xref: /openbmc/linux/drivers/spi/spi-atmel.c (revision 0e17c50f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/platform_data/dma-atmel.h>
20 #include <linux/of.h>
21 
22 #include <linux/io.h>
23 #include <linux/gpio/consumer.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <trace/events/spi.h>
27 
28 /* SPI register offsets */
29 #define SPI_CR					0x0000
30 #define SPI_MR					0x0004
31 #define SPI_RDR					0x0008
32 #define SPI_TDR					0x000c
33 #define SPI_SR					0x0010
34 #define SPI_IER					0x0014
35 #define SPI_IDR					0x0018
36 #define SPI_IMR					0x001c
37 #define SPI_CSR0				0x0030
38 #define SPI_CSR1				0x0034
39 #define SPI_CSR2				0x0038
40 #define SPI_CSR3				0x003c
41 #define SPI_FMR					0x0040
42 #define SPI_FLR					0x0044
43 #define SPI_VERSION				0x00fc
44 #define SPI_RPR					0x0100
45 #define SPI_RCR					0x0104
46 #define SPI_TPR					0x0108
47 #define SPI_TCR					0x010c
48 #define SPI_RNPR				0x0110
49 #define SPI_RNCR				0x0114
50 #define SPI_TNPR				0x0118
51 #define SPI_TNCR				0x011c
52 #define SPI_PTCR				0x0120
53 #define SPI_PTSR				0x0124
54 
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET			0
57 #define SPI_SPIEN_SIZE				1
58 #define SPI_SPIDIS_OFFSET			1
59 #define SPI_SPIDIS_SIZE				1
60 #define SPI_SWRST_OFFSET			7
61 #define SPI_SWRST_SIZE				1
62 #define SPI_LASTXFER_OFFSET			24
63 #define SPI_LASTXFER_SIZE			1
64 #define SPI_TXFCLR_OFFSET			16
65 #define SPI_TXFCLR_SIZE				1
66 #define SPI_RXFCLR_OFFSET			17
67 #define SPI_RXFCLR_SIZE				1
68 #define SPI_FIFOEN_OFFSET			30
69 #define SPI_FIFOEN_SIZE				1
70 #define SPI_FIFODIS_OFFSET			31
71 #define SPI_FIFODIS_SIZE			1
72 
73 /* Bitfields in MR */
74 #define SPI_MSTR_OFFSET				0
75 #define SPI_MSTR_SIZE				1
76 #define SPI_PS_OFFSET				1
77 #define SPI_PS_SIZE				1
78 #define SPI_PCSDEC_OFFSET			2
79 #define SPI_PCSDEC_SIZE				1
80 #define SPI_FDIV_OFFSET				3
81 #define SPI_FDIV_SIZE				1
82 #define SPI_MODFDIS_OFFSET			4
83 #define SPI_MODFDIS_SIZE			1
84 #define SPI_WDRBT_OFFSET			5
85 #define SPI_WDRBT_SIZE				1
86 #define SPI_LLB_OFFSET				7
87 #define SPI_LLB_SIZE				1
88 #define SPI_PCS_OFFSET				16
89 #define SPI_PCS_SIZE				4
90 #define SPI_DLYBCS_OFFSET			24
91 #define SPI_DLYBCS_SIZE				8
92 
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET				0
95 #define SPI_RD_SIZE				16
96 
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET				0
99 #define SPI_TD_SIZE				16
100 
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET				0
103 #define SPI_RDRF_SIZE				1
104 #define SPI_TDRE_OFFSET				1
105 #define SPI_TDRE_SIZE				1
106 #define SPI_MODF_OFFSET				2
107 #define SPI_MODF_SIZE				1
108 #define SPI_OVRES_OFFSET			3
109 #define SPI_OVRES_SIZE				1
110 #define SPI_ENDRX_OFFSET			4
111 #define SPI_ENDRX_SIZE				1
112 #define SPI_ENDTX_OFFSET			5
113 #define SPI_ENDTX_SIZE				1
114 #define SPI_RXBUFF_OFFSET			6
115 #define SPI_RXBUFF_SIZE				1
116 #define SPI_TXBUFE_OFFSET			7
117 #define SPI_TXBUFE_SIZE				1
118 #define SPI_NSSR_OFFSET				8
119 #define SPI_NSSR_SIZE				1
120 #define SPI_TXEMPTY_OFFSET			9
121 #define SPI_TXEMPTY_SIZE			1
122 #define SPI_SPIENS_OFFSET			16
123 #define SPI_SPIENS_SIZE				1
124 #define SPI_TXFEF_OFFSET			24
125 #define SPI_TXFEF_SIZE				1
126 #define SPI_TXFFF_OFFSET			25
127 #define SPI_TXFFF_SIZE				1
128 #define SPI_TXFTHF_OFFSET			26
129 #define SPI_TXFTHF_SIZE				1
130 #define SPI_RXFEF_OFFSET			27
131 #define SPI_RXFEF_SIZE				1
132 #define SPI_RXFFF_OFFSET			28
133 #define SPI_RXFFF_SIZE				1
134 #define SPI_RXFTHF_OFFSET			29
135 #define SPI_RXFTHF_SIZE				1
136 #define SPI_TXFPTEF_OFFSET			30
137 #define SPI_TXFPTEF_SIZE			1
138 #define SPI_RXFPTEF_OFFSET			31
139 #define SPI_RXFPTEF_SIZE			1
140 
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET				0
143 #define SPI_CPOL_SIZE				1
144 #define SPI_NCPHA_OFFSET			1
145 #define SPI_NCPHA_SIZE				1
146 #define SPI_CSAAT_OFFSET			3
147 #define SPI_CSAAT_SIZE				1
148 #define SPI_BITS_OFFSET				4
149 #define SPI_BITS_SIZE				4
150 #define SPI_SCBR_OFFSET				8
151 #define SPI_SCBR_SIZE				8
152 #define SPI_DLYBS_OFFSET			16
153 #define SPI_DLYBS_SIZE				8
154 #define SPI_DLYBCT_OFFSET			24
155 #define SPI_DLYBCT_SIZE				8
156 
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET			0
159 #define SPI_RXCTR_SIZE				16
160 
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET			0
163 #define SPI_TXCTR_SIZE				16
164 
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET			0
167 #define SPI_RXNCR_SIZE				16
168 
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET			0
171 #define SPI_TXNCR_SIZE				16
172 
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET			0
175 #define SPI_RXTEN_SIZE				1
176 #define SPI_RXTDIS_OFFSET			1
177 #define SPI_RXTDIS_SIZE				1
178 #define SPI_TXTEN_OFFSET			8
179 #define SPI_TXTEN_SIZE				1
180 #define SPI_TXTDIS_OFFSET			9
181 #define SPI_TXTDIS_SIZE				1
182 
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET			0
185 #define SPI_TXRDYM_SIZE				2
186 #define SPI_RXRDYM_OFFSET			4
187 #define SPI_RXRDYM_SIZE				2
188 #define SPI_TXFTHRES_OFFSET			16
189 #define SPI_TXFTHRES_SIZE			6
190 #define SPI_RXFTHRES_OFFSET			24
191 #define SPI_RXFTHRES_SIZE			6
192 
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET				0
195 #define SPI_TXFL_SIZE				6
196 #define SPI_RXFL_OFFSET				16
197 #define SPI_RXFL_SIZE				6
198 
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT				0
201 #define SPI_BITS_9_BPT				1
202 #define SPI_BITS_10_BPT				2
203 #define SPI_BITS_11_BPT				3
204 #define SPI_BITS_12_BPT				4
205 #define SPI_BITS_13_BPT				5
206 #define SPI_BITS_14_BPT				6
207 #define SPI_BITS_15_BPT				7
208 #define SPI_BITS_16_BPT				8
209 #define SPI_ONE_DATA				0
210 #define SPI_TWO_DATA				1
211 #define SPI_FOUR_DATA				2
212 
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215 	(1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 	  | SPI_BF(name, value))
223 
224 /* Register access macros */
225 #define spi_readl(port, reg) \
226 	readl_relaxed((port)->regs + SPI_##reg)
227 #define spi_writel(port, reg, value) \
228 	writel_relaxed((value), (port)->regs + SPI_##reg)
229 #define spi_writew(port, reg, value) \
230 	writew_relaxed((value), (port)->regs + SPI_##reg)
231 
232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233  * cache operations; better heuristics consider wordsize and bitrate.
