1 /* 2 * Driver for Atmel AT32 and AT91 SPI Controllers 3 * 4 * Copyright (C) 2006 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/clk.h> 13 #include <linux/module.h> 14 #include <linux/platform_device.h> 15 #include <linux/delay.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/dmaengine.h> 18 #include <linux/err.h> 19 #include <linux/interrupt.h> 20 #include <linux/spi/spi.h> 21 #include <linux/slab.h> 22 #include <linux/platform_data/dma-atmel.h> 23 #include <linux/of.h> 24 25 #include <linux/io.h> 26 #include <linux/gpio.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pm_runtime.h> 29 30 /* SPI register offsets */ 31 #define SPI_CR 0x0000 32 #define SPI_MR 0x0004 33 #define SPI_RDR 0x0008 34 #define SPI_TDR 0x000c 35 #define SPI_SR 0x0010 36 #define SPI_IER 0x0014 37 #define SPI_IDR 0x0018 38 #define SPI_IMR 0x001c 39 #define SPI_CSR0 0x0030 40 #define SPI_CSR1 0x0034 41 #define SPI_CSR2 0x0038 42 #define SPI_CSR3 0x003c 43 #define SPI_FMR 0x0040 44 #define SPI_FLR 0x0044 45 #define SPI_VERSION 0x00fc 46 #define SPI_RPR 0x0100 47 #define SPI_RCR 0x0104 48 #define SPI_TPR 0x0108 49 #define SPI_TCR 0x010c 50 #define SPI_RNPR 0x0110 51 #define SPI_RNCR 0x0114 52 #define SPI_TNPR 0x0118 53 #define SPI_TNCR 0x011c 54 #define SPI_PTCR 0x0120 55 #define SPI_PTSR 0x0124 56 57 /* Bitfields in CR */ 58 #define SPI_SPIEN_OFFSET 0 59 #define SPI_SPIEN_SIZE 1 60 #define SPI_SPIDIS_OFFSET 1 61 #define SPI_SPIDIS_SIZE 1 62 #define SPI_SWRST_OFFSET 7 63 #define SPI_SWRST_SIZE 1 64 #define SPI_LASTXFER_OFFSET 24 65 #define SPI_LASTXFER_SIZE 1 66 #define SPI_TXFCLR_OFFSET 16 67 #define SPI_TXFCLR_SIZE 1 68 #define SPI_RXFCLR_OFFSET 17 69 #define SPI_RXFCLR_SIZE 1 70 #define SPI_FIFOEN_OFFSET 30 71 #define SPI_FIFOEN_SIZE 1 72 #define SPI_FIFODIS_OFFSET 31 73 #define SPI_FIFODIS_SIZE 1 74 75 /* Bitfields in MR */ 76 #define SPI_MSTR_OFFSET 0 77 #define SPI_MSTR_SIZE 1 78 #define SPI_PS_OFFSET 1 79 #define SPI_PS_SIZE 1 80 #define SPI_PCSDEC_OFFSET 2 81 #define SPI_PCSDEC_SIZE 1 82 #define SPI_FDIV_OFFSET 3 83 #define SPI_FDIV_SIZE 1 84 #define SPI_MODFDIS_OFFSET 4 85 #define SPI_MODFDIS_SIZE 1 86 #define SPI_WDRBT_OFFSET 5 87 #define SPI_WDRBT_SIZE 1 88 #define SPI_LLB_OFFSET 7 89 #define SPI_LLB_SIZE 1 90 #define SPI_PCS_OFFSET 16 91 #define SPI_PCS_SIZE 4 92 #define SPI_DLYBCS_OFFSET 24 93 #define SPI_DLYBCS_SIZE 8 94 95 /* Bitfields in RDR */ 96 #define SPI_RD_OFFSET 0 97 #define SPI_RD_SIZE 16 98 99 /* Bitfields in TDR */ 100 #define SPI_TD_OFFSET 0 101 #define SPI_TD_SIZE 16 102 103 /* Bitfields in SR */ 104 #define SPI_RDRF_OFFSET 0 105 #define SPI_RDRF_SIZE 1 106 #define SPI_TDRE_OFFSET 1 107 #define SPI_TDRE_SIZE 1 108 #define SPI_MODF_OFFSET 2 109 #define SPI_MODF_SIZE 1 110 #define SPI_OVRES_OFFSET 3 111 #define SPI_OVRES_SIZE 1 112 #define SPI_ENDRX_OFFSET 4 113 #define SPI_ENDRX_SIZE 1 114 #define SPI_ENDTX_OFFSET 5 115 #define SPI_ENDTX_SIZE 1 116 #define SPI_RXBUFF_OFFSET 6 117 #define SPI_RXBUFF_SIZE 1 118 #define SPI_TXBUFE_OFFSET 7 119 #define SPI_TXBUFE_SIZE 1 120 #define SPI_NSSR_OFFSET 8 121 #define SPI_NSSR_SIZE 1 122 #define SPI_TXEMPTY_OFFSET 9 123 #define SPI_TXEMPTY_SIZE 1 124 #define SPI_SPIENS_OFFSET 16 125 #define SPI_SPIENS_SIZE 1 126 #define SPI_TXFEF_OFFSET 24 127 #define SPI_TXFEF_SIZE 1 128 #define SPI_TXFFF_OFFSET 25 129 #define SPI_TXFFF_SIZE 1 130 #define SPI_TXFTHF_OFFSET 26 131 #define SPI_TXFTHF_SIZE 1 132 #define SPI_RXFEF_OFFSET 27 133 #define SPI_RXFEF_SIZE 1 134 #define SPI_RXFFF_OFFSET 28 135 #define SPI_RXFFF_SIZE 1 136 #define SPI_RXFTHF_OFFSET 29 137 #define SPI_RXFTHF_SIZE 1 138 #define SPI_TXFPTEF_OFFSET 30 139 #define SPI_TXFPTEF_SIZE 1 140 #define SPI_RXFPTEF_OFFSET 31 141 #define SPI_RXFPTEF_SIZE 1 142 143 /* Bitfields in CSR0 */ 144 #define SPI_CPOL_OFFSET 0 145 #define SPI_CPOL_SIZE 1 146 #define SPI_NCPHA_OFFSET 1 147 #define SPI_NCPHA_SIZE 1 148 #define SPI_CSAAT_OFFSET 3 149 #define SPI_CSAAT_SIZE 1 150 #define SPI_BITS_OFFSET 4 151 #define SPI_BITS_SIZE 4 152 #define SPI_SCBR_OFFSET 8 153 #define SPI_SCBR_SIZE 8 154 #define SPI_DLYBS_OFFSET 16 155 #define SPI_DLYBS_SIZE 8 156 #define SPI_DLYBCT_OFFSET 24 157 #define SPI_DLYBCT_SIZE 8 158 159 /* Bitfields in RCR */ 160 #define SPI_RXCTR_OFFSET 0 161 #define SPI_RXCTR_SIZE 16 162 163 /* Bitfields in TCR */ 164 #define SPI_TXCTR_OFFSET 0 165 #define SPI_TXCTR_SIZE 16 166 167 /* Bitfields in RNCR */ 168 #define SPI_RXNCR_OFFSET 0 169 #define SPI_RXNCR_SIZE 16 170 171 /* Bitfields in TNCR */ 172 #define SPI_TXNCR_OFFSET 0 173 #define SPI_TXNCR_SIZE 16 174 175 /* Bitfields in PTCR */ 176 #define SPI_RXTEN_OFFSET 0 177 #define SPI_RXTEN_SIZE 1 178 #define SPI_RXTDIS_OFFSET 1 179 #define SPI_RXTDIS_SIZE 1 180 #define SPI_TXTEN_OFFSET 8 181 #define SPI_TXTEN_SIZE 1 182 #define SPI_TXTDIS_OFFSET 9 183 #define SPI_TXTDIS_SIZE 1 184 185 /* Bitfields in FMR */ 186 #define SPI_TXRDYM_OFFSET 0 187 #define SPI_TXRDYM_SIZE 2 188 #define SPI_RXRDYM_OFFSET 4 189 #define SPI_RXRDYM_SIZE 2 190 #define SPI_TXFTHRES_OFFSET 16 191 #define SPI_TXFTHRES_SIZE 6 192 #define SPI_RXFTHRES_OFFSET 24 193 #define SPI_RXFTHRES_SIZE 6 194 195 /* Bitfields in FLR */ 196 #define SPI_TXFL_OFFSET 0 197 #define SPI_TXFL_SIZE 6 198 #define SPI_RXFL_OFFSET 16 199 #define SPI_RXFL_SIZE 6 200 201 /* Constants for BITS */ 202 #define SPI_BITS_8_BPT 0 203 #define SPI_BITS_9_BPT 1 204 #define SPI_BITS_10_BPT 2 205 #define SPI_BITS_11_BPT 3 206 #define SPI_BITS_12_BPT 4 207 #define SPI_BITS_13_BPT 5 208 #define SPI_BITS_14_BPT 6 209 #define SPI_BITS_15_BPT 7 210 #define SPI_BITS_16_BPT 8 211 #define SPI_ONE_DATA 0 212 #define SPI_TWO_DATA 1 213 #define SPI_FOUR_DATA 2 214 215 /* Bit manipulation macros */ 216 #define SPI_BIT(name) \ 217 (1 << SPI_##name##_OFFSET) 218 #define SPI_BF(name, value) \ 219 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) 220 #define SPI_BFEXT(name, value) \ 221 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) 222 #define SPI_BFINS(name, value, old) \ 223 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ 224 | SPI_BF(name, value)) 225 226 /* Register access macros */ 227 #ifdef CONFIG_AVR32 228 #define spi_readl(port, reg) \ 229 __raw_readl((port)->regs + SPI_##reg) 230 #define spi_writel(port, reg, value) \ 231 __raw_writel((value), (port)->regs + SPI_##reg) 232 233 #define spi_readw(port, reg) \ 