1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Atmel AT32 and AT91 SPI Controllers 4 * 5 * Copyright (C) 2006 Atmel Corporation 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/clk.h> 10 #include <linux/module.h> 11 #include <linux/platform_device.h> 12 #include <linux/delay.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/dmaengine.h> 15 #include <linux/err.h> 16 #include <linux/interrupt.h> 17 #include <linux/spi/spi.h> 18 #include <linux/slab.h> 19 #include <linux/of.h> 20 21 #include <linux/io.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/pm_runtime.h> 25 #include <trace/events/spi.h> 26 27 /* SPI register offsets */ 28 #define SPI_CR 0x0000 29 #define SPI_MR 0x0004 30 #define SPI_RDR 0x0008 31 #define SPI_TDR 0x000c 32 #define SPI_SR 0x0010 33 #define SPI_IER 0x0014 34 #define SPI_IDR 0x0018 35 #define SPI_IMR 0x001c 36 #define SPI_CSR0 0x0030 37 #define SPI_CSR1 0x0034 38 #define SPI_CSR2 0x0038 39 #define SPI_CSR3 0x003c 40 #define SPI_FMR 0x0040 41 #define SPI_FLR 0x0044 42 #define SPI_VERSION 0x00fc 43 #define SPI_RPR 0x0100 44 #define SPI_RCR 0x0104 45 #define SPI_TPR 0x0108 46 #define SPI_TCR 0x010c 47 #define SPI_RNPR 0x0110 48 #define SPI_RNCR 0x0114 49 #define SPI_TNPR 0x0118 50 #define SPI_TNCR 0x011c 51 #define SPI_PTCR 0x0120 52 #define SPI_PTSR 0x0124 53 54 /* Bitfields in CR */ 55 #define SPI_SPIEN_OFFSET 0 56 #define SPI_SPIEN_SIZE 1 57 #define SPI_SPIDIS_OFFSET 1 58 #define SPI_SPIDIS_SIZE 1 59 #define SPI_SWRST_OFFSET 7 60 #define SPI_SWRST_SIZE 1 61 #define SPI_LASTXFER_OFFSET 24 62 #define SPI_LASTXFER_SIZE 1 63 #define SPI_TXFCLR_OFFSET 16 64 #define SPI_TXFCLR_SIZE 1 65 #define SPI_RXFCLR_OFFSET 17 66 #define SPI_RXFCLR_SIZE 1 67 #define SPI_FIFOEN_OFFSET 30 68 #define SPI_FIFOEN_SIZE 1 69 #define SPI_FIFODIS_OFFSET 31 70 #define SPI_FIFODIS_SIZE 1 71 72 /* Bitfields in MR */ 73 #define SPI_MSTR_OFFSET 0 74 #define SPI_MSTR_SIZE 1 75 #define SPI_PS_OFFSET 1 76 #define SPI_PS_SIZE 1 77 #define SPI_PCSDEC_OFFSET 2 78 #define SPI_PCSDEC_SIZE 1 79 #define SPI_FDIV_OFFSET 3 80 #define SPI_FDIV_SIZE 1 81 #define SPI_MODFDIS_OFFSET 4 82 #define SPI_MODFDIS_SIZE 1 83 #define SPI_WDRBT_OFFSET 5 84 #define SPI_WDRBT_SIZE 1 85 #define SPI_LLB_OFFSET 7 86 #define SPI_LLB_SIZE 1 87 #define SPI_PCS_OFFSET 16 88 #define SPI_PCS_SIZE 4 89 #define SPI_DLYBCS_OFFSET 24 90 #define SPI_DLYBCS_SIZE 8 91 92 /* Bitfields in RDR */ 93 #define SPI_RD_OFFSET 0 94 #define SPI_RD_SIZE 16 95 96 /* Bitfields in TDR */ 97 #define SPI_TD_OFFSET 0 98 #define SPI_TD_SIZE 16 99 100 /* Bitfields in SR */ 101 #define SPI_RDRF_OFFSET 0 102 #define SPI_RDRF_SIZE 1 103 #define SPI_TDRE_OFFSET 1 104 #define SPI_TDRE_SIZE 1 105 #define SPI_MODF_OFFSET 2 106 #define SPI_MODF_SIZE 1 107 #define SPI_OVRES_OFFSET 3 108 #define SPI_OVRES_SIZE 1 109 #define SPI_ENDRX_OFFSET 4 110 #define SPI_ENDRX_SIZE 1 111 #define SPI_ENDTX_OFFSET 5 112 #define SPI_ENDTX_SIZE 1 113 #define SPI_RXBUFF_OFFSET 6 114 #define SPI_RXBUFF_SIZE 1 115 #define SPI_TXBUFE_OFFSET 7 116 #define SPI_TXBUFE_SIZE 1 117 #define SPI_NSSR_OFFSET 8 118 #define SPI_NSSR_SIZE 1 119 #define SPI_TXEMPTY_OFFSET 9 120 #define SPI_TXEMPTY_SIZE 1 121 #define SPI_SPIENS_OFFSET 16 122 #define SPI_SPIENS_SIZE 1 123 #define SPI_TXFEF_OFFSET 24 124 #define SPI_TXFEF_SIZE 1 125 #define SPI_TXFFF_OFFSET 25 126 #define SPI_TXFFF_SIZE 1 127 #define SPI_TXFTHF_OFFSET 26 128 #define SPI_TXFTHF_SIZE 1 129 #define SPI_RXFEF_OFFSET 27 130 #define SPI_RXFEF_SIZE 1 131 #define SPI_RXFFF_OFFSET 28 132 #define SPI_RXFFF_SIZE 1 133 #define SPI_RXFTHF_OFFSET 29 134 #define SPI_RXFTHF_SIZE 1 135 #define SPI_TXFPTEF_OFFSET 30 136 #define SPI_TXFPTEF_SIZE 1 137 #define SPI_RXFPTEF_OFFSET 31 138 #define SPI_RXFPTEF_SIZE 1 139 140 /* Bitfields in CSR0 */ 141 #define SPI_CPOL_OFFSET 0 142 #define SPI_CPOL_SIZE 1 143 #define SPI_NCPHA_OFFSET 1 144 #define SPI_NCPHA_SIZE 1 145 #define SPI_CSAAT_OFFSET 3 146 #define SPI_CSAAT_SIZE 1 147 #define SPI_BITS_OFFSET 4 148 #define SPI_BITS_SIZE 4 149 #define SPI_SCBR_OFFSET 8 150 #define SPI_SCBR_SIZE 8 151 #define SPI_DLYBS_OFFSET 16 152 #define SPI_DLYBS_SIZE 8 153 #define SPI_DLYBCT_OFFSET 24 154 #define SPI_DLYBCT_SIZE 8 155 156 /* Bitfields in RCR */ 157 #define SPI_RXCTR_OFFSET 0 158 #define SPI_RXCTR_SIZE 16 159 160 /* Bitfields in TCR */ 161 #define SPI_TXCTR_OFFSET 0 162 #define SPI_TXCTR_SIZE 16 163 164 /* Bitfields in RNCR */ 165 #define SPI_RXNCR_OFFSET 0 166 #define SPI_RXNCR_SIZE 16 167 168 /* Bitfields in TNCR */ 169 #define SPI_TXNCR_OFFSET 0 170 #define SPI_TXNCR_SIZE 16 171 172 /* Bitfields in PTCR */ 173 #define SPI_RXTEN_OFFSET 0 174 #define SPI_RXTEN_SIZE 1 175 #define SPI_RXTDIS_OFFSET 1 176 #define SPI_RXTDIS_SIZE 1 177 #define SPI_TXTEN_OFFSET 8 178 #define SPI_TXTEN_SIZE 1 179 #define SPI_TXTDIS_OFFSET 9 180 #define SPI_TXTDIS_SIZE 1 181 182 /* Bitfields in FMR */ 183 #define SPI_TXRDYM_OFFSET 0 184 #define SPI_TXRDYM_SIZE 2 185 #define SPI_RXRDYM_OFFSET 4 186 #define SPI_RXRDYM_SIZE 2 187 #define SPI_TXFTHRES_OFFSET 16 188 #define SPI_TXFTHRES_SIZE 6 189 #define SPI_RXFTHRES_OFFSET 24 190 #define SPI_RXFTHRES_SIZE 6 191 192 /* Bitfields in FLR */ 193 #define SPI_TXFL_OFFSET 0 194 #define SPI_TXFL_SIZE 6 195 #define SPI_RXFL_OFFSET 16 196 #define SPI_RXFL_SIZE 6 197 198 /* Constants for BITS */ 199 #define SPI_BITS_8_BPT 0 200 #define SPI_BITS_9_BPT 1 201 #define SPI_BITS_10_BPT 2 202 #define SPI_BITS_11_BPT 3 203 #define SPI_BITS_12_BPT 4 204 #define SPI_BITS_13_BPT 5 205 #define SPI_BITS_14_BPT 6 206 #define SPI_BITS_15_BPT 7 207 #define SPI_BITS_16_BPT 8 208 #define SPI_ONE_DATA 0 209 #define SPI_TWO_DATA 1 210 #define SPI_FOUR_DATA 2 211 212 /* Bit manipulation macros */ 213 #define SPI_BIT(name) \ 214 (1 << SPI_##name##_OFFSET) 215 #define SPI_BF(name, value) \ 216 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) 217 #define SPI_BFEXT(name, value) \ 218 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) 219 #define SPI_BFINS(name, value, old) \ 220 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ 221 | SPI_BF(name, value)) 222 223 /* Register access macros */ 224 #define spi_readl(port, reg) \ 225 readl_relaxed((port)->regs + SPI_##reg) 226 #define spi_writel(port, reg, value) \ 227 writel_relaxed((value), (port)->regs + SPI_##reg) 228 #define spi_writew(port, reg, value) \ 229 writew_relaxed((value), (port)->regs + SPI_##reg) 230 231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 232 * cache operations; better heuristics consider wordsize and bitrate. 