234  */
235 #define DMA_MIN_BYTES	16
236 
237 #define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
238 
239 #define AUTOSUSPEND_TIMEOUT	2000
240 
241 struct atmel_spi_caps {
242 	bool	is_spi2;
243 	bool	has_wdrbt;
244 	bool	has_dma_support;
245 	bool	has_pdc_support;
246 };
247 
248 /*
249  * The core SPI transfer engine just talks to a register bank to set up
250  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
251  * framework provides the base clock, subdivided for each spi_device.
252  */
253 struct atmel_spi {
254 	spinlock_t		lock;
255 	unsigned long		flags;
256 
257 	phys_addr_t		phybase;
258 	void __iomem		*regs;
259 	int			irq;
260 	struct clk		*clk;
261 	struct platform_device	*pdev;
262 	unsigned long		spi_clk;
263 
264 	struct spi_transfer	*current_transfer;
265 	int			current_remaining_bytes;
266 	int			done_status;
267 	dma_addr_t		dma_addr_rx_bbuf;
268 	dma_addr_t		dma_addr_tx_bbuf;
269 	void			*addr_rx_bbuf;
270 	void			*addr_tx_bbuf;
271 
272 	struct completion	xfer_completion;
273 
274 	struct atmel_spi_caps	caps;
275 
276 	bool			use_dma;
277 	bool			use_pdc;
278 
279 	bool			keep_cs;
280 
281 	u32			fifo_size;
282 	u8			native_cs_free;
283 	u8			native_cs_for_gpio;
284 };
285 
286 /* Controller-specific per-slave state */
287 struct atmel_spi_device {
288 	u32			csr;
289 };
290 
291 #define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
292 #define INVALID_DMA_ADDRESS	0xffffffff
293 
294 /*
295  * Version 2 of the SPI controller has
296  *  - CR.LASTXFER
297  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
298  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
299  *  - SPI_CSRx.CSAAT
300  *  - SPI_CSRx.SBCR allows faster clocking
301  */
302 static bool atmel_spi_is_v2(struct atmel_spi *as)
303 {
304 	return as->caps.is_spi2;
305 }
306 
307 /*
308  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
309  * they assume that spi slave device state will not change on deselect, so
310  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
311  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
312  * controllers have CSAAT and friends.
313  *
314  * Even controller newer than ar91rm9200, using GPIOs can make sens as
315  * it lets us support active-high chipselects despite the controller's
316  * belief that only active-low devices/systems exists.
317  *
318  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
319  * right when driven with GPIO.  ("Mode Fault does not allow more than one
320  * Master on Chip Select 0.")  No workaround exists for that ... so for
321  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
322  * and (c) will trigger that first erratum in some cases.
323  */
324 
325 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
326 {
327 	struct atmel_spi_device *asd = spi->controller_state;
328 	int chip_select;
329 	u32 mr;
330 
331 	if (spi->cs_gpiod)
332 		chip_select = as->native_cs_for_gpio;
333 	else
334 		chip_select = spi->chip_select;
335 
336 	if (atmel_spi_is_v2(as)) {
337 		spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
338 		/* For the low SPI version, there is a issue that PDC transfer
339 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
340 		 */
341 		spi_writel(as, CSR0, asd->csr);
342 		if (as->caps.has_wdrbt) {
343 			spi_writel(as, MR,
344 					SPI_BF(PCS, ~(0x01 << chip_select))
345 					| SPI_BIT(WDRBT)
346 					| SPI_BIT(MODFDIS)
347 					| SPI_BIT(MSTR));
348 		} else {
349 			spi_writel(as, MR,
350 					SPI_BF(PCS, ~(0x01 << chip_select))
351 					| SPI_BIT(MODFDIS)
352 					| SPI_BIT(MSTR));
353 		}
354 
355 		mr = spi_readl(as, MR);
356 		if (spi->cs_gpiod)
357 			gpiod_set_value(spi->cs_gpiod, 1);
358 	} else {
359 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
360 		int i;
361 		u32 csr;
362 
363 		/* Make sure clock polarity is correct */
364 		for (i = 0; i < spi->master->num_chipselect; i++) {
365 			csr = spi_readl(as, CSR0 + 4 * i);
366 			if ((csr ^ cpol) & SPI_BIT(CPOL))
367 				spi_writel(as, CSR0 + 4 * i,
368 						csr ^ SPI_BIT(CPOL));
369 		}
370 
371 		mr = spi_readl(as, MR);
372 		mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
373 		if (spi->cs_gpiod)
374 			gpiod_set_value(spi->cs_gpiod, 1);
375 		spi_writel(as, MR, mr);
376 	}
377 
378 	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
379 }
380 
381 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
382 {
383 	int chip_select;
384 	u32 mr;
385 
386 	if (spi->cs_gpiod)
387 		chip_select = as->native_cs_for_gpio;
388 	else
389 		chip_select = spi->chip_select;
390 
391 	/* only deactivate *this* device; sometimes transfers to
392 	 * another device may be active when this routine is called.
