1 /* 2 * Driver for Atmel AT32 and AT91 SPI Controllers 3 * 4 * Copyright (C) 2006 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/clk.h> 13 #include <linux/module.h> 14 #include <linux/platform_device.h> 15 #include <linux/delay.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/dmaengine.h> 18 #include <linux/err.h> 19 #include <linux/interrupt.h> 20 #include <linux/spi/spi.h> 21 #include <linux/slab.h> 22 #include <linux/platform_data/dma-atmel.h> 23 #include <linux/of.h> 24 25 #include <linux/io.h> 26 #include <linux/gpio.h> 27 #include <linux/of_gpio.h> 28 #include <linux/pinctrl/consumer.h> 29 #include <linux/pm_runtime.h> 30 31 /* SPI register offsets */ 32 #define SPI_CR 0x0000 33 #define SPI_MR 0x0004 34 #define SPI_RDR 0x0008 35 #define SPI_TDR 0x000c 36 #define SPI_SR 0x0010 37 #define SPI_IER 0x0014 38 #define SPI_IDR 0x0018 39 #define SPI_IMR 0x001c 40 #define SPI_CSR0 0x0030 41 #define SPI_CSR1 0x0034 42 #define SPI_CSR2 0x0038 43 #define SPI_CSR3 0x003c 44 #define SPI_FMR 0x0040 45 #define SPI_FLR 0x0044 46 #define SPI_VERSION 0x00fc 47 #define SPI_RPR 0x0100 48 #define SPI_RCR 0x0104 49 #define SPI_TPR 0x0108 50 #define SPI_TCR 0x010c 51 #define SPI_RNPR 0x0110 52 #define SPI_RNCR 0x0114 53 #define SPI_TNPR 0x0118 54 #define SPI_TNCR 0x011c 55 #define SPI_PTCR 0x0120 56 #define SPI_PTSR 0x0124 57 58 /* Bitfields in CR */ 59 #define SPI_SPIEN_OFFSET 0 60 #define SPI_SPIEN_SIZE 1 61 #define SPI_SPIDIS_OFFSET 1 62 #define SPI_SPIDIS_SIZE 1 63 #define SPI_SWRST_OFFSET 7 64 #define SPI_SWRST_SIZE 1 65 #define SPI_LASTXFER_OFFSET 24 66 #define SPI_LASTXFER_SIZE 1 67 #define SPI_TXFCLR_OFFSET 16 68 #define SPI_TXFCLR_SIZE 1 69 #define SPI_RXFCLR_OFFSET 17 70 #define SPI_RXFCLR_SIZE 1 71 #define SPI_FIFOEN_OFFSET 30 72 #define SPI_FIFOEN_SIZE 1 73 #define SPI_FIFODIS_OFFSET 31 74 #define SPI_FIFODIS_SIZE 1 75 76 /* Bitfields in MR */ 77 #define SPI_MSTR_OFFSET 0 78 #define SPI_MSTR_SIZE 1 79 #define SPI_PS_OFFSET 1 80 #define SPI_PS_SIZE 1 81 #define SPI_PCSDEC_OFFSET 2 82 #define SPI_PCSDEC_SIZE 1 83 #define SPI_FDIV_OFFSET 3 84 #define SPI_FDIV_SIZE 1 85 #define SPI_MODFDIS_OFFSET 4 86 #define SPI_MODFDIS_SIZE 1 87 #define SPI_WDRBT_OFFSET 5 88 #define SPI_WDRBT_SIZE 1 89 #define SPI_LLB_OFFSET 7 90 #define SPI_LLB_SIZE 1 91 #define SPI_PCS_OFFSET 16 92 #define SPI_PCS_SIZE 4 93 #define SPI_DLYBCS_OFFSET 24 94 #define SPI_DLYBCS_SIZE 8 95 96 /* Bitfields in RDR */ 97 #define SPI_RD_OFFSET 0 98 #define SPI_RD_SIZE 16 99 100 /* Bitfields in TDR */ 101 #define SPI_TD_OFFSET 0 102 #define SPI_TD_SIZE 16 103 104 /* Bitfields in SR */ 105 #define SPI_RDRF_OFFSET 0 106 #define SPI_RDRF_SIZE 1 107 #define SPI_TDRE_OFFSET 1 108 #define SPI_TDRE_SIZE 1 109 #define SPI_MODF_OFFSET 2 110 #define SPI_MODF_SIZE 1 111 #define SPI_OVRES_OFFSET 3 112 #define SPI_OVRES_SIZE 1 113 #define SPI_ENDRX_OFFSET 4 114 #define SPI_ENDRX_SIZE 1 115 #define SPI_ENDTX_OFFSET 5 116 #define SPI_ENDTX_SIZE 1 117 #define SPI_RXBUFF_OFFSET 6 118 #define SPI_RXBUFF_SIZE 1 119 #define SPI_TXBUFE_OFFSET 7 120 #define SPI_TXBUFE_SIZE 1 121 #define SPI_NSSR_OFFSET 8 122 #define SPI_NSSR_SIZE 1 123 #define SPI_TXEMPTY_OFFSET 9 124 #define SPI_TXEMPTY_SIZE 1 125 #define SPI_SPIENS_OFFSET 16 126 #define SPI_SPIENS_SIZE 1 127 #define SPI_TXFEF_OFFSET 24 128 #define SPI_TXFEF_SIZE 1 129 #define SPI_TXFFF_OFFSET 25 130 #define SPI_TXFFF_SIZE 1 131 #define SPI_TXFTHF_OFFSET 26 132 #define SPI_TXFTHF_SIZE 1 133 #define SPI_RXFEF_OFFSET 27 134 #define SPI_RXFEF_SIZE 1 135 #define SPI_RXFFF_OFFSET 28 136 #define SPI_RXFFF_SIZE 1 137 #define SPI_RXFTHF_OFFSET 29 138 #define SPI_RXFTHF_SIZE 1 139 #define SPI_TXFPTEF_OFFSET 30 140 #define SPI_TXFPTEF_SIZE 1 141 #define SPI_RXFPTEF_OFFSET 31 142 #define SPI_RXFPTEF_SIZE 1 143 144 /* Bitfields in CSR0 */ 145 #define SPI_CPOL_OFFSET 0 146 #define SPI_CPOL_SIZE 1 147 #define SPI_NCPHA_OFFSET 1 148 #define SPI_NCPHA_SIZE 1 149 #define SPI_CSAAT_OFFSET 3 150 #define SPI_CSAAT_SIZE 1 151 #define SPI_BITS_OFFSET 4 152 #define SPI_BITS_SIZE 4 153 #define SPI_SCBR_OFFSET 8 154 #define SPI_SCBR_SIZE 8 155 #define SPI_DLYBS_OFFSET 16 156 #define SPI_DLYBS_SIZE 8 157 #define SPI_DLYBCT_OFFSET 24 158 #define SPI_DLYBCT_SIZE 8 159 160 /* Bitfields in RCR */ 161 #define SPI_RXCTR_OFFSET 0 162 #define SPI_RXCTR_SIZE 16 163 164 /* Bitfields in TCR */ 165 #define SPI_TXCTR_OFFSET 0 166 #define SPI_TXCTR_SIZE 16 167 168 /* Bitfields in RNCR */ 169 #define SPI_RXNCR_OFFSET 0 170 #define SPI_RXNCR_SIZE 16 171 172 /* Bitfields in TNCR */ 173 #define SPI_TXNCR_OFFSET 0 174 #define SPI_TXNCR_SIZE 16 175 176 /* Bitfields in PTCR */ 177 #define SPI_RXTEN_OFFSET 0 178 #define SPI_RXTEN_SIZE 1 179 #define SPI_RXTDIS_OFFSET 1 180 #define SPI_RXTDIS_SIZE 1 181 #define SPI_TXTEN_OFFSET 8 182 #define SPI_TXTEN_SIZE 1 183 #define SPI_TXTDIS_OFFSET 9 184 #define SPI_TXTDIS_SIZE 1 185 186 /* Bitfields in FMR */ 187 #define SPI_TXRDYM_OFFSET 0 188 #define SPI_TXRDYM_SIZE 2 189 #define SPI_RXRDYM_OFFSET 4 190 #define SPI_RXRDYM_SIZE 2 191 #define SPI_TXFTHRES_OFFSET 16 192 #define SPI_TXFTHRES_SIZE 6 193 #define SPI_RXFTHRES_OFFSET 24 194 #define SPI_RXFTHRES_SIZE 6 195 196 /* Bitfields in FLR */ 197 #define SPI_TXFL_OFFSET 0 198 #define SPI_TXFL_SIZE 6 199 #define SPI_RXFL_OFFSET 16 200 #define SPI_RXFL_SIZE 6 201 202 /* Constants for BITS */ 203 #define SPI_BITS_8_BPT 0 204 #define SPI_BITS_9_BPT 1 205 #define SPI_BITS_10_BPT 2 206 #define SPI_BITS_11_BPT 3 207 #define SPI_BITS_12_BPT 4 208 #define SPI_BITS_13_BPT 5 209 #define SPI_BITS_14_BPT 6 210 #define SPI_BITS_15_BPT 7 211 #define SPI_BITS_16_BPT 8 212 #define SPI_ONE_DATA 0 213 #define SPI_TWO_DATA 1 214 #define SPI_FOUR_DATA 2 215 216 /* Bit manipulation macros */ 217 #define SPI_BIT(name) \ 218 (1 << SPI_##name##_OFFSET) 219 #define SPI_BF(name, value) \ 220 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) 221 #define SPI_BFEXT(name, value) \ 222 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) 223 #define SPI_BFINS(name, value, old) \ 224 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ 225 | SPI_BF(name, value)) 226 227 /* Register access macros */ 228 #ifdef CONFIG_AVR32 229 #define spi_readl(port, reg) \ 230 __raw_readl((port)->regs + SPI_##reg) 231 #define spi_writel(port, reg, value) \ 232 __raw_writel((value), (port)->regs + SPI_##reg) 233 234 #define spi_readw(port, reg) \ 235 __raw_readw((port)->regs + SPI_##reg) 236 #define spi_writew(port, reg, value) \ 237 __raw_writew((value), (port)->regs + SPI_##reg) 238 239 #define spi_readb(port, reg) \ 240 __raw_readb((port)->regs + SPI_##reg) 241 #define spi_writeb(port, reg, value) \ 242 __raw_writeb((value), (port)->regs + SPI_##reg) 243 #else 244 #define spi_readl(port, reg) \ 245 readl_relaxed((port)->regs + SPI_##reg) 246 #define spi_writel(port, reg, value) \ 247 writel_relaxed((value), (port)->regs + SPI_##reg) 248 249 #define spi_readw(port, reg) \ 250 readw_relaxed((port)->regs + SPI_##reg) 251 #define spi_writew(port, reg, value) \ 252 writew_relaxed((value), (port)->regs + SPI_##reg) 253 254 #define spi_readb(port, reg) \ 255 readb_relaxed((port)->regs + SPI_##reg) 256 #define spi_writeb(port, reg, value) \ 257 writeb_relaxed((value), (port)->regs + SPI_##reg) 258 #endif 259 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 260 * cache operations; better heuristics consider wordsize and bitrate. 