233 */ 234 #define DMA_MIN_BYTES 16 235 236 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) 237 238 #define AUTOSUSPEND_TIMEOUT 2000 239 240 struct atmel_spi_caps { 241 bool is_spi2; 242 bool has_wdrbt; 243 bool has_dma_support; 244 bool has_pdc_support; 245 }; 246 247 /* 248 * The core SPI transfer engine just talks to a register bank to set up 249 * DMA transfers; transfer queue progress is driven by IRQs. The clock 250 * framework provides the base clock, subdivided for each spi_device. 251 */ 252 struct atmel_spi { 253 spinlock_t lock; 254 unsigned long flags; 255 256 phys_addr_t phybase; 257 void __iomem *regs; 258 int irq; 259 struct clk *clk; 260 struct platform_device *pdev; 261 unsigned long spi_clk; 262 263 struct spi_transfer *current_transfer; 264 int current_remaining_bytes; 265 int done_status; 266 dma_addr_t dma_addr_rx_bbuf; 267 dma_addr_t dma_addr_tx_bbuf; 268 void *addr_rx_bbuf; 269 void *addr_tx_bbuf; 270 271 struct completion xfer_completion; 272 273 struct atmel_spi_caps caps; 274 275 bool use_dma; 276 bool use_pdc; 277 278 bool keep_cs; 279 280 u32 fifo_size; 281 u8 native_cs_free; 282 u8 native_cs_for_gpio; 283 }; 284 285 /* Controller-specific per-slave state */ 286 struct atmel_spi_device { 287 u32 csr; 288 }; 289 290 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */ 291 #define INVALID_DMA_ADDRESS 0xffffffff 292 293 /* 294 * Version 2 of the SPI controller has 295 * - CR.LASTXFER 296 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) 297 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) 298 * - SPI_CSRx.CSAAT 299 * - SPI_CSRx.SBCR allows faster clocking 300 */ 301 static bool atmel_spi_is_v2(struct atmel_spi *as) 302 { 303 return as->caps.is_spi2; 304 } 305 306 /* 307 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby 308 * they assume that spi slave device state will not change on deselect, so 309 * that automagic deselection is OK. ("NPCSx rises if no data is to be 310 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer 311 * controllers have CSAAT and friends. 312 * 313 * Even controller newer than ar91rm9200, using GPIOs can make sens as 314 * it lets us support active-high chipselects despite the controller's 315 * belief that only active-low devices/systems exists. 316 * 317 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work 318 * right when driven with GPIO. ("Mode Fault does not allow more than one 319 * Master on Chip Select 0.") No workaround exists for that ... so for 320 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, 321 * and (c) will trigger that first erratum in some cases. 322 */ 323 324 static void cs_activate(struct atmel_spi *as, struct spi_device *spi) 325 { 326 struct atmel_spi_device *asd = spi->controller_state; 327 int chip_select; 328 u32 mr; 329 330 if (spi->cs_gpiod) 331 chip_select = as->native_cs_for_gpio; 332 else 333 chip_select = spi->chip_select; 334 335 if (atmel_spi_is_v2(as)) { 336 spi_writel(as, CSR0 + 4 * chip_select, asd->csr); 337 /* For the low SPI version, there is a issue that PDC transfer 338 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS 339 */ 340 spi_writel(as, CSR0, asd->csr); 341 if (as->caps.has_wdrbt) { 342 spi_writel(as, MR, 343 SPI_BF(PCS, ~(0x01 << chip_select)) 344 | SPI_BIT(WDRBT) 345 | SPI_BIT(MODFDIS) 346 | SPI_BIT(MSTR)); 347 } else { 348 spi_writel(as, MR, 349 SPI_BF(PCS, ~(0x01 << chip_select)) 350 | SPI_BIT(MODFDIS) 351 | SPI_BIT(MSTR)); 352 } 353 354 mr = spi_readl(as, MR); 355 if (spi->cs_gpiod) 356 gpiod_set_value(spi->cs_gpiod, 1); 357 } else { 358 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; 359 int i; 360 u32 csr; 361 362 /* Make sure clock polarity is correct */ 363 for (i = 0; i < spi->master->num_chipselect; i++) { 364 csr = spi_readl(as, CSR0 + 4 * i); 365 if ((csr ^ cpol) & SPI_BIT(CPOL)) 366 spi_writel(as, CSR0 + 4 * i, 367 csr ^ SPI_BIT(CPOL)); 368 } 369 370 mr = spi_readl(as, MR); 371 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr); 372 if (spi->cs_gpiod) 373 gpiod_set_value(spi->cs_gpiod, 1); 374 spi_writel(as, MR, mr); 375 } 376 377 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr); 378 } 379 380 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) 381 { 382 int chip_select; 383 u32 mr; 384 385 if (spi->cs_gpiod) 386 chip_select = as->native_cs_for_gpio; 387 else 388 chip_select = spi->chip_select; 389 390 /* only deactivate *this* device; sometimes transfers to 391 * another device may be active when this routine is called. 392 */ 393 mr = spi_readl(as, MR); 394 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) { 395 mr = SPI_BFINS(PCS, 0xf, mr); 396 spi_writel(as, MR, mr); 397 } 398 399 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr); 400 401 if (!spi->cs_gpiod) 402 spi_writel(as, CR, SPI_BIT(LASTXFER)); 403 else 404 gpiod_set_value(spi->cs_gpiod, 0); 405 } 406 407 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock) 408 { 409 spin_lock_irqsave(&as->lock, as->flags); 410 } 411 412 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock) 413 { 414 spin_unlock_irqrestore(&as->lock, as->flags); 415 } 416 417 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer) 418 { 419 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf); 420 } 421 422 static inline bool atmel_spi_use_dma(struct atmel_spi *as, 423 struct spi_transfer *xfer) 424 { 425 return as->use_dma && xfer->len >= DMA_MIN_BYTES; 426 } 427 428 static bool atmel_spi_can_dma(struct spi_master *master, 429 struct spi_device *spi, 430 struct spi_transfer *xfer) 431 { 432 struct atmel_spi *as = spi_master_get_devdata(master); 433 434 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) 435 return atmel_spi_use_dma(as, xfer) && 436 !atmel_spi_is_vmalloc_xfer(xfer); 437 else 438 return atmel_spi_use_dma(as, xfer); 439 440 } 441 442 static int atmel_spi_dma_slave_config(struct atmel_spi *as, 443 struct dma_slave_config *slave_config, 444 u8 bits_per_word) 445 { 446 struct spi_master *master = platform_get_drvdata(as->pdev); 447 int err = 0; 448 449 if (bits_per_word > 8) { 450 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 451 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 452 } else { 453 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 454 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 455 } 456 457 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR; 458 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR; 459 slave_config->src_maxburst = 1; 460 slave_config->dst_maxburst = 1; 461 slave_config->device_fc = false; 462 463 /* 464 * This driver uses fixed peripheral select mode (PS bit set to '0' in 465 * the Mode Register). 