393 	 */
394 	mr = spi_readl(as, MR);
395 	if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
396 		mr = SPI_BFINS(PCS, 0xf, mr);
397 		spi_writel(as, MR, mr);
398 	}
399 
400 	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
401 
402 	if (!spi->cs_gpiod)
403 		spi_writel(as, CR, SPI_BIT(LASTXFER));
404 	else
405 		gpiod_set_value(spi->cs_gpiod, 0);
406 }
407 
408 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
409 {
410 	spin_lock_irqsave(&as->lock, as->flags);
411 }
412 
413 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
414 {
415 	spin_unlock_irqrestore(&as->lock, as->flags);
416 }
417 
418 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
419 {
420 	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
421 }
422 
423 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
424 				struct spi_transfer *xfer)
425 {
426 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
427 }
428 
429 static bool atmel_spi_can_dma(struct spi_master *master,
430 			      struct spi_device *spi,
431 			      struct spi_transfer *xfer)
432 {
433 	struct atmel_spi *as = spi_master_get_devdata(master);
434 
435 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
436 		return atmel_spi_use_dma(as, xfer) &&
437 			!atmel_spi_is_vmalloc_xfer(xfer);
438 	else
439 		return atmel_spi_use_dma(as, xfer);
440 
441 }
442 
443 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
444 				struct dma_slave_config *slave_config,
445 				u8 bits_per_word)
446 {
447 	struct spi_master *master = platform_get_drvdata(as->pdev);
448 	int err = 0;
449 
450 	if (bits_per_word > 8) {
451 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
452 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
453 	} else {
454 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
455 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
456 	}
457 
458 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
459 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
460 	slave_config->src_maxburst = 1;
461 	slave_config->dst_maxburst = 1;
462 	slave_config->device_fc = false;
463 
464 	/*
465 	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
466 	 * the Mode Register).
467 	 * So according to the datasheet, when FIFOs are available (and
468 	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
469 	 * In this mode, up to 2 data, not 4, can be written into the Transmit
470 	 * Data Register in a single access.
471 	 * However, the first data has to be written into the lowest 16 bits and
472 	 * the second data into the highest 16 bits of the Transmit
473 	 * Data Register. For 8bit data (the most frequent case), it would
474 	 * require to rework tx_buf so each data would actualy fit 16 bits.
475 	 * So we'd rather write only one data at the time. Hence the transmit
476 	 * path works the same whether FIFOs are available (and enabled) or not.
477 	 */
478 	slave_config->direction = DMA_MEM_TO_DEV;
479 	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
480 		dev_err(&as->pdev->dev,
481 			"failed to configure tx dma channel\n");
482 		err = -EINVAL;
483 	}
484 
485 	/*
486 	 * This driver configures the spi controller for master mode (MSTR bit
487 	 * set to '1' in the Mode Register).
488 	 * So according to the datasheet, when FIFOs are available (and
489 	 * enabled), the Receive FIFO operates in Single Data Mode.
490 	 * So the receive path works the same whether FIFOs are available (and
491 	 * enabled) or not.
492 	 */
493 	slave_config->direction = DMA_DEV_TO_MEM;
494 	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
495 		dev_err(&as->pdev->dev,
496 			"failed to configure rx dma channel\n");
497 		err = -EINVAL;
498 	}
499 
500 	return err;
501 }
502 
503 static int atmel_spi_configure_dma(struct spi_master *master,
504 				   struct atmel_spi *as)
505 {
506 	struct dma_slave_config	slave_config;
507 	struct device *dev = &as->pdev->dev;
508 	int err;
509 
510 	dma_cap_mask_t mask;
511 	dma_cap_zero(mask);
512 	dma_cap_set(DMA_SLAVE, mask);
513 
514 	master->dma_tx = dma_request_chan(dev, "tx");
515 	if (IS_ERR(master->dma_tx)) {
516 		err = PTR_ERR(master->dma_tx);
517 		if (err != -EPROBE_DEFER)
518 			dev_err(dev, "No TX DMA channel, DMA is disabled\n");
519 		goto error_clear;
520 	}
521 
522 	master->dma_rx = dma_request_chan(dev, "rx");
523 	if (IS_ERR(master->dma_rx)) {
524 		err = PTR_ERR(master->dma_rx);
525 		/*
526 		 * No reason to check EPROBE_DEFER here since we have already
527 		 * requested tx channel.
528 		 */
529 		dev_err(dev, "No RX DMA channel, DMA is disabled\n");
530 		goto error;
531 	}
532 
533 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
534 	if (err)
535 		goto error;
536 
537 	dev_info(&as->pdev->dev,
538 			"Using %s (tx) and %s (rx) for DMA transfers\n",
539 			dma_chan_name(master->dma_tx),
540 			dma_chan_name(master->dma_rx));
541 
542 	return 0;
543 error:
544 	if (!IS_ERR(master->dma_rx))
545 		dma_release_channel(master->dma_rx);
546 	if (!IS_ERR(master->dma_tx))
547 		dma_release_channel(master->dma_tx);
548 error_clear:
549 	master->dma_tx = master->dma_rx = NULL;
550 	return err;
551 }
552 
553 static void atmel_spi_stop_dma(struct spi_master *master)
554 {
555 	if (master->dma_rx)
556 		dmaengine_terminate_all(master->dma_rx);
557 	if (master->dma_tx)
558 		dmaengine_terminate_all(master->dma_tx);
559 }
560 
561 static void atmel_spi_release_dma(struct spi_master *master)
562 {
563 	if (master->dma_rx) {
564 		dma_release_channel(master->dma_rx);
565 		master->dma_rx = NULL;
566 	}
567 	if (master->dma_tx) {
568 		dma_release_channel(master->dma_tx);
569 		master->dma_tx = NULL;
570 	}
571 }
572 
573 /* This function is called by the DMA driver from tasklet context */
574 static void dma_callback(void *data)
575 {
576 	struct spi_master	*master = data;
577 	struct atmel_spi	*as = spi_master_get_devdata(master);
578 
579 	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
580 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
581 		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
582 		       as->current_transfer->len);
583 	}
584 	complete(&as->xfer_completion);
585 }
586 
587 /*
588  * Next transfer using PIO without FIFO.