234 __raw_readw((port)->regs + SPI_##reg) 235 #define spi_writew(port, reg, value) \ 236 __raw_writew((value), (port)->regs + SPI_##reg) 237 238 #define spi_readb(port, reg) \ 239 __raw_readb((port)->regs + SPI_##reg) 240 #define spi_writeb(port, reg, value) \ 241 __raw_writeb((value), (port)->regs + SPI_##reg) 242 #else 243 #define spi_readl(port, reg) \ 244 readl_relaxed((port)->regs + SPI_##reg) 245 #define spi_writel(port, reg, value) \ 246 writel_relaxed((value), (port)->regs + SPI_##reg) 247 248 #define spi_readw(port, reg) \ 249 readw_relaxed((port)->regs + SPI_##reg) 250 #define spi_writew(port, reg, value) \ 251 writew_relaxed((value), (port)->regs + SPI_##reg) 252 253 #define spi_readb(port, reg) \ 254 readb_relaxed((port)->regs + SPI_##reg) 255 #define spi_writeb(port, reg, value) \ 256 writeb_relaxed((value), (port)->regs + SPI_##reg) 257 #endif 258 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 259 * cache operations; better heuristics consider wordsize and bitrate. 260 */ 261 #define DMA_MIN_BYTES 16 262 263 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) 264 265 #define AUTOSUSPEND_TIMEOUT 2000 266 267 struct atmel_spi_dma { 268 struct dma_chan *chan_rx; 269 struct dma_chan *chan_tx; 270 struct scatterlist sgrx; 271 struct scatterlist sgtx; 272 struct dma_async_tx_descriptor *data_desc_rx; 273 struct dma_async_tx_descriptor *data_desc_tx; 274 275 struct at_dma_slave dma_slave; 276 }; 277 278 struct atmel_spi_caps { 279 bool is_spi2; 280 bool has_wdrbt; 281 bool has_dma_support; 282 }; 283 284 /* 285 * The core SPI transfer engine just talks to a register bank to set up 286 * DMA transfers; transfer queue progress is driven by IRQs. The clock 287 * framework provides the base clock, subdivided for each spi_device. 288 */ 289 struct atmel_spi { 290 spinlock_t lock; 291 unsigned long flags; 292 293 phys_addr_t phybase; 294 void __iomem *regs; 295 int irq; 296 struct clk *clk; 297 struct platform_device *pdev; 298 299 struct spi_transfer *current_transfer; 300 int current_remaining_bytes; 301 int done_status; 302 303 struct completion xfer_completion; 304 305 /* scratch buffer */ 306 void *buffer; 307 dma_addr_t buffer_dma; 308 309 struct atmel_spi_caps caps; 310 311 bool use_dma; 312 bool use_pdc; 313 bool use_cs_gpios; 314 /* dmaengine data */ 315 struct atmel_spi_dma dma; 316 317 bool keep_cs; 318 bool cs_active; 319 320 u32 fifo_size; 321 }; 322 323 /* Controller-specific per-slave state */ 324 struct atmel_spi_device { 325 unsigned int npcs_pin; 326 u32 csr; 327 }; 328 329 #define BUFFER_SIZE PAGE_SIZE 330 #define INVALID_DMA_ADDRESS 0xffffffff 331 332 /* 333 * Version 2 of the SPI controller has 334 * - CR.LASTXFER 335 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) 336 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) 337 * - SPI_CSRx.CSAAT 338 * - SPI_CSRx.SBCR allows faster clocking 339 */ 340 static bool atmel_spi_is_v2(struct atmel_spi *as) 341 { 342 return as->caps.is_spi2; 343 } 344 345 /* 346 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby 347 * they assume that spi slave device state will not change on deselect, so 348 * that automagic deselection is OK. ("NPCSx rises if no data is to be 349 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer 350 * controllers have CSAAT and friends. 351 * 352 * Since the CSAAT functionality is a bit weird on newer controllers as 353 * well, we use GPIO to control nCSx pins on all controllers, updating 354 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us 355 * support active-high chipselects despite the controller's belief that 356 * only active-low devices/systems exists. 357 * 358 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work 359 * right when driven with GPIO. ("Mode Fault does not allow more than one 360 * Master on Chip Select 0.") No workaround exists for that ... so for 361 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, 362 * and (c) will trigger that first erratum in some cases. 363 */ 364 365 static void cs_activate(struct atmel_spi *as, struct spi_device *spi) 366 { 367 struct atmel_spi_device *asd = spi->controller_state; 368 unsigned active = spi->mode & SPI_CS_HIGH; 369 u32 mr; 370 371 if (atmel_spi_is_v2(as)) { 372 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr); 373 /* For the low SPI version, there is a issue that PDC transfer 374 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS 375 */ 376 spi_writel(as, CSR0, asd->csr); 377 if (as->caps.has_wdrbt) { 378 spi_writel(as, MR, 379 SPI_BF(PCS, ~(0x01 << spi->chip_select)) 380 | SPI_BIT(WDRBT) 381 | SPI_BIT(MODFDIS) 382 | SPI_BIT(MSTR)); 383 } else { 384 spi_writel(as, MR, 385 SPI_BF(PCS, ~(0x01 << spi->chip_select)) 386 | SPI_BIT(MODFDIS) 387 | SPI_BIT(MSTR)); 388 } 389 390 mr = spi_readl(as, MR); 391 if (as->use_cs_gpios) 392 gpio_set_value(asd->npcs_pin, active); 393 } else { 394 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; 395 int i; 396 u32 csr; 397 398 /* Make sure clock polarity is correct */ 399 for (i = 0; i < spi->master->num_chipselect; i++) { 400 csr = spi_readl(as, CSR0 + 4 * i); 401 if ((csr ^ cpol) & SPI_BIT(CPOL)) 402 spi_writel(as, CSR0 + 4 * i, 403 csr ^ SPI_BIT(CPOL)); 404 } 405 406 mr = spi_readl(as, MR); 407 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr); 408 if (as->use_cs_gpios && spi->chip_select != 0) 409 gpio_set_value(asd->npcs_pin, active); 410 spi_writel(as, MR, mr); 411 } 412 413 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n", 414 asd->npcs_pin, active ? " (high)" : "", 415 mr); 416 } 417 418 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) 419 { 420 struct atmel_spi_device *asd = spi->controller_state; 421 unsigned active = spi->mode & SPI_CS_HIGH; 422 u32 mr; 423 424 /* only deactivate *this* device; sometimes transfers to 425 * another device may be active when this routine is called. 