466 * So according to the datasheet, when FIFOs are available (and 467 * enabled), the Transmit FIFO operates in Multiple Data Mode. 468 * In this mode, up to 2 data, not 4, can be written into the Transmit 469 * Data Register in a single access. 470 * However, the first data has to be written into the lowest 16 bits and 471 * the second data into the highest 16 bits of the Transmit 472 * Data Register. For 8bit data (the most frequent case), it would 473 * require to rework tx_buf so each data would actualy fit 16 bits. 474 * So we'd rather write only one data at the time. Hence the transmit 475 * path works the same whether FIFOs are available (and enabled) or not. 476 */ 477 slave_config->direction = DMA_MEM_TO_DEV; 478 if (dmaengine_slave_config(master->dma_tx, slave_config)) { 479 dev_err(&as->pdev->dev, 480 "failed to configure tx dma channel\n"); 481 err = -EINVAL; 482 } 483 484 /* 485 * This driver configures the spi controller for master mode (MSTR bit 486 * set to '1' in the Mode Register). 487 * So according to the datasheet, when FIFOs are available (and 488 * enabled), the Receive FIFO operates in Single Data Mode. 489 * So the receive path works the same whether FIFOs are available (and 490 * enabled) or not. 491 */ 492 slave_config->direction = DMA_DEV_TO_MEM; 493 if (dmaengine_slave_config(master->dma_rx, slave_config)) { 494 dev_err(&as->pdev->dev, 495 "failed to configure rx dma channel\n"); 496 err = -EINVAL; 497 } 498 499 return err; 500 } 501 502 static int atmel_spi_configure_dma(struct spi_master *master, 503 struct atmel_spi *as) 504 { 505 struct dma_slave_config slave_config; 506 struct device *dev = &as->pdev->dev; 507 int err; 508 509 master->dma_tx = dma_request_chan(dev, "tx"); 510 if (IS_ERR(master->dma_tx)) { 511 err = PTR_ERR(master->dma_tx); 512 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n"); 513 goto error_clear; 514 } 515 516 master->dma_rx = dma_request_chan(dev, "rx"); 517 if (IS_ERR(master->dma_rx)) { 518 err = PTR_ERR(master->dma_rx); 519 /* 520 * No reason to check EPROBE_DEFER here since we have already 521 * requested tx channel. 522 */ 523 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n"); 524 goto error; 525 } 526 527 err = atmel_spi_dma_slave_config(as, &slave_config, 8); 528 if (err) 529 goto error; 530 531 dev_info(&as->pdev->dev, 532 "Using %s (tx) and %s (rx) for DMA transfers\n", 533 dma_chan_name(master->dma_tx), 534 dma_chan_name(master->dma_rx)); 535 536 return 0; 537 error: 538 if (!IS_ERR(master->dma_rx)) 539 dma_release_channel(master->dma_rx); 540 if (!IS_ERR(master->dma_tx)) 541 dma_release_channel(master->dma_tx); 542 error_clear: 543 master->dma_tx = master->dma_rx = NULL; 544 return err; 545 } 546 547 static void atmel_spi_stop_dma(struct spi_master *master) 548 { 549 if (master->dma_rx) 550 dmaengine_terminate_all(master->dma_rx); 551 if (master->dma_tx) 552 dmaengine_terminate_all(master->dma_tx); 553 } 554 555 static void atmel_spi_release_dma(struct spi_master *master) 556 { 557 if (master->dma_rx) { 558 dma_release_channel(master->dma_rx); 559 master->dma_rx = NULL; 560 } 561 if (master->dma_tx) { 562 dma_release_channel(master->dma_tx); 563 master->dma_tx = NULL; 564 } 565 } 566 567 /* This function is called by the DMA driver from tasklet context */ 568 static void dma_callback(void *data) 569 { 570 struct spi_master *master = data; 571 struct atmel_spi *as = spi_master_get_devdata(master); 572 573 if (is_vmalloc_addr(as->current_transfer->rx_buf) && 574 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 575 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf, 576 as->current_transfer->len); 577 } 578 complete(&as->xfer_completion); 579 } 580 581 /* 582 * Next transfer using PIO without FIFO. 583 */ 584 static void atmel_spi_next_xfer_single(struct spi_master *master, 585 struct spi_transfer *xfer) 586 { 587 struct atmel_spi *as = spi_master_get_devdata(master); 588 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 589 590 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n"); 591 592 /* Make sure data is not remaining in RDR */ 593 spi_readl(as, RDR); 594 while (spi_readl(as, SR) & SPI_BIT(RDRF)) { 595 spi_readl(as, RDR); 596 cpu_relax(); 597 } 598 599 if (xfer->bits_per_word > 8) 600 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos)); 601 else 602 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos)); 603 604 dev_dbg(master->dev.parent, 605 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n", 606 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 607 xfer->bits_per_word); 608 609 /* Enable relevant interrupts */ 610 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES)); 611 } 612 613 /* 614 * Next transfer using PIO with FIFO. 615 */ 616 static void atmel_spi_next_xfer_fifo(struct spi_master *master, 617 struct spi_transfer *xfer) 618 { 619 struct atmel_spi *as = spi_master_get_devdata(master); 620 u32 current_remaining_data, num_data; 621 u32 offset = xfer->len - as->current_remaining_bytes; 622 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset); 623 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset); 624 u16 td0, td1; 625 u32 fifomr; 626 627 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n"); 628 629 /* Compute the number of data to transfer in the current iteration */ 630 current_remaining_data = ((xfer->bits_per_word > 8) ? 