589  */
590 static void atmel_spi_next_xfer_single(struct spi_master *master,
591 				       struct spi_transfer *xfer)
592 {
593 	struct atmel_spi	*as = spi_master_get_devdata(master);
594 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
595 
596 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
597 
598 	/* Make sure data is not remaining in RDR */
599 	spi_readl(as, RDR);
600 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
601 		spi_readl(as, RDR);
602 		cpu_relax();
603 	}
604 
605 	if (xfer->bits_per_word > 8)
606 		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
607 	else
608 		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
609 
610 	dev_dbg(master->dev.parent,
611 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
612 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
613 		xfer->bits_per_word);
614 
615 	/* Enable relevant interrupts */
616 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
617 }
618 
619 /*
620  * Next transfer using PIO with FIFO.
621  */
622 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
623 				     struct spi_transfer *xfer)
624 {
625 	struct atmel_spi *as = spi_master_get_devdata(master);
626 	u32 current_remaining_data, num_data;
627 	u32 offset = xfer->len - as->current_remaining_bytes;
628 	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
629 	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
630 	u16 td0, td1;
631 	u32 fifomr;
632 
633 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
634 
635 	/* Compute the number of data to transfer in the current iteration */
636 	current_remaining_data = ((xfer->bits_per_word > 8) ?
637 				  ((u32)as->current_remaining_bytes >> 1) :
638 				  (u32)as->current_remaining_bytes);
639 	num_data = min(current_remaining_data, as->fifo_size);
640 
641 	/* Flush RX and TX FIFOs */
642 	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
643 	while (spi_readl(as, FLR))
644 		cpu_relax();
645 
646 	/* Set RX FIFO Threshold to the number of data to transfer */
647 	fifomr = spi_readl(as, FMR);
648 	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
649 
650 	/* Clear FIFO flags in the Status Register, especially RXFTHF */
651 	(void)spi_readl(as, SR);
652 
653 	/* Fill TX FIFO */
654 	while (num_data >= 2) {
655 		if (xfer->bits_per_word > 8) {
656 			td0 = *words++;
657 			td1 = *words++;
658 		} else {
659 			td0 = *bytes++;
660 			td1 = *bytes++;
661 		}
662 
663 		spi_writel(as, TDR, (td1 << 16) | td0);
664 		num_data -= 2;
665 	}
666 
667 	if (num_data) {
668 		if (xfer->bits_per_word > 8)
669 			td0 = *words++;
670 		else
671 			td0 = *bytes++;
672 
673 		spi_writew(as, TDR, td0);
674 		num_data--;
675 	}
676 
677 	dev_dbg(master->dev.parent,
678 		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
679 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
680 		xfer->bits_per_word);
681 
682 	/*
683 	 * Enable RX FIFO Threshold Flag interrupt to be notified about
684 	 * transfer completion.
685 	 */
686 	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
687 }
688 
689 /*
690  * Next transfer using PIO.
691  */
692 static void atmel_spi_next_xfer_pio(struct spi_master *master,
693 				    struct spi_transfer *xfer)
694 {
695 	struct atmel_spi *as = spi_master_get_devdata(master);
696 
697 	if (as->fifo_size)
698 		atmel_spi_next_xfer_fifo(master, xfer);
699 	else
700 		atmel_spi_next_xfer_single(master, xfer);
701 }
702 
703 /*
704  * Submit next transfer for DMA.
705  */
706 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
707 				struct spi_transfer *xfer,
708 				u32 *plen)
709 {
710 	struct atmel_spi	*as = spi_master_get_devdata(master);
711 	struct dma_chan		*rxchan = master->dma_rx;
712 	struct dma_chan		*txchan = master->dma_tx;
713 	struct dma_async_tx_descriptor *rxdesc;
714 	struct dma_async_tx_descriptor *txdesc;
715 	struct dma_slave_config	slave_config;
716 	dma_cookie_t		cookie;
717 
718 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
719 
720 	/* Check that the channels are available */
721 	if (!rxchan || !txchan)
722 		return -ENODEV;
723 
724 	/* release lock for DMA operations */
725 	atmel_spi_unlock(as);
726 
727 	*plen = xfer->len;
728 
729 	if (atmel_spi_dma_slave_config(as, &slave_config,
730 				       xfer->bits_per_word))
731 		goto err_exit;
732 
733 	/* Send both scatterlists */
734 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
735 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
736 		rxdesc = dmaengine_prep_slave_single(rxchan,
737 						     as->dma_addr_rx_bbuf,
738 						     xfer->len,
739 						     DMA_DEV_TO_MEM,
740 						     DMA_PREP_INTERRUPT |
741 						     DMA_CTRL_ACK);
742 	} else {
743 		rxdesc = dmaengine_prep_slave_sg(rxchan,
744 						 xfer->rx_sg.sgl,
745 						 xfer->rx_sg.nents,
746 						 DMA_DEV_TO_MEM,
747 						 DMA_PREP_INTERRUPT |
748 						 DMA_CTRL_ACK);
749 	}
750 	if (!rxdesc)
751 		goto err_dma;
752 
753 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
754 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
755 		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
756 		txdesc = dmaengine_prep_slave_single(txchan,
757 						     as->dma_addr_tx_bbuf,
758 						     xfer->len, DMA_MEM_TO_DEV,
759 						     DMA_PREP_INTERRUPT |
760 						     DMA_CTRL_ACK);
761 	} else {
762 		txdesc = dmaengine_prep_slave_sg(txchan,
763 						 xfer->tx_sg.sgl,
764 						 xfer->tx_sg.nents,
765 						 DMA_MEM_TO_DEV,
766 						 DMA_PREP_INTERRUPT |
767 						 DMA_CTRL_ACK);
768 	}
769 	if (!txdesc)
770 		goto err_dma;
771 
772 	dev_dbg(master->dev.parent,
773 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
774 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
775 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
776 
777 	/* Enable relevant interrupts */
778 	spi_writel(as, IER, SPI_BIT(OVRES));
779 
780 	/* Put the callback on the RX transfer only, that should finish last */
781 	rxdesc->callback = dma_callback;
782 	rxdesc->callback_param = master;
783 
784 	/* Submit and fire RX and TX with TX last so we're ready to read! */
785 	cookie = rxdesc->tx_submit(rxdesc);
786 	if (dma_submit_error(cookie))
787 		goto err_dma;
788 	cookie = txdesc->tx_submit(txdesc);
789 	if (dma_submit_error(cookie))
790 		goto err_dma;
791 	rxchan->device->device_issue_pending(rxchan);
792 	txchan->device->device_issue_pending(txchan);
793 
794 	/* take back lock */
795 	atmel_spi_lock(as);
796 	return 0;
797 
798 err_dma:
799 	spi_writel(as, IDR, SPI_BIT(OVRES));
800 	atmel_spi_stop_dma(master);
801 err_exit:
802 	atmel_spi_lock(as);
803 	return -ENOMEM;
804 }
805 
806 static void atmel_spi_next_xfer_data(struct spi_master *master,
807 				struct spi_transfer *xfer,
808 				dma_addr_t *tx_dma,
809 				dma_addr_t *rx_dma,
810 				u32 *plen)
811 {
812 	*rx_dma = xfer->rx_dma + xfer->len - *plen;
813 	*tx_dma = xfer->tx_dma + xfer->len - *plen;
814 	if (*plen > master->max_dma_len)
815 		*plen = master->max_dma_len;
816 }
817 
818 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
819 				    struct spi_device *spi,
820 				    struct spi_transfer *xfer)
821 {
822 	u32			scbr, csr;
823 	unsigned long		bus_hz;
824 	int chip_select;
825 
826 	if (spi->cs_gpiod)
827 		chip_select = as->native_cs_for_gpio;
828 	else
829 		chip_select = spi->chip_select;
830 
831 	/* v1 chips start out at half the peripheral bus speed. */
832 	bus_hz = as->spi_clk;
833 	if (!atmel_spi_is_v2(as))
834 		bus_hz /= 2;
835 
836 	/*
837 	 * Calculate the lowest divider that satisfies the
838 	 * constraint, assuming div32/fdiv/mbz == 0.