261 */ 262 #define DMA_MIN_BYTES 16 263 264 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) 265 266 #define AUTOSUSPEND_TIMEOUT 2000 267 268 struct atmel_spi_caps { 269 bool is_spi2; 270 bool has_wdrbt; 271 bool has_dma_support; 272 bool has_pdc_support; 273 }; 274 275 /* 276 * The core SPI transfer engine just talks to a register bank to set up 277 * DMA transfers; transfer queue progress is driven by IRQs. The clock 278 * framework provides the base clock, subdivided for each spi_device. 279 */ 280 struct atmel_spi { 281 spinlock_t lock; 282 unsigned long flags; 283 284 phys_addr_t phybase; 285 void __iomem *regs; 286 int irq; 287 struct clk *clk; 288 struct platform_device *pdev; 289 unsigned long spi_clk; 290 291 struct spi_transfer *current_transfer; 292 int current_remaining_bytes; 293 int done_status; 294 dma_addr_t dma_addr_rx_bbuf; 295 dma_addr_t dma_addr_tx_bbuf; 296 void *addr_rx_bbuf; 297 void *addr_tx_bbuf; 298 299 struct completion xfer_completion; 300 301 struct atmel_spi_caps caps; 302 303 bool use_dma; 304 bool use_pdc; 305 bool use_cs_gpios; 306 307 bool keep_cs; 308 bool cs_active; 309 310 u32 fifo_size; 311 }; 312 313 /* Controller-specific per-slave state */ 314 struct atmel_spi_device { 315 unsigned int npcs_pin; 316 u32 csr; 317 }; 318 319 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */ 320 #define INVALID_DMA_ADDRESS 0xffffffff 321 322 /* 323 * Version 2 of the SPI controller has 324 * - CR.LASTXFER 325 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) 326 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) 327 * - SPI_CSRx.CSAAT 328 * - SPI_CSRx.SBCR allows faster clocking 329 */ 330 static bool atmel_spi_is_v2(struct atmel_spi *as) 331 { 332 return as->caps.is_spi2; 333 } 334 335 /* 336 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby 337 * they assume that spi slave device state will not change on deselect, so 338 * that automagic deselection is OK. ("NPCSx rises if no data is to be 339 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer 340 * controllers have CSAAT and friends. 341 * 342 * Since the CSAAT functionality is a bit weird on newer controllers as 343 * well, we use GPIO to control nCSx pins on all controllers, updating 344 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us 345 * support active-high chipselects despite the controller's belief that 346 * only active-low devices/systems exists. 347 * 348 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work 349 * right when driven with GPIO. ("Mode Fault does not allow more than one 350 * Master on Chip Select 0.") No workaround exists for that ... so for 351 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, 352 * and (c) will trigger that first erratum in some cases. 353 */ 354 355 static void cs_activate(struct atmel_spi *as, struct spi_device *spi) 356 { 357 struct atmel_spi_device *asd = spi->controller_state; 358 unsigned active = spi->mode & SPI_CS_HIGH; 359 u32 mr; 360 361 if (atmel_spi_is_v2(as)) { 362 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr); 363 /* For the low SPI version, there is a issue that PDC transfer 364 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS 365 */ 366 spi_writel(as, CSR0, asd->csr); 367 if (as->caps.has_wdrbt) { 368 spi_writel(as, MR, 369 SPI_BF(PCS, ~(0x01 << spi->chip_select)) 370 | SPI_BIT(WDRBT) 371 | SPI_BIT(MODFDIS) 372 | SPI_BIT(MSTR)); 373 } else { 374 spi_writel(as, MR, 375 SPI_BF(PCS, ~(0x01 << spi->chip_select)) 376 | SPI_BIT(MODFDIS) 377 | SPI_BIT(MSTR)); 378 } 379 380 mr = spi_readl(as, MR); 381 if (as->use_cs_gpios) 382 gpio_set_value(asd->npcs_pin, active); 383 } else { 384 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; 385 int i; 386 u32 csr; 387 388 /* Make sure clock polarity is correct */ 389 for (i = 0; i < spi->master->num_chipselect; i++) { 390 csr = spi_readl(as, CSR0 + 4 * i); 391 if ((csr ^ cpol) & SPI_BIT(CPOL)) 392 spi_writel(as, CSR0 + 4 * i, 393 csr ^ SPI_BIT(CPOL)); 394 } 395 396 mr = spi_readl(as, MR); 397 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr); 398 if (as->use_cs_gpios && spi->chip_select != 0) 399 gpio_set_value(asd->npcs_pin, active); 400 spi_writel(as, MR, mr); 401 } 402 403 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n", 404 asd->npcs_pin, active ? " (high)" : "", 405 mr); 406 } 407 408 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) 409 { 410 struct atmel_spi_device *asd = spi->controller_state; 411 unsigned active = spi->mode & SPI_CS_HIGH; 412 u32 mr; 413 414 /* only deactivate *this* device; sometimes transfers to 415 * another device may be active when this routine is called. 416 */ 417 mr = spi_readl(as, MR); 418 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) { 419 mr = SPI_BFINS(PCS, 0xf, mr); 420 spi_writel(as, MR, mr); 421 } 422 423 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n", 424 asd->npcs_pin, active ? " (low)" : "", 425 mr); 426 427 if (!as->use_cs_gpios) 428 spi_writel(as, CR, SPI_BIT(LASTXFER)); 429 else if (atmel_spi_is_v2(as) || spi->chip_select != 0) 430 gpio_set_value(asd->npcs_pin, !active); 431 } 432 433 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock) 434 { 435 spin_lock_irqsave(&as->lock, as->flags); 436 } 437 438 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock) 439 { 440 spin_unlock_irqrestore(&as->lock, as->flags); 441 } 442 443 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer) 444 { 445 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf); 446 } 447 448 static inline bool atmel_spi_use_dma(struct atmel_spi *as, 449 struct spi_transfer *xfer) 450 { 451 return as->use_dma && xfer->len >= DMA_MIN_BYTES; 452 } 453 454 static bool atmel_spi_can_dma(struct