631 ((u32)as->current_remaining_bytes >> 1) : 632 (u32)as->current_remaining_bytes); 633 num_data = min(current_remaining_data, as->fifo_size); 634 635 /* Flush RX and TX FIFOs */ 636 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR)); 637 while (spi_readl(as, FLR)) 638 cpu_relax(); 639 640 /* Set RX FIFO Threshold to the number of data to transfer */ 641 fifomr = spi_readl(as, FMR); 642 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr)); 643 644 /* Clear FIFO flags in the Status Register, especially RXFTHF */ 645 (void)spi_readl(as, SR); 646 647 /* Fill TX FIFO */ 648 while (num_data >= 2) { 649 if (xfer->bits_per_word > 8) { 650 td0 = *words++; 651 td1 = *words++; 652 } else { 653 td0 = *bytes++; 654 td1 = *bytes++; 655 } 656 657 spi_writel(as, TDR, (td1 << 16) | td0); 658 num_data -= 2; 659 } 660 661 if (num_data) { 662 if (xfer->bits_per_word > 8) 663 td0 = *words++; 664 else 665 td0 = *bytes++; 666 667 spi_writew(as, TDR, td0); 668 num_data--; 669 } 670 671 dev_dbg(master->dev.parent, 672 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n", 673 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 674 xfer->bits_per_word); 675 676 /* 677 * Enable RX FIFO Threshold Flag interrupt to be notified about 678 * transfer completion. 679 */ 680 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES)); 681 } 682 683 /* 684 * Next transfer using PIO. 685 */ 686 static void atmel_spi_next_xfer_pio(struct spi_master *master, 687 struct spi_transfer *xfer) 688 { 689 struct atmel_spi *as = spi_master_get_devdata(master); 690 691 if (as->fifo_size) 692 atmel_spi_next_xfer_fifo(master, xfer); 693 else 694 atmel_spi_next_xfer_single(master, xfer); 695 } 696 697 /* 698 * Submit next transfer for DMA. 699 */ 700 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master, 701 struct spi_transfer *xfer, 702 u32 *plen) 703 __must_hold(&as->lock) 704 { 705 struct atmel_spi *as = spi_master_get_devdata(master); 706 struct dma_chan *rxchan = master->dma_rx; 707 struct dma_chan *txchan = master->dma_tx; 708 struct dma_async_tx_descriptor *rxdesc; 709 struct dma_async_tx_descriptor *txdesc; 710 struct dma_slave_config slave_config; 711 dma_cookie_t cookie; 712 713 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n"); 714 715 /* Check that the channels are available */ 716 if (!rxchan || !txchan) 717 return -ENODEV; 718 719 /* release lock for DMA operations */ 720 atmel_spi_unlock(as); 721 722 *plen = xfer->len; 723 724 if (atmel_spi_dma_slave_config(as, &slave_config, 725 xfer->bits_per_word)) 726 goto err_exit; 727 728 /* Send both scatterlists */ 729 if (atmel_spi_is_vmalloc_xfer(xfer) && 730 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 731 rxdesc = dmaengine_prep_slave_single(rxchan, 732 as->dma_addr_rx_bbuf, 733 xfer->len, 734 DMA_DEV_TO_MEM, 735 DMA_PREP_INTERRUPT | 736 DMA_CTRL_ACK); 737 } else { 738 rxdesc = dmaengine_prep_slave_sg(rxchan, 739 xfer->rx_sg.sgl, 740 xfer->rx_sg.nents, 741 DMA_DEV_TO_MEM, 742 DMA_PREP_INTERRUPT | 743 DMA_CTRL_ACK); 744 } 745 if (!rxdesc) 746 goto err_dma; 747 748 if (atmel_spi_is_vmalloc_xfer(xfer) && 749 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 750 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len); 751 txdesc = dmaengine_prep_slave_single(txchan, 752 as->dma_addr_tx_bbuf, 753 xfer->len, DMA_MEM_TO_DEV, 754 DMA_PREP_INTERRUPT | 755 DMA_CTRL_ACK); 756 } else { 757 txdesc = dmaengine_prep_slave_sg(txchan, 758 xfer->tx_sg.sgl, 759 xfer->tx_sg.nents, 760 DMA_MEM_TO_DEV, 761 DMA_PREP_INTERRUPT | 762 DMA_CTRL_ACK); 763 } 764 if (!txdesc) 765 goto err_dma; 766 767 dev_dbg(master->dev.parent, 768 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 769 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma, 770 xfer->rx_buf, (unsigned long long)xfer->rx_dma); 771 772 /* Enable relevant interrupts */ 773 spi_writel(as, IER, SPI_BIT(OVRES)); 774 775 /* Put the callback on the RX transfer only, that should finish last */ 776 rxdesc->callback = dma_callback; 777 rxdesc->callback_param = master; 778 779 /* Submit and fire RX and TX with TX last so we're ready to read! */ 780 cookie = rxdesc->tx_submit(rxdesc); 781 if (dma_submit_error(cookie)) 782 goto err_dma; 783 cookie = txdesc->tx_submit(txdesc); 784 if (dma_submit_error(cookie)) 785 goto err_dma; 786 rxchan->device->device_issue_pending(rxchan); 787 txchan->device->device_issue_pending(txchan); 788 789 /* take back lock */ 790 atmel_spi_lock(as); 791 return 0; 792 793 err_dma: 794 spi_writel(as, IDR, SPI_BIT(OVRES)); 795 atmel_spi_stop_dma(master); 796 err_exit: 797 atmel_spi_lock(as); 798 return -ENOMEM; 799 } 800 801 static void atmel_spi_next_xfer_data(struct spi_master *master, 802 struct spi_transfer *xfer, 803 dma_addr_t *tx_dma, 804 dma_addr_t *rx_dma, 805 u32 *plen) 806 { 807 *rx_dma = xfer->rx_dma + xfer->len - *plen; 808 *tx_dma = xfer->tx_dma + xfer->len - *plen; 809 if (*plen > master->max_dma_len) 810 *plen = master->max_dma_len; 811 } 812 813 static int atmel_spi_set_xfer_speed(struct atmel_spi *as, 814 struct spi_device *spi, 815 struct spi_transfer *xfer) 816 { 817 u32 scbr, csr; 818 unsigned long bus_hz; 819 int chip_select; 820 821 if (spi->cs_gpiod) 822 chip_select = as->native_cs_for_gpio; 823 else 824 chip_select = spi->chip_select; 825 826 /* v1 chips start out at half the peripheral bus speed. */ 827 bus_hz = as->spi_clk; 828 if (!atmel_spi_is_v2(as)) 829 bus_hz /= 2; 830 831 /* 832 * Calculate the lowest divider that satisfies the 833 * constraint, assuming div32/fdiv/mbz == 0. 834 */ 835 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz); 836 837 /* 838 * If the resulting divider doesn't fit into the 839 * register bitfield, we can't satisfy the constraint. 840 */ 841 if (scbr >= (1 << SPI_SCBR_SIZE)) { 842 dev_err(&spi->dev, 843 "setup: %d Hz too slow, scbr %u; min %ld Hz\n", 844 xfer->speed_hz, scbr, bus_hz/255); 845 return -EINVAL; 846 } 847 if (scbr == 0) { 848 dev_err(&spi->dev, 849 "setup: %d Hz too high, scbr %u; max %ld Hz\n", 850 xfer->speed_hz, scbr, bus_hz); 851 return -EINVAL; 852 } 853 csr = spi_readl(as, CSR0 + 4 * chip_select); 854 csr = SPI_BFINS(SCBR, scbr, csr); 855 spi_writel(as, CSR0 + 4 * chip_select, csr); 856 xfer->effective_speed_hz = bus_hz / scbr; 857 858 return 0; 859 } 860 861 /* 862 * Submit next transfer for PDC. 863 * lock is held, spi irq is blocked 864 */ 865 static void atmel_spi_pdc_next_xfer(struct spi_master *master, 866 struct spi_message *msg, 867 struct spi_transfer *xfer) 868 { 869 struct atmel_spi *as = spi_master_get_devdata(master); 870 u32 len; 871 dma_addr_t tx_dma, rx_dma; 872 873 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 874 875 len = as->current_remaining_bytes; 876 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 877 as->current_remaining_bytes -= len; 878 879 spi_writel(as, RPR, rx_dma); 880 spi_writel(as, TPR, tx_dma); 881 882 if (msg->spi->bits_per_word > 8) 883 