839 	 */
840 	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
841 
842 	/*
843 	 * If the resulting divider doesn't fit into the
844 	 * register bitfield, we can't satisfy the constraint.
845 	 */
846 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
847 		dev_err(&spi->dev,
848 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
849 			xfer->speed_hz, scbr, bus_hz/255);
850 		return -EINVAL;
851 	}
852 	if (scbr == 0) {
853 		dev_err(&spi->dev,
854 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
855 			xfer->speed_hz, scbr, bus_hz);
856 		return -EINVAL;
857 	}
858 	csr = spi_readl(as, CSR0 + 4 * chip_select);
859 	csr = SPI_BFINS(SCBR, scbr, csr);
860 	spi_writel(as, CSR0 + 4 * chip_select, csr);
861 
862 	return 0;
863 }
864 
865 /*
866  * Submit next transfer for PDC.
867  * lock is held, spi irq is blocked
868  */
869 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
870 					struct spi_message *msg,
871 					struct spi_transfer *xfer)
872 {
873 	struct atmel_spi	*as = spi_master_get_devdata(master);
874 	u32			len;
875 	dma_addr_t		tx_dma, rx_dma;
876 
877 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
878 
879 	len = as->current_remaining_bytes;
880 	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
881 	as->current_remaining_bytes -= len;
882 
883 	spi_writel(as, RPR, rx_dma);
884 	spi_writel(as, TPR, tx_dma);
885 
886 	if (msg->spi->bits_per_word > 8)
887 		len >>= 1;
888 	spi_writel(as, RCR, len);
889 	spi_writel(as, TCR, len);
890 
891 	dev_dbg(&msg->spi->dev,
892 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
893 		xfer, xfer->len, xfer->tx_buf,
894 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
895 		(unsigned long long)xfer->rx_dma);
896 
897 	if (as->current_remaining_bytes) {
898 		len = as->current_remaining_bytes;
899 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
900 		as->current_remaining_bytes -= len;
901 
902 		spi_writel(as, RNPR, rx_dma);
903 		spi_writel(as, TNPR, tx_dma);
904 
905 		if (msg->spi->bits_per_word > 8)
906 			len >>= 1;
907 		spi_writel(as, RNCR, len);
908 		spi_writel(as, TNCR, len);
909 
910 		dev_dbg(&msg->spi->dev,
911 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
912 			xfer, xfer->len, xfer->tx_buf,
913 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
914 			(unsigned long long)xfer->rx_dma);
915 	}
916 
917 	/* REVISIT: We're waiting for RXBUFF before we start the next
918 	 * transfer because we need to handle some difficult timing
919 	 * issues otherwise. If we wait for TXBUFE in one transfer and
920 	 * then starts waiting for RXBUFF in the next, it's difficult
921 	 * to tell the difference between the RXBUFF interrupt we're
922 	 * actually waiting for and the RXBUFF interrupt of the
923 	 * previous transfer.
924 	 *
925 	 * It should be doable, though. Just not now...
926 	 */
927 	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
928 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
929 }
930 
931 /*
932  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
933  *  - The buffer is either valid for CPU access, else NULL
934  *  - If the buffer is valid, so is its DMA address
935  *
936  * This driver manages the dma address unless message->is_dma_mapped.
937  */
938 static int
939 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
940 {
941 	struct device	*dev = &as->pdev->dev;
942 
943 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
944 	if (xfer->tx_buf) {
945 		/* tx_buf is a const void* where we need a void * for the dma
946 		 * mapping */
947 		void *nonconst_tx = (void *)xfer->tx_buf;
948 
949 		xfer->tx_dma = dma_map_single(dev,
950 				nonconst_tx, xfer->len,
951 				DMA_TO_DEVICE);
952 		if (dma_mapping_error(dev, xfer->tx_dma))
953 			return -ENOMEM;
954 	}
955 	if (xfer->rx_buf) {
956 		xfer->rx_dma = dma_map_single(dev,
957 				xfer->rx_buf, xfer->len,
958 				DMA_FROM_DEVICE);
959 		if (dma_mapping_error(dev, xfer->rx_dma)) {
960 			if (xfer->tx_buf)
961 				dma_unmap_single(dev,
962 						xfer->tx_dma, xfer->len,
963 						DMA_TO_DEVICE);
964 			return -ENOMEM;
965 		}
966 	}
967 	return 0;
968 }
969 
970 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
971 				     struct spi_transfer *xfer)
972 {
973 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
974 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
975 				 xfer->len, DMA_TO_DEVICE);
976 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
977 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
978 				 xfer->len, DMA_FROM_DEVICE);
979 }
980 
981 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
982 {
983 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
984 }
985 
986 static void
987 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
988 {
989 	u8		*rxp;
990 	u16		*rxp16;
991 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
992 
993 	if (xfer->bits_per_word > 8) {
994 		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
995 		*rxp16 = spi_readl(as, RDR);
996 	} else {
997 		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
998 		*rxp = spi_readl(as, RDR);
999 	}
1000 	if (xfer->bits_per_word > 8) {
1001 		if (as->current_remaining_bytes > 2)
1002 			as->current_remaining_bytes -= 2;
1003 		else
1004 			as->current_remaining_bytes = 0;
1005 	} else {
1006 		as->current_remaining_bytes--;
1007 	}
1008 }
1009 
1010 static void
1011 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1012 {
1013 	u32 fifolr = spi_readl(as, FLR);
1014 	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1015 	u32 offset = xfer->len - as->current_remaining_bytes;
1016 	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1017 	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1018 	u16 rd; /* RD field is the lowest 16 bits of RDR */
1019 
1020 	/* Update the number of remaining bytes to transfer */
1021 	num_bytes = ((xfer->bits_per_word > 8) ?