426 */ 427 mr = spi_readl(as, MR); 428 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) { 429 mr = SPI_BFINS(PCS, 0xf, mr); 430 spi_writel(as, MR, mr); 431 } 432 433 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n", 434 asd->npcs_pin, active ? " (low)" : "", 435 mr); 436 437 if (!as->use_cs_gpios) 438 spi_writel(as, CR, SPI_BIT(LASTXFER)); 439 else if (atmel_spi_is_v2(as) || spi->chip_select != 0) 440 gpio_set_value(asd->npcs_pin, !active); 441 } 442 443 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock) 444 { 445 spin_lock_irqsave(&as->lock, as->flags); 446 } 447 448 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock) 449 { 450 spin_unlock_irqrestore(&as->lock, as->flags); 451 } 452 453 static inline bool atmel_spi_use_dma(struct atmel_spi *as, 454 struct spi_transfer *xfer) 455 { 456 return as->use_dma && xfer->len >= DMA_MIN_BYTES; 457 } 458 459 static int atmel_spi_dma_slave_config(struct atmel_spi *as, 460 struct dma_slave_config *slave_config, 461 u8 bits_per_word) 462 { 463 int err = 0; 464 465 if (bits_per_word > 8) { 466 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 467 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 468 } else { 469 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 470 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 471 } 472 473 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR; 474 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR; 475 slave_config->src_maxburst = 1; 476 slave_config->dst_maxburst = 1; 477 slave_config->device_fc = false; 478 479 /* 480 * This driver uses fixed peripheral select mode (PS bit set to '0' in 481 * the Mode Register). 482 * So according to the datasheet, when FIFOs are available (and 483 * enabled), the Transmit FIFO operates in Multiple Data Mode. 484 * In this mode, up to 2 data, not 4, can be written into the Transmit 485 * Data Register in a single access. 486 * However, the first data has to be written into the lowest 16 bits and 487 * the second data into the highest 16 bits of the Transmit 488 * Data Register. For 8bit data (the most frequent case), it would 489 * require to rework tx_buf so each data would actualy fit 16 bits. 490 * So we'd rather write only one data at the time. Hence the transmit 491 * path works the same whether FIFOs are available (and enabled) or not. 492 */ 493 slave_config->direction = DMA_MEM_TO_DEV; 494 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) { 495 dev_err(&as->pdev->dev, 496 "failed to configure tx dma channel\n"); 497 err = -EINVAL; 498 } 499 500 /* 501 * This driver configures the spi controller for master mode (MSTR bit 502 * set to '1' in the Mode Register). 503 * So according to the datasheet, when FIFOs are available (and 504 * enabled), the Receive FIFO operates in Single Data Mode. 505 * So the receive path works the same whether FIFOs are available (and 506 * enabled) or not. 507 */ 508 slave_config->direction = DMA_DEV_TO_MEM; 509 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) { 510 dev_err(&as->pdev->dev, 511 "failed to configure rx dma channel\n"); 512 err = -EINVAL; 513 } 514 515 return err; 516 } 517 518 static int atmel_spi_configure_dma(struct atmel_spi *as) 519 { 520 struct dma_slave_config slave_config; 521 struct device *dev = &as->pdev->dev; 522 int err; 523 524 dma_cap_mask_t mask; 525 dma_cap_zero(mask); 526 dma_cap_set(DMA_SLAVE, mask); 527 528 as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx"); 529 if (IS_ERR(as->dma.chan_tx)) { 530 err = PTR_ERR(as->dma.chan_tx); 531 if (err == -EPROBE_DEFER) { 532 dev_warn(dev, "no DMA channel available at the moment\n"); 533 return err; 534 } 535 dev_err(dev, 536 "DMA TX channel not available, SPI unable to use DMA\n"); 537 err = -EBUSY; 538 goto error; 539 } 540 541 /* 542 * No reason to check EPROBE_DEFER here since we have already requested 543 * tx channel. If it fails here, it's for another reason. 544 */ 545 as->dma.chan_rx = dma_request_slave_channel(dev, "rx"); 546 547 if (!as->dma.chan_rx) { 548 dev_err(dev, 549 "DMA RX channel not available, SPI unable to use DMA\n"); 550 err = -EBUSY; 551 goto error; 552 } 553 554 err = atmel_spi_dma_slave_config(as, &slave_config, 8); 555 if (err) 556 goto error; 557 558 dev_info(&as->pdev->dev, 559 "Using %s (tx) and %s (rx) for DMA transfers\n", 560 dma_chan_name(as->dma.chan_tx), 561 dma_chan_name(as->dma.chan_rx)); 562 return 0; 563 error: 564 if (as->dma.chan_rx) 565 dma_release_channel(as->dma.chan_rx); 566 if (!IS_ERR(as->dma.chan_tx)) 567 dma_release_channel(as->dma.chan_tx); 568 return err; 569 } 570 571 static void atmel_spi_stop_dma(struct atmel_spi *as) 572 { 573 if (as->dma.chan_rx) 574 dmaengine_terminate_all(as->dma.chan_rx); 575 if (as->dma.chan_tx) 576 dmaengine_terminate_all(as->dma.chan_tx); 577 } 578 579 static void atmel_spi_release_dma(struct atmel_spi *as) 580 { 581 if (as->dma.chan_rx) 582 dma_release_channel(as->dma.chan_rx); 583 if (as->dma.chan_tx) 584 dma_release_channel(as->dma.chan_tx); 585 } 586 587 /* This function is called by the DMA driver from tasklet context */ 588 static void dma_callback(void *data) 589 { 590 struct spi_master *master = data; 591 struct atmel_spi *as = spi_master_get_devdata(master); 592 593 complete(&as->xfer_completion); 594 } 595 596 /* 597 * Next transfer using PIO without FIFO. 598 */ 599 static void atmel_spi_next_xfer_single(struct spi_master *master, 600 struct spi_transfer *xfer) 601 { 602 struct atmel_spi *as = spi_master_get_devdata(master); 603 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 604 605 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n"); 606 607 /* Make sure data is not remaining in RDR */ 608 spi_readl(as, RDR); 609 while (spi_readl(as, SR) & SPI_BIT(RDRF)) { 610 spi_readl(as, RDR); 611 cpu_relax(); 612 } 613 614 if (xfer->tx_buf) { 615 if (xfer->bits_per_word > 8) 616 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos)); 617 else 618 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos)); 619 } else { 620 spi_writel(as, TDR, 0); 621 } 622 623 dev_dbg(master->dev.parent, 624 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n", 625 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 626 xfer->bits_per_word); 627 628 /* Enable relevant interrupts */ 629 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES)); 630 } 631 632 /* 633 * Next transfer using PIO with FIFO. 634 */ 635 static void atmel_spi_next_xfer_fifo(struct spi_master *master, 636 struct spi_transfer *xfer) 637 { 638 struct atmel_spi *as = spi_master_get_devdata(master); 639 u32 current_remaining_data, num_data; 640 u32 offset = xfer->len - as->current_remaining_bytes; 641 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset); 642 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset); 643 u16 td0, td1; 644 u32 fifomr; 645 646 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n"); 647 648 /* Compute the number of data to transfer in the current iteration */ 649 current_remaining_data = ((xfer->bits_per_word > 8) ? 