spi_master *master, 455 struct spi_device *spi, 456 struct spi_transfer *xfer) 457 { 458 struct atmel_spi *as = spi_master_get_devdata(master); 459 460 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) 461 return atmel_spi_use_dma(as, xfer) && 462 !atmel_spi_is_vmalloc_xfer(xfer); 463 else 464 return atmel_spi_use_dma(as, xfer); 465 466 } 467 468 static int atmel_spi_dma_slave_config(struct atmel_spi *as, 469 struct dma_slave_config *slave_config, 470 u8 bits_per_word) 471 { 472 struct spi_master *master = platform_get_drvdata(as->pdev); 473 int err = 0; 474 475 if (bits_per_word > 8) { 476 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 477 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 478 } else { 479 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 480 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 481 } 482 483 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR; 484 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR; 485 slave_config->src_maxburst = 1; 486 slave_config->dst_maxburst = 1; 487 slave_config->device_fc = false; 488 489 /* 490 * This driver uses fixed peripheral select mode (PS bit set to '0' in 491 * the Mode Register). 492 * So according to the datasheet, when FIFOs are available (and 493 * enabled), the Transmit FIFO operates in Multiple Data Mode. 494 * In this mode, up to 2 data, not 4, can be written into the Transmit 495 * Data Register in a single access. 496 * However, the first data has to be written into the lowest 16 bits and 497 * the second data into the highest 16 bits of the Transmit 498 * Data Register. For 8bit data (the most frequent case), it would 499 * require to rework tx_buf so each data would actualy fit 16 bits. 500 * So we'd rather write only one data at the time. Hence the transmit 501 * path works the same whether FIFOs are available (and enabled) or not. 502 */ 503 slave_config->direction = DMA_MEM_TO_DEV; 504 if (dmaengine_slave_config(master->dma_tx, slave_config)) { 505 dev_err(&as->pdev->dev, 506 "failed to configure tx dma channel\n"); 507 err = -EINVAL; 508 } 509 510 /* 511 * This driver configures the spi controller for master mode (MSTR bit 512 * set to '1' in the Mode Register). 513 * So according to the datasheet, when FIFOs are available (and 514 * enabled), the Receive FIFO operates in Single Data Mode. 515 * So the receive path works the same whether FIFOs are available (and 516 * enabled) or not. 517 */ 518 slave_config->direction = DMA_DEV_TO_MEM; 519 if (dmaengine_slave_config(master->dma_rx, slave_config)) { 520 dev_err(&as->pdev->dev, 521 "failed to configure rx dma channel\n"); 522 err = -EINVAL; 523 } 524 525 return err; 526 } 527 528 static int atmel_spi_configure_dma(struct spi_master *master, 529 struct atmel_spi *as) 530 { 531 struct dma_slave_config slave_config; 532 struct device *dev = &as->pdev->dev; 533 int err; 534 535 dma_cap_mask_t mask; 536 dma_cap_zero(mask); 537 dma_cap_set(DMA_SLAVE, mask); 538 539 master->dma_tx = dma_request_slave_channel_reason(dev, "tx"); 540 if (IS_ERR(master->dma_tx)) { 541 err = PTR_ERR(master->dma_tx); 542 if (err == -EPROBE_DEFER) { 543 dev_warn(dev, "no DMA channel available at the moment\n"); 544 goto error_clear; 545 } 546 dev_err(dev, 547 "DMA TX channel not available, SPI unable to use DMA\n"); 548 err = -EBUSY; 549 goto error_clear; 550 } 551 552 /* 553 * No reason to check EPROBE_DEFER here since we have already requested 554 * tx channel. If it fails here, it's for another reason. 555 */ 556 master->dma_rx = dma_request_slave_channel(dev, "rx"); 557 558 if (!master->dma_rx) { 559 dev_err(dev, 560 "DMA RX channel not available, SPI unable to use DMA\n"); 561 err = -EBUSY; 562 goto error; 563 } 564 565 err = atmel_spi_dma_slave_config(as, &slave_config, 8); 566 if (err) 567 goto error; 568 569 dev_info(&as->pdev->dev, 570 "Using %s (tx) and %s (rx) for DMA transfers\n", 571 dma_chan_name(master->dma_tx), 572 dma_chan_name(master->dma_rx)); 573 574 return 0; 575 error: 576 if (master->dma_rx) 577 dma_release_channel(master->dma_rx); 578 if (!IS_ERR(master->dma_tx)) 579 dma_release_channel(master->dma_tx); 580 error_clear: 581 master->dma_tx = master->dma_rx = NULL; 582 return err; 583 } 584 585 static void atmel_spi_stop_dma(struct spi_master *master) 586 { 587 if (master->dma_rx) 588 dmaengine_terminate_all(master->dma_rx); 589 if (master->dma_tx) 590 dmaengine_terminate_all(master->dma_tx); 591 } 592 593 static void atmel_spi_release_dma(struct spi_master *master) 594 { 595 if (master->dma_rx) { 596 dma_release_channel(master->dma_rx); 597 master->dma_rx = NULL; 598 } 599 if (master->dma_tx) { 600 dma_release_channel(master->dma_tx); 601 master->dma_tx = NULL; 602 } 603 } 604 605 /* This function is called by the DMA driver from tasklet context */ 606 static void dma_callback(void *data) 607 { 608 struct spi_master *master = data; 609 struct atmel_spi *as = spi_master_get_devdata(master); 610 611 if (is_vmalloc_addr(as->current_transfer->rx_buf) && 612 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 613 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf, 614 as->current_transfer->len); 615 } 616 complete(&as->xfer_completion); 617 } 618 619 /* 620 * Next transfer using PIO without FIFO. 621 */ 622 static void atmel_spi_next_xfer_single(struct spi_master *master, 623 struct spi_transfer *xfer) 624 { 625 struct atmel_spi *as = spi_master_get_devdata(master); 626 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 627 628 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n"); 629 630 /* Make sure data is not remaining in RDR */ 631 spi_readl(as, RDR); 632 while (spi_readl(as, SR) & SPI_BIT(RDRF)) { 633 spi_readl(as, RDR); 634 cpu_relax(); 635 } 636 637 if (xfer->bits_per_word > 8) 638 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos)); 639 else 640 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos)); 641 642 dev_dbg(master->dev.parent, 643 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n", 644 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 645 xfer->bits_per_word); 646 647 /* Enable relevant interrupts */ 648 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES)); 649 } 650 651 /* 652 * Next transfer using PIO with FIFO. 653 */ 654 static void atmel_spi_next_xfer_fifo(struct spi_master *master, 655 struct spi_transfer *xfer) 656 { 657 struct atmel_spi *as = spi_master_get_devdata(master); 658 u32 current_remaining_data, num_data; 659 u32 offset = xfer->len - as->current_remaining_bytes; 660 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset); 661 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset); 662 u16 td0, td1; 663 u32 fifomr; 664 665 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n"); 666 667 /* Compute the number of data to transfer in the current iteration */ 668 current_remaining_data = ((xfer->bits_per_word > 8) ? 