigger that first erratum in some cases. 323 */ 324 325 static void cs_activate(struct atmel_spi *as, struct spi_device *spi) 326 { 327 struct atmel_spi_device *asd = spi->controller_state; 328 int chip_select; 329 u32 mr; 330 331 if (spi->cs_gpiod) 332 chip_select = as->native_cs_for_gpio; 333 else 334 chip_select = spi->chip_select; 335 336 if (atmel_spi_is_v2(as)) { 337 spi_writel(as, CSR0 + 4 * chip_select, asd->csr); 338 /* For the low SPI version, there is a issue that PDC transfer 339 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS 340 */ 341 spi_writel(as, CSR0, asd->csr); 342 if (as->caps.has_wdrbt) { 343 spi_writel(as, MR, 344 SPI_BF(PCS, ~(0x01 << chip_select)) 345 | SPI_BIT(WDRBT) 346 | SPI_BIT(MODFDIS) 347 | SPI_BIT(MSTR)); 348 } else { 349 spi_writel(as, MR, 350 SPI_BF(PCS, ~(0x01 << chip_select)) 351 | SPI_BIT(MODFDIS) 352 | SPI_BIT(MSTR)); 353 } 354 355 mr = spi_readl(as, MR); 356 if (spi->cs_gpiod) 357 gpiod_set_value(spi->cs_gpiod, 1); 358 } else { 359 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; 360 int i; 361 u32 csr; 362 363 /* Make sure clock polarity is correct */ 364 for (i = 0; i < spi->master->num_chipselect; i++) { 365 csr = spi_readl(as, CSR0 + 4 * i); 366 if ((csr ^ cpol) & SPI_BIT(CPOL)) 367 spi_writel(as, CSR0 + 4 * i, 368 csr ^ SPI_BIT(CPOL)); 369 } 370 371 mr = spi_readl(as, MR); 372 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr); 373 if (spi->cs_gpiod) 374 gpiod_set_value(spi->cs_gpiod, 1); 375 spi_writel(as, MR, mr); 376 } 377 378 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr); 379 } 380 381 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) 382 { 383 int chip_select; 384 u32 mr; 385 386 if (spi->cs_gpiod) 387 chip_select = as->native_cs_for_gpio; 388 else 389 chip_select = spi->chip_select; 390 391 /* only deactivate *this* device; sometimes transfers to 392 * another device may be active when this routine is called. 393 */ 394 mr = spi_readl(as, MR); 395 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) { 396 mr = SPI_BFINS(PCS, 0xf, mr); 397 spi_writel(as, MR, mr); 398 } 399 400 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr); 401 402 if (!spi->cs_gpiod) 403 spi_writel(as, CR, SPI_BIT(LASTXFER)); 404 else 405 gpiod_set_value(spi->cs_gpiod, 0); 406 } 407 408 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock) 409 { 410 spin_lock_irqsave(&as->lock, as->flags); 411 } 412 413 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock) 414 { 415 spin_unlock_irqrestore(&as->lock, as->flags); 416 } 417 418 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer) 419 { 420 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf); 421 } 422 423 static inline bool atmel_spi_use_dma(struct atmel_spi *as, 424 struct spi_transfer *xfer) 425 { 426 return as->use_dma && xfer->len >= DMA_MIN_BYTES; 427 } 428 429 static bool atmel_spi_can_dma(struct spi_master *master, 430 struct spi_device *spi, 431 struct spi_transfer *xfer) 432 { 433 struct atmel_spi *as = spi_master_get_devdata(master); 434 435 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) 436 return atmel_spi_use_dma(as, xfer) && 437 !atmel_spi_is_vmalloc_xfer(xfer); 438 else 439 return atmel_spi_use_dma(as, xfer); 440 441 } 442 443 static int atmel_spi_dma_slave_config(struct atmel_spi *as, 444 struct dma_slave_config *slave_config, 445 u8 bits_per_word) 446 { 447 struct spi_master *master = platform_get_drvdata(as->pdev); 448 int err = 0; 449 450 if (bits_per_word > 8) { 451 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 452 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 453 } else { 454 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 455 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 456 } 457 458 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR; 459 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR; 460 slave_config->src_maxburst = 1; 461 slave_config->dst_maxburst = 1; 462 slave_config->device_fc = false; 463 464 /* 465 * This driver uses fixed peripheral select mode (PS bit set to '0' in 466 * the Mode Register). 467 * So according to the datasheet, when FIFOs are available (and 468 * enabled), the Transmit FIFO operates in Multiple Data Mode. 469 * In this mode, up to 2 data, not 4, can be written into the Transmit 470 * Data Register in a single access. 471 * However, the first data has to be written into the lowest 16 bits and 472 * the second data into the highest 16 bits of the Transmit 473 * Data Register. For 8bit data (the most frequent case), it would 474 * require to rework tx_buf so each data would actualy fit 16 bits. 475 * So we'd rather write only one data at the time. Hence the transmit 476 * path works the same whether FIFOs are available (and enabled) or not. 477 */ 478 slave_config->direction = DMA_MEM_TO_DEV; 479 if (dmaengine_slave_config(master->dma_tx, slave_config)) { 480 dev_err(&as->pdev->dev, 481 "failed to configure tx dma channel\n"); 482 err = -EINVAL; 483 } 484 485 /* 486 * This driver configures the spi controller for master mode (MSTR bit 487 * set to '1' in the Mode Register). 