650 ((u32)as->current_remaining_bytes >> 1) : 651 (u32)as->current_remaining_bytes); 652 num_data = min(current_remaining_data, as->fifo_size); 653 654 /* Flush RX and TX FIFOs */ 655 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR)); 656 while (spi_readl(as, FLR)) 657 cpu_relax(); 658 659 /* Set RX FIFO Threshold to the number of data to transfer */ 660 fifomr = spi_readl(as, FMR); 661 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr)); 662 663 /* Clear FIFO flags in the Status Register, especially RXFTHF */ 664 (void)spi_readl(as, SR); 665 666 /* Fill TX FIFO */ 667 while (num_data >= 2) { 668 if (xfer->tx_buf) { 669 if (xfer->bits_per_word > 8) { 670 td0 = *words++; 671 td1 = *words++; 672 } else { 673 td0 = *bytes++; 674 td1 = *bytes++; 675 } 676 } else { 677 td0 = 0; 678 td1 = 0; 679 } 680 681 spi_writel(as, TDR, (td1 << 16) | td0); 682 num_data -= 2; 683 } 684 685 if (num_data) { 686 if (xfer->tx_buf) { 687 if (xfer->bits_per_word > 8) 688 td0 = *words++; 689 else 690 td0 = *bytes++; 691 } else { 692 td0 = 0; 693 } 694 695 spi_writew(as, TDR, td0); 696 num_data--; 697 } 698 699 dev_dbg(master->dev.parent, 700 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n", 701 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 702 xfer->bits_per_word); 703 704 /* 705 * Enable RX FIFO Threshold Flag interrupt to be notified about 706 * transfer completion. 707 */ 708 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES)); 709 } 710 711 /* 712 * Next transfer using PIO. 713 */ 714 static void atmel_spi_next_xfer_pio(struct spi_master *master, 715 struct spi_transfer *xfer) 716 { 717 struct atmel_spi *as = spi_master_get_devdata(master); 718 719 if (as->fifo_size) 720 atmel_spi_next_xfer_fifo(master, xfer); 721 else 722 atmel_spi_next_xfer_single(master, xfer); 723 } 724 725 /* 726 * Submit next transfer for DMA. 727 */ 728 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master, 729 struct spi_transfer *xfer, 730 u32 *plen) 731 { 732 struct atmel_spi *as = spi_master_get_devdata(master); 733 struct dma_chan *rxchan = as->dma.chan_rx; 734 struct dma_chan *txchan = as->dma.chan_tx; 735 struct dma_async_tx_descriptor *rxdesc; 736 struct dma_async_tx_descriptor *txdesc; 737 struct dma_slave_config slave_config; 738 dma_cookie_t cookie; 739 u32 len = *plen; 740 741 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n"); 742 743 /* Check that the channels are available */ 744 if (!rxchan || !txchan) 745 return -ENODEV; 746 747 /* release lock for DMA operations */ 748 atmel_spi_unlock(as); 749 750 /* prepare the RX dma transfer */ 751 sg_init_table(&as->dma.sgrx, 1); 752 if (xfer->rx_buf) { 753 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen; 754 } else { 755 as->dma.sgrx.dma_address = as->buffer_dma; 756 if (len > BUFFER_SIZE) 757 len = BUFFER_SIZE; 758 } 759 760 /* prepare the TX dma transfer */ 761 sg_init_table(&as->dma.sgtx, 1); 762 if (xfer->tx_buf) { 763 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen; 764 } else { 765 as->dma.sgtx.dma_address = as->buffer_dma; 766 if (len > BUFFER_SIZE) 767 len = BUFFER_SIZE; 768 memset(as->buffer, 0, len); 769 } 770 771 sg_dma_len(&as->dma.sgtx) = len; 772 sg_dma_len(&as->dma.sgrx) = len; 773 774 *plen = len; 775 776 if (atmel_spi_dma_slave_config(as, &slave_config, 777 xfer->bits_per_word)) 778 goto err_exit; 779 780 /* Send both scatterlists */ 781 rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1, 782 DMA_FROM_DEVICE, 783 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 784 if (!rxdesc) 785 goto err_dma; 786 787 txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1, 788 DMA_TO_DEVICE, 789 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 790 if (!txdesc) 791 goto err_dma; 792 793 dev_dbg(master->dev.parent, 794 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 795 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma, 796 xfer->rx_buf, (unsigned long long)xfer->rx_dma); 797 798 /* Enable relevant interrupts */ 799 spi_writel(as, IER, SPI_BIT(OVRES)); 800 801 /* Put the callback on the RX transfer only, that should finish last */ 802 rxdesc->callback = dma_callback; 803 rxdesc->callback_param = master; 804 805 /* Submit and fire RX and TX with TX last so we're ready to read! */ 806 cookie = rxdesc->tx_submit(rxdesc); 807 if (dma_submit_error(cookie)) 808 goto err_dma; 809 cookie = txdesc->tx_submit(txdesc); 810 if (dma_submit_error(cookie)) 811 goto err_dma; 812 rxchan->device->device_issue_pending(rxchan); 813 txchan->device->device_issue_pending(txchan); 814 815 /* take back lock */ 816 atmel_spi_lock(as); 817 return 0; 818 819 err_dma: 820 spi_writel(as, IDR, SPI_BIT(OVRES)); 821 atmel_spi_stop_dma(as); 822 err_exit: 823 atmel_spi_lock(as); 824 return -ENOMEM; 825 } 826 827 static void atmel_spi_next_xfer_data(struct spi_master *master, 828 struct spi_transfer *xfer, 829 dma_addr_t *tx_dma, 830 dma_addr_t *rx_dma, 831 u32 *plen) 832 { 833 struct atmel_spi *as = spi_master_get_devdata(master); 834 u32 len = *plen; 835 836 /* use scratch buffer only when rx or tx data is unspecified */ 837 if (xfer->rx_buf) 838 *rx_dma = xfer->rx_dma + xfer->len - *plen; 839 else { 840 *rx_dma = as->buffer_dma; 841 if (len > BUFFER_SIZE) 842 len = BUFFER_SIZE; 843 } 844 845 if (xfer->tx_buf) 846 *tx_dma = xfer->tx_dma + xfer->len - *plen; 847 else { 848 *tx_dma = as->buffer_dma; 849 if (len > BUFFER_SIZE) 850 len = BUFFER_SIZE; 851 memset(as->buffer, 0, len); 852 dma_sync_single_for_device(&as->pdev->dev, 853 as->buffer_dma, len, DMA_TO_DEVICE); 854 } 855 856 *plen = len; 857 } 858 859 static int atmel_spi_set_xfer_speed(struct atmel_spi *as, 860 struct spi_device *spi, 861 struct spi_transfer *xfer) 862 { 863 u32 scbr, csr; 864 unsigned long bus_hz; 865 866 /* v1 chips start out at half the peripheral bus speed. */ 867 bus_hz = clk_get_rate(as->clk); 868 if (!atmel_spi_is_v2(as)) 869 bus_hz /= 2; 870 871 /* 872 * Calculate the lowest divider that satisfies the 873 * constraint, assuming div32/fdiv/mbz == 0. 