1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Atmel AT32 and AT91 SPI Controllers 4 * 5 * Copyright (C) 2006 Atmel Corporation 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/clk.h> 10 #include <linux/module.h> 11 #include <linux/platform_device.h> 12 #include <linux/delay.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/dmaengine.h> 15 #include <linux/err.h> 16 #include <linux/interrupt.h> 17 #include <linux/spi/spi.h> 18 #include <linux/slab.h> 19 #include <linux/of.h> 20 21 #include <linux/io.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/pm_runtime.h> 25 #include <trace/events/spi.h> 26 27 /* SPI register offsets */ 28 #define SPI_CR 0x0000 29 #define SPI_MR 0x0004 30 #define SPI_RDR 0x0008 31 #define SPI_TDR 0x000c 32 #define SPI_SR 0x0010 33 #define SPI_IER 0x0014 34 #define SPI_IDR 0x0018 35 #define SPI_IMR 0x001c 36 #define SPI_CSR0 0x0030 37 #define SPI_CSR1 0x0034 38 #define SPI_CSR2 0x0038 39 #define SPI_CSR3 0x003c 40 #define SPI_FMR 0x0040 41 #define SPI_FLR 0x0044 42 #define SPI_VERSION 0x00fc 43 #define SPI_RPR 0x0100 44 #define SPI_RCR 0x0104 45 #define SPI_TPR 0x0108 46 #define SPI_TCR 0x010c 47 #define SPI_RNPR 0x0110 48 #define SPI_RNCR 0x0114 49 #define SPI_TNPR 0x0118 50 #define SPI_TNCR 0x011c 51 #define SPI_PTCR 0x0120 52 #define SPI_PTSR 0x0124 53 54 /* Bitfields in CR */ 55 #define SPI_SPIEN_OFFSET 0 56 #define SPI_SPIEN_SIZE 1 57 #define SPI_SPIDIS_OFFSET 1 58 #define SPI_SPIDIS_SIZE 1 59 #define SPI_SWRST_OFFSET 7 60 #define SPI_SWRST_SIZE 1 61 #define SPI_LASTXFER_OFFSET 24 62 #define SPI_LASTXFER_SIZE 1 63 #define SPI_TXFCLR_OFFSET 16 64 #define SPI_TXFCLR_SIZE 1 65 #define SPI_RXFCLR_OFFSET 17 66 #define SPI_RXFCLR_SIZE 1 67 #define SPI_FIFOEN_OFFSET 30 68 #define SPI_FIFOEN_SIZE 1 69 #define SPI_FIFODIS_OFFSET 31 70 #define SPI_FIFODIS_SIZE 1 71 72 /* Bitfields in MR */ 73 #define SPI_MSTR_OFFSET 0 74 #define SPI_MSTR_SIZE 1 75 #define SPI_PS_OFFSET 1 76 #define SPI_PS_SIZE 1 77 #define SPI_PCSDEC_OFFSET 2 78 #define SPI_PCSDEC_SIZE 1 79 #define SPI_FDIV_OFFSET 3 80 #define SPI_FDIV_SIZE 1 81 #define SPI_MODFDIS_OFFSET 4 82 #define SPI_MODFDIS_SIZE 1 83 #define SPI_WDRBT_OFFSET 5 84 #define SPI_WDRBT_SIZE 1 85 #define SPI_LLB_OFFSET 7 86 #define SPI_LLB_SIZE 1 87 #define SPI_PCS_OFFSET 16 88 #define SPI_PCS_SIZE 4 89 #define SPI_DLYBCS_OFFSET 24 90 #define SPI_DLYBCS_SIZE 8 91 92 /* Bitfields in RDR */ 93 #define SPI_RD_OFFSET 0 94 #define SPI_RD_SIZE 16 95 96 /* Bitfields in TDR */ 97 #define SPI_TD_OFFSET 0 98 #define SPI_TD_SIZE 16 99 100 /* Bitfields in SR */ 101 #define SPI_RDRF_OFFSET 0 102 #define SPI_RDRF_SIZE 1 103 #define SPI_TDRE_OFFSET 1 104 #define SPI_TDRE_SIZE 1 105 #define SPI_MODF_OFFSET 2 106 #define SPI_MODF_SIZE 1 107 #define SPI_OVRES_OFFSET 3 108 #define SPI_OVRES_SIZE 1 109 #define SPI_ENDRX_OFFSET 4 110 #define SPI_ENDRX_SIZE 1 111 #define SPI_ENDTX_OFFSET 5 112 #define SPI_ENDTX_SIZE 1 113 #define SPI_RXBUFF_OFFSET 6 114 #define SPI_RXBUFF_SIZE 1 115 #define SPI_TXBUFE_OFFSET 7 116 #define SPI_TXBUFE_SIZE 1 117 #define SPI_NSSR_OFFSET 8 118 #define SPI_NSSR_SIZE 1 119 #define SPI_TXEMPTY_OFFSET 9 120 #define SPI_TXEMPTY_SIZE 1 121 #define SPI_SPIENS_OFFSET 16 122 #define SPI_SPIENS_SIZE 1 123 #define SPI_TXFEF_OFFSET 24 124 #define SPI_TXFEF_SIZE 1 125 #define SPI_TXFFF_OFFSET 25 126 #define SPI_TXFFF_SIZE 1 127 #define SPI_TXFTHF_OFFSET 26 128 #define SPI_TXFTHF_SIZE 1 129 #define SPI_RXFEF_OFFSET 27 130 #define SPI_RXFEF_SIZE 1 131 #define SPI_RXFFF_OFFSET 28 132 #define SPI_RXFFF_SIZE 1 133 #define SPI_RXFTHF_OFFSET 29 134 #define SPI_RXFTHF_SIZE 1 135 #define SPI_TXFPTEF_OFFSET 30 136 #define SPI_TXFPTEF_SIZE 1 137 #define SPI_RXFPTEF_OFFSET 31 138 #define SPI_RXFPTEF_SIZE 1 139 140 /* Bitfields in CSR0 */ 141 #define SPI_CPOL_OFFSET 0 142 #define SPI_CPOL_SIZE 1 143 #define SPI_NCPHA_OFFSET 1 144 #define SPI_NCPHA_SIZE 1 145 #define SPI_CSAAT_OFFSET 3 146 #define SPI_CSAAT_SIZE 1 147 #define SPI_BITS_OFFSET 4 148 #define SPI_BITS_SIZE 4 149 #define SPI_SCBR_OFFSET 8 150 #define SPI_SCBR_SIZE 8 151 #define SPI_DLYBS_OFFSET 16 152 #define SPI_DLYBS_SIZE 8 153 #define SPI_DLYBCT_OFFSET 24 154 #define SPI_DLYBCT_SIZE 8 155 156 /* Bitfields in RCR */ 157 #define SPI_RXCTR_OFFSET 0 158 #define SPI_RXCTR_SIZE 16 159 160 /* Bitfields in TCR */ 161 #define SPI_TXCTR_OFFSET 0 162 #define SPI_TXCTR_SIZE 16 163 164 /* Bitfields in RNCR */ 165 #define SPI_RXNCR_OFFSET 0 166 #define SPI_RXNCR_SIZE 16 167 168 /* Bitfields in TNCR */ 169 #define SPI_TXNCR_OFFSET 0 170 #define SPI_TXNCR_SIZE 16 171 172 /* Bitfields in PTCR */ 173 #define SPI_RXTEN_OFFSET 0 174 #define SPI_RXTEN_SIZE 1 175 #define SPI_RXTDIS_OFFSET 1 176 #define SPI_RXTDIS_SIZE 1 177 #define SPI_TXTEN_OFFSET 8 178 #define SPI_TXTEN_SIZE 1 179 #define SPI_TXTDIS_OFFSET 9 180 #define SPI_TXTDIS_SIZE 1 181 182 /* Bitfields in FMR */ 183 #define SPI_TXRDYM_OFFSET 0 184 #define SPI_TXRDYM_SIZE 2 185 #define SPI_RXRDYM_OFFSET 4 186 #define SPI_RXRDYM_SIZE 2 187 #define SPI_TXFTHRES_OFFSET 16 188 #define SPI_TXFTHRES_SIZE 6 189 #define SPI_RXFTHRES_OFFSET 24 190 #define SPI_RXFTHRES_SIZE 6 191 192 /* Bitfields in FLR */ 193 #define SPI_TXFL_OFFSET 0 194 #define SPI_TXFL_SIZE 6 195 #define SPI_RXFL_OFFSET 16 196 #define SPI_RXFL_SIZE 6 197 198 /* Constants for BITS */ 199 #define SPI_BITS_8_BPT 0 200 #define SPI_BITS_9_BPT 1 201 #define SPI_BITS_10_BPT 2 202 #define SPI_BITS_11_BPT 3 203 #define SPI_BITS_12_BPT 4 204 #define SPI_BITS_13_BPT 5 205 #define SPI_BITS_14_BPT 6 206 #define SPI_BITS_15_BPT 7 207 #define SPI_BITS_16_BPT 8 208 #define SPI_ONE_DATA 0 209 #define SPI_TWO_DATA 1 210 #define SPI_FOUR_DATA 2 211 212 /* Bit manipulation macros */ 213 #define SPI_BIT(name) \ 214 (1 << SPI_##name##_OFFSET) 215 #define SPI_BF(name, value) \ 216 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) 217 #define SPI_BFEXT(name, value) \ 218 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) 219 #define SPI_BFINS(name, value, old) \ 220 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ 221 | SPI_BF(name, value)) 222 223 /* Register access macros */ 224 #define spi_readl(port, reg) \ 225 readl_relaxed((port)->regs + SPI_##reg) 226 #define spi_writel(port, reg, value) \ 227 writel_relaxed((value), (port)->regs + SPI_##reg) 228 #define spi_writew(port, reg, value) \ 229 writew_relaxed((value), (port)->regs + SPI_##reg) 230 231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 232 * cache operations; better heuristics consider wordsize and bitrate. 