669 ((u32)as->current_remaining_bytes >> 1) : 670 (u32)as->current_remaining_bytes); 671 num_data = min(current_remaining_data, as->fifo_size); 672 673 /* Flush RX and TX FIFOs */ 674 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR)); 675 while (spi_readl(as, FLR)) 676 cpu_relax(); 677 678 /* Set RX FIFO Threshold to the number of data to transfer */ 679 fifomr = spi_readl(as, FMR); 680 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr)); 681 682 /* Clear FIFO flags in the Status Register, especially RXFTHF */ 683 (void)spi_readl(as, SR); 684 685 /* Fill TX FIFO */ 686 while (num_data >= 2) { 687 if (xfer->bits_per_word > 8) { 688 td0 = *words++; 689 td1 = *words++; 690 } else { 691 td0 = *bytes++; 692 td1 = *bytes++; 693 } 694 695 spi_writel(as, TDR, (td1 << 16) | td0); 696 num_data -= 2; 697 } 698 699 if (num_data) { 700 if (xfer->bits_per_word > 8) 701 td0 = *words++; 702 else 703 td0 = *bytes++; 704 705 spi_writew(as, TDR, td0); 706 num_data--; 707 } 708 709 dev_dbg(master->dev.parent, 710 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n", 711 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 712 xfer->bits_per_word); 713 714 /* 715 * Enable RX FIFO Threshold Flag interrupt to be notified about 716 * transfer completion. 717 */ 718 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES)); 719 } 720 721 /* 722 * Next transfer using PIO. 723 */ 724 static void atmel_spi_next_xfer_pio(struct spi_master *master, 725 struct spi_transfer *xfer) 726 { 727 struct atmel_spi *as = spi_master_get_devdata(master); 728 729 if (as->fifo_size) 730 atmel_spi_next_xfer_fifo(master, xfer); 731 else 732 atmel_spi_next_xfer_single(master, xfer); 733 } 734 735 /* 736 * Submit next transfer for DMA. 737 */ 738 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master, 739 struct spi_transfer *xfer, 740 u32 *plen) 741 { 742 struct atmel_spi *as = spi_master_get_devdata(master); 743 struct dma_chan *rxchan = master->dma_rx; 744 struct dma_chan *txchan = master->dma_tx; 745 struct dma_async_tx_descriptor *rxdesc; 746 struct dma_async_tx_descriptor *txdesc; 747 struct dma_slave_config slave_config; 748 dma_cookie_t cookie; 749 750 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n"); 751 752 /* Check that the channels are available */ 753 if (!rxchan || !txchan) 754 return -ENODEV; 755 756 /* release lock for DMA operations */ 757 atmel_spi_unlock(as); 758 759 *plen = xfer->len; 760 761 if (atmel_spi_dma_slave_config(as, &slave_config, 762 xfer->bits_per_word)) 763 goto err_exit; 764 765 /* Send both scatterlists */ 766 if (atmel_spi_is_vmalloc_xfer(xfer) && 767 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 768 rxdesc = dmaengine_prep_slave_single(rxchan, 769 as->dma_addr_rx_bbuf, 770 xfer->len, 771 DMA_FROM_DEVICE, 772 DMA_PREP_INTERRUPT | 773 DMA_CTRL_ACK); 774 } else { 775 rxdesc = dmaengine_prep_slave_sg(rxchan, 776 xfer->rx_sg.sgl, 777 xfer->rx_sg.nents, 778 DMA_FROM_DEVICE, 779 DMA_PREP_INTERRUPT | 780 DMA_CTRL_ACK); 781 } 782 if (!rxdesc) 783 goto err_dma; 784 785 if (atmel_spi_is_vmalloc_xfer(xfer) && 786 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 787 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len); 788 txdesc = dmaengine_prep_slave_single(txchan, 789 as->dma_addr_tx_bbuf, 790 xfer->len, DMA_TO_DEVICE, 791 DMA_PREP_INTERRUPT | 792 DMA_CTRL_ACK); 793 } else { 794 txdesc = dmaengine_prep_slave_sg(txchan, 795 xfer->tx_sg.sgl, 796 xfer->tx_sg.nents, 797 DMA_TO_DEVICE, 798 DMA_PREP_INTERRUPT | 799 DMA_CTRL_ACK); 800 } 801 if (!txdesc) 802 goto err_dma; 803 804 dev_dbg(master->dev.parent, 805 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 806 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma, 807 xfer->rx_buf, (unsigned long long)xfer->rx_dma); 808 809 /* Enable relevant interrupts */ 810 spi_writel(as, IER, SPI_BIT(OVRES)); 811 812 /* Put the callback on the RX transfer only, that should finish last */ 813 rxdesc->callback = dma_callback; 814 rxdesc->callback_param = master; 815 816 /* Submit and fire RX and TX with TX last so we're ready to read! */ 817 cookie = rxdesc->tx_submit(rxdesc); 818 if (dma_submit_error(cookie)) 819 goto err_dma; 820 cookie = txdesc->tx_submit(txdesc); 821 if (dma_submit_error(cookie)) 822 goto err_dma; 823 rxchan->device->device_issue_pending(rxchan); 824 txchan->device->device_issue_pending(txchan); 825 826 /* take back lock */ 827 atmel_spi_lock(as); 828 return 0; 829 830 err_dma: 831 spi_writel(as, IDR, SPI_BIT(OVRES)); 832 atmel_spi_stop_dma(master); 833 err_exit: 834 atmel_spi_lock(as); 835 return -ENOMEM; 836 } 837 838 static void atmel_spi_next_xfer_data(struct spi_master *master, 839 struct spi_transfer *xfer, 840 dma_addr_t *tx_dma, 841 dma_addr_t *rx_dma, 842 u32 *plen) 843 { 844 *rx_dma = xfer->rx_dma + xfer->len - *plen; 845 *tx_dma = xfer->tx_dma + xfer->len - *plen; 846 if (*plen > master->max_dma_len) 847 *plen = master->max_dma_len; 848 } 849 850 static int atmel_spi_set_xfer_speed(struct atmel_spi *as, 851 struct spi_device *spi, 852 struct spi_transfer *xfer) 853 { 854 u32 scbr, csr; 855 unsigned long bus_hz; 856 857 /* v1 chips start out at half the peripheral bus speed. */ 858 bus_hz = as->spi_clk; 859 if (!atmel_spi_is_v2(as)) 860 bus_hz /= 2; 861 862 /* 863 * Calculate the lowest divider that satisfies the 864 * constraint, assuming div32/fdiv/mbz == 0. 865 */ 866 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz); 867 868 /* 869 * If the resulting divider doesn't fit into the 870 * register bitfield, we can't satisfy the constraint. 