len >>= 1; 884 spi_writel(as, RCR, len); 885 spi_writel(as, TCR, len); 886 887 dev_dbg(&msg->spi->dev, 888 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 889 xfer, xfer->len, xfer->tx_buf, 890 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 891 (unsigned long long)xfer->rx_dma); 892 893 if (as->current_remaining_bytes) { 894 len = as->current_remaining_bytes; 895 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 896 as->current_remaining_bytes -= len; 897 898 spi_writel(as, RNPR, rx_dma); 899 spi_writel(as, TNPR, tx_dma); 900 901 if (msg->spi->bits_per_word > 8) 902 len >>= 1; 903 spi_writel(as, RNCR, len); 904 spi_writel(as, TNCR, len); 905 906 dev_dbg(&msg->spi->dev, 907 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 908 xfer, xfer->len, xfer->tx_buf, 909 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 910 (unsigned long long)xfer->rx_dma); 911 } 912 913 /* REVISIT: We're waiting for RXBUFF before we start the next 914 * transfer because we need to handle some difficult timing 915 * issues otherwise. If we wait for TXBUFE in one transfer and 916 * then starts waiting for RXBUFF in the next, it's difficult 917 * to tell the difference between the RXBUFF interrupt we're 918 * actually waiting for and the RXBUFF interrupt of the 919 * previous transfer. 920 * 921 * It should be doable, though. Just not now... 922 */ 923 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES)); 924 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); 925 } 926 927 /* 928 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: 929 * - The buffer is either valid for CPU access, else NULL 930 * - If the buffer is valid, so is its DMA address 931 * 932 * This driver manages the dma address unless message->is_dma_mapped. 933 */ 934 static int 935 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) 936 { 937 struct device *dev = &as->pdev->dev; 938 939 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; 940 if (xfer->tx_buf) { 941 /* tx_buf is a const void* where we need a void * for the dma 942 * mapping */ 943 void *nonconst_tx = (void *)xfer->tx_buf; 944 945 xfer->tx_dma = dma_map_single(dev, 946 nonconst_tx, xfer->len, 947 DMA_TO_DEVICE); 948 if (dma_mapping_error(dev, xfer->tx_dma)) 949 return -ENOMEM; 950 } 951 if (xfer->rx_buf) { 952 xfer->rx_dma = dma_map_single(dev, 953 xfer->rx_buf, xfer->len, 954 DMA_FROM_DEVICE); 955 if (dma_mapping_error(dev, xfer->rx_dma)) { 956 if (xfer->tx_buf) 957 dma_unmap_single(dev, 958 xfer->tx_dma, xfer->len, 959 DMA_TO_DEVICE); 960 return -ENOMEM; 961 } 962 } 963 return 0; 964 } 965 966 static void atmel_spi_dma_unmap_xfer(struct spi_master *master, 967 struct spi_transfer *xfer) 968 { 969 if (xfer->tx_dma != INVALID_DMA_ADDRESS) 970 dma_unmap_single(master->dev.parent, xfer->tx_dma, 971 xfer->len, DMA_TO_DEVICE); 972 if (xfer->rx_dma != INVALID_DMA_ADDRESS) 973 dma_unmap_single(master->dev.parent, xfer->rx_dma, 974 xfer->len, DMA_FROM_DEVICE); 975 } 976 977 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as) 978 { 979 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 980 } 981 982 static void 983 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer) 984 { 985 u8 *rxp; 986 u16 *rxp16; 987 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 988 989 if (xfer->bits_per_word > 8) { 990 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos); 991 *rxp16 = spi_readl(as, RDR); 992 } else { 993 rxp = ((u8 *)xfer->rx_buf) + xfer_pos; 994 *rxp = spi_readl(as, RDR); 995 } 996 if (xfer->bits_per_word > 8) { 997 if (as->current_remaining_bytes > 2) 998 as->current_remaining_bytes -= 2; 999 else 1000 as->current_remaining_bytes = 0; 1001 } else { 1002 as->current_remaining_bytes--; 1003 } 1004 } 1005 1006 static void 1007 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer) 1008 { 1009 u32 fifolr = spi_readl(as, FLR); 1010 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr); 1011 u32 offset = xfer->len - as->current_remaining_bytes; 1012 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset); 1013 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset); 1014 u16 rd; /* RD field is the lowest 16 bits of RDR */ 1015 1016 /* Update the number of remaining bytes to transfer */ 1017 num_bytes = ((xfer->bits_per_word > 8) ? 1018 (num_data << 1) : 1019 num_data); 1020 1021 if (as->current_remaining_bytes > num_bytes) 1022 as->current_remaining_bytes -= num_bytes; 1023 else 1024 as->current_remaining_bytes = 0; 1025 1026 /* Handle odd number of bytes when data are more than 8bit width */ 1027 if (xfer->bits_per_word > 8) 1028 as->current_remaining_bytes &= ~0x1; 1029 1030 /* Read data */ 1031 while (num_data) { 1032 rd = spi_readl(as, RDR); 1033 if (xfer->bits_per_word > 8) 1034 *words++ = rd; 1035 else 1036 *bytes++ = rd; 1037 num_data--; 1038 } 1039 } 1040 1041 /* Called from IRQ 1042 * 1043 * Must update "current_remaining_bytes" to keep track of data 1044 * to transfer. 1045 */ 1046 static void 1047 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer) 1048 { 1049 if (as->fifo_size) 1050 atmel_spi_pump_fifo_data(as, xfer); 1051 else 1052 atmel_spi_pump_single_data(as, xfer); 1053 } 1054 1055 /* Interrupt 1056 * 1057 * No need for locking in this Interrupt handler: done_status is the 1058 * only information modified. 1059 */ 1060 static irqreturn_t 1061 atmel_spi_pio_interrupt(int irq, void *dev_id) 1062 { 1063 struct spi_master *master = dev_id; 1064 struct atmel_spi *as = spi_master_get_devdata(master); 1065 u32 status, pending, imr; 1066 struct spi_transfer *xfer; 1067 int ret = IRQ_NONE; 1068 1069 imr = spi_readl(as, IMR); 1070 status = spi_readl(as, SR); 1071 pending = status & imr; 1072 1073 if (pending & SPI_BIT(OVRES)) { 1074 ret = IRQ_HANDLED; 1075 spi_writel(as, IDR, SPI_BIT(OVRES)); 1076 dev_warn(master->dev.parent, "overrun\n"); 1077 1078 /* 1079 * When we get an overrun, we disregard the current 1080 * transfer. Data will not be copied back from any 1081 * bounce buffer and msg->actual_len will not be 1082 * updated with the last xfer. 1083 * 1084 * We will also not process any remaning transfers in 1085 * the message. 