488 * So according to the datasheet, when FIFOs are available (and 489 * enabled), the Receive FIFO operates in Single Data Mode. 490 * So the receive path works the same whether FIFOs are available (and 491 * enabled) or not. 492 */ 493 slave_config->direction = DMA_DEV_TO_MEM; 494 if (dmaengine_slave_config(master->dma_rx, slave_config)) { 495 dev_err(&as->pdev->dev, 496 "failed to configure rx dma channel\n"); 497 err = -EINVAL; 498 } 499 500 return err; 501 } 502 503 static int atmel_spi_configure_dma(struct spi_master *master, 504 struct atmel_spi *as) 505 { 506 struct dma_slave_config slave_config; 507 struct device *dev = &as->pdev->dev; 508 int err; 509 510 dma_cap_mask_t mask; 511 dma_cap_zero(mask); 512 dma_cap_set(DMA_SLAVE, mask); 513 514 master->dma_tx = dma_request_chan(dev, "tx"); 515 if (IS_ERR(master->dma_tx)) { 516 err = PTR_ERR(master->dma_tx); 517 if (err == -EPROBE_DEFER) { 518 dev_warn(dev, "no DMA channel available at the moment\n"); 519 goto error_clear; 520 } 521 dev_err(dev, 522 "DMA TX channel not available, SPI unable to use DMA\n"); 523 err = -EBUSY; 524 goto error_clear; 525 } 526 527 /* 528 * No reason to check EPROBE_DEFER here since we have already requested 529 * tx channel. If it fails here, it's for another reason. 530 */ 531 master->dma_rx = dma_request_slave_channel(dev, "rx"); 532 533 if (!master->dma_rx) { 534 dev_err(dev, 535 "DMA RX channel not available, SPI unable to use DMA\n"); 536 err = -EBUSY; 537 goto error; 538 } 539 540 err = atmel_spi_dma_slave_config(as, &slave_config, 8); 541 if (err) 542 goto error; 543 544 dev_info(&as->pdev->dev, 545 "Using %s (tx) and %s (rx) for DMA transfers\n", 546 dma_chan_name(master->dma_tx), 547 dma_chan_name(master->dma_rx)); 548 549 return 0; 550 error: 551 if (master->dma_rx) 552 dma_release_channel(master->dma_rx); 553 if (!IS_ERR(master->dma_tx)) 554 dma_release_channel(master->dma_tx); 555 error_clear: 556 master->dma_tx = master->dma_rx = NULL; 557 return err; 558 } 559 560 static void atmel_spi_stop_dma(struct spi_master *master) 561 { 562 if (master->dma_rx) 563 dmaengine_terminate_all(master->dma_rx); 564 if (master->dma_tx) 565 dmaengine_terminate_all(master->dma_tx); 566 } 567 568 static void atmel_spi_release_dma(struct spi_master *master) 569 { 570 if (master->dma_rx) { 571 dma_release_channel(master->dma_rx); 572 master->dma_rx = NULL; 573 } 574 if (master->dma_tx) { 575 dma_release_channel(master->dma_tx); 576 master->dma_tx = NULL; 577 } 578 } 579 580 /* This function is called by the DMA driver from tasklet context */ 581 static void dma_callback(void *data) 582 { 583 struct spi_master *master = data; 584 struct atmel_spi *as = spi_master_get_devdata(master); 585 586 if (is_vmalloc_addr(as->current_transfer->rx_buf) && 587 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 588 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf, 589 as->current_transfer->len); 590 } 591 complete(&as->xfer_completion); 592 } 593 594 /* 595 * Next transfer using PIO without FIFO. 596 */ 597 static void atmel_spi_next_xfer_single(struct spi_master *master, 598 struct spi_transfer *xfer) 599 { 600 struct atmel_spi *as = spi_master_get_devdata(master); 601 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 602 603 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n"); 604 605 /* Make sure data is not remaining in RDR */ 606 spi_readl(as, RDR); 607 while (spi_readl(as, SR) & SPI_BIT(RDRF)) { 608 spi_readl(as, RDR); 609 cpu_relax(); 610 } 611 612 if (xfer->bits_per_word > 8) 613 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos)); 614 else 615 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos)); 616 617 dev_dbg(master->dev.parent, 618 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n", 619 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 620 xfer->bits_per_word); 621 622 /* Enable relevant interrupts */ 623 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES)); 624 } 625 626 /* 627 * Next transfer using PIO with FIFO. 628 */ 629 static void atmel_spi_next_xfer_fifo(struct spi_master *master, 630 struct spi_transfer *xfer) 631 { 632 struct atmel_spi *as = spi_master_get_devdata(master); 633 u32 current_remaining_data, num_data; 634 u32 offset = xfer->len - as->current_remaining_bytes; 635 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset); 636 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset); 637 u16 td0, td1; 638 u32 fifomr; 639 640 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n"); 641 642 /* Compute the number of data to transfer in the current iteration */ 643 current_remaining_data = ((xfer->bits_per_word > 8) ? 644 ((u32)as->current_remaining_bytes >> 1) : 645 (u32)as->current_remaining_bytes); 646 num_data = min(current_remaining_data, as->fifo_size); 647 648 /* Flush RX and TX FIFOs */ 649 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR)); 650 while (spi_readl(as, FLR)) 651 cpu_relax(); 652 653 /* Set RX FIFO Threshold to the number of data to transfer */ 654 fifomr = spi_readl(as, FMR); 655 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr)); 656 657 /* Clear FIFO flags in the Status Register, especially RXFTHF */ 658 (void)spi_readl(as, SR); 659 660 /* Fill TX FIFO */ 661 while (num_data >= 2) { 662 if (xfer->bits_per_word > 8) { 663 td0 = *words++; 664 td1 = *words++; 665 } else { 666 td0 = *bytes++; 667 td1 = *bytes++; 668 } 669 670 spi_writel(as, TDR, (td1 << 16) | td0); 671 num_data -= 2; 672 } 673 674 if (num_data) { 675 if (xfer->bits_per_word > 8) 676 td0 = *words++; 677 else 678 td0 = *bytes++; 679 680 spi_writew(as, TDR, td0); 681 num_data--; 682 } 683 684 dev_dbg(master->dev.parent, 685 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n", 686 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 687 xfer->bits_per_word); 688 689 /* 690 * Enable RX FIFO Threshold Flag interrupt to be notified about 691 * transfer completion. 