233 */ 234 #define DMA_MIN_BYTES 16 235 236 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) 237 238 #define AUTOSUSPEND_TIMEOUT 2000 239 240 struct atmel_spi_caps { 241 bool is_spi2; 242 bool has_wdrbt; 243 bool has_dma_support; 244 bool has_pdc_support; 245 }; 246 247 /* 248 * The core SPI transfer engine just talks to a register bank to set up 249 * DMA transfers; transfer queue progress is driven by IRQs. The clock 250 * framework provides the base clock, subdivided for each spi_device. 251 */ 252 struct atmel_spi { 253 spinlock_t lock; 254 unsigned long flags; 255 256 phys_addr_t phybase; 257 void __iomem *regs; 258 int irq; 259 struct clk *clk; 260 struct platform_device *pdev; 261 unsigned long spi_clk; 262 263 struct spi_transfer *current_transfer; 264 int current_remaining_bytes; 265 int done_status; 266 dma_addr_t dma_addr_rx_bbuf; 267 dma_addr_t dma_addr_tx_bbuf; 268 void *addr_rx_bbuf; 269 void *addr_tx_bbuf; 270 271 struct completion xfer_completion; 272 273 struct atmel_spi_caps caps; 274 275 bool use_dma; 276 bool use_pdc; 277 278 bool keep_cs; 279 280 u32 fifo_size; 281 u8 native_cs_free; 282 u8 native_cs_for_gpio; 283 }; 284 285 /* Controller-specific per-slave state */ 286 struct atmel_spi_device { 287 u32 csr; 288 }; 289 290 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */ 291 #define INVALID_DMA_ADDRESS 0xffffffff 292 293 /* 294 * Version 2 of the SPI controller has 295 * - CR.LASTXFER 296 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) 297 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) 298 * - SPI_CSRx.CSAAT 299 * - SPI_CSRx.SBCR allows faster clocking 300 */ 301 static bool atmel_spi_is_v2(struct atmel_spi *as) 302 { 303 return as->caps.is_spi2; 304 } 305 306 /* 307 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby 308 * they assume that spi slave device state will not change on deselect, so 309 * that automagic deselection is OK. ("NPCSx rises if no data is to be 310 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer 311 * controllers have CSAAT and friends. 312 * 313 * Even controller newer than ar91rm9200, using GPIOs can make sens as 314 * it lets us support active-high chipselects despite the controller's 315 * belief that only active-low devices/systems exists. 316 * 317 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work 318 * right when driven with GPIO. ("Mode Fault does not allow more than one 319 * Master on Chip Select 0.") No workaround exists for that ... so for 320 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, 321 * and (c) will trigger that first erratum in some cases. 322 */ 323 324 static void cs_activate(struct atmel_spi *as, struct spi_device *spi) 325 { 326 struct atmel_spi_device *asd = spi->controller_state; 327 int chip_select; 328 u32 mr; 329 330 if (spi->cs_gpiod) 331 chip_select = as->native_cs_for_gpio; 332 else 333 chip_select = spi->chip_select; 334 335 if (atmel_spi_is_v2(as)) { 336 spi_writel(as, CSR0 + 4 * chip_select, asd->csr); 337 /* For the low SPI version, there is a issue that PDC transfer 338 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS 339 */ 340 spi_writel(as, CSR0, asd->csr); 341 if (as->caps.has_wdrbt) { 342 spi_writel(as, MR, 343 SPI_BF(PCS, ~(0x01 << chip_select)) 344 | SPI_BIT(WDRBT) 345 | SPI_BIT(MODFDIS) 346 | SPI_BIT(MSTR)); 347 } else { 348 spi_writel(as, MR, 349 SPI_BF(PCS, ~(0x01 << chip_select)) 350 | SPI_BIT(MODFDIS) 351 | SPI_BIT(MSTR)); 352 } 353 354 mr = spi_readl(as, MR); 355 if (spi->cs_gpiod) 356 gpiod_set_value(spi->cs_gpiod, 1); 357 } else { 358 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; 359 int i; 360 u32 csr; 361 362 /* Make sure clock polarity is correct */ 363 for (i = 0; i < spi->master->num_chipselect; i++) { 364 csr = spi_readl(as, CSR0 + 4 * i); 365 if ((csr ^ cpol) & SPI_BIT(CPOL)) 366 spi_writel(as, CSR0 + 4 * i, 367 csr ^ SPI_BIT(CPOL)); 368 } 369 370 mr = spi_readl(as, MR); 371 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr); 372 if (spi->cs_gpiod) 373 gpiod_set_value(spi->cs_gpiod, 1); 374 spi_writel(as, MR, mr); 375 } 376 377 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr); 378 } 379 380 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) 381 { 382 int chip_select; 383 u32 mr; 384 385 if (spi->cs_gpiod) 386 chip_select = as->native_cs_for_gpio; 387 else 388 chip_select = spi->chip_select; 389 390 /* only deactivate *this* device; sometimes transfers to 391 * another device may be active when this routine is called. 392 */ 393 mr = spi_readl(as, MR); 394 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) { 395 mr = SPI_BFINS(PCS, 0xf, mr); 396 spi_writel(as, MR, mr); 397 } 398 399 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr); 400 401 if (!spi->cs_gpiod) 402 spi_writel(as, CR, SPI_BIT(LASTXFER)); 403 else 404 gpiod_set_value(spi->cs_gpiod, 0); 405 } 406 407 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock) 408 { 409 spin_lock_irqsave(&as->lock, as->flags); 410 } 411 412 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock) 413 { 414 spin_unlock_irqrestore(&as->lock, as->flags); 415 } 416 417 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer) 418 { 419 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf); 420 } 421 422 static inline bool atmel_spi_use_dma(struct atmel_spi *as, 423 struct spi_transfer *xfer) 424 { 425 return as->use_dma && xfer->len >= DMA_MIN_BYTES; 426 } 427 428 static bool atmel_spi_can_dma(struct spi_master *master, 429 struct spi_device *spi, 430 struct spi_transfer *xfer) 431 { 432 struct atmel_spi *as = spi_master_get_devdata(master); 433 434 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) 435 return atmel_spi_use_dma(as, xfer) && 436 !atmel_spi_is_vmalloc_xfer(xfer); 437 else 438 return atmel_spi_use_dma(as, xfer); 439 440 } 441 442 static int atmel_spi_dma_slave_config(struct atmel_spi *as, 443 struct dma_slave_config *slave_config, 444 u8 bits_per_word) 445 { 446 struct spi_master *master = platform_get_drvdata(as->pdev); 447 int err = 0; 448 449 if (bits_per_word > 8) { 450 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 451 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 452 } else { 453 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 454 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 455 } 456 457 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR; 458 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR; 459 slave_config->src_maxburst = 1; 460 slave_config->dst_maxburst = 1; 461 slave_config->device_fc = false; 462 463 /* 464 * This driver uses fixed peripheral select mode (PS bit set to '0' in 465 * the Mode Register). 