1022 		     (num_data << 1) :
1023 		     num_data);
1024 
1025 	if (as->current_remaining_bytes > num_bytes)
1026 		as->current_remaining_bytes -= num_bytes;
1027 	else
1028 		as->current_remaining_bytes = 0;
1029 
1030 	/* Handle odd number of bytes when data are more than 8bit width */
1031 	if (xfer->bits_per_word > 8)
1032 		as->current_remaining_bytes &= ~0x1;
1033 
1034 	/* Read data */
1035 	while (num_data) {
1036 		rd = spi_readl(as, RDR);
1037 		if (xfer->bits_per_word > 8)
1038 			*words++ = rd;
1039 		else
1040 			*bytes++ = rd;
1041 		num_data--;
1042 	}
1043 }
1044 
1045 /* Called from IRQ
1046  *
1047  * Must update "current_remaining_bytes" to keep track of data
1048  * to transfer.
1049  */
1050 static void
1051 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1052 {
1053 	if (as->fifo_size)
1054 		atmel_spi_pump_fifo_data(as, xfer);
1055 	else
1056 		atmel_spi_pump_single_data(as, xfer);
1057 }
1058 
1059 /* Interrupt
1060  *
1061  * No need for locking in this Interrupt handler: done_status is the
1062  * only information modified.
1063  */
1064 static irqreturn_t
1065 atmel_spi_pio_interrupt(int irq, void *dev_id)
1066 {
1067 	struct spi_master	*master = dev_id;
1068 	struct atmel_spi	*as = spi_master_get_devdata(master);
1069 	u32			status, pending, imr;
1070 	struct spi_transfer	*xfer;
1071 	int			ret = IRQ_NONE;
1072 
1073 	imr = spi_readl(as, IMR);
1074 	status = spi_readl(as, SR);
1075 	pending = status & imr;
1076 
1077 	if (pending & SPI_BIT(OVRES)) {
1078 		ret = IRQ_HANDLED;
1079 		spi_writel(as, IDR, SPI_BIT(OVRES));
1080 		dev_warn(master->dev.parent, "overrun\n");
1081 
1082 		/*
1083 		 * When we get an overrun, we disregard the current
1084 		 * transfer. Data will not be copied back from any
1085 		 * bounce buffer and msg->actual_len will not be
1086 		 * updated with the last xfer.
1087 		 *
1088 		 * We will also not process any remaning transfers in
1089 		 * the message.
1090 		 */
1091 		as->done_status = -EIO;
1092 		smp_wmb();
1093 
1094 		/* Clear any overrun happening while cleaning up */
1095 		spi_readl(as, SR);
1096 
1097 		complete(&as->xfer_completion);
1098 
1099 	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1100 		atmel_spi_lock(as);
1101 
1102 		if (as->current_remaining_bytes) {
1103 			ret = IRQ_HANDLED;
1104 			xfer = as->current_transfer;
1105 			atmel_spi_pump_pio_data(as, xfer);
1106 			if (!as->current_remaining_bytes)
1107 				spi_writel(as, IDR, pending);
1108 
1109 			complete(&as->xfer_completion);
1110 		}
1111 
1112 		atmel_spi_unlock(as);
1113 	} else {
1114 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1115 		ret = IRQ_HANDLED;
1116 		spi_writel(as, IDR, pending);
1117 	}
1118 
1119 	return ret;
1120 }
1121 
1122 static irqreturn_t
1123 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1124 {
1125 	struct spi_master	*master = dev_id;
1126 	struct atmel_spi	*as = spi_master_get_devdata(master);
1127 	u32			status, pending, imr;
1128 	int			ret = IRQ_NONE;
1129 
1130 	imr = spi_readl(as, IMR);
1131 	status = spi_readl(as, SR);
1132 	pending = status & imr;
1133 
1134 	if (pending & SPI_BIT(OVRES)) {
1135 
1136 		ret = IRQ_HANDLED;
1137 
1138 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1139 				     | SPI_BIT(OVRES)));
1140 
1141 		/* Clear any overrun happening while cleaning up */
1142 		spi_readl(as, SR);
1143 
1144 		as->done_status = -EIO;
1145 
1146 		complete(&as->xfer_completion);
1147 
1148 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1149 		ret = IRQ_HANDLED;
1150 
1151 		spi_writel(as, IDR, pending);
1152 
1153 		complete(&as->xfer_completion);
1154 	}
1155 
1156 	return ret;
1157 }
1158 
1159 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1160 {
1161 	struct spi_delay *delay = &spi->word_delay;
1162 	u32 value = delay->value;
1163 
1164 	switch (delay->unit) {
1165 	case SPI_DELAY_UNIT_NSECS:
1166 		value /= 1000;
1167 		break;
1168 	case SPI_DELAY_UNIT_USECS:
1169 		break;
1170 	default:
1171 		return -EINVAL;
1172 	}
1173 
1174 	return (as->spi_clk / 1000000 * value) >> 5;
1175 }
1176 
1177 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1178 {
1179 	int i;
1180 	struct spi_master *master = platform_get_drvdata(as->pdev);
1181 
1182 	if (!as->native_cs_free)
1183 		return; /* already initialized */
1184 
1185 	if (!master->cs_gpiods)
1186 		return; /* No CS GPIO */
1187 
1188 	/*
1189 	 * On the first version of the controller (AT91RM9200), CS0
1190 	 * can't be used associated with GPIO
1191 	 */
1192 	if (atmel_spi_is_v2(as))
1193 		i = 0;
1194 	else
1195 		i = 1;
1196 
1197 	for (; i < 4; i++)
1198 		if (master->cs_gpiods[i])
1199 			as->native_cs_free |= BIT(i);
1200 
1201 	if (as->native_cs_free)
1202 		as->native_cs_for_gpio = ffs(as->native_cs_free);
1203 }
1204 
1205 static int atmel_spi_setup(struct spi_device *spi)
1206 {
1207 	struct atmel_spi	*as;
1208 	struct atmel_spi_device	*asd;
1209 	u32			csr;
1210 	unsigned int		bits = spi->bits_per_word;
1211 	int chip_select;
1212 	int			word_delay_csr;
1213 
1214 	as = spi_master_get_devdata(spi->master);
1215 
1216 	/* see notes above re chipselect */
1217 	if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1218 		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1219 		return -EINVAL;
1220 	}
1221 
1222 	/* Setup() is called during spi_register_controller(aka
1223 	 * spi_register_master) but after all membmers of the cs_gpiod
1224 	 * array have been filled, so we can looked for which native
1225 	 * CS will be free for using with GPIO
1226 	 */
1227 	initialize_native_cs_for_gpio(as);
1228 
1229 	if (spi->cs_gpiod && as->native_cs_free) {
1230 		dev_err(&spi->dev,
1231 			"No native CS available to support this GPIO CS\n");
1232 		return -EBUSY;
1233 	}
1234 
1235 	if (spi->cs_gpiod)
1236 		chip_select = as->native_cs_for_gpio;
1237 	else
1238 		chip_select = spi->chip_select;
1239 
1240 	csr = SPI_BF(BITS, bits - 8);
1241 	if (spi->mode & SPI_CPOL)
1242 		csr |= SPI_BIT(CPOL);
1243 	if (!(spi->mode & SPI_CPHA))
1244 		csr |= SPI_BIT(NCPHA);
1245 
1246 	if (!spi->cs_gpiod)
1247 		csr |= SPI_BIT(CSAAT);
1248 	csr |= SPI_BF(DLYBS, 0);
1249 
1250 	word_delay_csr = atmel_word_delay_csr(spi, as);
1251 	if (word_delay_csr < 0)
1252 		return word_delay_csr;
1253 
1254 	/* DLYBCT adds delays between words.  This is useful for slow devices
1255 	 * that need a bit of time to setup the next transfer.