692 */ 693 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES)); 694 } 695 696 /* 697 * Next transfer using PIO. 698 */ 699 static void atmel_spi_next_xfer_pio(struct spi_master *master, 700 struct spi_transfer *xfer) 701 { 702 struct atmel_spi *as = spi_master_get_devdata(master); 703 704 if (as->fifo_size) 705 atmel_spi_next_xfer_fifo(master, xfer); 706 else 707 atmel_spi_next_xfer_single(master, xfer); 708 } 709 710 /* 711 * Submit next transfer for DMA. 712 */ 713 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master, 714 struct spi_transfer *xfer, 715 u32 *plen) 716 { 717 struct atmel_spi *as = spi_master_get_devdata(master); 718 struct dma_chan *rxchan = master->dma_rx; 719 struct dma_chan *txchan = master->dma_tx; 720 struct dma_async_tx_descriptor *rxdesc; 721 struct dma_async_tx_descriptor *txdesc; 722 struct dma_slave_config slave_config; 723 dma_cookie_t cookie; 724 725 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n"); 726 727 /* Check that the channels are available */ 728 if (!rxchan || !txchan) 729 return -ENODEV; 730 731 /* release lock for DMA operations */ 732 atmel_spi_unlock(as); 733 734 *plen = xfer->len; 735 736 if (atmel_spi_dma_slave_config(as, &slave_config, 737 xfer->bits_per_word)) 738 goto err_exit; 739 740 /* Send both scatterlists */ 741 if (atmel_spi_is_vmalloc_xfer(xfer) && 742 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 743 rxdesc = dmaengine_prep_slave_single(rxchan, 744 as->dma_addr_rx_bbuf, 745 xfer->len, 746 DMA_DEV_TO_MEM, 747 DMA_PREP_INTERRUPT | 748 DMA_CTRL_ACK); 749 } else { 750 rxdesc = dmaengine_prep_slave_sg(rxchan, 751 xfer->rx_sg.sgl, 752 xfer->rx_sg.nents, 753 DMA_DEV_TO_MEM, 754 DMA_PREP_INTERRUPT | 755 DMA_CTRL_ACK); 756 } 757 if (!rxdesc) 758 goto err_dma; 759 760 if (atmel_spi_is_vmalloc_xfer(xfer) && 761 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 762 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len); 763 txdesc = dmaengine_prep_slave_single(txchan, 764 as->dma_addr_tx_bbuf, 765 xfer->len, DMA_MEM_TO_DEV, 766 DMA_PREP_INTERRUPT | 767 DMA_CTRL_ACK); 768 } else { 769 txdesc = dmaengine_prep_slave_sg(txchan, 770 xfer->tx_sg.sgl, 771 xfer->tx_sg.nents, 772 DMA_MEM_TO_DEV, 773 DMA_PREP_INTERRUPT | 774 DMA_CTRL_ACK); 775 } 776 if (!txdesc) 777 goto err_dma; 778 779 dev_dbg(master->dev.parent, 780 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 781 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma, 782 xfer->rx_buf, (unsigned long long)xfer->rx_dma); 783 784 /* Enable relevant interrupts */ 785 spi_writel(as, IER, SPI_BIT(OVRES)); 786 787 /* Put the callback on the RX transfer only, that should finish last */ 788 rxdesc->callback = dma_callback; 789 rxdesc->callback_param = master; 790 791 /* Submit and fire RX and TX with TX last so we're ready to read! */ 792 cookie = rxdesc->tx_submit(rxdesc); 793 if (dma_submit_error(cookie)) 794 goto err_dma; 795 cookie = txdesc->tx_submit(txdesc); 796 if (dma_submit_error(cookie)) 797 goto err_dma; 798 rxchan->device->device_issue_pending(rxchan); 799 txchan->device->device_issue_pending(txchan); 800 801 /* take back lock */ 802 atmel_spi_lock(as); 803 return 0; 804 805 err_dma: 806 spi_writel(as, IDR, SPI_BIT(OVRES)); 807 atmel_spi_stop_dma(master); 808 err_exit: 809 atmel_spi_lock(as); 810 return -ENOMEM; 811 } 812 813 static void atmel_spi_next_xfer_data(struct spi_master *master, 814 struct spi_transfer *xfer, 815 dma_addr_t *tx_dma, 816 dma_addr_t *rx_dma, 817 u32 *plen) 818 { 819 *rx_dma = xfer->rx_dma + xfer->len - *plen; 820 *tx_dma = xfer->tx_dma + xfer->len - *plen; 821 if (*plen > master->max_dma_len) 822 *plen = master->max_dma_len; 823 } 824 825 static int atmel_spi_set_xfer_speed(struct atmel_spi *as, 826 struct spi_device *spi, 827 struct spi_transfer *xfer) 828 { 829 u32 scbr, csr; 830 unsigned long bus_hz; 831 int chip_select; 832 833 if (spi->cs_gpiod) 834 chip_select = as->native_cs_for_gpio; 835 else 836 chip_select = spi->chip_select; 837 838 /* v1 chips start out at half the peripheral bus speed. */ 839 bus_hz = as->spi_clk; 840 if (!atmel_spi_is_v2(as)) 841 bus_hz /= 2; 842 843 /* 844 * Calculate the lowest divider that satisfies the 845 * constraint, assuming div32/fdiv/mbz == 0. 846 */ 847 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz); 848 849 /* 850 * If the resulting divider doesn't fit into the 851 * register bitfield, we can't satisfy the constraint. 