466 * So according to the datasheet, when FIFOs are available (and 467 * enabled), the Transmit FIFO operates in Multiple Data Mode. 468 * In this mode, up to 2 data, not 4, can be written into the Transmit 469 * Data Register in a single access. 470 * However, the first data has to be written into the lowest 16 bits and 471 * the second data into the highest 16 bits of the Transmit 472 * Data Register. For 8bit data (the most frequent case), it would 473 * require to rework tx_buf so each data would actualy fit 16 bits. 474 * So we'd rather write only one data at the time. Hence the transmit 475 * path works the same whether FIFOs are available (and enabled) or not. 476 */ 477 slave_config->direction = DMA_MEM_TO_DEV; 478 if (dmaengine_slave_config(master->dma_tx, slave_config)) { 479 dev_err(&as->pdev->dev, 480 "failed to configure tx dma channel\n"); 481 err = -EINVAL; 482 } 483 484 /* 485 * This driver configures the spi controller for master mode (MSTR bit 486 * set to '1' in the Mode Register). 487 * So according to the datasheet, when FIFOs are available (and 488 * enabled), the Receive FIFO operates in Single Data Mode. 489 * So the receive path works the same whether FIFOs are available (and 490 * enabled) or not. 491 */ 492 slave_config->direction = DMA_DEV_TO_MEM; 493 if (dmaengine_slave_config(master->dma_rx, slave_config)) { 494 dev_err(&as->pdev->dev, 495 "failed to configure rx dma channel\n"); 496 err = -EINVAL; 497 } 498 499 return err; 500 } 501 502 static int atmel_spi_configure_dma(struct spi_master *master, 503 struct atmel_spi *as) 504 { 505 struct dma_slave_config slave_config; 506 struct device *dev = &as->pdev->dev; 507 int err; 508 509 dma_cap_mask_t mask; 510 dma_cap_zero(mask); 511 dma_cap_set(DMA_SLAVE, mask); 512 513 master->dma_tx = dma_request_chan(dev, "tx"); 514 if (IS_ERR(master->dma_tx)) { 515 err = dev_err_probe(dev, PTR_ERR(master->dma_tx), 516 "No TX DMA channel, DMA is disabled\n"); 517 goto error_clear; 518 } 519 520 master->dma_rx = dma_request_chan(dev, "rx"); 521 if (IS_ERR(master->dma_rx)) { 522 err = PTR_ERR(master->dma_rx); 523 /* 524 * No reason to check EPROBE_DEFER here since we have already 525 * requested tx channel. 526 */ 527 dev_err(dev, "No RX DMA channel, DMA is disabled\n"); 528 goto error; 529 } 530 531 err = atmel_spi_dma_slave_config(as, &slave_config, 8); 532 if (err) 533 goto error; 534 535 dev_info(&as->pdev->dev, 536 "Using %s (tx) and %s (rx) for DMA transfers\n", 537 dma_chan_name(master->dma_tx), 538 dma_chan_name(master->dma_rx)); 539 540 return 0; 541 error: 542 if (!IS_ERR(master->dma_rx)) 543 dma_release_channel(master->dma_rx); 544 if (!IS_ERR(master->dma_tx)) 545 dma_release_channel(master->dma_tx); 546 error_clear: 547 master->dma_tx = master->dma_rx = NULL; 548 return err; 549 } 550 551 static void atmel_spi_stop_dma(struct spi_master *master) 552 { 553 if (master->dma_rx) 554 dmaengine_terminate_all(master->dma_rx); 555 if (master->dma_tx) 556 dmaengine_terminate_all(master->dma_tx); 557 } 558 559 static void atmel_spi_release_dma(struct spi_master *master) 560 { 561 if (master->dma_rx) { 562 dma_release_channel(master->dma_rx); 563 master->dma_rx = NULL; 564 } 565 if (master->dma_tx) { 566 dma_release_channel(master->dma_tx); 567 master->dma_tx = NULL; 568 } 569 } 570 571 /* This function is called by the DMA driver from tasklet context */ 572 static void dma_callback(void *data) 573 { 574 struct spi_master *master = data; 575 struct atmel_spi *as = spi_master_get_devdata(master); 576 577 if (is_vmalloc_addr(as->current_transfer->rx_buf) && 578 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 579 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf, 580 as->current_transfer->len); 581 } 582 complete(&as->xfer_completion); 583 } 584 585 /* 586 * Next transfer using PIO without FIFO. 587 */ 588 static void atmel_spi_next_xfer_single(struct spi_master *master, 589 struct spi_transfer *xfer) 590 { 591 struct atmel_spi *as = spi_master_get_devdata(master); 592 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 593 594 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n"); 595 596 /* Make sure data is not remaining in RDR */ 597 spi_readl(as, RDR); 598 while (spi_readl(as, SR) & SPI_BIT(RDRF)) { 599 spi_readl(as, RDR); 600 cpu_relax(); 601 } 602 603 if (xfer->bits_per_word > 8) 604 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos)); 605 else 606 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos)); 607 608 dev_dbg(master->dev.parent, 609 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n", 610 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 611 xfer->bits_per_word); 612 613 /* Enable relevant interrupts */ 614 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES)); 615 } 616 617 /* 618 * Next transfer using PIO with FIFO. 619 */ 620 static void atmel_spi_next_xfer_fifo(struct spi_master *master, 621 struct spi_transfer *xfer) 622 { 623 struct atmel_spi *as = spi_master_get_devdata(master); 624 u32 current_remaining_data, num_data; 625 u32 offset = xfer->len - as->current_remaining_bytes; 626 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset); 627 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset); 628 u16 td0, td1; 629 u32 fifomr; 630 631 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n"); 632 633 /* Compute the number of data to transfer in the current iteration */ 634 current_remaining_data = ((xfer->bits_per_word > 8) ? 