871 */ 872 if (scbr >= (1 << SPI_SCBR_SIZE)) { 873 dev_err(&spi->dev, 874 "setup: %d Hz too slow, scbr %u; min %ld Hz\n", 875 xfer->speed_hz, scbr, bus_hz/255); 876 return -EINVAL; 877 } 878 if (scbr == 0) { 879 dev_err(&spi->dev, 880 "setup: %d Hz too high, scbr %u; max %ld Hz\n", 881 xfer->speed_hz, scbr, bus_hz); 882 return -EINVAL; 883 } 884 csr = spi_readl(as, CSR0 + 4 * spi->chip_select); 885 csr = SPI_BFINS(SCBR, scbr, csr); 886 spi_writel(as, CSR0 + 4 * spi->chip_select, csr); 887 888 return 0; 889 } 890 891 /* 892 * Submit next transfer for PDC. 893 * lock is held, spi irq is blocked 894 */ 895 static void atmel_spi_pdc_next_xfer(struct spi_master *master, 896 struct spi_message *msg, 897 struct spi_transfer *xfer) 898 { 899 struct atmel_spi *as = spi_master_get_devdata(master); 900 u32 len; 901 dma_addr_t tx_dma, rx_dma; 902 903 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 904 905 len = as->current_remaining_bytes; 906 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 907 as->current_remaining_bytes -= len; 908 909 spi_writel(as, RPR, rx_dma); 910 spi_writel(as, TPR, tx_dma); 911 912 if (msg->spi->bits_per_word > 8) 913 len >>= 1; 914 spi_writel(as, RCR, len); 915 spi_writel(as, TCR, len); 916 917 dev_dbg(&msg->spi->dev, 918 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 919 xfer, xfer->len, xfer->tx_buf, 920 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 921 (unsigned long long)xfer->rx_dma); 922 923 if (as->current_remaining_bytes) { 924 len = as->current_remaining_bytes; 925 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 926 as->current_remaining_bytes -= len; 927 928 spi_writel(as, RNPR, rx_dma); 929 spi_writel(as, TNPR, tx_dma); 930 931 if (msg->spi->bits_per_word > 8) 932 len >>= 1; 933 spi_writel(as, RNCR, len); 934 spi_writel(as, TNCR, len); 935 936 dev_dbg(&msg->spi->dev, 937 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 938 xfer, xfer->len, xfer->tx_buf, 939 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 940 (unsigned long long)xfer->rx_dma); 941 } 942 943 /* REVISIT: We're waiting for RXBUFF before we start the next 944 * transfer because we need to handle some difficult timing 945 * issues otherwise. If we wait for TXBUFE in one transfer and 946 * then starts waiting for RXBUFF in the next, it's difficult 947 * to tell the difference between the RXBUFF interrupt we're 948 * actually waiting for and the RXBUFF interrupt of the 949 * previous transfer. 950 * 951 * It should be doable, though. Just not now... 952 */ 953 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES)); 954 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); 955 } 956 957 /* 958 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: 959 * - The buffer is either valid for CPU access, else NULL 960 * - If the buffer is valid, so is its DMA address 961 * 962 * This driver manages the dma address unless message->is_dma_mapped. 963 */ 964 static int 965 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) 966 { 967 struct device *dev = &as->pdev->dev; 968 969 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; 970 if (xfer->tx_buf) { 971 /* tx_buf is a const void* where we need a void * for the dma 972 * mapping */ 973 void *nonconst_tx = (void *)xfer->tx_buf; 974 975 xfer->tx_dma = dma_map_single(dev, 976 nonconst_tx, xfer->len, 977 DMA_TO_DEVICE); 978 if (dma_mapping_error(dev, xfer->tx_dma)) 979 return -ENOMEM; 980 } 981 if (xfer->rx_buf) { 982 xfer->rx_dma = dma_map_single(dev, 983 xfer->rx_buf, xfer->len, 984 DMA_FROM_DEVICE); 985 if (dma_mapping_error(dev, xfer->rx_dma)) { 986 if (xfer->tx_buf) 987 dma_unmap_single(dev, 988 xfer->tx_dma, xfer->len, 989 DMA_TO_DEVICE); 990 return -ENOMEM; 991 } 992 } 993 return 0; 994 } 995 996 static void atmel_spi_dma_unmap_xfer(struct spi_master *master, 997 struct spi_transfer *xfer) 998 { 999 if (xfer->tx_dma != INVALID_DMA_ADDRESS) 1000 dma_unmap_single(master->dev.parent, xfer->tx_dma, 1001 xfer->len, DMA_TO_DEVICE); 1002 if (xfer->rx_dma != INVALID_DMA_ADDRESS) 1003 dma_unmap_single(master->dev.parent, xfer->rx_dma, 1004 xfer->len, DMA_FROM_DEVICE); 1005 } 1006 1007 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as) 1008 { 1009 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1010 } 1011 1012 static void 1013 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer) 1014 { 1015 u8 *rxp; 1016 u16 *rxp16; 1017 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 1018 1019 if (xfer->bits_per_word > 8) { 1020 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos); 1021 *rxp16 = spi_readl(as, RDR); 1022 } else { 1023 rxp = ((u8 *)xfer->rx_buf) + xfer_pos; 1024 *rxp = spi_readl(as, RDR); 1025 } 1026 if (xfer->bits_per_word > 8) { 1027 if (as->current_remaining_bytes > 2) 1028 as->current_remaining_bytes -= 2; 1029 else 1030 as->current_remaining_bytes = 0; 1031 } else { 1032 as->current_remaining_bytes--; 1033 } 1034 } 1035 1036 static void 1037 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer) 1038 { 1039 u32 fifolr = spi_readl(as, FLR); 1040 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr); 1041 u32 offset = xfer->len - as->current_remaining_bytes; 1042 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset); 1043 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset); 1044 u16 rd; /* RD field is the lowest 16 bits of RDR */ 1045 1046 /* Update the number of remaining bytes to transfer */ 1047 num_bytes = ((xfer->bits_per_word > 8) ? 1048 (num_data << 1) : 1049 num_data); 1050 1051 if (as->current_remaining_bytes > num_bytes) 1052 as->current_remaining_bytes -= num_bytes; 1053 else 1054 as->current_remaining_bytes = 0; 1055 1056 /* Handle odd number of bytes when data are more than 8bit width */ 1057 if (xfer->bits_per_word > 8) 1058 as->current_remaining_bytes &= ~0x1; 1059 1060 /* Read data */ 1061 while (num_data) { 1062 rd = spi_readl(as, RDR); 1063 if (xfer->bits_per_word > 8) 1064 *words++ = rd; 1065 else 1066 *bytes++ = rd; 1067 num_data--; 1068 } 1069 } 1070 1071 /* Called from IRQ 1072 * 1073 * Must update "current_remaining_bytes" to keep track of data 1074 * to transfer. 1075 */ 1076 static void 1077 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer) 1078 { 1079 if (as->fifo_size) 1080 atmel_spi_pump_fifo_data(as, xfer); 1081 else 1082 atmel_spi_pump_single_data(as, xfer); 1083 } 1084 1085 /* Interrupt 1086 * 1087 * No need for locking in this Interrupt handler: done_status is the 1088 * only information modified. 1089 */ 1090 static irqreturn_t 1091 atmel_spi_pio_interrupt(int irq, void *dev_id) 1092 { 1093 struct spi_master *master = dev_id; 1094 struct atmel_spi *as = spi_master_get_devdata(master); 1095 u32 status, pending, imr; 1096 struct spi_transfer *xfer; 1097 int ret = IRQ_NONE; 1098 1099 imr = spi_readl(as, IMR); 1100 status = spi_readl(as, SR); 1101 pending = status & imr; 1102 1103 if (pending & SPI_BIT(OVRES)) { 1104 ret = IRQ_HANDLED; 1105 spi_writel(as, IDR, SPI_BIT(OVRES)); 1106 dev_warn(master->dev.parent, "overrun\n"); 1107 1108 /* 1109 * When we get an overrun, we disregard the current 1110 * transfer. Data will not be copied back from any 1111 * bounce buffer and msg->actual_len will not be 1112 * updated with the last xfer. 1113 * 1114 * We will also not process any remaning transfers in 1115 * the message. 