852 */ 853 if (scbr >= (1 << SPI_SCBR_SIZE)) { 854 dev_err(&spi->dev, 855 "setup: %d Hz too slow, scbr %u; min %ld Hz\n", 856 xfer->speed_hz, scbr, bus_hz/255); 857 return -EINVAL; 858 } 859 if (scbr == 0) { 860 dev_err(&spi->dev, 861 "setup: %d Hz too high, scbr %u; max %ld Hz\n", 862 xfer->speed_hz, scbr, bus_hz); 863 return -EINVAL; 864 } 865 csr = spi_readl(as, CSR0 + 4 * chip_select); 866 csr = SPI_BFINS(SCBR, scbr, csr); 867 spi_writel(as, CSR0 + 4 * chip_select, csr); 868 869 return 0; 870 } 871 872 /* 873 * Submit next transfer for PDC. 874 * lock is held, spi irq is blocked 875 */ 876 static void atmel_spi_pdc_next_xfer(struct spi_master *master, 877 struct spi_message *msg, 878 struct spi_transfer *xfer) 879 { 880 struct atmel_spi *as = spi_master_get_devdata(master); 881 u32 len; 882 dma_addr_t tx_dma, rx_dma; 883 884 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 885 886 len = as->current_remaining_bytes; 887 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 888 as->current_remaining_bytes -= len; 889 890 spi_writel(as, RPR, rx_dma); 891 spi_writel(as, TPR, tx_dma); 892 893 if (msg->spi->bits_per_word > 8) 894 len >>= 1; 895 spi_writel(as, RCR, len); 896 spi_writel(as, TCR, len); 897 898 dev_dbg(&msg->spi->dev, 899 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 900 xfer, xfer->len, xfer->tx_buf, 901 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 902 (unsigned long long)xfer->rx_dma); 903 904 if (as->current_remaining_bytes) { 905 len = as->current_remaining_bytes; 906 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 907 as->current_remaining_bytes -= len; 908 909 spi_writel(as, RNPR, rx_dma); 910 spi_writel(as, TNPR, tx_dma); 911 912 if (msg->spi->bits_per_word > 8) 913 len >>= 1; 914 spi_writel(as, RNCR, len); 915 spi_writel(as, TNCR, len); 916 917 dev_dbg(&msg->spi->dev, 918 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 919 xfer, xfer->len, xfer->tx_buf, 920 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 921 (unsigned long long)xfer->rx_dma); 922 } 923 924 /* REVISIT: We're waiting for RXBUFF before we start the next 925 * transfer because we need to handle some difficult timing 926 * issues otherwise. If we wait for TXBUFE in one transfer and 927 * then starts waiting for RXBUFF in the next, it's difficult 928 * to tell the difference between the RXBUFF interrupt we're 929 * actually waiting for and the RXBUFF interrupt of the 930 * previous transfer. 931 * 932 * It should be doable, though. Just not now... 933 */ 934 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES)); 935 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); 936 } 937 938 /* 939 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: 940 * - The buffer is either valid for CPU access, else NULL 941 * - If the buffer is valid, so is its DMA address 942 * 943 * This driver manages the dma address unless message->is_dma_mapped. 944 */ 945 static int 946 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) 947 { 948 struct device *dev = &as->pdev->dev; 949 950 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; 951 if (xfer->tx_buf) { 952 /* tx_buf is a const void* where we need a void * for the dma 953 * mapping */ 954 void *nonconst_tx = (void *)xfer->tx_buf; 955 956 xfer->tx_dma = dma_map_single(dev, 957 nonconst_tx, xfer->len, 958 DMA_TO_DEVICE); 959 if (dma_mapping_error(dev, xfer->tx_dma)) 960 return -ENOMEM; 961 } 962 if (xfer->rx_buf) { 963 xfer->rx_dma = dma_map_single(dev, 964 xfer->rx_buf, xfer->len, 965 DMA_FROM_DEVICE); 966 if (dma_mapping_error(dev, xfer->rx_dma)) { 967 if (xfer->tx_buf) 968 dma_unmap_single(dev, 969 xfer->tx_dma, xfer->len, 970 DMA_TO_DEVICE); 971 return -ENOMEM; 972 } 973 } 974 return 0; 975 } 976 977 static void atmel_spi_dma_unmap_xfer(struct spi_master *master, 978 struct spi_transfer *xfer) 979 { 980 if (xfer->tx_dma != INVALID_DMA_ADDRESS) 981 dma_unmap_single(master->dev.parent, xfer->tx_dma, 982 xfer->len, DMA_TO_DEVICE); 983 if (xfer->rx_dma != INVALID_DMA_ADDRESS) 984 dma_unmap_single(master->dev.parent, xfer->rx_dma, 985 xfer->len, DMA_FROM_DEVICE); 986 } 987 988 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as) 989 { 990 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 991 } 992 993 static void 994 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer) 995 { 996 u8 *rxp; 997 u16 *rxp16; 998 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 999 1000 if (xfer->bits_per_word > 8) { 1001 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos); 1002 *rxp16 = spi_readl(as, RDR); 1003 } else { 1004 rxp = ((u8 *)xfer->rx_buf) + xfer_pos; 1005 *rxp = spi_readl(as, RDR); 1006 } 1007 if (xfer->bits_per_word > 8) { 1008 if (as->current_remaining_bytes > 2) 1009 as->current_remaining_bytes -= 2; 1010 else 1011 as->current_remaining_bytes = 0; 1012 } else { 1013 as->current_remaining_bytes--; 1014 } 1015 } 1016 1017 static void 1018 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer) 1019 { 1020 u32 fifolr = spi_readl(as, FLR); 1021 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr); 1022 u32 offset = xfer->len - as->current_remaining_bytes; 1023 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset); 1024 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset); 1025 u16 rd; /* RD field is the lowest 16 bits of RDR */ 1026 1027 /* Update the number of remaining bytes to transfer */ 1028 num_bytes = ((xfer->bits_per_word > 8) ? 