635 ((u32)as->current_remaining_bytes >> 1) : 636 (u32)as->current_remaining_bytes); 637 num_data = min(current_remaining_data, as->fifo_size); 638 639 /* Flush RX and TX FIFOs */ 640 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR)); 641 while (spi_readl(as, FLR)) 642 cpu_relax(); 643 644 /* Set RX FIFO Threshold to the number of data to transfer */ 645 fifomr = spi_readl(as, FMR); 646 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr)); 647 648 /* Clear FIFO flags in the Status Register, especially RXFTHF */ 649 (void)spi_readl(as, SR); 650 651 /* Fill TX FIFO */ 652 while (num_data >= 2) { 653 if (xfer->bits_per_word > 8) { 654 td0 = *words++; 655 td1 = *words++; 656 } else { 657 td0 = *bytes++; 658 td1 = *bytes++; 659 } 660 661 spi_writel(as, TDR, (td1 << 16) | td0); 662 num_data -= 2; 663 } 664 665 if (num_data) { 666 if (xfer->bits_per_word > 8) 667 td0 = *words++; 668 else 669 td0 = *bytes++; 670 671 spi_writew(as, TDR, td0); 672 num_data--; 673 } 674 675 dev_dbg(master->dev.parent, 676 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n", 677 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 678 xfer->bits_per_word); 679 680 /* 681 * Enable RX FIFO Threshold Flag interrupt to be notified about 682 * transfer completion. 683 */ 684 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES)); 685 } 686 687 /* 688 * Next transfer using PIO. 689 */ 690 static void atmel_spi_next_xfer_pio(struct spi_master *master, 691 struct spi_transfer *xfer) 692 { 693 struct atmel_spi *as = spi_master_get_devdata(master); 694 695 if (as->fifo_size) 696 atmel_spi_next_xfer_fifo(master, xfer); 697 else 698 atmel_spi_next_xfer_single(master, xfer); 699 } 700 701 /* 702 * Submit next transfer for DMA. 703 */ 704 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master, 705 struct spi_transfer *xfer, 706 u32 *plen) 707 __must_hold(&as->lock) 708 { 709 struct atmel_spi *as = spi_master_get_devdata(master); 710 struct dma_chan *rxchan = master->dma_rx; 711 struct dma_chan *txchan = master->dma_tx; 712 struct dma_async_tx_descriptor *rxdesc; 713 struct dma_async_tx_descriptor *txdesc; 714 struct dma_slave_config slave_config; 715 dma_cookie_t cookie; 716 717 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n"); 718 719 /* Check that the channels are available */ 720 if (!rxchan || !txchan) 721 return -ENODEV; 722 723 /* release lock for DMA operations */ 724 atmel_spi_unlock(as); 725 726 *plen = xfer->len; 727 728 if (atmel_spi_dma_slave_config(as, &slave_config, 729 xfer->bits_per_word)) 730 goto err_exit; 731 732 /* Send both scatterlists */ 733 if (atmel_spi_is_vmalloc_xfer(xfer) && 734 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 735 rxdesc = dmaengine_prep_slave_single(rxchan, 736 as->dma_addr_rx_bbuf, 737 xfer->len, 738 DMA_DEV_TO_MEM, 739 DMA_PREP_INTERRUPT | 740 DMA_CTRL_ACK); 741 } else { 742 rxdesc = dmaengine_prep_slave_sg(rxchan, 743 xfer->rx_sg.sgl, 744 xfer->rx_sg.nents, 745 DMA_DEV_TO_MEM, 746 DMA_PREP_INTERRUPT | 747 DMA_CTRL_ACK); 748 } 749 if (!rxdesc) 750 goto err_dma; 751 752 if (atmel_spi_is_vmalloc_xfer(xfer) && 753 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 754 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len); 755 txdesc = dmaengine_prep_slave_single(txchan, 756 as->dma_addr_tx_bbuf, 757 xfer->len, DMA_MEM_TO_DEV, 758 DMA_PREP_INTERRUPT | 759 DMA_CTRL_ACK); 760 } else { 761 txdesc = dmaengine_prep_slave_sg(txchan, 762 xfer->tx_sg.sgl, 763 xfer->tx_sg.nents, 764 DMA_MEM_TO_DEV, 765 DMA_PREP_INTERRUPT | 766 DMA_CTRL_ACK); 767 } 768 if (!txdesc) 769 goto err_dma; 770 771 dev_dbg(master->dev.parent, 772 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 773 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma, 774 xfer->rx_buf, (unsigned long long)xfer->rx_dma); 775 776 /* Enable relevant interrupts */ 777 spi_writel(as, IER, SPI_BIT(OVRES)); 778 779 /* Put the callback on the RX transfer only, that should finish last */ 780 rxdesc->callback = dma_callback; 781 rxdesc->callback_param = master; 782 783 /* Submit and fire RX and TX with TX last so we're ready to read! */ 784 cookie = rxdesc->tx_submit(rxdesc); 785 if (dma_submit_error(cookie)) 786 goto err_dma; 787 cookie = txdesc->tx_submit(txdesc); 788 if (dma_submit_error(cookie)) 789 goto err_dma; 790 rxchan->device->device_issue_pending(rxchan); 791 txchan->device->device_issue_pending(txchan); 792 793 /* take back lock */ 794 atmel_spi_lock(as); 795 return 0; 796 797 err_dma: 798 spi_writel(as, IDR, SPI_BIT(OVRES)); 799 atmel_spi_stop_dma(master); 800 err_exit: 801 atmel_spi_lock(as); 802 return -ENOMEM; 803 } 804 805 static void atmel_spi_next_xfer_data(struct spi_master *master, 806 struct spi_transfer *xfer, 807 dma_addr_t *tx_dma, 808 dma_addr_t *rx_dma, 809 u32 *plen) 810 { 811 *rx_dma = xfer->rx_dma + xfer->len - *plen; 812 *tx_dma = xfer->tx_dma + xfer->len - *plen; 813 if (*plen > master->max_dma_len) 814 *plen = master->max_dma_len; 815 } 816 817 static int atmel_spi_set_xfer_speed(struct atmel_spi *as, 818 struct spi_device *spi, 819 struct spi_transfer *xfer) 820 { 821 u32 scbr, csr; 822 unsigned long bus_hz; 823 int chip_select; 824 825 if (spi->cs_gpiod) 826 chip_select = as->native_cs_for_gpio; 827 else 828 chip_select = spi->chip_select; 829 830 /* v1 chips start out at half the peripheral bus speed. */ 831 bus_hz = as->spi_clk; 832 if (!atmel_spi_is_v2(as)) 833 bus_hz /= 2; 834 835 /* 836 * Calculate the lowest divider that satisfies the 837 * constraint, assuming div32/fdiv/mbz == 0. 838 */ 839 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz); 840 841 /* 842 * If the resulting divider doesn't fit into the 843 * register bitfield, we can't satisfy the constraint. 844 */ 845 if (scbr >= (1 << SPI_SCBR_SIZE)) { 846 dev_err(&spi->dev, 847 "setup: %d Hz too slow, scbr %u; min %ld Hz\n", 848 xfer->speed_hz, scbr, bus_hz/255); 849 return -EINVAL; 850 } 851 if (scbr == 0) { 852 dev_err(&spi->dev, 853 "setup: %d Hz too high, scbr %u; max %ld Hz\n", 854 xfer->speed_hz, scbr, bus_hz); 855 return -EINVAL; 856 } 857 csr = spi_readl(as, CSR0 + 4 * chip_select); 858 csr = SPI_BFINS(SCBR, scbr, csr); 859 spi_writel(as, CSR0 + 4 * chip_select, csr); 860 xfer->effective_speed_hz = bus_hz / scbr; 861 862 return 0; 863 } 864 865 /* 866 * Submit next transfer for PDC. 867 * lock is held, spi irq is blocked 868 */ 869 static void atmel_spi_pdc_next_xfer(struct spi_master *master, 870 struct spi_message *msg, 871 struct spi_transfer *xfer) 872 { 873 struct atmel_spi *as = spi_master_get_devdata(master); 874 u32 len; 875 dma_addr_t tx_dma, rx_dma; 876 877 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 878 879 len = as->current_remaining_bytes; 880 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 881 as->current_remaining_bytes -= len; 882 883 spi_writel(as, RPR, rx_dma); 884 spi_writel(as, TPR, tx_dma); 