1086 */ 1087 as->done_status = -EIO; 1088 smp_wmb(); 1089 1090 /* Clear any overrun happening while cleaning up */ 1091 spi_readl(as, SR); 1092 1093 complete(&as->xfer_completion); 1094 1095 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) { 1096 atmel_spi_lock(as); 1097 1098 if (as->current_remaining_bytes) { 1099 ret = IRQ_HANDLED; 1100 xfer = as->current_transfer; 1101 atmel_spi_pump_pio_data(as, xfer); 1102 if (!as->current_remaining_bytes) 1103 spi_writel(as, IDR, pending); 1104 1105 complete(&as->xfer_completion); 1106 } 1107 1108 atmel_spi_unlock(as); 1109 } else { 1110 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending); 1111 ret = IRQ_HANDLED; 1112 spi_writel(as, IDR, pending); 1113 } 1114 1115 return ret; 1116 } 1117 1118 static irqreturn_t 1119 atmel_spi_pdc_interrupt(int irq, void *dev_id) 1120 { 1121 struct spi_master *master = dev_id; 1122 struct atmel_spi *as = spi_master_get_devdata(master); 1123 u32 status, pending, imr; 1124 int ret = IRQ_NONE; 1125 1126 imr = spi_readl(as, IMR); 1127 status = spi_readl(as, SR); 1128 pending = status & imr; 1129 1130 if (pending & SPI_BIT(OVRES)) { 1131 1132 ret = IRQ_HANDLED; 1133 1134 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) 1135 | SPI_BIT(OVRES))); 1136 1137 /* Clear any overrun happening while cleaning up */ 1138 spi_readl(as, SR); 1139 1140 as->done_status = -EIO; 1141 1142 complete(&as->xfer_completion); 1143 1144 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { 1145 ret = IRQ_HANDLED; 1146 1147 spi_writel(as, IDR, pending); 1148 1149 complete(&as->xfer_completion); 1150 } 1151 1152 return ret; 1153 } 1154 1155 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as) 1156 { 1157 struct spi_delay *delay = &spi->word_delay; 1158 u32 value = delay->value; 1159 1160 switch (delay->unit) { 1161 case SPI_DELAY_UNIT_NSECS: 1162 value /= 1000; 1163 break; 1164 case SPI_DELAY_UNIT_USECS: 1165 break; 1166 default: 1167 return -EINVAL; 1168 } 1169 1170 return (as->spi_clk / 1000000 * value) >> 5; 1171 } 1172 1173 static void initialize_native_cs_for_gpio(struct atmel_spi *as) 1174 { 1175 int i; 1176 struct spi_master *master = platform_get_drvdata(as->pdev); 1177 1178 if (!as->native_cs_free) 1179 return; /* already initialized */ 1180 1181 if (!master->cs_gpiods) 1182 return; /* No CS GPIO */ 1183 1184 /* 1185 * On the first version of the controller (AT91RM9200), CS0 1186 * can't be used associated with GPIO 1187 */ 1188 if (atmel_spi_is_v2(as)) 1189 i = 0; 1190 else 1191 i = 1; 1192 1193 for (; i < 4; i++) 1194 if (master->cs_gpiods[i]) 1195 as->native_cs_free |= BIT(i); 1196 1197 if (as->native_cs_free) 1198 as->native_cs_for_gpio = ffs(as->native_cs_free); 1199 } 1200 1201 static int atmel_spi_setup(struct spi_device *spi) 1202 { 1203 struct atmel_spi *as; 1204 struct atmel_spi_device *asd; 1205 u32 csr; 1206 unsigned int bits = spi->bits_per_word; 1207 int chip_select; 1208 int word_delay_csr; 1209 1210 as = spi_master_get_devdata(spi->master); 1211 1212 /* see notes above re chipselect */ 1213 if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) { 1214 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n"); 1215 return -EINVAL; 1216 } 1217 1218 /* Setup() is called during spi_register_controller(aka 1219 * spi_register_master) but after all membmers of the cs_gpiod 1220 * array have been filled, so we can looked for which native 1221 * CS will be free for using with GPIO 1222 */ 1223 initialize_native_cs_for_gpio(as); 1224 1225 if (spi->cs_gpiod && as->native_cs_free) { 1226 dev_err(&spi->dev, 1227 "No native CS available to support this GPIO CS\n"); 1228 return -EBUSY; 1229 } 1230 1231 if (spi->cs_gpiod) 1232 chip_select = as->native_cs_for_gpio; 1233 else 1234 chip_select = spi->chip_select; 1235 1236 csr = SPI_BF(BITS, bits - 8); 1237 if (spi->mode & SPI_CPOL) 1238 csr |= SPI_BIT(CPOL); 1239 if (!(spi->mode & SPI_CPHA)) 1240 csr |= SPI_BIT(NCPHA); 1241 1242 if (!spi->cs_gpiod) 1243 csr |= SPI_BIT(CSAAT); 1244 csr |= SPI_BF(DLYBS, 0); 1245 1246 word_delay_csr = atmel_word_delay_csr(spi, as); 1247 if (word_delay_csr < 0) 1248 return word_delay_csr; 1249 1250 /* DLYBCT adds delays between words. This is useful for slow devices 1251 * that need a bit of time to setup the next transfer. 1252 */ 1253 csr |= SPI_BF(DLYBCT, word_delay_csr); 1254 1255 asd = spi->controller_state; 1256 if (!asd) { 1257 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); 1258 if (!asd) 1259 return -ENOMEM; 1260 1261 spi->controller_state = asd; 1262 } 1263 1264 asd->csr = csr; 1265 1266 dev_dbg(&spi->dev, 1267 "setup: bpw %u mode 0x%x -> csr%d %08x\n", 1268 bits, spi->mode, spi->chip_select, csr); 1269 1270 if (!atmel_spi_is_v2(as)) 1271 spi_writel(as, CSR0 + 4 * chip_select, csr); 1272 1273 return 0; 1274 } 1275 1276 static int atmel_spi_one_transfer(struct spi_master *master, 1277 struct spi_message *msg, 1278 struct spi_transfer *xfer) 1279 { 1280 struct atmel_spi *as; 1281 struct spi_device *spi = msg->spi; 1282 u8 bits; 1283 u32 len; 1284 struct atmel_spi_device *asd; 1285 int timeout; 1286 int ret; 1287 unsigned long dma_timeout; 1288 1289 as = spi_master_get_devdata(master); 1290 1291 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1292 dev_dbg(&spi->dev, "missing rx or tx buf\n"); 1293 return -EINVAL; 1294 } 1295 1296 asd = spi->controller_state; 1297 bits = (asd->csr >> 4) & 0xf; 1298 if (bits != xfer->bits_per_word - 8) { 1299 dev_dbg(&spi->dev, 1300 "you can't yet change bits_per_word in transfers\n"); 1301 return -ENOPROTOOPT; 1302 } 1303 1304 /* 1305 * DMA map early, for performance (empties dcache ASAP) and 1306 * better fault reporting. 1307 */ 1308 if ((!msg->is_dma_mapped) 1309 && as->use_pdc) { 1310 if (atmel_spi_dma_map_xfer(as, xfer) < 0) 1311 return -ENOMEM; 1312 } 1313 1314 atmel_spi_set_xfer_speed(as, msg->spi, xfer); 1315 1316 as->done_status = 0; 1317 as->current_transfer = xfer; 1318 as->current_remaining_bytes = xfer->len; 1319 while (as->current_remaining_bytes) { 1320 reinit_completion(&as->xfer_completion); 1321 1322 if (as->use_pdc) { 1323 atmel_spi_pdc_next_xfer(master, msg, xfer); 1324 } else if (atmel_spi_use_dma(as, xfer)) { 1325 len = as->current_remaining_bytes; 1326 ret = atmel_spi_next_xfer_dma_submit(master, 1327 xfer, &len); 1328 if (ret) { 1329 dev_err(&spi->dev, 1330 "unable to use DMA, fallback to PIO\n"); 1331 atmel_spi_next_xfer_pio(master, xfer); 1332 } else { 1333 as->current_remaining_bytes -= len; 1334 if (as->current_remaining_bytes < 0) 1335 as->current_remaining_bytes = 0; 1336 } 1337 } else { 1338 atmel_spi_next_xfer_pio(master, xfer); 1339 } 1340 1341 /* interrupts are disabled, so free the lock for schedule */ 1342 atmel_spi_unlock(as); 1343 dma_timeout = wait_for_completion_timeout(&as->xfer_completion, 1344 SPI_DMA_TIMEOUT); 1345 atmel_spi_lock(as); 1346 if (WARN_ON(dma_timeout == 0)) { 1347 dev_err(&spi->dev, "spi transfer timeout\n"); 1348 as->done_status = -EIO; 1349 } 1350 1351 if (as->done_status) 1352 break; 1353 } 1354 1355 if (as->done_status) { 1356 if (as->use_pdc) { 1357 dev_warn(master->dev.parent, 1358 "overrun (%u/%u remaining)\n", 1359 spi_readl(as, TCR), spi_readl(as, RCR)); 1360 1361 /* 1362 * Clean up DMA registers and make sure the data 1363 * registers are empty. 