874 */ 875 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz); 876 877 /* 878 * If the resulting divider doesn't fit into the 879 * register bitfield, we can't satisfy the constraint. 880 */ 881 if (scbr >= (1 << SPI_SCBR_SIZE)) { 882 dev_err(&spi->dev, 883 "setup: %d Hz too slow, scbr %u; min %ld Hz\n", 884 xfer->speed_hz, scbr, bus_hz/255); 885 return -EINVAL; 886 } 887 if (scbr == 0) { 888 dev_err(&spi->dev, 889 "setup: %d Hz too high, scbr %u; max %ld Hz\n", 890 xfer->speed_hz, scbr, bus_hz); 891 return -EINVAL; 892 } 893 csr = spi_readl(as, CSR0 + 4 * spi->chip_select); 894 csr = SPI_BFINS(SCBR, scbr, csr); 895 spi_writel(as, CSR0 + 4 * spi->chip_select, csr); 896 897 return 0; 898 } 899 900 /* 901 * Submit next transfer for PDC. 902 * lock is held, spi irq is blocked 903 */ 904 static void atmel_spi_pdc_next_xfer(struct spi_master *master, 905 struct spi_message *msg, 906 struct spi_transfer *xfer) 907 { 908 struct atmel_spi *as = spi_master_get_devdata(master); 909 u32 len; 910 dma_addr_t tx_dma, rx_dma; 911 912 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 913 914 len = as->current_remaining_bytes; 915 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 916 as->current_remaining_bytes -= len; 917 918 spi_writel(as, RPR, rx_dma); 919 spi_writel(as, TPR, tx_dma); 920 921 if (msg->spi->bits_per_word > 8) 922 len >>= 1; 923 spi_writel(as, RCR, len); 924 spi_writel(as, TCR, len); 925 926 dev_dbg(&msg->spi->dev, 927 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 928 xfer, xfer->len, xfer->tx_buf, 929 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 930 (unsigned long long)xfer->rx_dma); 931 932 if (as->current_remaining_bytes) { 933 len = as->current_remaining_bytes; 934 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 935 as->current_remaining_bytes -= len; 936 937 spi_writel(as, RNPR, rx_dma); 938 spi_writel(as, TNPR, tx_dma); 939 940 if (msg->spi->bits_per_word > 8) 941 len >>= 1; 942 spi_writel(as, RNCR, len); 943 spi_writel(as, TNCR, len); 944 945 dev_dbg(&msg->spi->dev, 946 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 947 xfer, xfer->len, xfer->tx_buf, 948 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 949 (unsigned long long)xfer->rx_dma); 950 } 951 952 /* REVISIT: We're waiting for RXBUFF before we start the next 953 * transfer because we need to handle some difficult timing 954 * issues otherwise. If we wait for TXBUFE in one transfer and 955 * then starts waiting for RXBUFF in the next, it's difficult 956 * to tell the difference between the RXBUFF interrupt we're 957 * actually waiting for and the RXBUFF interrupt of the 958 * previous transfer. 959 * 960 * It should be doable, though. Just not now... 961 */ 962 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES)); 963 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); 964 } 965 966 /* 967 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: 968 * - The buffer is either valid for CPU access, else NULL 969 * - If the buffer is valid, so is its DMA address 970 * 971 * This driver manages the dma address unless message->is_dma_mapped. 972 */ 973 static int 974 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) 975 { 976 struct device *dev = &as->pdev->dev; 977 978 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; 979 if (xfer->tx_buf) { 980 /* tx_buf is a const void* where we need a void * for the dma 981 * mapping */ 982 void *nonconst_tx = (void *)xfer->tx_buf; 983 984 xfer->tx_dma = dma_map_single(dev, 985 nonconst_tx, xfer->len, 986 DMA_TO_DEVICE); 987 if (dma_mapping_error(dev, xfer->tx_dma)) 988 return -ENOMEM; 989 } 990 if (xfer->rx_buf) { 991 xfer->rx_dma = dma_map_single(dev, 992 xfer->rx_buf, xfer->len, 993 DMA_FROM_DEVICE); 994 if (dma_mapping_error(dev, xfer->rx_dma)) { 995 if (xfer->tx_buf) 996 dma_unmap_single(dev, 997 xfer->tx_dma, xfer->len, 998 DMA_TO_DEVICE); 999 return -ENOMEM; 1000 } 1001 } 1002 return 0; 1003 } 1004 1005 static void atmel_spi_dma_unmap_xfer(struct spi_master *master, 1006 struct spi_transfer *xfer) 1007 { 1008 if (xfer->tx_dma != INVALID_DMA_ADDRESS) 1009 dma_unmap_single(master->dev.parent, xfer->tx_dma, 1010 xfer->len, DMA_TO_DEVICE); 1011 if (xfer->rx_dma != INVALID_DMA_ADDRESS) 1012 dma_unmap_single(master->dev.parent, xfer->rx_dma, 1013 xfer->len, DMA_FROM_DEVICE); 1014 } 1015 1016 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as) 1017 { 1018 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1019 } 1020 1021 static void 1022 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer) 1023 { 1024 u8 *rxp; 1025 u16 *rxp16; 1026 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 1027 1028 if (xfer->rx_buf) { 1029 if (xfer->bits_per_word > 8) { 1030 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos); 1031 *rxp16 = spi_readl(as, RDR); 1032 } else { 1033 rxp = ((u8 *)xfer->rx_buf) + xfer_pos; 1034 *rxp = spi_readl(as, RDR); 1035 } 1036 } else { 1037 spi_readl(as, RDR); 1038 } 1039 if (xfer->bits_per_word > 8) { 1040 if (as->current_remaining_bytes > 2) 1041 as->current_remaining_bytes -= 2; 1042 else 1043 as->current_remaining_bytes = 0; 1044 } else { 1045 as->current_remaining_bytes--; 1046 } 1047 } 1048 1049 static void 1050 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer) 1051 { 1052 u32 fifolr = spi_readl(as, FLR); 1053 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr); 1054 u32 offset = xfer->len - as->current_remaining_bytes; 1055 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset); 1056 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset); 1057 u16 rd; /* RD field is the lowest 16 bits of RDR */ 1058 1059 /* Update the number of remaining bytes to transfer */ 1060 num_bytes = ((xfer->bits_per_word > 8) ? 1061 (num_data << 1) : 1062 num_data); 1063 1064 if (as->current_remaining_bytes > num_bytes) 1065 as->current_remaining_bytes -= num_bytes; 1066 else 1067 as->current_remaining_bytes = 0; 1068 1069 /* Handle odd number of bytes when data are more than 8bit width */ 1070 if (xfer->bits_per_word > 8) 1071 as->current_remaining_bytes &= ~0x1; 1072 1073 /* Read data */ 1074 while (num_data) { 1075 rd = spi_readl(as, RDR); 1076 if (xfer->rx_buf) { 1077 if (xfer->bits_per_word > 8) 1078 *words++ = rd; 1079 else 1080 *bytes++ = rd; 1081 } 1082 num_data--; 1083 } 1084 } 1085 1086 /* Called from IRQ 1087 * 1088 * Must update "current_remaining_bytes" to keep track of data 1089 * to transfer. 