885 886 if (msg->spi->bits_per_word > 8) 887 len >>= 1; 888 spi_writel(as, RCR, len); 889 spi_writel(as, TCR, len); 890 891 dev_dbg(&msg->spi->dev, 892 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 893 xfer, xfer->len, xfer->tx_buf, 894 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 895 (unsigned long long)xfer->rx_dma); 896 897 if (as->current_remaining_bytes) { 898 len = as->current_remaining_bytes; 899 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 900 as->current_remaining_bytes -= len; 901 902 spi_writel(as, RNPR, rx_dma); 903 spi_writel(as, TNPR, tx_dma); 904 905 if (msg->spi->bits_per_word > 8) 906 len >>= 1; 907 spi_writel(as, RNCR, len); 908 spi_writel(as, TNCR, len); 909 910 dev_dbg(&msg->spi->dev, 911 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 912 xfer, xfer->len, xfer->tx_buf, 913 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 914 (unsigned long long)xfer->rx_dma); 915 } 916 917 /* REVISIT: We're waiting for RXBUFF before we start the next 918 * transfer because we need to handle some difficult timing 919 * issues otherwise. If we wait for TXBUFE in one transfer and 920 * then starts waiting for RXBUFF in the next, it's difficult 921 * to tell the difference between the RXBUFF interrupt we're 922 * actually waiting for and the RXBUFF interrupt of the 923 * previous transfer. 924 * 925 * It should be doable, though. Just not now... 926 */ 927 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES)); 928 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); 929 } 930 931 /* 932 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: 933 * - The buffer is either valid for CPU access, else NULL 934 * - If the buffer is valid, so is its DMA address 935 * 936 * This driver manages the dma address unless message->is_dma_mapped. 937 */ 938 static int 939 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) 940 { 941 struct device *dev = &as->pdev->dev; 942 943 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; 944 if (xfer->tx_buf) { 945 /* tx_buf is a const void* where we need a void * for the dma 946 * mapping */ 947 void *nonconst_tx = (void *)xfer->tx_buf; 948 949 xfer->tx_dma = dma_map_single(dev, 950 nonconst_tx, xfer->len, 951 DMA_TO_DEVICE); 952 if (dma_mapping_error(dev, xfer->tx_dma)) 953 return -ENOMEM; 954 } 955 if (xfer->rx_buf) { 956 xfer->rx_dma = dma_map_single(dev, 957 xfer->rx_buf, xfer->len, 958 DMA_FROM_DEVICE); 959 if (dma_mapping_error(dev, xfer->rx_dma)) { 960 if (xfer->tx_buf) 961 dma_unmap_single(dev, 962 xfer->tx_dma, xfer->len, 963 DMA_TO_DEVICE); 964 return -ENOMEM; 965 } 966 } 967 return 0; 968 } 969 970 static void atmel_spi_dma_unmap_xfer(struct spi_master *master, 971 struct spi_transfer *xfer) 972 { 973 if (xfer->tx_dma != INVALID_DMA_ADDRESS) 974 dma_unmap_single(master->dev.parent, xfer->tx_dma, 975 xfer->len, DMA_TO_DEVICE); 976 if (xfer->rx_dma != INVALID_DMA_ADDRESS) 977 dma_unmap_single(master->dev.parent, xfer->rx_dma, 978 xfer->len, DMA_FROM_DEVICE); 979 } 980 981 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as) 982 { 983 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 984 } 985 986 static void 987 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer) 988 { 989 u8 *rxp; 990 u16 *rxp16; 991 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 992 993 if (xfer->bits_per_word > 8) { 994 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos); 995 *rxp16 = spi_readl(as, RDR); 996 } else { 997 rxp = ((u8 *)xfer->rx_buf) + xfer_pos; 998 *rxp = spi_readl(as, RDR); 999 } 1000 if (xfer->bits_per_word > 8) { 1001 if (as->current_remaining_bytes > 2) 1002 as->current_remaining_bytes -= 2; 1003 else 1004 as->current_remaining_bytes = 0; 1005 } else { 1006 as->current_remaining_bytes--; 1007 } 1008 } 1009 1010 static void 1011 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer) 1012 { 1013 u32 fifolr = spi_readl(as, FLR); 1014 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr); 1015 u32 offset = xfer->len - as->current_remaining_bytes; 1016 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset); 1017 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset); 1018 u16 rd; /* RD field is the lowest 16 bits of RDR */ 1019 1020 /* Update the number of remaining bytes to transfer */ 1021 num_bytes = ((xfer->bits_per_word > 8) ? 1022 (num_data << 1) : 1023 num_data); 1024 1025 if (as->current_remaining_bytes > num_bytes) 1026 as->current_remaining_bytes -= num_bytes; 1027 else 1028 as->current_remaining_bytes = 0; 1029 1030 /* Handle odd number of bytes when data are more than 8bit width */ 1031 if (xfer->bits_per_word > 8) 1032 as->current_remaining_bytes &= ~0x1; 1033 1034 /* Read data */ 1035 while (num_data) { 1036 rd = spi_readl(as, RDR); 1037 if (xfer->bits_per_word > 8) 1038 *words++ = rd; 1039 else 1040 *bytes++ = rd; 1041 num_data--; 1042 } 1043 } 1044 1045 /* Called from IRQ 1046 * 1047 * Must update "current_remaining_bytes" to keep track of data 1048 * to transfer. 1049 */ 1050 static void 1051 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer) 1052 { 1053 if (as->fifo_size) 1054 atmel_spi_pump_fifo_data(as, xfer); 1055 else 1056 atmel_spi_pump_single_data(as, xfer); 1057 } 1058 1059 /* Interrupt 1060 * 1061 * No need for locking in this Interrupt handler: done_status is the 1062 * only information modified. 1063 */ 1064 static irqreturn_t 1065 atmel_spi_pio_interrupt(int irq, void *dev_id) 1066 { 1067 struct spi_master *master = dev_id; 1068 struct atmel_spi *as = spi_master_get_devdata(master); 1069 u32 status, pending, imr; 1070 struct spi_transfer *xfer; 1071 int ret = IRQ_NONE; 1072 1073 imr = spi_readl(as, IMR); 1074 status = spi_readl(as, SR); 1075 pending = status & imr; 1076 1077 if (pending & SPI_BIT(OVRES)) { 1078 ret = IRQ_HANDLED; 1079 spi_writel(as, IDR, SPI_BIT(OVRES)); 1080 dev_warn(master->dev.parent, "overrun\n"); 1081 1082 /* 1083 * When we get an overrun, we disregard the current 1084 * transfer. Data will not be copied back from any 1085 * bounce buffer and msg->actual_len will not be 1086 * updated with the last xfer. 1087 * 1088 * We will also not process any remaning transfers in 1089 * the message. 