1364 */ 1365 spi_writel(as, RNCR, 0); 1366 spi_writel(as, TNCR, 0); 1367 spi_writel(as, RCR, 0); 1368 spi_writel(as, TCR, 0); 1369 for (timeout = 1000; timeout; timeout--) 1370 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) 1371 break; 1372 if (!timeout) 1373 dev_warn(master->dev.parent, 1374 "timeout waiting for TXEMPTY"); 1375 while (spi_readl(as, SR) & SPI_BIT(RDRF)) 1376 spi_readl(as, RDR); 1377 1378 /* Clear any overrun happening while cleaning up */ 1379 spi_readl(as, SR); 1380 1381 } else if (atmel_spi_use_dma(as, xfer)) { 1382 atmel_spi_stop_dma(master); 1383 } 1384 1385 if (!msg->is_dma_mapped 1386 && as->use_pdc) 1387 atmel_spi_dma_unmap_xfer(master, xfer); 1388 1389 return 0; 1390 1391 } else { 1392 /* only update length if no error */ 1393 msg->actual_length += xfer->len; 1394 } 1395 1396 if (!msg->is_dma_mapped 1397 && as->use_pdc) 1398 atmel_spi_dma_unmap_xfer(master, xfer); 1399 1400 spi_transfer_delay_exec(xfer); 1401 1402 if (xfer->cs_change) { 1403 if (list_is_last(&xfer->transfer_list, 1404 &msg->transfers)) { 1405 as->keep_cs = true; 1406 } else { 1407 cs_deactivate(as, msg->spi); 1408 udelay(10); 1409 cs_activate(as, msg->spi); 1410 } 1411 } 1412 1413 return 0; 1414 } 1415 1416 static int atmel_spi_transfer_one_message(struct spi_master *master, 1417 struct spi_message *msg) 1418 { 1419 struct atmel_spi *as; 1420 struct spi_transfer *xfer; 1421 struct spi_device *spi = msg->spi; 1422 int ret = 0; 1423 1424 as = spi_master_get_devdata(master); 1425 1426 dev_dbg(&spi->dev, "new message %p submitted for %s\n", 1427 msg, dev_name(&spi->dev)); 1428 1429 atmel_spi_lock(as); 1430 cs_activate(as, spi); 1431 1432 as->keep_cs = false; 1433 1434 msg->status = 0; 1435 msg->actual_length = 0; 1436 1437 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1438 trace_spi_transfer_start(msg, xfer); 1439 1440 ret = atmel_spi_one_transfer(master, msg, xfer); 1441 if (ret) 1442 goto msg_done; 1443 1444 trace_spi_transfer_stop(msg, xfer); 1445 } 1446 1447 if (as->use_pdc) 1448 atmel_spi_disable_pdc_transfer(as); 1449 1450 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1451 dev_dbg(&spi->dev, 1452 " xfer %p: len %u tx %p/%pad rx %p/%pad\n", 1453 xfer, xfer->len, 1454 xfer->tx_buf, &xfer->tx_dma, 1455 xfer->rx_buf, &xfer->rx_dma); 1456 } 1457 1458 msg_done: 1459 if (!as->keep_cs) 1460 cs_deactivate(as, msg->spi); 1461 1462 atmel_spi_unlock(as); 1463 1464 msg->status = as->done_status; 1465 spi_finalize_current_message(spi->master); 1466 1467 return ret; 1468 } 1469 1470 static void atmel_spi_cleanup(struct spi_device *spi) 1471 { 1472 struct atmel_spi_device *asd = spi->controller_state; 1473 1474 if (!asd) 1475 return; 1476 1477 spi->controller_state = NULL; 1478 kfree(asd); 1479 } 1480 1481 static inline unsigned int atmel_get_version(struct atmel_spi *as) 1482 { 1483 return spi_readl(as, VERSION) & 0x00000fff; 1484 } 1485 1486 static void atmel_get_caps(struct atmel_spi *as) 1487 { 1488 unsigned int version; 1489 1490 version = atmel_get_version(as); 1491 1492 as->caps.is_spi2 = version > 0x121; 1493 as->caps.has_wdrbt = version >= 0x210; 1494 as->caps.has_dma_support = version >= 0x212; 1495 as->caps.has_pdc_support = version < 0x212; 1496 } 1497 1498 static void atmel_spi_init(struct atmel_spi *as) 1499 { 1500 spi_writel(as, CR, SPI_BIT(SWRST)); 1501 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1502 1503 /* It is recommended to enable FIFOs first thing after reset */ 1504 if (as->fifo_size) 1505 spi_writel(as, CR, SPI_BIT(FIFOEN)); 1506 1507 if (as->caps.has_wdrbt) { 1508 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS) 1509 | SPI_BIT(MSTR)); 1510 } else { 1511 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); 1512 } 1513 1514 if (as->use_pdc) 1515 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1516 spi_writel(as, CR, SPI_BIT(SPIEN)); 1517 } 1518 1519 static int atmel_spi_probe(struct platform_device *pdev) 1520 { 1521 struct resource *regs; 1522 int irq; 1523 struct clk *clk; 1524 int ret; 1525 struct spi_master *master; 1526 struct atmel_spi *as; 1527 1528 /* Select default pin state */ 1529 pinctrl_pm_select_default_state(&pdev->dev); 1530 1531 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1532 if (!regs) 1533 return -ENXIO; 1534 1535 irq = platform_get_irq(pdev, 0); 1536 if (irq < 0) 1537 return irq; 1538 1539 clk = devm_clk_get(&pdev->dev, "spi_clk"); 1540 if (IS_ERR(clk)) 1541 return PTR_ERR(clk); 1542 1543 /* setup spi core then atmel-specific driver state */ 1544 master = spi_alloc_master(&pdev->dev, sizeof(*as)); 1545 if (!master) 1546 return -ENOMEM; 1547 1548 /* the spi->mode bits understood by this driver: */ 1549 master->use_gpio_descriptors = true; 1550 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1551 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16); 1552 master->dev.of_node = pdev->dev.of_node; 1553 master->bus_num = pdev->id; 1554 master->num_chipselect = 4; 1555 master->setup = atmel_spi_setup; 1556 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX); 1557 master->transfer_one_message = atmel_spi_transfer_one_message; 1558 master->cleanup = atmel_spi_cleanup; 1559 master->auto_runtime_pm = true; 1560 master->max_dma_len = SPI_MAX_DMA_XFER; 1561 master->can_dma = atmel_spi_can_dma; 1562 platform_set_drvdata(pdev, master); 1563 1564 as = spi_master_get_devdata(master); 1565 1566 spin_lock_init(&as->lock); 1567 1568 as->pdev = pdev; 1569 as->regs = devm_ioremap_resource(&pdev->dev, regs); 1570 if (IS_ERR(as->regs)) { 1571 ret = PTR_ERR(as->regs); 1572 goto out_unmap_regs; 1573 } 1574 as->phybase = regs->start; 1575 as->irq = irq; 1576 as->clk = clk; 1577 1578 init_completion(&as->xfer_completion); 