1090 */ 1091 static void 1092 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer) 1093 { 1094 if (as->fifo_size) 1095 atmel_spi_pump_fifo_data(as, xfer); 1096 else 1097 atmel_spi_pump_single_data(as, xfer); 1098 } 1099 1100 /* Interrupt 1101 * 1102 * No need for locking in this Interrupt handler: done_status is the 1103 * only information modified. 1104 */ 1105 static irqreturn_t 1106 atmel_spi_pio_interrupt(int irq, void *dev_id) 1107 { 1108 struct spi_master *master = dev_id; 1109 struct atmel_spi *as = spi_master_get_devdata(master); 1110 u32 status, pending, imr; 1111 struct spi_transfer *xfer; 1112 int ret = IRQ_NONE; 1113 1114 imr = spi_readl(as, IMR); 1115 status = spi_readl(as, SR); 1116 pending = status & imr; 1117 1118 if (pending & SPI_BIT(OVRES)) { 1119 ret = IRQ_HANDLED; 1120 spi_writel(as, IDR, SPI_BIT(OVRES)); 1121 dev_warn(master->dev.parent, "overrun\n"); 1122 1123 /* 1124 * When we get an overrun, we disregard the current 1125 * transfer. Data will not be copied back from any 1126 * bounce buffer and msg->actual_len will not be 1127 * updated with the last xfer. 1128 * 1129 * We will also not process any remaning transfers in 1130 * the message. 1131 */ 1132 as->done_status = -EIO; 1133 smp_wmb(); 1134 1135 /* Clear any overrun happening while cleaning up */ 1136 spi_readl(as, SR); 1137 1138 complete(&as->xfer_completion); 1139 1140 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) { 1141 atmel_spi_lock(as); 1142 1143 if (as->current_remaining_bytes) { 1144 ret = IRQ_HANDLED; 1145 xfer = as->current_transfer; 1146 atmel_spi_pump_pio_data(as, xfer); 1147 if (!as->current_remaining_bytes) 1148 spi_writel(as, IDR, pending); 1149 1150 complete(&as->xfer_completion); 1151 } 1152 1153 atmel_spi_unlock(as); 1154 } else { 1155 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending); 1156 ret = IRQ_HANDLED; 1157 spi_writel(as, IDR, pending); 1158 } 1159 1160 return ret; 1161 } 1162 1163 static irqreturn_t 1164 atmel_spi_pdc_interrupt(int irq, void *dev_id) 1165 { 1166 struct spi_master *master = dev_id; 1167 struct atmel_spi *as = spi_master_get_devdata(master); 1168 u32 status, pending, imr; 1169 int ret = IRQ_NONE; 1170 1171 imr = spi_readl(as, IMR); 1172 status = spi_readl(as, SR); 1173 pending = status & imr; 1174 1175 if (pending & SPI_BIT(OVRES)) { 1176 1177 ret = IRQ_HANDLED; 1178 1179 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) 1180 | SPI_BIT(OVRES))); 1181 1182 /* Clear any overrun happening while cleaning up */ 1183 spi_readl(as, SR); 1184 1185 as->done_status = -EIO; 1186 1187 complete(&as->xfer_completion); 1188 1189 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { 1190 ret = IRQ_HANDLED; 1191 1192 spi_writel(as, IDR, pending); 1193 1194 complete(&as->xfer_completion); 1195 } 1196 1197 return ret; 1198 } 1199 1200 static int atmel_spi_setup(struct spi_device *spi) 1201 { 1202 struct atmel_spi *as; 1203 struct atmel_spi_device *asd; 1204 u32 csr; 1205 unsigned int bits = spi->bits_per_word; 1206 unsigned int npcs_pin; 1207 int ret; 1208 1209 as = spi_master_get_devdata(spi->master); 1210 1211 /* see notes above re chipselect */ 1212 if (!atmel_spi_is_v2(as) 1213 && spi->chip_select == 0 1214 && (spi->mode & SPI_CS_HIGH)) { 1215 dev_dbg(&spi->dev, "setup: can't be active-high\n"); 1216 return -EINVAL; 1217 } 1218 1219 csr = SPI_BF(BITS, bits - 8); 1220 if (spi->mode & SPI_CPOL) 1221 csr |= SPI_BIT(CPOL); 1222 if (!(spi->mode & SPI_CPHA)) 1223 csr |= SPI_BIT(NCPHA); 1224 if (!as->use_cs_gpios) 1225 csr |= SPI_BIT(CSAAT); 1226 1227 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs. 1228 * 1229 * DLYBCT would add delays between words, slowing down transfers. 1230 * It could potentially be useful to cope with DMA bottlenecks, but 1231 * in those cases it's probably best to just use a lower bitrate. 1232 */ 1233 csr |= SPI_BF(DLYBS, 0); 1234 csr |= SPI_BF(DLYBCT, 0); 1235 1236 /* chipselect must have been muxed as GPIO (e.g. in board setup) */ 1237 npcs_pin = (unsigned long)spi->controller_data; 1238 1239 if (!as->use_cs_gpios) 1240 npcs_pin = spi->chip_select; 1241 else if (gpio_is_valid(spi->cs_gpio)) 1242 npcs_pin = spi->cs_gpio; 1243 1244 asd = spi->controller_state; 1245 if (!asd) { 1246 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); 1247 if (!asd) 1248 return -ENOMEM; 1249 1250 if (as->use_cs_gpios) { 1251 ret = gpio_request(npcs_pin, dev_name(&spi->dev)); 1252 if (ret) { 1253 kfree(asd); 1254 return ret; 1255 } 1256 1257 gpio_direction_output(npcs_pin, 1258 !(spi->mode & SPI_CS_HIGH)); 1259 } 1260 1261 asd->npcs_pin = npcs_pin; 1262 spi->controller_state = asd; 1263 } 1264 1265 asd->csr = csr; 1266 1267 dev_dbg(&spi->dev, 1268 "setup: bpw %u mode 0x%x -> csr%d %08x\n", 1269 bits, spi->mode, spi->chip_select, csr); 1270 1271 if (!atmel_spi_is_v2(as)) 1272 spi_writel(as, CSR0 + 4 * spi->chip_select, csr); 1273 1274 return 0; 1275 } 1276 1277 static int atmel_spi_one_transfer(struct spi_master *master, 1278 struct spi_message *msg, 1279 struct spi_transfer *xfer) 1280 { 1281 struct atmel_spi *as; 1282 struct spi_device *spi = msg->spi; 1283 u8 bits; 1284 u32 len; 1285 struct atmel_spi_device *asd; 1286 int timeout; 1287 int ret; 1288 unsigned long dma_timeout; 1289 1290 as = spi_master_get_devdata(master); 1291 1292 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1293 dev_dbg(&spi->dev, "missing rx or tx buf\n"); 1294 return -EINVAL; 1295 } 1296 1297 asd = spi->controller_state; 1298 bits = (asd->csr >> 4) & 0xf; 1299 if (bits != xfer->bits_per_word - 8) { 1300 dev_dbg(&spi->dev, 1301 "you can't yet change bits_per_word in transfers\n"); 1302 return -ENOPROTOOPT; 1303 } 1304 1305 /* 1306 * DMA map early, for performance (empties dcache ASAP) and 1307 * better fault reporting. 