1090 */ 1091 as->done_status = -EIO; 1092 smp_wmb(); 1093 1094 /* Clear any overrun happening while cleaning up */ 1095 spi_readl(as, SR); 1096 1097 complete(&as->xfer_completion); 1098 1099 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) { 1100 atmel_spi_lock(as); 1101 1102 if (as->current_remaining_bytes) { 1103 ret = IRQ_HANDLED; 1104 xfer = as->current_transfer; 1105 atmel_spi_pump_pio_data(as, xfer); 1106 if (!as->current_remaining_bytes) 1107 spi_writel(as, IDR, pending); 1108 1109 complete(&as->xfer_completion); 1110 } 1111 1112 atmel_spi_unlock(as); 1113 } else { 1114 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending); 1115 ret = IRQ_HANDLED; 1116 spi_writel(as, IDR, pending); 1117 } 1118 1119 return ret; 1120 } 1121 1122 static irqreturn_t 1123 atmel_spi_pdc_interrupt(int irq, void *dev_id) 1124 { 1125 struct spi_master *master = dev_id; 1126 struct atmel_spi *as = spi_master_get_devdata(master); 1127 u32 status, pending, imr; 1128 int ret = IRQ_NONE; 1129 1130 imr = spi_readl(as, IMR); 1131 status = spi_readl(as, SR); 1132 pending = status & imr; 1133 1134 if (pending & SPI_BIT(OVRES)) { 1135 1136 ret = IRQ_HANDLED; 1137 1138 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) 1139 | SPI_BIT(OVRES))); 1140 1141 /* Clear any overrun happening while cleaning up */ 1142 spi_readl(as, SR); 1143 1144 as->done_status = -EIO; 1145 1146 complete(&as->xfer_completion); 1147 1148 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { 1149 ret = IRQ_HANDLED; 1150 1151 spi_writel(as, IDR, pending); 1152 1153 complete(&as->xfer_completion); 1154 } 1155 1156 return ret; 1157 } 1158 1159 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as) 1160 { 1161 struct spi_delay *delay = &spi->word_delay; 1162 u32 value = delay->value; 1163 1164 switch (delay->unit) { 1165 case SPI_DELAY_UNIT_NSECS: 1166 value /= 1000; 1167 break; 1168 case SPI_DELAY_UNIT_USECS: 1169 break; 1170 default: 1171 return -EINVAL; 1172 } 1173 1174 return (as->spi_clk / 1000000 * value) >> 5; 1175 } 1176 1177 static void initialize_native_cs_for_gpio(struct atmel_spi *as) 1178 { 1179 int i; 1180 struct spi_master *master = platform_get_drvdata(as->pdev); 1181 1182 if (!as->native_cs_free) 1183 return; /* already initialized */ 1184 1185 if (!master->cs_gpiods) 1186 return; /* No CS GPIO */ 1187 1188 /* 1189 * On the first version of the controller (AT91RM9200), CS0 1190 * can't be used associated with GPIO 1191 */ 1192 if (atmel_spi_is_v2(as)) 1193 i = 0; 1194 else 1195 i = 1; 1196 1197 for (; i < 4; i++) 1198 if (master->cs_gpiods[i]) 1199 as->native_cs_free |= BIT(i); 1200 1201 if (as->native_cs_free) 1202 as->native_cs_for_gpio = ffs(as->native_cs_free); 1203 } 1204 1205 static int atmel_spi_setup(struct spi_device *spi) 1206 { 1207 struct atmel_spi *as; 1208 struct atmel_spi_device *asd; 1209 u32 csr; 1210 unsigned int bits = spi->bits_per_word; 1211 int chip_select; 1212 int word_delay_csr; 1213 1214 as = spi_master_get_devdata(spi->master); 1215 1216 /* see notes above re chipselect */ 1217 if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) { 1218 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n"); 1219 return -EINVAL; 1220 } 1221 1222 /* Setup() is called during spi_register_controller(aka 1223 * spi_register_master) but after all membmers of the cs_gpiod 1224 * array have been filled, so we can looked for which native 1225 * CS will be free for using with GPIO 1226 */ 1227 initialize_native_cs_for_gpio(as); 1228 1229 if (spi->cs_gpiod && as->native_cs_free) { 1230 dev_err(&spi->dev, 1231 "No native CS available to support this GPIO CS\n"); 1232 return -EBUSY; 1233 } 1234 1235 if (spi->cs_gpiod) 1236 chip_select = as->native_cs_for_gpio; 1237 else 1238 chip_select = spi->chip_select; 1239 1240 csr = SPI_BF(BITS, bits - 8); 1241 if (spi->mode & SPI_CPOL) 1242 csr |= SPI_BIT(CPOL); 1243 if (!(spi->mode & SPI_CPHA)) 1244 csr |= SPI_BIT(NCPHA); 1245 1246 if (!spi->cs_gpiod) 1247 csr |= SPI_BIT(CSAAT); 1248 csr |= SPI_BF(DLYBS, 0); 1249 1250 word_delay_csr = atmel_word_delay_csr(spi, as); 1251 if (word_delay_csr < 0) 1252 return word_delay_csr; 1253 1254 /* DLYBCT adds delays between words. This is useful for slow devices 1255 * that need a bit of time to setup the next transfer. 1256 */ 1257 csr |= SPI_BF(DLYBCT, word_delay_csr); 1258 1259 asd = spi->controller_state; 1260 if (!asd) { 1261 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); 1262 if (!asd) 1263 return -ENOMEM; 1264 1265 spi->controller_state = asd; 1266 } 1267 1268 asd->csr = csr; 1269 1270 dev_dbg(&spi->dev, 1271 "setup: bpw %u mode 0x%x -> csr%d %08x\n", 1272 bits, spi->mode, spi->chip_select, csr); 1273 1274 if (!atmel_spi_is_v2(as)) 1275 spi_writel(as, CSR0 + 4 * chip_select, csr); 1276 1277 return 0; 1278 } 1279 1280 static int atmel_spi_one_transfer(struct spi_master *master, 1281 struct spi_message *msg, 1282 struct spi_transfer *xfer) 1283 { 1284 struct atmel_spi *as; 1285 struct spi_device *spi = msg->spi; 1286 u8 bits; 1287 u32 len; 1288 struct atmel_spi_device *asd; 1289 int timeout; 1290 int ret; 1291 unsigned long dma_timeout; 1292 1293 as = spi_master_get_devdata(master); 1294 1295 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1296 dev_dbg(&spi->dev, "missing rx or tx buf\n"); 1297 return -EINVAL; 1298 } 1299 1300 asd = spi->controller_state; 1301 bits = (asd->csr >> 4) & 0xf; 1302 if (bits != xfer->bits_per_word - 8) { 1303 dev_dbg(&spi->dev, 1304 "you can't yet change bits_per_word in transfers\n"); 1305 return -ENOPROTOOPT; 1306 } 1307 1308 /* 1309 * DMA map early, for performance (empties dcache ASAP) and 1310 * better fault reporting. 1311 */ 1312 if ((!msg->is_dma_mapped) 1313 && as->use_pdc) { 1314 if (atmel_spi_dma_map_xfer(as, xfer) < 0) 1315 return -ENOMEM; 1316 } 1317 1318 atmel_spi_set_xfer_speed(as, msg->spi, xfer); 1319 1320 as->done_status = 0; 1321 as->current_transfer = xfer; 1322 as->current_remaining_bytes = xfer->len; 1323 while (as->current_remaining_bytes) { 1324 reinit_completion(&as->xfer_completion); 1325 1326 if (as->use_pdc) { 1327 atmel_spi_pdc_next_xfer(master, msg, xfer); 1328 } else if (atmel_spi_use_dma(as, xfer)) { 1329 len = as->current_remaining_bytes; 1330 ret = atmel_spi_next_xfer_dma_submit(master, 1331 xfer, &len); 1332 if (ret) { 1333 dev_err(&spi->dev, 1334 "unable to use DMA, fallback to PIO\n"); 1335 atmel_spi_next_xfer_pio(master, xfer); 1336 } else { 1337 as->current_remaining_bytes -= len; 1338 if (as->current_remaining_bytes < 0) 1339 as->current_remaining_bytes = 0; 1340 } 1341 } else { 1342 atmel_spi_next_xfer_pio(master, xfer); 1343 } 1344 1345 /* interrupts are disabled, so free the lock for schedule */ 1346 atmel_spi_unlock(as); 1347 dma_timeout = wait_for_completion_timeout(&as->xfer_completion, 1348 SPI_DMA_TIMEOUT); 1349 atmel_spi_lock(as); 1350 if (WARN_ON(dma_timeout == 0)) { 1351 dev_err(&spi->dev, "spi transfer timeout\n"); 1352 as->done_status = -EIO; 1353 } 1354 1355 if (as->done_status) 1356 break; 1357 } 1358 1359 if (as->done_status) { 1360 if (as->use_pdc) { 1361 dev_warn(master->dev.parent, 1362 "overrun (%u/%u remaining)\n", 1363 spi_readl(as, TCR), spi_readl(as, RCR)); 1364 1365 /* 1366 * Clean up DMA registers and make sure the data 1367 * registers are empty. 