1256 	 */
1257 	csr |= SPI_BF(DLYBCT, word_delay_csr);
1258 
1259 	asd = spi->controller_state;
1260 	if (!asd) {
1261 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1262 		if (!asd)
1263 			return -ENOMEM;
1264 
1265 		spi->controller_state = asd;
1266 	}
1267 
1268 	asd->csr = csr;
1269 
1270 	dev_dbg(&spi->dev,
1271 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1272 		bits, spi->mode, spi->chip_select, csr);
1273 
1274 	if (!atmel_spi_is_v2(as))
1275 		spi_writel(as, CSR0 + 4 * chip_select, csr);
1276 
1277 	return 0;
1278 }
1279 
1280 static int atmel_spi_one_transfer(struct spi_master *master,
1281 					struct spi_message *msg,
1282 					struct spi_transfer *xfer)
1283 {
1284 	struct atmel_spi	*as;
1285 	struct spi_device	*spi = msg->spi;
1286 	u8			bits;
1287 	u32			len;
1288 	struct atmel_spi_device	*asd;
1289 	int			timeout;
1290 	int			ret;
1291 	unsigned long		dma_timeout;
1292 
1293 	as = spi_master_get_devdata(master);
1294 
1295 	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1296 		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1297 		return -EINVAL;
1298 	}
1299 
1300 	asd = spi->controller_state;
1301 	bits = (asd->csr >> 4) & 0xf;
1302 	if (bits != xfer->bits_per_word - 8) {
1303 		dev_dbg(&spi->dev,
1304 			"you can't yet change bits_per_word in transfers\n");
1305 		return -ENOPROTOOPT;
1306 	}
1307 
1308 	/*
1309 	 * DMA map early, for performance (empties dcache ASAP) and
1310 	 * better fault reporting.
1311 	 */
1312 	if ((!msg->is_dma_mapped)
1313 		&& as->use_pdc) {
1314 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1315 			return -ENOMEM;
1316 	}
1317 
1318 	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1319 
1320 	as->done_status = 0;
1321 	as->current_transfer = xfer;
1322 	as->current_remaining_bytes = xfer->len;
1323 	while (as->current_remaining_bytes) {
1324 		reinit_completion(&as->xfer_completion);
1325 
1326 		if (as->use_pdc) {
1327 			atmel_spi_pdc_next_xfer(master, msg, xfer);
1328 		} else if (atmel_spi_use_dma(as, xfer)) {
1329 			len = as->current_remaining_bytes;
1330 			ret = atmel_spi_next_xfer_dma_submit(master,
1331 								xfer, &len);
1332 			if (ret) {
1333 				dev_err(&spi->dev,
1334 					"unable to use DMA, fallback to PIO\n");
1335 				atmel_spi_next_xfer_pio(master, xfer);
1336 			} else {
1337 				as->current_remaining_bytes -= len;
1338 				if (as->current_remaining_bytes < 0)
1339 					as->current_remaining_bytes = 0;
1340 			}
1341 		} else {
1342 			atmel_spi_next_xfer_pio(master, xfer);
1343 		}
1344 
1345 		/* interrupts are disabled, so free the lock for schedule */
1346 		atmel_spi_unlock(as);
1347 		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1348 							  SPI_DMA_TIMEOUT);
1349 		atmel_spi_lock(as);
1350 		if (WARN_ON(dma_timeout == 0)) {
1351 			dev_err(&spi->dev, "spi transfer timeout\n");
1352 			as->done_status = -EIO;
1353 		}
1354 
1355 		if (as->done_status)
1356 			break;
1357 	}
1358 
1359 	if (as->done_status) {
1360 		if (as->use_pdc) {
1361 			dev_warn(master->dev.parent,
1362 				"overrun (%u/%u remaining)\n",
1363 				spi_readl(as, TCR), spi_readl(as, RCR));
1364 
1365 			/*
1366 			 * Clean up DMA registers and make sure the data
1367 			 * registers are empty.