1029 (num_data << 1) : 1030 num_data); 1031 1032 if (as->current_remaining_bytes > num_bytes) 1033 as->current_remaining_bytes -= num_bytes; 1034 else 1035 as->current_remaining_bytes = 0; 1036 1037 /* Handle odd number of bytes when data are more than 8bit width */ 1038 if (xfer->bits_per_word > 8) 1039 as->current_remaining_bytes &= ~0x1; 1040 1041 /* Read data */ 1042 while (num_data) { 1043 rd = spi_readl(as, RDR); 1044 if (xfer->bits_per_word > 8) 1045 *words++ = rd; 1046 else 1047 *bytes++ = rd; 1048 num_data--; 1049 } 1050 } 1051 1052 /* Called from IRQ 1053 * 1054 * Must update "current_remaining_bytes" to keep track of data 1055 * to transfer. 1056 */ 1057 static void 1058 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer) 1059 { 1060 if (as->fifo_size) 1061 atmel_spi_pump_fifo_data(as, xfer); 1062 else 1063 atmel_spi_pump_single_data(as, xfer); 1064 } 1065 1066 /* Interrupt 1067 * 1068 * No need for locking in this Interrupt handler: done_status is the 1069 * only information modified. 1070 */ 1071 static irqreturn_t 1072 atmel_spi_pio_interrupt(int irq, void *dev_id) 1073 { 1074 struct spi_master *master = dev_id; 1075 struct atmel_spi *as = spi_master_get_devdata(master); 1076 u32 status, pending, imr; 1077 struct spi_transfer *xfer; 1078 int ret = IRQ_NONE; 1079 1080 imr = spi_readl(as, IMR); 1081 status = spi_readl(as, SR); 1082 pending = status & imr; 1083 1084 if (pending & SPI_BIT(OVRES)) { 1085 ret = IRQ_HANDLED; 1086 spi_writel(as, IDR, SPI_BIT(OVRES)); 1087 dev_warn(master->dev.parent, "overrun\n"); 1088 1089 /* 1090 * When we get an overrun, we disregard the current 1091 * transfer. Data will not be copied back from any 1092 * bounce buffer and msg->actual_len will not be 1093 * updated with the last xfer. 1094 * 1095 * We will also not process any remaning transfers in 1096 * the message. 1097 */ 1098 as->done_status = -EIO; 1099 smp_wmb(); 1100 1101 /* Clear any overrun happening while cleaning up */ 1102 spi_readl(as, SR); 1103 1104 complete(&as->xfer_completion); 1105 1106 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) { 1107 atmel_spi_lock(as); 1108 1109 if (as->current_remaining_bytes) { 1110 ret = IRQ_HANDLED; 1111 xfer = as->current_transfer; 1112 atmel_spi_pump_pio_data(as, xfer); 1113 if (!as->current_remaining_bytes) 1114 spi_writel(as, IDR, pending); 1115 1116 complete(&as->xfer_completion); 1117 } 1118 1119 atmel_spi_unlock(as); 1120 } else { 1121 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending); 1122 ret = IRQ_HANDLED; 1123 spi_writel(as, IDR, pending); 1124 } 1125 1126 return ret; 1127 } 1128 1129 static irqreturn_t 1130 atmel_spi_pdc_interrupt(int irq, void *dev_id) 1131 { 1132 struct spi_master *master = dev_id; 1133 struct atmel_spi *as = spi_master_get_devdata(master); 1134 u32 status, pending, imr; 1135 int ret = IRQ_NONE; 1136 1137 imr = spi_readl(as, IMR); 1138 status = spi_readl(as, SR); 1139 pending = status & imr; 1140 1141 if (pending & SPI_BIT(OVRES)) { 1142 1143 ret = IRQ_HANDLED; 1144 1145 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) 1146 | SPI_BIT(OVRES))); 1147 1148 /* Clear any overrun happening while cleaning up */ 1149 spi_readl(as, SR); 1150 1151 as->done_status = -EIO; 1152 1153 complete(&as->xfer_completion); 1154 1155 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { 1156 ret = IRQ_HANDLED; 1157 1158 spi_writel(as, IDR, pending); 1159 1160 complete(&as->xfer_completion); 1161 } 1162 1163 return ret; 1164 } 1165 1166 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as) 1167 { 1168 struct spi_delay *delay = &spi->word_delay; 1169 u32 value = delay->value; 1170 1171 switch (delay->unit) { 1172 case SPI_DELAY_UNIT_NSECS: 1173 value /= 1000; 1174 break; 1175 case SPI_DELAY_UNIT_USECS: 1176 break; 1177 default: 1178 return -EINVAL; 1179 } 1180 1181 return (as->spi_clk / 1000000 * value) >> 5; 1182 } 1183 1184 static void initialize_native_cs_for_gpio(struct atmel_spi *as) 1185 { 1186 int i; 1187 struct spi_master *master = platform_get_drvdata(as->pdev); 1188 1189 if (!as->native_cs_free) 1190 return; /* already initialized */ 1191 1192 if (!master->cs_gpiods) 1193 return; /* No CS GPIO */ 1194 1195 /* 1196 * On the first version of the controller (AT91RM9200), CS0 1197 * can't be used associated with GPIO 1198 */ 1199 if (atmel_spi_is_v2(as)) 1200 i = 0; 1201 else 1202 i = 1; 1203 1204 for (; i < 4; i++) 1205 if (master->cs_gpiods[i]) 1206 as->native_cs_free |= BIT(i); 1207 1208 if (as->native_cs_free) 1209 as->native_cs_for_gpio = ffs(as->native_cs_free); 1210 } 1211 1212 static int atmel_spi_setup(struct spi_device *spi) 1213 { 1214 struct atmel_spi *as; 1215 struct atmel_spi_device *asd; 1216 u32 csr; 1217 unsigned int bits = spi->bits_per_word; 1218 int chip_select; 1219 int word_delay_csr; 1220 1221 as = spi_master_get_devdata(spi->master); 1222 1223 /* see notes above re chipselect */ 1224 if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) { 1225 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n"); 1226 return -EINVAL; 1227 } 1228 1229 /* Setup() is called during spi_register_controller(aka 1230 * spi_register_master) but after all membmers of the cs_gpiod 1231 * array have been filled, so we can looked for which native 1232 * CS will be free for using with GPIO 1233 */ 1234 initialize_native_cs_for_gpio(as); 1235 1236 if (spi->cs_gpiod && as->native_cs_free) { 1237 dev_err(&spi->dev, 1238 "No native CS available to support this GPIO CS\n"); 1239 return -EBUSY; 1240 } 1241 1242 if (spi->cs_gpiod) 1243 chip_select = as->native_cs_for_gpio; 1244 else 1245 chip_select = spi->chip_select; 1246 1247 csr = SPI_BF(BITS, bits - 8); 1248 if (spi->mode & SPI_CPOL) 1249 csr |= SPI_BIT(CPOL); 1250 if (!