1116 */ 1117 as->done_status = -EIO; 1118 smp_wmb(); 1119 1120 /* Clear any overrun happening while cleaning up */ 1121 spi_readl(as, SR); 1122 1123 complete(&as->xfer_completion); 1124 1125 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) { 1126 atmel_spi_lock(as); 1127 1128 if (as->current_remaining_bytes) { 1129 ret = IRQ_HANDLED; 1130 xfer = as->current_transfer; 1131 atmel_spi_pump_pio_data(as, xfer); 1132 if (!as->current_remaining_bytes) 1133 spi_writel(as, IDR, pending); 1134 1135 complete(&as->xfer_completion); 1136 } 1137 1138 atmel_spi_unlock(as); 1139 } else { 1140 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending); 1141 ret = IRQ_HANDLED; 1142 spi_writel(as, IDR, pending); 1143 } 1144 1145 return ret; 1146 } 1147 1148 static irqreturn_t 1149 atmel_spi_pdc_interrupt(int irq, void *dev_id) 1150 { 1151 struct spi_master *master = dev_id; 1152 struct atmel_spi *as = spi_master_get_devdata(master); 1153 u32 status, pending, imr; 1154 int ret = IRQ_NONE; 1155 1156 imr = spi_readl(as, IMR); 1157 status = spi_readl(as, SR); 1158 pending = status & imr; 1159 1160 if (pending & SPI_BIT(OVRES)) { 1161 1162 ret = IRQ_HANDLED; 1163 1164 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) 1165 | SPI_BIT(OVRES))); 1166 1167 /* Clear any overrun happening while cleaning up */ 1168 spi_readl(as, SR); 1169 1170 as->done_status = -EIO; 1171 1172 complete(&as->xfer_completion); 1173 1174 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { 1175 ret = IRQ_HANDLED; 1176 1177 spi_writel(as, IDR, pending); 1178 1179 complete(&as->xfer_completion); 1180 } 1181 1182 return ret; 1183 } 1184 1185 static int atmel_spi_setup(struct spi_device *spi) 1186 { 1187 struct atmel_spi *as; 1188 struct atmel_spi_device *asd; 1189 u32 csr; 1190 unsigned int bits = spi->bits_per_word; 1191 unsigned int npcs_pin; 1192 1193 as = spi_master_get_devdata(spi->master); 1194 1195 /* see notes above re chipselect */ 1196 if (!atmel_spi_is_v2(as) 1197 && spi->chip_select == 0 1198 && (spi->mode & SPI_CS_HIGH)) { 1199 dev_dbg(&spi->dev, "setup: can't be active-high\n"); 1200 return -EINVAL; 1201 } 1202 1203 csr = SPI_BF(BITS, bits - 8); 1204 if (spi->mode & SPI_CPOL) 1205 csr |= SPI_BIT(CPOL); 1206 if (!(spi->mode & SPI_CPHA)) 1207 csr |= SPI_BIT(NCPHA); 1208 if (!as->use_cs_gpios) 1209 csr |= SPI_BIT(CSAAT); 1210 1211 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs. 1212 * 1213 * DLYBCT would add delays between words, slowing down transfers. 1214 * It could potentially be useful to cope with DMA bottlenecks, but 1215 * in those cases it's probably best to just use a lower bitrate. 1216 */ 1217 csr |= SPI_BF(DLYBS, 0); 1218 csr |= SPI_BF(DLYBCT, 0); 1219 1220 /* chipselect must have been muxed as GPIO (e.g. in board setup) */ 1221 npcs_pin = (unsigned long)spi->controller_data; 1222 1223 if (!as->use_cs_gpios) 1224 npcs_pin = spi->chip_select; 1225 else if (gpio_is_valid(spi->cs_gpio)) 1226 npcs_pin = spi->cs_gpio; 1227 1228 asd = spi->controller_state; 1229 if (!asd) { 1230 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); 1231 if (!asd) 1232 return -ENOMEM; 1233 1234 if (as->use_cs_gpios) 1235 gpio_direction_output(npcs_pin, 1236 !(spi->mode & SPI_CS_HIGH)); 1237 1238 asd->npcs_pin = npcs_pin; 1239 spi->controller_state = asd; 1240 } 1241 1242 asd->csr = csr; 1243 1244 dev_dbg(&spi->dev, 1245 "setup: bpw %u mode 0x%x -> csr%d %08x\n", 1246 bits, spi->mode, spi->chip_select, csr); 1247 1248 if (!atmel_spi_is_v2(as)) 1249 spi_writel(as, CSR0 + 4 * spi->chip_select, csr); 1250 1251 return 0; 1252 } 1253 1254 static int atmel_spi_one_transfer(struct spi_master *master, 1255 struct spi_message *msg, 1256 struct spi_transfer *xfer) 1257 { 1258 struct atmel_spi *as; 1259 struct spi_device *spi = msg->spi; 1260 u8 bits; 1261 u32 len; 1262 struct atmel_spi_device *asd; 1263 int timeout; 1264 int ret; 1265 unsigned long dma_timeout; 1266 1267 as = spi_master_get_devdata(master); 1268 1269 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1270 dev_dbg(&spi->dev, "missing rx or tx buf\n"); 1271 return -EINVAL; 1272 } 1273 1274 asd = spi->controller_state; 1275 bits = (asd->csr >> 4) & 0xf; 1276 if (bits != xfer->bits_per_word - 8) { 1277 dev_dbg(&spi->dev, 1278 "you can't yet change bits_per_word in transfers\n"); 1279 return -ENOPROTOOPT; 1280 } 1281 1282 /* 1283 * DMA map early, for performance (empties dcache ASAP) and 1284 * better fault reporting. 1285 */ 1286 if ((!msg->is_dma_mapped) 1287 && as->use_pdc) { 1288 if (atmel_spi_dma_map_xfer(as, xfer) < 0) 1289 return -ENOMEM; 1290 } 1291 1292 atmel_spi_set_xfer_speed(as, msg->spi, xfer); 1293 1294 as->done_status = 0; 1295 as->current_transfer = xfer; 1296 as->current_remaining_bytes = xfer->len; 1297 while (as->current_remaining_bytes) { 1298 reinit_completion(&as->xfer_completion); 1299 1300 if (as->use_pdc) { 1301 atmel_spi_pdc_next_xfer(master, msg, xfer); 1302 } else if (atmel_spi_use_dma(as, xfer)) { 1303 len = as->current_remaining_bytes; 1304 ret = atmel_spi_next_xfer_dma_submit(master, 1305 xfer, &len); 1306 if (ret) { 1307 dev_err(&spi->dev, 1308 "unable to use DMA, fallback to PIO\n"); 1309 atmel_spi_next_xfer_pio(master, xfer); 1310 } else { 1311 as->current_remaining_bytes -= len; 1312 if (as->current_remaining_bytes < 0) 1313 as->current_remaining_bytes = 0; 1314 } 1315 } else { 1316 atmel_spi_next_xfer_pio(master, xfer); 1317 } 1318 1319 /* interrupts are disabled, so free the lock for schedule */ 1320 atmel_spi_unlock(as); 1321 dma_timeout = wait_for_completion_timeout(&as->xfer_completion, 1322 SPI_DMA_TIMEOUT); 1323 atmel_spi_lock(as); 1324 if (WARN_ON(dma_timeout == 0)) { 1325 dev_err(&spi->dev, "spi transfer timeout\n"); 1326 as->done_status = -EIO; 1327 } 1328 1329 if (as->done_status) 1330 break; 1331 } 1332 1333 if (as->done_status) { 1334 if (as->use_pdc) { 1335 dev_warn(master->dev.parent, 1336 "overrun (%u/%u remaining)\n", 1337 spi_readl(as, TCR), spi_readl(as, RCR)); 1338 1339 /* 1340 * Clean up DMA registers and make sure the data 1341 * registers are empty. 