1368 */ 1369 spi_writel(as, RNCR, 0); 1370 spi_writel(as, TNCR, 0); 1371 spi_writel(as, RCR, 0); 1372 spi_writel(as, TCR, 0); 1373 for (timeout = 1000; timeout; timeout--) 1374 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) 1375 break; 1376 if (!timeout) 1377 dev_warn(master->dev.parent, 1378 "timeout waiting for TXEMPTY"); 1379 while (spi_readl(as, SR) & SPI_BIT(RDRF)) 1380 spi_readl(as, RDR); 1381 1382 /* Clear any overrun happening while cleaning up */ 1383 spi_readl(as, SR); 1384 1385 } else if (atmel_spi_use_dma(as, xfer)) { 1386 atmel_spi_stop_dma(master); 1387 } 1388 1389 if (!msg->is_dma_mapped 1390 && as->use_pdc) 1391 atmel_spi_dma_unmap_xfer(master, xfer); 1392 1393 return 0; 1394 1395 } else { 1396 /* only update length if no error */ 1397 msg->actual_length += xfer->len; 1398 } 1399 1400 if (!msg->is_dma_mapped 1401 && as->use_pdc) 1402 atmel_spi_dma_unmap_xfer(master, xfer); 1403 1404 spi_transfer_delay_exec(xfer); 1405 1406 if (xfer->cs_change) { 1407 if (list_is_last(&xfer->transfer_list, 1408 &msg->transfers)) { 1409 as->keep_cs = true; 1410 } else { 1411 cs_deactivate(as, msg->spi); 1412 udelay(10); 1413 cs_activate(as, msg->spi); 1414 } 1415 } 1416 1417 return 0; 1418 } 1419 1420 static int atmel_spi_transfer_one_message(struct spi_master *master, 1421 struct spi_message *msg) 1422 { 1423 struct atmel_spi *as; 1424 struct spi_transfer *xfer; 1425 struct spi_device *spi = msg->spi; 1426 int ret = 0; 1427 1428 as = spi_master_get_devdata(master); 1429 1430 dev_dbg(&spi->dev, "new message %p submitted for %s\n", 1431 msg, dev_name(&spi->dev)); 1432 1433 atmel_spi_lock(as); 1434 cs_activate(as, spi); 1435 1436 as->keep_cs = false; 1437 1438 msg->status = 0; 1439 msg->actual_length = 0; 1440 1441 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1442 trace_spi_transfer_start(msg, xfer); 1443 1444 ret = atmel_spi_one_transfer(master, msg, xfer); 1445 if (ret) 1446 goto msg_done; 1447 1448 trace_spi_transfer_stop(msg, xfer); 1449 } 1450 1451 if (as->use_pdc) 1452 atmel_spi_disable_pdc_transfer(as); 1453 1454 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1455 dev_dbg(&spi->dev, 1456 " xfer %p: len %u tx %p/%pad rx %p/%pad\n", 1457 xfer, xfer->len, 1458 xfer->tx_buf, &xfer->tx_dma, 1459 xfer->rx_buf, &xfer->rx_dma); 1460 } 1461 1462 msg_done: 1463 if (!as->keep_cs) 1464 cs_deactivate(as, msg->spi); 1465 1466 atmel_spi_unlock(as); 1467 1468 msg->status = as->done_status; 1469 spi_finalize_current_message(spi->master); 1470 1471 return ret; 1472 } 1473 1474 static void atmel_spi_cleanup(struct spi_device *spi) 1475 { 1476 struct atmel_spi_device *asd = spi->controller_state; 1477 1478 if (!asd) 1479 return; 1480 1481 spi->controller_state = NULL; 1482 kfree(asd); 1483 } 1484 1485 static inline unsigned int atmel_get_version(struct atmel_spi *as) 1486 { 1487 return spi_readl(as, VERSION) & 0x00000fff; 1488 } 1489 1490 static void atmel_get_caps(struct atmel_spi *as) 1491 { 1492 unsigned int version; 1493 1494 version = atmel_get_version(as); 1495 1496 as->caps.is_spi2 = version > 0x121; 1497 as->caps.has_wdrbt = version >= 0x210; 1498 as->caps.has_dma_support = version >= 0x212; 1499 as->caps.has_pdc_support = version < 0x212; 1500 } 1501 1502 static void atmel_spi_init(struct atmel_spi *as) 1503 { 1504 spi_writel(as, CR, SPI_BIT(SWRST)); 1505 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1506 1507 /* It is recommended to enable FIFOs first thing after reset */ 1508 if (as->fifo_size) 1509 spi_writel(as, CR, SPI_BIT(FIFOEN)); 1510 1511 if (as->caps.has_wdrbt) { 1512 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS) 1513 | SPI_BIT(MSTR)); 1514 } else { 1515 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); 1516 } 1517 1518 if (as->use_pdc) 1519 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1520 spi_writel(as, CR, SPI_BIT(SPIEN)); 1521 } 1522 1523 static int atmel_spi_probe(struct platform_device *pdev) 1524 { 1525 struct resource *regs; 1526 int irq; 1527 struct clk *clk; 1528 int ret; 1529 struct spi_master *master; 1530 struct atmel_spi *as; 1531 1532 /* Select default pin state */ 1533 pinctrl_pm_select_default_state(&pdev->dev); 1534 1535 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1536 if (!regs) 1537 return -ENXIO; 1538 1539 irq = platform_get_irq(pdev, 0); 1540 if (irq < 0) 1541 return irq; 1542 1543 clk = devm_clk_get(&pdev->dev, "spi_clk"); 1544 if (IS_ERR(clk)) 1545 return PTR_ERR(clk); 1546 1547 /* setup spi core then atmel-specific driver state */ 1548 master = spi_alloc_master(&pdev->dev, sizeof(*as)); 1549 if (!master) 1550 return -ENOMEM; 1551 1552 /* the spi->mode bits understood by this driver: */ 1553 master->use_gpio_descriptors = true; 1554 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1555 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16); 1556 master->dev.of_node = pdev->dev.of_node; 1557 master->bus_num = pdev->id; 1558 master->num_chipselect = 4; 1559 master->setup = atmel_spi_setup; 1560 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX); 1561 master->transfer_one_message = atmel_spi_transfer_one_message; 1562 master->cleanup = atmel_spi_cleanup; 1563 master->auto_runtime_pm = true; 1564 master->max_dma_len = SPI_MAX_DMA_XFER; 1565 master->can_dma = atmel_spi_can_dma; 1566 platform_set_drvdata(pdev, master); 1567 1568 as = spi_master_get_devdata(master); 1569 1570 spin_lock_init(&as->lock); 1571 1572 as->pdev = pdev; 1573 as->regs = devm_ioremap_resource(&pdev->dev, regs); 1574 if (IS_ERR(as->regs)) { 1575 ret = PTR_ERR(as->regs); 1576 goto out_unmap_regs; 1577 } 1578 as->phybase = regs->start; 1579 as->irq = irq; 1580 as->clk = clk; 1581 1582 init_completion(&as->xfer_completion); 