1308 */ 1309 if ((!msg->is_dma_mapped) 1310 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) { 1311 if (atmel_spi_dma_map_xfer(as, xfer) < 0) 1312 return -ENOMEM; 1313 } 1314 1315 atmel_spi_set_xfer_speed(as, msg->spi, xfer); 1316 1317 as->done_status = 0; 1318 as->current_transfer = xfer; 1319 as->current_remaining_bytes = xfer->len; 1320 while (as->current_remaining_bytes) { 1321 reinit_completion(&as->xfer_completion); 1322 1323 if (as->use_pdc) { 1324 atmel_spi_pdc_next_xfer(master, msg, xfer); 1325 } else if (atmel_spi_use_dma(as, xfer)) { 1326 len = as->current_remaining_bytes; 1327 ret = atmel_spi_next_xfer_dma_submit(master, 1328 xfer, &len); 1329 if (ret) { 1330 dev_err(&spi->dev, 1331 "unable to use DMA, fallback to PIO\n"); 1332 atmel_spi_next_xfer_pio(master, xfer); 1333 } else { 1334 as->current_remaining_bytes -= len; 1335 if (as->current_remaining_bytes < 0) 1336 as->current_remaining_bytes = 0; 1337 } 1338 } else { 1339 atmel_spi_next_xfer_pio(master, xfer); 1340 } 1341 1342 /* interrupts are disabled, so free the lock for schedule */ 1343 atmel_spi_unlock(as); 1344 dma_timeout = wait_for_completion_timeout(&as->xfer_completion, 1345 SPI_DMA_TIMEOUT); 1346 atmel_spi_lock(as); 1347 if (WARN_ON(dma_timeout == 0)) { 1348 dev_err(&spi->dev, "spi transfer timeout\n"); 1349 as->done_status = -EIO; 1350 } 1351 1352 if (as->done_status) 1353 break; 1354 } 1355 1356 if (as->done_status) { 1357 if (as->use_pdc) { 1358 dev_warn(master->dev.parent, 1359 "overrun (%u/%u remaining)\n", 1360 spi_readl(as, TCR), spi_readl(as, RCR)); 1361 1362 /* 1363 * Clean up DMA registers and make sure the data 1364 * registers are empty. 1365 */ 1366 spi_writel(as, RNCR, 0); 1367 spi_writel(as, TNCR, 0); 1368 spi_writel(as, RCR, 0); 1369 spi_writel(as, TCR, 0); 1370 for (timeout = 1000; timeout; timeout--) 1371 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) 1372 break; 1373 if (!timeout) 1374 dev_warn(master->dev.parent, 1375 "timeout waiting for TXEMPTY"); 1376 while (spi_readl(as, SR) & SPI_BIT(RDRF)) 1377 spi_readl(as, RDR); 1378 1379 /* Clear any overrun happening while cleaning up */ 1380 spi_readl(as, SR); 1381 1382 } else if (atmel_spi_use_dma(as, xfer)) { 1383 atmel_spi_stop_dma(as); 1384 } 1385 1386 if (!msg->is_dma_mapped 1387 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) 1388 atmel_spi_dma_unmap_xfer(master, xfer); 1389 1390 return 0; 1391 1392 } else { 1393 /* only update length if no error */ 1394 msg->actual_length += xfer->len; 1395 } 1396 1397 if (!msg->is_dma_mapped 1398 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) 1399 atmel_spi_dma_unmap_xfer(master, xfer); 1400 1401 if (xfer->delay_usecs) 1402 udelay(xfer->delay_usecs); 1403 1404 if (xfer->cs_change) { 1405 if (list_is_last(&xfer->transfer_list, 1406 &msg->transfers)) { 1407 as->keep_cs = true; 1408 } else { 1409 as->cs_active = !as->cs_active; 1410 if (as->cs_active) 1411 cs_activate(as, msg->spi); 1412 else 1413 cs_deactivate(as, msg->spi); 1414 } 1415 } 1416 1417 return 0; 1418 } 1419 1420 static int atmel_spi_transfer_one_message(struct spi_master *master, 1421 struct spi_message *msg) 1422 { 1423 struct atmel_spi *as; 1424 struct spi_transfer *xfer; 1425 struct spi_device *spi = msg->spi; 1426 int ret = 0; 1427 1428 as = spi_master_get_devdata(master); 1429 1430 dev_dbg(&spi->dev, "new message %p submitted for %s\n", 1431 msg, dev_name(&spi->dev)); 1432 1433 atmel_spi_lock(as); 1434 cs_activate(as, spi); 1435 1436 as->cs_active = true; 1437 as->keep_cs = false; 1438 1439 msg->status = 0; 1440 msg->actual_length = 0; 1441 1442 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1443 ret = atmel_spi_one_transfer(master, msg, xfer); 1444 if (ret) 1445 goto msg_done; 1446 } 1447 1448 if (as->use_pdc) 1449 atmel_spi_disable_pdc_transfer(as); 1450 1451 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1452 dev_dbg(&spi->dev, 1453 " xfer %p: len %u tx %p/%pad rx %p/%pad\n", 1454 xfer, xfer->len, 1455 xfer->tx_buf, &xfer->tx_dma, 1456 xfer->rx_buf, &xfer->rx_dma); 1457 } 1458 1459 msg_done: 1460 if (!as->keep_cs) 1461 cs_deactivate(as, msg->spi); 1462 1463 atmel_spi_unlock(as); 1464 1465 msg->status = as->done_status; 1466 spi_finalize_current_message(spi->master); 1467 1468 return ret; 1469 } 1470 1471 static void atmel_spi_cleanup(struct spi_device *spi) 1472 { 1473 struct atmel_spi_device *asd = spi->controller_state; 1474 unsigned gpio = (unsigned long) spi->controller_data; 1475 1476 if (!asd) 1477 return; 1478 1479 spi->controller_state = NULL; 1480 gpio_free(gpio); 1481 kfree(asd); 1482 } 1483 1484 static inline unsigned int atmel_get_version(struct atmel_spi *as) 1485 { 1486 return spi_readl(as, VERSION) & 0x00000fff; 1487 } 1488 1489 static void atmel_get_caps(struct atmel_spi *as) 1490 { 1491 unsigned int version; 1492 1493 version = atmel_get_version(as); 1494 dev_info(&as->pdev->dev, "version: 0x%x\n", version); 1495 1496 as->caps.is_spi2 = version > 0x121; 1497 as->caps.has_wdrbt = version >= 0x210; 1498 as->caps.has_dma_support = version >= 0x212; 1499 } 1500 1501 /*-------------------------------------------------------------------------*/ 1502 1503 static int atmel_spi_probe(struct platform_device *pdev) 1504 { 1505 struct resource *regs; 1506 int irq; 1507 struct clk *clk; 1508 int ret; 1509 struct spi_master *master; 1510 struct atmel_spi *as; 1511 1512 /* Select default pin state */ 1513 pinctrl_pm_select_default_state(&pdev->dev); 1514 1515 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1516 if (!regs) 1517 return -ENXIO; 1518 1519 irq = platform_get_irq(pdev, 0); 1520 if (irq < 0) 1521 return irq; 1522 1523 clk = devm_clk_get(&pdev->dev, "spi_clk"); 1524 if (IS_ERR(clk)) 1525 return PTR_ERR(clk); 1526 1527 /* setup spi core then atmel-specific driver state */ 1528 ret = -ENOMEM; 1529 master = spi_alloc_master(&pdev->dev, sizeof(*as)); 1530 if (!master) 1531 goto out_free; 1532 1533 /* the spi->mode bits understood by this driver: */ 1534 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1535 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16); 1536 master->dev.of_node = pdev->dev.of_node; 1537 master->bus_num = pdev->id; 1538 master->num_chipselect = master->dev.of_node ? 0 : 4; 1539 master->setup = atmel_spi_setup; 1540 master->transfer_one_message = atmel_spi_transfer_one_message; 1541 master->cleanup = atmel_spi_cleanup; 1542 master->auto_runtime_pm = true; 1543 platform_set_drvdata(pdev, master); 1544 1545 as = spi_master_get_devdata(master); 1546 1547 /* 1548 * Scratch buffer is used for throwaway rx and tx data. 1549 * It's coherent to minimize dcache pollution. 