1342 */ 1343 spi_writel(as, RNCR, 0); 1344 spi_writel(as, TNCR, 0); 1345 spi_writel(as, RCR, 0); 1346 spi_writel(as, TCR, 0); 1347 for (timeout = 1000; timeout; timeout--) 1348 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) 1349 break; 1350 if (!timeout) 1351 dev_warn(master->dev.parent, 1352 "timeout waiting for TXEMPTY"); 1353 while (spi_readl(as, SR) & SPI_BIT(RDRF)) 1354 spi_readl(as, RDR); 1355 1356 /* Clear any overrun happening while cleaning up */ 1357 spi_readl(as, SR); 1358 1359 } else if (atmel_spi_use_dma(as, xfer)) { 1360 atmel_spi_stop_dma(master); 1361 } 1362 1363 if (!msg->is_dma_mapped 1364 && as->use_pdc) 1365 atmel_spi_dma_unmap_xfer(master, xfer); 1366 1367 return 0; 1368 1369 } else { 1370 /* only update length if no error */ 1371 msg->actual_length += xfer->len; 1372 } 1373 1374 if (!msg->is_dma_mapped 1375 && as->use_pdc) 1376 atmel_spi_dma_unmap_xfer(master, xfer); 1377 1378 if (xfer->delay_usecs) 1379 udelay(xfer->delay_usecs); 1380 1381 if (xfer->cs_change) { 1382 if (list_is_last(&xfer->transfer_list, 1383 &msg->transfers)) { 1384 as->keep_cs = true; 1385 } else { 1386 as->cs_active = !as->cs_active; 1387 if (as->cs_active) 1388 cs_activate(as, msg->spi); 1389 else 1390 cs_deactivate(as, msg->spi); 1391 } 1392 } 1393 1394 return 0; 1395 } 1396 1397 static int atmel_spi_transfer_one_message(struct spi_master *master, 1398 struct spi_message *msg) 1399 { 1400 struct atmel_spi *as; 1401 struct spi_transfer *xfer; 1402 struct spi_device *spi = msg->spi; 1403 int ret = 0; 1404 1405 as = spi_master_get_devdata(master); 1406 1407 dev_dbg(&spi->dev, "new message %p submitted for %s\n", 1408 msg, dev_name(&spi->dev)); 1409 1410 atmel_spi_lock(as); 1411 cs_activate(as, spi); 1412 1413 as->cs_active = true; 1414 as->keep_cs = false; 1415 1416 msg->status = 0; 1417 msg->actual_length = 0; 1418 1419 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1420 ret = atmel_spi_one_transfer(master, msg, xfer); 1421 if (ret) 1422 goto msg_done; 1423 } 1424 1425 if (as->use_pdc) 1426 atmel_spi_disable_pdc_transfer(as); 1427 1428 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1429 dev_dbg(&spi->dev, 1430 " xfer %p: len %u tx %p/%pad rx %p/%pad\n", 1431 xfer, xfer->len, 1432 xfer->tx_buf, &xfer->tx_dma, 1433 xfer->rx_buf, &xfer->rx_dma); 1434 } 1435 1436 msg_done: 1437 if (!as->keep_cs) 1438 cs_deactivate(as, msg->spi); 1439 1440 atmel_spi_unlock(as); 1441 1442 msg->status = as->done_status; 1443 spi_finalize_current_message(spi->master); 1444 1445 return ret; 1446 } 1447 1448 static void atmel_spi_cleanup(struct spi_device *spi) 1449 { 1450 struct atmel_spi_device *asd = spi->controller_state; 1451 1452 if (!asd) 1453 return; 1454 1455 spi->controller_state = NULL; 1456 kfree(asd); 1457 } 1458 1459 static inline unsigned int atmel_get_version(struct atmel_spi *as) 1460 { 1461 return spi_readl(as, VERSION) & 0x00000fff; 1462 } 1463 1464 static void atmel_get_caps(struct atmel_spi *as) 1465 { 1466 unsigned int version; 1467 1468 version = atmel_get_version(as); 1469 1470 as->caps.is_spi2 = version > 0x121; 1471 as->caps.has_wdrbt = version >= 0x210; 1472 as->caps.has_dma_support = version >= 0x212; 1473 as->caps.has_pdc_support = version < 0x212; 1474 } 1475 1476 /*-------------------------------------------------------------------------*/ 1477 static int atmel_spi_gpio_cs(struct platform_device *pdev) 1478 { 1479 struct spi_master *master = platform_get_drvdata(pdev); 1480 struct atmel_spi *as = spi_master_get_devdata(master); 1481 struct device_node *np = master->dev.of_node; 1482 int i; 1483 int ret = 0; 1484 int nb = 0; 1485 1486 if (!as->use_cs_gpios) 1487 return 0; 1488 1489 if (!np) 1490 return 0; 1491 1492 nb = of_gpio_named_count(np, "cs-gpios"); 1493 for (i = 0; i < nb; i++) { 1494 int cs_gpio = of_get_named_gpio(pdev->dev.of_node, 1495 "cs-gpios", i); 1496 1497 if (cs_gpio == -EPROBE_DEFER) 1498 return cs_gpio; 1499 1500 if (gpio_is_valid(cs_gpio)) { 1501 ret = devm_gpio_request(&pdev->dev, cs_gpio, 1502 dev_name(&pdev->dev)); 1503 if (ret) 1504 return ret; 1505 } 1506 } 1507 1508 return 0; 1509 } 1510 1511 static void atmel_spi_init(struct atmel_spi *as) 1512 { 1513 spi_writel(as, CR, SPI_BIT(SWRST)); 1514 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1515 if (as->caps.has_wdrbt) { 1516 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS) 1517 | SPI_BIT(MSTR)); 1518 } else { 1519 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); 1520 } 1521 1522 if (as->use_pdc) 1523 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1524 spi_writel(as, CR, SPI_BIT(SPIEN)); 1525 1526 if (as->fifo_size) 1527 spi_writel(as, CR, SPI_BIT(FIFOEN)); 1528 } 1529 1530 static int atmel_spi_probe(struct platform_device *pdev) 1531 { 1532 struct resource *regs; 1533 int irq; 1534 struct clk *clk; 1535 int ret; 1536 struct spi_master *master; 1537 struct atmel_spi *as; 1538 1539 /* Select default pin state */ 1540 pinctrl_pm_select_default_state(&pdev->dev); 1541 1542 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1543 if (!regs) 1544 return -ENXIO; 1545 1546 irq = platform_get_irq(pdev, 0); 1547 if (irq < 0) 1548 return irq; 1549 1550 clk = devm_clk_get(&pdev->dev, "spi_clk"); 1551 if (IS_ERR(clk)) 1552 return PTR_ERR(clk); 1553 1554 /* setup spi core then atmel-specific driver state */ 1555 ret = -ENOMEM; 1556 master = spi_alloc_master(&pdev->dev, sizeof(*as)); 1557 if (!master) 1558 goto out_free; 1559 1560 /* the spi->mode bits understood by this driver: */ 1561 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1562 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16); 1563 master->dev.of_node = pdev->dev.of_node; 1564 master->bus_num = pdev->id; 1565 master->num_chipselect = master->dev.of_node ? 0 : 4; 1566 master->setup = atmel_spi_setup; 1567 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX); 1568 master->transfer_one_message = atmel_spi_transfer_one_message; 1569 master->cleanup = atmel_spi_cleanup; 1570 master->auto_runtime_pm = true; 1571 master->max_dma_len = SPI_MAX_DMA_XFER; 1572 master->can_dma = atmel_spi_can_dma; 1573 platform_set_drvdata(pdev, master); 1574 1575 as = spi_master_get_devdata(master); 1576 1577 spin_lock_init(&as->lock); 1578 1579 as->pdev = pdev; 1580 as->regs = devm_ioremap_resource(&pdev->dev, regs); 1581 if (IS_ERR(as->regs)) { 1582 ret = PTR_ERR(as->regs); 1583 goto out_unmap_regs; 1584 } 1585 as->phybase = regs->start; 1586 as->irq = irq; 1587 as->clk = clk; 1588 1589 init_completion(&as->xfer_completion); 1590 1591 atmel_get_caps(as); 1592 1593 as->use_cs_gpios = true; 1594 if (atmel_spi_is_v2(as) && 1595 pdev->dev.of_node && 1596 !