(spi->mode & SPI_CPHA)) 1251 csr |= SPI_BIT(NCPHA); 1252 1253 if (!spi->cs_gpiod) 1254 csr |= SPI_BIT(CSAAT); 1255 csr |= SPI_BF(DLYBS, 0); 1256 1257 word_delay_csr = atmel_word_delay_csr(spi, as); 1258 if (word_delay_csr < 0) 1259 return word_delay_csr; 1260 1261 /* DLYBCT adds delays between words. This is useful for slow devices 1262 * that need a bit of time to setup the next transfer. 1263 */ 1264 csr |= SPI_BF(DLYBCT, word_delay_csr); 1265 1266 asd = spi->controller_state; 1267 if (!asd) { 1268 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); 1269 if (!asd) 1270 return -ENOMEM; 1271 1272 spi->controller_state = asd; 1273 } 1274 1275 asd->csr = csr; 1276 1277 dev_dbg(&spi->dev, 1278 "setup: bpw %u mode 0x%x -> csr%d %08x\n", 1279 bits, spi->mode, spi->chip_select, csr); 1280 1281 if (!atmel_spi_is_v2(as)) 1282 spi_writel(as, CSR0 + 4 * chip_select, csr); 1283 1284 return 0; 1285 } 1286 1287 static int atmel_spi_one_transfer(struct spi_master *master, 1288 struct spi_message *msg, 1289 struct spi_transfer *xfer) 1290 { 1291 struct atmel_spi *as; 1292 struct spi_device *spi = msg->spi; 1293 u8 bits; 1294 u32 len; 1295 struct atmel_spi_device *asd; 1296 int timeout; 1297 int ret; 1298 unsigned long dma_timeout; 1299 1300 as = spi_master_get_devdata(master); 1301 1302 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1303 dev_dbg(&spi->dev, "missing rx or tx buf\n"); 1304 return -EINVAL; 1305 } 1306 1307 asd = spi->controller_state; 1308 bits = (asd->csr >> 4) & 0xf; 1309 if (bits != xfer->bits_per_word - 8) { 1310 dev_dbg(&spi->dev, 1311 "you can't yet change bits_per_word in transfers\n"); 1312 return -ENOPROTOOPT; 1313 } 1314 1315 /* 1316 * DMA map early, for performance (empties dcache ASAP) and 1317 * better fault reporting. 1318 */ 1319 if ((!msg->is_dma_mapped) 1320 && as->use_pdc) { 1321 if (atmel_spi_dma_map_xfer(as, xfer) < 0) 1322 return -ENOMEM; 1323 } 1324 1325 atmel_spi_set_xfer_speed(as, msg->spi, xfer); 1326 1327 as->done_status = 0; 1328 as->current_transfer = xfer; 1329 as->current_remaining_bytes = xfer->len; 1330 while (as->current_remaining_bytes) { 1331 reinit_completion(&as->xfer_completion); 1332 1333 if (as->use_pdc) { 1334 atmel_spi_pdc_next_xfer(master, msg, xfer); 1335 } else if (atmel_spi_use_dma(as, xfer)) { 1336 len = as->current_remaining_bytes; 1337 ret = atmel_spi_next_xfer_dma_submit(master, 1338 xfer, &len); 1339 if (ret) { 1340 dev_err(&spi->dev, 1341 "unable to use DMA, fallback to PIO\n"); 1342 atmel_spi_next_xfer_pio(master, xfer); 1343 } else { 1344 as->current_remaining_bytes -= len; 1345 if (as->current_remaining_bytes < 0) 1346 as->current_remaining_bytes = 0; 1347 } 1348 } else { 1349 atmel_spi_next_xfer_pio(master, xfer); 1350 } 1351 1352 /* interrupts are disabled, so free the lock for schedule */ 1353 atmel_spi_unlock(as); 1354 dma_timeout = wait_for_completion_timeout(&as->xfer_completion, 1355 SPI_DMA_TIMEOUT); 1356 atmel_spi_lock(as); 1357 if (WARN_ON(dma_timeout == 0)) { 1358 dev_err(&spi->dev, "spi transfer timeout\n"); 1359 as->done_status = -EIO; 1360 } 1361 1362 if (as->done_status) 1363 break; 1364 } 1365 1366 if (as->done_status) { 1367 if (as->use_pdc) { 1368 dev_warn(master->dev.parent, 1369 "overrun (%u/%u remaining)\n", 1370 spi_readl(as, TCR), spi_readl(as, RCR)); 1371 1372 /* 1373 * Clean up DMA registers and make sure the data 1374 * registers are empty. 1375 */ 1376 spi_writel(as, RNCR, 0); 1377 spi_writel(as, TNCR, 0); 1378 spi_writel(as, RCR, 0); 1379 spi_writel(as, TCR, 0); 1380 for (timeout = 1000; timeout; timeout--) 1381 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) 1382 break; 1383 if (!timeout) 1384 dev_warn(master->dev.parent, 1385 "timeout waiting for TXEMPTY"); 1386 while (spi_readl(as, SR) & SPI_BIT(RDRF)) 1387 spi_readl(as, RDR); 1388 1389 /* Clear any overrun happening while cleaning up */ 1390 spi_readl(as, SR); 1391 1392 } else if (atmel_spi_use_dma(as, xfer)) { 1393 atmel_spi_stop_dma(master); 1394 } 1395 1396 if (!msg->is_dma_mapped 1397 && as->use_pdc) 1398 atmel_spi_dma_unmap_xfer(master, xfer); 1399 1400 return 0; 1401 1402 } else { 1403 /* only update length if no error */ 1404 msg->actual_length += xfer->len; 1405 } 1406 1407 if (!msg->is_dma_mapped 1408 && as->use_pdc) 1409 atmel_spi_dma_unmap_xfer(master, xfer); 1410 1411 spi_transfer_delay_exec(xfer); 1412 1413 if (xfer->cs_change) { 1414 if (list_is_last(&xfer->transfer_list, 1415 &msg->transfers)) { 1416 as->keep_cs = true; 1417 } else { 1418 cs_deactivate(as, msg->spi); 1419 udelay(10); 1420 cs_activate(as, msg->spi); 1421 } 1422 } 1423 1424 return 0; 1425 } 1426 1427 static int atmel_spi_transfer_one_message(struct spi_master *master, 1428 struct spi_message *msg) 1429 { 1430 struct atmel_spi *as; 1431 struct spi_transfer *xfer; 1432 struct spi_device *spi = msg->spi; 1433 int ret = 0; 1434 1435 as = spi_master_get_devdata(master); 1436 1437 dev_dbg(&spi->dev, "new message %p submitted for %s\n", 1438 