1550 */ 1551 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE, 1552 &as->buffer_dma, GFP_KERNEL); 1553 if (!as->buffer) 1554 goto out_free; 1555 1556 spin_lock_init(&as->lock); 1557 1558 as->pdev = pdev; 1559 as->regs = devm_ioremap_resource(&pdev->dev, regs); 1560 if (IS_ERR(as->regs)) { 1561 ret = PTR_ERR(as->regs); 1562 goto out_free_buffer; 1563 } 1564 as->phybase = regs->start; 1565 as->irq = irq; 1566 as->clk = clk; 1567 1568 init_completion(&as->xfer_completion); 1569 1570 atmel_get_caps(as); 1571 1572 as->use_cs_gpios = true; 1573 if (atmel_spi_is_v2(as) && 1574 !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) { 1575 as->use_cs_gpios = false; 1576 master->num_chipselect = 4; 1577 } 1578 1579 as->use_dma = false; 1580 as->use_pdc = false; 1581 if (as->caps.has_dma_support) { 1582 ret = atmel_spi_configure_dma(as); 1583 if (ret == 0) 1584 as->use_dma = true; 1585 else if (ret == -EPROBE_DEFER) 1586 return ret; 1587 } else { 1588 as->use_pdc = true; 1589 } 1590 1591 if (as->caps.has_dma_support && !as->use_dma) 1592 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n"); 1593 1594 if (as->use_pdc) { 1595 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt, 1596 0, dev_name(&pdev->dev), master); 1597 } else { 1598 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt, 1599 0, dev_name(&pdev->dev), master); 1600 } 1601 if (ret) 1602 goto out_unmap_regs; 1603 1604 /* Initialize the hardware */ 1605 ret = clk_prepare_enable(clk); 1606 if (ret) 1607 goto out_free_irq; 1608 spi_writel(as, CR, SPI_BIT(SWRST)); 1609 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1610 if (as->caps.has_wdrbt) { 1611 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS) 1612 | SPI_BIT(MSTR)); 1613 } else { 1614 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); 1615 } 1616 1617 if (as->use_pdc) 1618 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1619 spi_writel(as, CR, SPI_BIT(SPIEN)); 1620 1621 as->fifo_size = 0; 1622 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", 1623 &as->fifo_size)) { 1624 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size); 1625 spi_writel(as, CR, SPI_BIT(FIFOEN)); 1626 } 1627 1628 /* go! */ 1629 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n", 1630 (unsigned long)regs->start, irq); 1631 1632 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT); 1633 pm_runtime_use_autosuspend(&pdev->dev); 1634 pm_runtime_set_active(&pdev->dev); 1635 pm_runtime_enable(&pdev->dev); 1636 1637 ret = devm_spi_register_master(&pdev->dev, master); 1638 if (ret) 1639 goto out_free_dma; 1640 1641 return 0; 1642 1643 out_free_dma: 1644 pm_runtime_disable(&pdev->dev); 1645 pm_runtime_set_suspended(&pdev->dev); 1646 1647 if (as->use_dma) 1648 atmel_spi_release_dma(as); 1649 1650 spi_writel(as, CR, SPI_BIT(SWRST)); 1651 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1652 clk_disable_unprepare(clk); 1653 out_free_irq: 1654 out_unmap_regs: 1655 out_free_buffer: 1656 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, 1657 as->buffer_dma); 1658 out_free: 1659 spi_master_put(master); 1660 return ret; 1661 } 1662 1663 static int atmel_spi_remove(struct platform_device *pdev) 1664 { 1665 struct spi_master *master = platform_get_drvdata(pdev); 1666 struct atmel_spi *as = spi_master_get_devdata(master); 1667 1668 pm_runtime_get_sync(&pdev->dev); 1669 1670 /* reset the hardware and block queue progress */ 1671 spin_lock_irq(&as->lock); 1672 if (as->use_dma) { 1673 atmel_spi_stop_dma(as); 1674 atmel_spi_release_dma(as); 1675 } 1676 1677 spi_writel(as, CR, SPI_BIT(SWRST)); 1678 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1679 spi_readl(as, SR); 1680 spin_unlock_irq(&as->lock); 1681 1682 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, 1683 as->buffer_dma); 1684 1685 clk_disable_unprepare(as->clk); 1686 1687 pm_runtime_put_noidle(&pdev->dev); 1688 pm_runtime_disable(&pdev->dev); 1689 1690 return 0; 1691 } 1692 1693 #ifdef CONFIG_PM 1694 static int atmel_spi_runtime_suspend(struct device *dev) 1695 { 1696 struct spi_master *master = dev_get_drvdata(dev); 1697 struct atmel_spi *as = spi_master_get_devdata(master); 1698 1699 clk_disable_unprepare(as->clk); 1700 pinctrl_pm_select_sleep_state(dev); 1701 1702 return 0; 1703 } 1704 1705 static int atmel_spi_runtime_resume(struct device *dev) 1706 { 1707 struct spi_master *master = dev_get_drvdata(dev); 1708 struct atmel_spi *as = spi_master_get_devdata(master); 1709 1710 pinctrl_pm_select_default_state(dev); 1711 1712 return clk_prepare_enable(as->clk); 1713 } 1714 1715 #ifdef CONFIG_PM_SLEEP 1716 static int atmel_spi_suspend(struct device *dev) 1717 { 1718 struct spi_master *master = dev_get_drvdata(dev); 1719 int ret; 1720 1721 /* Stop the queue running */ 1722 ret = spi_master_suspend(master); 1723 if (ret) { 1724 dev_warn(dev, "cannot suspend master\n"); 1725 return ret; 1726 } 1727 1728 if (!pm_runtime_suspended(dev)) 1729 atmel_spi_runtime_suspend(dev); 1730 1731 return 0; 1732 } 1733 1734 static int atmel_spi_resume(struct device *dev) 1735 { 1736 struct spi_master *master = dev_get_drvdata(dev); 1737 int ret; 1738 1739 if (!pm_runtime_suspended(dev)) { 1740 ret = atmel_spi_runtime_resume(dev); 1741 if (ret) 1742 return ret; 1743 } 1744 1745 /* Start the queue running */ 1746 ret = spi_master_resume(master); 1747 if (ret) 1748 dev_err(dev, "problem starting queue (%d)\n", ret); 1749 1750 return ret; 1751 } 1752 #endif 1753 1754 static const struct dev_pm_ops atmel_spi_pm_ops = { 1755 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume) 1756 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend, 1757 atmel_spi_runtime_resume, NULL) 1758 }; 1759 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops) 1760 #else 1761 #define ATMEL_SPI_PM_OPS NULL 1762 #endif 1763 1764 #if defined(CONFIG_OF) 1765 static const struct of_device_id atmel_spi_dt_ids[] = { 1766 { .compatible = "atmel,at91rm9200-spi" }, 1767 { /* sentinel */ } 1768 }; 1769 1770 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids); 1771 #endif 1772 1773 static struct platform_driver atmel_spi_driver = { 1774 .driver = { 1775 .name = "atmel_spi", 1776 .pm = ATMEL_SPI_PM_OPS, 1777 .of_match_table = of_match_ptr(atmel_spi_dt_ids), 1778 }, 1779 .probe = atmel_spi_probe, 1780 .remove = atmel_spi_remove, 1781 }; 1782 module_platform_driver(atmel_spi_driver); 1783 1784 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); 1785 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 1786 MODULE_LICENSE("GPL"); 1787 MODULE_ALIAS("platform:atmel_spi"); 1788