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) { 1597 as->use_cs_gpios = false; 1598 master->num_chipselect = 4; 1599 } 1600 1601 ret = atmel_spi_gpio_cs(pdev); 1602 if (ret) 1603 goto out_unmap_regs; 1604 1605 as->use_dma = false; 1606 as->use_pdc = false; 1607 if (as->caps.has_dma_support) { 1608 ret = atmel_spi_configure_dma(master, as); 1609 if (ret == 0) { 1610 as->use_dma = true; 1611 } else if (ret == -EPROBE_DEFER) { 1612 return ret; 1613 } 1614 } else if (as->caps.has_pdc_support) { 1615 as->use_pdc = true; 1616 } 1617 1618 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1619 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev, 1620 SPI_MAX_DMA_XFER, 1621 &as->dma_addr_rx_bbuf, 1622 GFP_KERNEL | GFP_DMA); 1623 if (!as->addr_rx_bbuf) { 1624 as->use_dma = false; 1625 } else { 1626 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev, 1627 SPI_MAX_DMA_XFER, 1628 &as->dma_addr_tx_bbuf, 1629 GFP_KERNEL | GFP_DMA); 1630 if (!as->addr_tx_bbuf) { 1631 as->use_dma = false; 1632 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1633 as->addr_rx_bbuf, 1634 as->dma_addr_rx_bbuf); 1635 } 1636 } 1637 if (!as->use_dma) 1638 dev_info(master->dev.parent, 1639 " can not allocate dma coherent memory\n"); 1640 } 1641 1642 if (as->caps.has_dma_support && !as->use_dma) 1643 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n"); 1644 1645 if (as->use_pdc) { 1646 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt, 1647 0, dev_name(&pdev->dev), master); 1648 } else { 1649 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt, 1650 0, dev_name(&pdev->dev), master); 1651 } 1652 if (ret) 1653 goto out_unmap_regs; 1654 1655 /* Initialize the hardware */ 1656 ret = clk_prepare_enable(clk); 1657 if (ret) 1658 goto out_free_irq; 1659 1660 as->spi_clk = clk_get_rate(clk); 1661 1662 as->fifo_size = 0; 1663 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", 1664 &as->fifo_size)) { 1665 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size); 1666 } 1667 1668 atmel_spi_init(as); 1669 1670 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT); 1671 pm_runtime_use_autosuspend(&pdev->dev); 1672 pm_runtime_set_active(&pdev->dev); 1673 pm_runtime_enable(&pdev->dev); 1674 1675 ret = devm_spi_register_master(&pdev->dev, master); 1676 if (ret) 1677 goto out_free_dma; 1678 1679 /* go! */ 1680 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n", 1681 atmel_get_version(as), (unsigned long)regs->start, 1682 irq); 1683 1684 return 0; 1685 1686 out_free_dma: 1687 pm_runtime_disable(&pdev->dev); 1688 pm_runtime_set_suspended(&pdev->dev); 1689 1690 if (as->use_dma) 1691 atmel_spi_release_dma(master); 1692 1693 spi_writel(as, CR, SPI_BIT(SWRST)); 1694 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1695 clk_disable_unprepare(clk); 1696 out_free_irq: 1697 out_unmap_regs: 1698 out_free: 1699 spi_master_put(master); 1700 return ret; 1701 } 1702 1703 static int atmel_spi_remove(struct platform_device *pdev) 1704 { 1705 struct spi_master *master = platform_get_drvdata(pdev); 1706 struct atmel_spi *as = spi_master_get_devdata(master); 1707 1708 pm_runtime_get_sync(&pdev->dev); 1709 1710 /* reset the hardware and block queue progress */ 1711 if (as->use_dma) { 1712 atmel_spi_stop_dma(master); 1713 atmel_spi_release_dma(master); 1714 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1715 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1716 as->addr_tx_bbuf, 1717 as->dma_addr_tx_bbuf); 1718 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1719 as->addr_rx_bbuf, 1720 as->dma_addr_rx_bbuf); 1721 } 1722 } 1723 1724 spin_lock_irq(&as->lock); 1725 spi_writel(as, CR, SPI_BIT(SWRST)); 1726 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1727 spi_readl(as, SR); 1728 spin_unlock_irq(&as->lock); 1729 1730 clk_disable_unprepare(as->clk); 1731 1732 pm_runtime_put_noidle(&pdev->dev); 1733 pm_runtime_disable(&pdev->dev); 1734 1735 return 0; 1736 } 1737 1738 #ifdef CONFIG_PM 1739 static int atmel_spi_runtime_suspend(struct device *dev) 1740 { 1741 struct spi_master *master = dev_get_drvdata(dev); 1742 struct atmel_spi *as = spi_master_get_devdata(master); 1743 1744 clk_disable_unprepare(as->clk); 1745 pinctrl_pm_select_sleep_state(dev); 1746 1747 return 0; 1748 } 1749 1750 static int atmel_spi_runtime_resume(struct device *dev) 1751 { 1752 struct spi_master *master = dev_get_drvdata(dev); 1753 struct atmel_spi *as = spi_master_get_devdata(master); 1754 1755 pinctrl_pm_select_default_state(dev); 1756 1757 return clk_prepare_enable(as->clk); 1758 } 1759 1760 #ifdef CONFIG_PM_SLEEP 1761 static int atmel_spi_suspend(struct device *dev) 1762 { 1763 struct spi_master *master = dev_get_drvdata(dev); 1764 int ret; 1765 1766 /* Stop the queue running */ 1767 ret = spi_master_suspend(master); 1768 if (ret) { 1769 dev_warn(dev, "cannot suspend master\n"); 1770 return ret; 1771 } 1772 1773 if (!pm_runtime_suspended(dev)) 1774 atmel_spi_runtime_suspend(dev); 1775 1776 return 0; 1777 } 1778 1779 static int atmel_spi_resume(struct device *dev) 1780 { 1781 struct spi_master *master = dev_get_drvdata(dev); 1782 struct atmel_spi *as = spi_master_get_devdata(master); 1783 int ret; 1784 1785 ret = clk_prepare_enable(as->clk); 1786 if (ret) 1787 return ret; 1788 1789 atmel_spi_init(as); 1790 1791 clk_disable_unprepare(as->clk); 1792 1793 if (!pm_runtime_suspended(dev)) { 1794 ret = atmel_spi_runtime_resume(dev); 1795 if (ret) 1796 return ret; 1797 } 1798 1799 /* Start the queue running */ 1800 ret = spi_master_resume(master); 1801 if (ret) 1802 dev_err(dev, "problem starting queue (%d)\n", ret); 1803 1804 return ret; 1805 } 1806 #endif 1807 1808 static const struct dev_pm_ops atmel_spi_pm_ops = { 1809 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume) 1810 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend, 1811 atmel_spi_runtime_resume, NULL) 1812 }; 1813 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops) 1814 #else 1815 #define ATMEL_SPI_PM_OPS NULL 1816 #endif 1817 1818 #if defined(CONFIG_OF) 1819 static const struct of_device_id atmel_spi_dt_ids[] = { 1820 { .compatible = "atmel,at91rm9200-spi" }, 1821 { /* sentinel */ } 1822 }; 1823 1824 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids); 1825 #endif 1826 1827 static struct platform_driver atmel_spi_driver = { 1828 .driver = { 1829 .name = "atmel_spi", 1830 .pm = ATMEL_SPI_PM_OPS, 1831 .of_match_table = of_match_ptr(atmel_spi_dt_ids), 1832 }, 1833 .probe = atmel_spi_probe, 1834 .remove = atmel_spi_remove, 1835 }; 1836 module_platform_driver(atmel_spi_driver); 1837 1838 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); 1839 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 1840 MODULE_LICENSE("GPL"); 1841 MODULE_ALIAS("platform:atmel_spi"); 1842