msg, dev_name(&spi->dev)); 1439 1440 atmel_spi_lock(as); 1441 cs_activate(as, spi); 1442 1443 as->keep_cs = false; 1444 1445 msg->status = 0; 1446 msg->actual_length = 0; 1447 1448 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1449 trace_spi_transfer_start(msg, xfer); 1450 1451 ret = atmel_spi_one_transfer(master, msg, xfer); 1452 if (ret) 1453 goto msg_done; 1454 1455 trace_spi_transfer_stop(msg, xfer); 1456 } 1457 1458 if (as->use_pdc) 1459 atmel_spi_disable_pdc_transfer(as); 1460 1461 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1462 dev_dbg(&spi->dev, 1463 " xfer %p: len %u tx %p/%pad rx %p/%pad\n", 1464 xfer, xfer->len, 1465 xfer->tx_buf, &xfer->tx_dma, 1466 xfer->rx_buf, &xfer->rx_dma); 1467 } 1468 1469 msg_done: 1470 if (!as->keep_cs) 1471 cs_deactivate(as, msg->spi); 1472 1473 atmel_spi_unlock(as); 1474 1475 msg->status = as->done_status; 1476 spi_finalize_current_message(spi->master); 1477 1478 return ret; 1479 } 1480 1481 static void atmel_spi_cleanup(struct spi_device *spi) 1482 { 1483 struct atmel_spi_device *asd = spi->controller_state; 1484 1485 if (!asd) 1486 return; 1487 1488 spi->controller_state = NULL; 1489 kfree(asd); 1490 } 1491 1492 static inline unsigned int atmel_get_version(struct atmel_spi *as) 1493 { 1494 return spi_readl(as, VERSION) & 0x00000fff; 1495 } 1496 1497 static void atmel_get_caps(struct atmel_spi *as) 1498 { 1499 unsigned int version; 1500 1501 version = atmel_get_version(as); 1502 1503 as->caps.is_spi2 = version > 0x121; 1504 as->caps.has_wdrbt = version >= 0x210; 1505 as->caps.has_dma_support = version >= 0x212; 1506 as->caps.has_pdc_support = version < 0x212; 1507 } 1508 1509 static void atmel_spi_init(struct atmel_spi *as) 1510 { 1511 spi_writel(as, CR, SPI_BIT(SWRST)); 1512 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1513 1514 /* It is recommended to enable FIFOs first thing after reset */ 1515 if (as->fifo_size) 1516 spi_writel(as, CR, SPI_BIT(FIFOEN)); 1517 1518 if (as->caps.has_wdrbt) { 1519 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS) 1520 | SPI_BIT(MSTR)); 1521 } else { 1522 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); 1523 } 1524 1525 if (as->use_pdc) 1526 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1527 spi_writel(as, CR, SPI_BIT(SPIEN)); 1528 } 1529 1530 static int atmel_spi_probe(struct platform_device *pdev) 1531 { 1532 struct resource *regs; 1533 int irq; 1534 struct clk *clk; 1535 int ret; 1536 struct spi_master *master; 1537 struct atmel_spi *as; 1538 1539 /* Select default pin state */ 1540 pinctrl_pm_select_default_state(&pdev->dev); 1541 1542 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1543 if (!regs) 1544 return -ENXIO; 1545 1546 irq = platform_get_irq(pdev, 0); 1547 if (irq < 0) 1548 return irq; 1549 1550 clk = devm_clk_get(&pdev->dev, "spi_clk"); 1551 if (IS_ERR(clk)) 1552 return PTR_ERR(clk); 1553 1554 /* setup spi core then atmel-specific driver state */ 1555 ret = -ENOMEM; 1556 master = spi_alloc_master(&pdev->dev, sizeof(*as)); 1557 if (!master) 1558 goto out_free; 1559 1560 /* the spi->mode bits understood by this driver: */ 1561 master->use_gpio_descriptors = true; 1562 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1563 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16); 1564 master->dev.of_node = pdev->dev.of_node; 1565 master->bus_num = pdev->id; 1566 master->num_chipselect = 4; 1567 master->setup = atmel_spi_setup; 1568 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX); 1569 master->transfer_one_message = atmel_spi_transfer_one_message; 1570 master->cleanup = atmel_spi_cleanup; 1571 master->auto_runtime_pm = true; 1572 master->max_dma_len = SPI_MAX_DMA_XFER; 1573 master->can_dma = atmel_spi_can_dma; 1574 platform_set_drvdata(pdev, master); 1575 1576 as = spi_master_get_devdata(master); 1577 1578 spin_lock_init(&as->lock); 1579 1580 as->pdev = pdev; 1581 as->regs = devm_ioremap_resource(&pdev->dev, regs); 1582 if (IS_ERR(as->regs)) { 1583 ret = PTR_ERR(as->regs); 1584 goto out_unmap_regs; 1585 } 1586 as->phybase = regs->start; 1587 as->irq = irq; 1588 as->clk = clk; 1589 1590 init_completion(&as->xfer_completion); 1591 1592 atmel_get_caps(as); 1593 1594 as->use_dma = false; 1595 as->use_pdc = false; 1596 if (as->caps.has_dma_support) { 1597 ret = atmel_spi_configure_dma(master, as); 1598 if (ret == 0) { 1599 as->use_dma = true; 1600 } else if (ret == -EPROBE_DEFER) { 1601 return ret; 1602 } 1603 } else if (as->caps.has_pdc_support) { 1604 as->use_pdc = true; 1605 } 1606 1607 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1608 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev, 1609 SPI_MAX_DMA_XFER, 1610 &as->dma_addr_rx_bbuf, 1611 GFP_KERNEL | GFP_DMA); 1612 if (!as->addr_rx_bbuf) { 1613 as->use_dma = false; 1614 } else { 1615 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev, 1616 SPI_MAX_DMA_XFER, 1617 &as->dma_addr_tx_bbuf, 1618 GFP_KERNEL | GFP_DMA); 1619 if (!as->addr_tx_bbuf) { 1620 as->use_dma = false; 1621 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1622 as->addr_rx_bbuf, 1623 as->dma_addr_rx_bbuf); 1624 } 1625 } 1626 if (!as->use_dma) 1627 dev_info(master->dev.parent, 1628 " can not allocate dma coherent memory\n"); 1629 } 1630 1631 if (as->caps.has_dma_support && !as->use_dma) 1632 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n"); 1633 1634 if (as->use_pdc) { 1635 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt, 1636 0, dev_name(&pdev->dev), master); 1637 } else { 1638 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt, 1639 0, dev_name(&pdev->dev), master); 1640 } 1641 if (ret) 1642 goto out_unmap_regs; 1643 1644 /* Initialize the hardware */ 1645 ret = clk_prepare_enable(clk); 1646 if (ret) 1647 goto out_free_irq; 1648 1649 as->spi_clk = clk_get_rate(clk); 1650 1651 as->fifo_size = 0; 1652 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", 1653 &as->fifo_size)) { 1654 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size); 1655 } 1656 1657 atmel_spi_init(as); 1658 1659 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT); 1660 pm_runtime_use_autosuspend(&pdev->dev); 1661 pm_runtime_set_active(&pdev->dev); 1662 pm_runtime_enable(&pdev->dev); 1663 1664 ret = devm_spi_register_master(&pdev->dev, master); 1665 if (ret) 1666 goto out_free_dma; 1667 1668 /* go! */ 1669 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n", 1670 atmel_get_version(as), (unsigned long)regs->start, 1671 irq); 1672 1673 return 0; 1674 1675 out_free_dma: 1676 pm_runtime_disable(&pdev->dev); 1677 pm_runtime_set_suspended(&pdev->dev); 1678 1679 if (as->use_dma) 1680 atmel_spi_release_dma(master); 1681 1682 spi_writel(as, CR, SPI_BIT(SWRST)); 1683 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1684 clk_disable_unprepare(clk); 1685 out_free_irq: 1686 out_unmap_regs: 1687 out_free: 1688 spi_master_put(master); 1689 return ret; 1690 } 1691 1692 static int atmel_spi_remove(struct platform_device *pdev) 1693 { 1694 struct spi_master *master = platform_get_drvdata(pdev); 1695 struct atmel_spi *as = spi_master_get_devdata(master); 1696 1697 pm_runtime_get_sync(&pdev->dev); 1698 1699 /* reset the hardware and block queue progress */ 1700 if (as->use_dma) { 1701 atmel_spi_stop_dma(master); 1702 atmel_spi_release_dma(master); 1703 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1704 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1705 as->addr_tx_bbuf, 1706 as->dma_addr_tx_bbuf); 1707 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1708 as->addr_rx_bbuf, 1709 as->dma_addr_rx_bbuf); 1710 } 1711 } 1712 1713 spin_lock_irq(&as->lock); 1714 spi_writel(as, CR, SPI_BIT(SWRST)); 1715 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1716 spi_readl(as, SR); 1717 spin_unlock_irq(&as->lock); 1718 1719 clk_disable_unprepare(as->clk); 1720 1721 pm_runtime_put_noidle(&pdev->dev); 1722 pm_runtime_disable(&pdev->dev); 1723 1724 return 0; 1725 } 1726 1727 #ifdef CONFIG_PM 1728 static int atmel_spi_runtime_suspend(struct device *dev) 1729 { 1730 struct spi_master *master = dev_get_drvdata(dev); 1731 struct atmel_spi *as = spi_master_get_devdata(master); 1732 1733 clk_disable_unprepare(as->clk); 1734 pinctrl_pm_select_sleep_state(dev); 1735 1736 return 0; 1737 } 1738 1739 static int atmel_spi_runtime_resume(struct device *dev) 1740 { 1741 struct spi_master *master = dev_get_drvdata(dev); 1742 struct atmel_spi *as = spi_master_get_devdata(master); 1743 1744 pinctrl_pm_select_default_state(dev); 1745 1746 return clk_prepare_enable(as->clk); 1747 } 1748 1749 #ifdef CONFIG_PM_SLEEP 1750 static int atmel_spi_suspend(struct device *dev) 1751 { 1752 struct spi_master *master = dev_get_drvdata(dev); 1753 int ret; 1754 1755 /* Stop the queue running */ 1756 ret = spi_master_suspend(master); 1757 if (ret) 1758 return ret; 1759 1760 if (!pm_runtime_suspended(dev)) 1761 atmel_spi_runtime_suspend(dev); 1762 1763 return 0; 1764 } 1765 1766 static int atmel_spi_resume(struct device *dev) 1767 { 1768 struct spi_master *master = dev_get_drvdata(dev); 1769 struct atmel_spi *as = spi_master_get_devdata(master); 1770 int ret; 1771 1772 ret = clk_prepare_enable(as->clk); 1773 if (ret) 1774 return ret; 1775 1776 atmel_spi_init(as); 1777 1778 clk_disable_unprepare(as->clk); 1779 1780 if (!pm_runtime_suspended(dev)) { 1781 ret = atmel_spi_runtime_resume(dev); 1782 if (ret) 1783 return ret; 1784 } 1785 1786 /* Start the queue running */ 1787 return spi_master_resume(master); 1788 } 1789 #endif 1790 1791 static const struct dev_pm_ops atmel_spi_pm_ops = { 1792 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume) 1793 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend, 1794 atmel_spi_runtime_resume, NULL) 1795 }; 1796 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops) 1797 #else 1798 #define ATMEL_SPI_PM_OPS NULL 1799 #endif 1800 1801 static const struct of_device_id atmel_spi_dt_ids[] = { 1802 { .compatible = "atmel,at91rm9200-spi" }, 1803 { /* sentinel */ } 1804 }; 1805 1806 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids); 1807 1808 static struct platform_driver atmel_spi_driver = { 1809 .driver = { 1810 .name = "atmel_spi", 1811 .pm = ATMEL_SPI_PM_OPS, 1812 .of_match_table = atmel_spi_dt_ids, 1813 }, 1814 .probe = atmel_spi_probe, 1815 .remove = atmel_spi_remove, 1816 }; 1817 module_platform_driver(atmel_spi_driver); 1818 1819 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); 1820 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 1821 MODULE_LICENSE("GPL"); 1822 MODULE_ALIAS("platform:atmel_spi"); 1823