1583 1584 atmel_get_caps(as); 1585 1586 as->use_dma = false; 1587 as->use_pdc = false; 1588 if (as->caps.has_dma_support) { 1589 ret = atmel_spi_configure_dma(master, as); 1590 if (ret == 0) { 1591 as->use_dma = true; 1592 } else if (ret == -EPROBE_DEFER) { 1593 return ret; 1594 } 1595 } else if (as->caps.has_pdc_support) { 1596 as->use_pdc = true; 1597 } 1598 1599 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1600 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev, 1601 SPI_MAX_DMA_XFER, 1602 &as->dma_addr_rx_bbuf, 1603 GFP_KERNEL | GFP_DMA); 1604 if (!as->addr_rx_bbuf) { 1605 as->use_dma = false; 1606 } else { 1607 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev, 1608 SPI_MAX_DMA_XFER, 1609 &as->dma_addr_tx_bbuf, 1610 GFP_KERNEL | GFP_DMA); 1611 if (!as->addr_tx_bbuf) { 1612 as->use_dma = false; 1613 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1614 as->addr_rx_bbuf, 1615 as->dma_addr_rx_bbuf); 1616 } 1617 } 1618 if (!as->use_dma) 1619 dev_info(master->dev.parent, 1620 " can not allocate dma coherent memory\n"); 1621 } 1622 1623 if (as->caps.has_dma_support && !as->use_dma) 1624 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n"); 1625 1626 if (as->use_pdc) { 1627 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt, 1628 0, dev_name(&pdev->dev), master); 1629 } else { 1630 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt, 1631 0, dev_name(&pdev->dev), master); 1632 } 1633 if (ret) 1634 goto out_unmap_regs; 1635 1636 /* Initialize the hardware */ 1637 ret = clk_prepare_enable(clk); 1638 if (ret) 1639 goto out_free_irq; 1640 1641 as->spi_clk = clk_get_rate(clk); 1642 1643 as->fifo_size = 0; 1644 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", 1645 &as->fifo_size)) { 1646 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size); 1647 } 1648 1649 atmel_spi_init(as); 1650 1651 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT); 1652 pm_runtime_use_autosuspend(&pdev->dev); 1653 pm_runtime_set_active(&pdev->dev); 1654 pm_runtime_enable(&pdev->dev); 1655 1656 ret = devm_spi_register_master(&pdev->dev, master); 1657 if (ret) 1658 goto out_free_dma; 1659 1660 /* go! */ 1661 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n", 1662 atmel_get_version(as), (unsigned long)regs->start, 1663 irq); 1664 1665 return 0; 1666 1667 out_free_dma: 1668 pm_runtime_disable(&pdev->dev); 1669 pm_runtime_set_suspended(&pdev->dev); 1670 1671 if (as->use_dma) 1672 atmel_spi_release_dma(master); 1673 1674 spi_writel(as, CR, SPI_BIT(SWRST)); 1675 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1676 clk_disable_unprepare(clk); 1677 out_free_irq: 1678 out_unmap_regs: 1679 spi_master_put(master); 1680 return ret; 1681 } 1682 1683 static int atmel_spi_remove(struct platform_device *pdev) 1684 { 1685 struct spi_master *master = platform_get_drvdata(pdev); 1686 struct atmel_spi *as = spi_master_get_devdata(master); 1687 1688 pm_runtime_get_sync(&pdev->dev); 1689 1690 /* reset the hardware and block queue progress */ 1691 if (as->use_dma) { 1692 atmel_spi_stop_dma(master); 1693 atmel_spi_release_dma(master); 1694 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1695 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1696 as->addr_tx_bbuf, 1697 as->dma_addr_tx_bbuf); 1698 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1699 as->addr_rx_bbuf, 1700 as->dma_addr_rx_bbuf); 1701 } 1702 } 1703 1704 spin_lock_irq(&as->lock); 1705 spi_writel(as, CR, SPI_BIT(SWRST)); 1706 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1707 spi_readl(as, SR); 1708 spin_unlock_irq(&as->lock); 1709 1710 clk_disable_unprepare(as->clk); 1711 1712 pm_runtime_put_noidle(&pdev->dev); 1713 pm_runtime_disable(&pdev->dev); 1714 1715 return 0; 1716 } 1717 1718 #ifdef CONFIG_PM 1719 static int atmel_spi_runtime_suspend(struct device *dev) 1720 { 1721 struct spi_master *master = dev_get_drvdata(dev); 1722 struct atmel_spi *as = spi_master_get_devdata(master); 1723 1724 clk_disable_unprepare(as->clk); 1725 pinctrl_pm_select_sleep_state(dev); 1726 1727 return 0; 1728 } 1729 1730 static int atmel_spi_runtime_resume(struct device *dev) 1731 { 1732 struct spi_master *master = dev_get_drvdata(dev); 1733 struct atmel_spi *as = spi_master_get_devdata(master); 1734 1735 pinctrl_pm_select_default_state(dev); 1736 1737 return clk_prepare_enable(as->clk); 1738 } 1739 1740 #ifdef CONFIG_PM_SLEEP 1741 static int atmel_spi_suspend(struct device *dev) 1742 { 1743 struct spi_master *master = dev_get_drvdata(dev); 1744 int ret; 1745 1746 /* Stop the queue running */ 1747 ret = spi_master_suspend(master); 1748 if (ret) 1749 return ret; 1750 1751 if (!pm_runtime_suspended(dev)) 1752 atmel_spi_runtime_suspend(dev); 1753 1754 return 0; 1755 } 1756 1757 static int atmel_spi_resume(struct device *dev) 1758 { 1759 struct spi_master *master = dev_get_drvdata(dev); 1760 struct atmel_spi *as = spi_master_get_devdata(master); 1761 int ret; 1762 1763 ret = clk_prepare_enable(as->clk); 1764 if (ret) 1765 return ret; 1766 1767 atmel_spi_init(as); 1768 1769 clk_disable_unprepare(as->clk); 1770 1771 if (!pm_runtime_suspended(dev)) { 1772 ret = atmel_spi_runtime_resume(dev); 1773 if (ret) 1774 return ret; 1775 } 1776 1777 /* Start the queue running */ 1778 return spi_master_resume(master); 1779 } 1780 #endif 1781 1782 static const struct dev_pm_ops atmel_spi_pm_ops = { 1783 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume) 1784 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend, 1785 atmel_spi_runtime_resume, NULL) 1786 }; 1787 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops) 1788 #else 1789 #define ATMEL_SPI_PM_OPS NULL 1790 #endif 1791 1792 static const struct of_device_id atmel_spi_dt_ids[] = { 1793 { .compatible = "atmel,at91rm9200-spi" }, 1794 { /* sentinel */ } 1795 }; 1796 1797 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids); 1798 1799 static struct platform_driver atmel_spi_driver = { 1800 .driver = { 1801 .name = "atmel_spi", 1802 .pm = ATMEL_SPI_PM_OPS, 1803 .of_match_table = atmel_spi_dt_ids, 1804 }, 1805 .probe = atmel_spi_probe, 1806 .remove = atmel_spi_remove, 1807 }; 1808 module_platform_driver(atmel_spi_driver); 1809 1810 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); 1811 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 1812 MODULE_LICENSE("GPL"); 1813 MODULE_ALIAS("platform:atmel_spi"); 1814