1579 1580 atmel_get_caps(as); 1581 1582 as->use_dma = false; 1583 as->use_pdc = false; 1584 if (as->caps.has_dma_support) { 1585 ret = atmel_spi_configure_dma(master, as); 1586 if (ret == 0) { 1587 as->use_dma = true; 1588 } else if (ret == -EPROBE_DEFER) { 1589 goto out_unmap_regs; 1590 } 1591 } else if (as->caps.has_pdc_support) { 1592 as->use_pdc = true; 1593 } 1594 1595 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1596 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev, 1597 SPI_MAX_DMA_XFER, 1598 &as->dma_addr_rx_bbuf, 1599 GFP_KERNEL | GFP_DMA); 1600 if (!as->addr_rx_bbuf) { 1601 as->use_dma = false; 1602 } else { 1603 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev, 1604 SPI_MAX_DMA_XFER, 1605 &as->dma_addr_tx_bbuf, 1606 GFP_KERNEL | GFP_DMA); 1607 if (!as->addr_tx_bbuf) { 1608 as->use_dma = false; 1609 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1610 as->addr_rx_bbuf, 1611 as->dma_addr_rx_bbuf); 1612 } 1613 } 1614 if (!as->use_dma) 1615 dev_info(master->dev.parent, 1616 " can not allocate dma coherent memory\n"); 1617 } 1618 1619 if (as->caps.has_dma_support && !as->use_dma) 1620 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n"); 1621 1622 if (as->use_pdc) { 1623 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt, 1624 0, dev_name(&pdev->dev), master); 1625 } else { 1626 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt, 1627 0, dev_name(&pdev->dev), master); 1628 } 1629 if (ret) 1630 goto out_unmap_regs; 1631 1632 /* Initialize the hardware */ 1633 ret = clk_prepare_enable(clk); 1634 if (ret) 1635 goto out_free_irq; 1636 1637 as->spi_clk = clk_get_rate(clk); 1638 1639 as->fifo_size = 0; 1640 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", 1641 &as->fifo_size)) { 1642 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size); 1643 } 1644 1645 atmel_spi_init(as); 1646 1647 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT); 1648 pm_runtime_use_autosuspend(&pdev->dev); 1649 pm_runtime_set_active(&pdev->dev); 1650 pm_runtime_enable(&pdev->dev); 1651 1652 ret = devm_spi_register_master(&pdev->dev, master); 1653 if (ret) 1654 goto out_free_dma; 1655 1656 /* go! */ 1657 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n", 1658 atmel_get_version(as), (unsigned long)regs->start, 1659 irq); 1660 1661 return 0; 1662 1663 out_free_dma: 1664 pm_runtime_disable(&pdev->dev); 1665 pm_runtime_set_suspended(&pdev->dev); 1666 1667 if (as->use_dma) 1668 atmel_spi_release_dma(master); 1669 1670 spi_writel(as, CR, SPI_BIT(SWRST)); 1671 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1672 clk_disable_unprepare(clk); 1673 out_free_irq: 1674 out_unmap_regs: 1675 spi_master_put(master); 1676 return ret; 1677 } 1678 1679 static int atmel_spi_remove(struct platform_device *pdev) 1680 { 1681 struct spi_master *master = platform_get_drvdata(pdev); 1682 struct atmel_spi *as = spi_master_get_devdata(master); 1683 1684 pm_runtime_get_sync(&pdev->dev); 1685 1686 /* reset the hardware and block queue progress */ 1687 if (as->use_dma) { 1688 atmel_spi_stop_dma(master); 1689 atmel_spi_release_dma(master); 1690 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1691 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1692 as->addr_tx_bbuf, 1693 as->dma_addr_tx_bbuf); 1694 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1695 as->addr_rx_bbuf, 1696 as->dma_addr_rx_bbuf); 1697 } 1698 } 1699 1700 spin_lock_irq(&as->lock); 1701 spi_writel(as, CR, SPI_BIT(SWRST)); 1702 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1703 spi_readl(as, SR); 1704 spin_unlock_irq(&as->lock); 1705 1706 clk_disable_unprepare(as->clk); 1707 1708 pm_runtime_put_noidle(&pdev->dev); 1709 pm_runtime_disable(&pdev->dev); 1710 1711 return 0; 1712 } 1713 1714 #ifdef CONFIG_PM 1715 static int atmel_spi_runtime_suspend(struct device *dev) 1716 { 1717 struct spi_master *master = dev_get_drvdata(dev); 1718 struct atmel_spi *as = spi_master_get_devdata(master); 1719 1720 clk_disable_unprepare(as->clk); 1721 pinctrl_pm_select_sleep_state(dev); 1722 1723 return 0; 1724 } 1725 1726 static int atmel_spi_runtime_resume(struct device *dev) 1727 { 1728 struct spi_master *master = dev_get_drvdata(dev); 1729 struct atmel_spi *as = spi_master_get_devdata(master); 1730 1731 pinctrl_pm_select_default_state(dev); 1732 1733 return clk_prepare_enable(as->clk); 1734 } 1735 1736 #ifdef CONFIG_PM_SLEEP 1737 static int atmel_spi_suspend(struct device *dev) 1738 { 1739 struct spi_master *master = dev_get_drvdata(dev); 1740 int ret; 1741 1742 /* Stop the queue running */ 1743 ret = spi_master_suspend(master); 1744 if (ret) 1745 return ret; 1746 1747 if (!pm_runtime_suspended(dev)) 1748 atmel_spi_runtime_suspend(dev); 1749 1750 return 0; 1751 } 1752 1753 static int atmel_spi_resume(struct device *dev) 1754 { 1755 struct spi_master *master = dev_get_drvdata(dev); 1756 struct atmel_spi *as = spi_master_get_devdata(master); 1757 int ret; 1758 1759 ret = clk_prepare_enable(as->clk); 1760 if (ret) 1761 return ret; 1762 1763 atmel_spi_init(as); 1764 1765 clk_disable_unprepare(as->clk); 1766 1767 if (!pm_runtime_suspended(dev)) { 1768 ret = atmel_spi_runtime_resume(dev); 1769 if (ret) 1770 return ret; 1771 } 1772 1773 /* Start the queue running */ 1774 return spi_master_resume(master); 1775 } 1776 #endif 1777 1778 static const struct dev_pm_ops atmel_spi_pm_ops = { 1779 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume) 1780 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend, 1781 atmel_spi_runtime_resume, NULL) 1782 }; 1783 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops) 1784 #else 1785 #define ATMEL_SPI_PM_OPS NULL 1786 #endif 1787 1788 static const struct of_device_id atmel_spi_dt_ids[] = { 1789 { .compatible = "atmel,at91rm9200-spi" }, 1790 { /* sentinel */ } 1791 }; 1792 1793 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids); 1794 1795 static struct platform_driver atmel_spi_driver = { 1796 .driver = { 1797 .name = "atmel_spi", 1798 .pm = ATMEL_SPI_PM_OPS, 1799 .of_match_table = atmel_spi_dt_ids, 1800 }, 1801 .probe = atmel_spi_probe, 1802 .remove = atmel_spi_remove, 1803 }; 1804 module_platform_driver(atmel_spi_driver); 1805 1806 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); 1807 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 1808 MODULE_LICENSE("GPL"); 1809 MODULE_ALIAS("platform:atmel_spi"); 1810