1368 			 */
1369 			spi_writel(as, RNCR, 0);
1370 			spi_writel(as, TNCR, 0);
1371 			spi_writel(as, RCR, 0);
1372 			spi_writel(as, TCR, 0);
1373 			for (timeout = 1000; timeout; timeout--)
1374 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1375 					break;
1376 			if (!timeout)
1377 				dev_warn(master->dev.parent,
1378 					 "timeout waiting for TXEMPTY");
1379 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1380 				spi_readl(as, RDR);
1381 
1382 			/* Clear any overrun happening while cleaning up */
1383 			spi_readl(as, SR);
1384 
1385 		} else if (atmel_spi_use_dma(as, xfer)) {
1386 			atmel_spi_stop_dma(master);
1387 		}
1388 
1389 		if (!msg->is_dma_mapped
1390 			&& as->use_pdc)
1391 			atmel_spi_dma_unmap_xfer(master, xfer);
1392 
1393 		return 0;
1394 
1395 	} else {
1396 		/* only update length if no error */
1397 		msg->actual_length += xfer->len;
1398 	}
1399 
1400 	if (!msg->is_dma_mapped
1401 		&& as->use_pdc)
1402 		atmel_spi_dma_unmap_xfer(master, xfer);
1403 
1404 	spi_transfer_delay_exec(xfer);
1405 
1406 	if (xfer->cs_change) {
1407 		if (list_is_last(&xfer->transfer_list,
1408 				 &msg->transfers)) {
1409 			as->keep_cs = true;
1410 		} else {
1411 			cs_deactivate(as, msg->spi);
1412 			udelay(10);
1413 			cs_activate(as, msg->spi);
1414 		}
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 static int atmel_spi_transfer_one_message(struct spi_master *master,
1421 						struct spi_message *msg)
1422 {
1423 	struct atmel_spi *as;
1424 	struct spi_transfer *xfer;
1425 	struct spi_device *spi = msg->spi;
1426 	int ret = 0;
1427 
1428 	as = spi_master_get_devdata(master);
1429 
1430 	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1431 					msg, dev_name(&spi->dev));
1432 
1433 	atmel_spi_lock(as);
1434 	cs_activate(as, spi);
1435 
1436 	as->keep_cs = false;
1437 
1438 	msg->status = 0;
1439 	msg->actual_length = 0;
1440 
1441 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1442 		trace_spi_transfer_start(msg, xfer);
1443 
1444 		ret = atmel_spi_one_transfer(master, msg, xfer);
1445 		if (ret)
1446 			goto msg_done;
1447 
1448 		trace_spi_transfer_stop(msg, xfer);
1449 	}
1450 
1451 	if (as->use_pdc)
1452 		atmel_spi_disable_pdc_transfer(as);
1453 
1454 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1455 		dev_dbg(&spi->dev,
1456 			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1457 			xfer, xfer->len,
1458 			xfer->tx_buf, &xfer->tx_dma,
1459 			xfer->rx_buf, &xfer->rx_dma);
1460 	}
1461 
1462 msg_done:
1463 	if (!as->keep_cs)
1464 		cs_deactivate(as, msg->spi);
1465 
1466 	atmel_spi_unlock(as);
1467 
1468 	msg->status = as->done_status;
1469 	spi_finalize_current_message(spi->master);
1470 
1471 	return ret;
1472 }
1473 
1474 static void atmel_spi_cleanup(struct spi_device *spi)
1475 {
1476 	struct atmel_spi_device	*asd = spi->controller_state;
1477 
1478 	if (!asd)
1479 		return;
1480 
1481 	spi->controller_state = NULL;
1482 	kfree(asd);
1483 }
1484 
1485 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1486 {
1487 	return spi_readl(as, VERSION) & 0x00000fff;
1488 }
1489 
1490 static void atmel_get_caps(struct atmel_spi *as)
1491 {
1492 	unsigned int version;
1493 
1494 	version = atmel_get_version(as);
1495 
1496 	as->caps.is_spi2 = version > 0x121;
1497 	as->caps.has_wdrbt = version >= 0x210;
1498 	as->caps.has_dma_support = version >= 0x212;
1499 	as->caps.has_pdc_support = version < 0x212;
1500 }
1501 
1502 static void atmel_spi_init(struct atmel_spi *as)
1503 {
1504 	spi_writel(as, CR, SPI_BIT(SWRST));
1505 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1506 
1507 	/* It is recommended to enable FIFOs first thing after reset */
1508 	if (as->fifo_size)
1509 		spi_writel(as, CR, SPI_BIT(FIFOEN));
1510 
1511 	if (as->caps.has_wdrbt) {
1512 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1513 				| SPI_BIT(MSTR));
1514 	} else {
1515 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1516 	}
1517 
1518 	if (as->use_pdc)
1519 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1520 	spi_writel(as, CR, SPI_BIT(SPIEN));
1521 }
1522 
1523 static int atmel_spi_probe(struct platform_device *pdev)
1524 {
1525 	struct resource		*regs;
1526 	int			irq;
1527 	struct clk		*clk;
1528 	int			ret;
1529 	struct spi_master	*master;
1530 	struct atmel_spi	*as;
1531 
1532 	/* Select default pin state */
1533 	pinctrl_pm_select_default_state(&pdev->dev);
1534 
1535 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1536 	if (!regs)
1537 		return -ENXIO;
1538 
1539 	irq = platform_get_irq(pdev, 0);
1540 	if (irq < 0)
1541 		return irq;
1542 
1543 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1544 	if (IS_ERR(clk))
1545 		return PTR_ERR(clk);
1546 
1547 	/* setup spi core then atmel-specific driver state */
1548 	ret = -ENOMEM;
1549 	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1550 	if (!master)
1551 		goto out_free;
1552 
1553 	/* the spi->mode bits understood by this driver: */
1554 	master->use_gpio_descriptors = true;
1555 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1556 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1557 	master->dev.of_node = pdev->dev.of_node;
1558 	master->bus_num = pdev->id;
1559 	master->num_chipselect = 4;
1560 	master->setup = atmel_spi_setup;
1561 	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1562 	master->transfer_one_message = atmel_spi_transfer_one_message;
1563 	master->cleanup = atmel_spi_cleanup;
1564 	master->auto_runtime_pm = true;
1565 	master->max_dma_len = SPI_MAX_DMA_XFER;
1566 	master->can_dma = atmel_spi_can_dma;
1567 	platform_set_drvdata(pdev, master);
1568 
1569 	as = spi_master_get_devdata(master);
1570 
1571 	spin_lock_init(&as->lock);
1572 
1573 	as->pdev = pdev;
1574 	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1575 	if (IS_ERR(as->regs)) {
1576 		ret = PTR_ERR(as->regs);
1577 		goto out_unmap_regs;
1578 	}
1579 	as->phybase = regs->start;
1580 	as->irq = irq;
1581 	as->clk = clk;
1582 
1583 	init_completion(&as->xfer_completion);
1584 
1585 	atmel_get_caps(as);
1586 
1587 	as->use_dma = false;
1588 	as->use_pdc = false;
1589 	if (as->caps.has_dma_support) {
1590 		ret = atmel_spi_configure_dma(master, as);
1591 		if (ret == 0) {
1592 			as->use_dma = true;
1593 		} else if (ret == -EPROBE_DEFER) {
1594 			return ret;
1595 		}
1596 	} else if (as->caps.has_pdc_support) {
1597 		as->use_pdc = true;
1598 	}
1599 
1600 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1601 		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1602 						      SPI_MAX_DMA_XFER,
1603 						      &as->dma_addr_rx_bbuf,
1604 						      GFP_KERNEL | GFP_DMA);
1605 		if (!as->addr_rx_bbuf) {
1606 			as->use_dma = false;
1607 		} else {
1608 			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1609 					SPI_MAX_DMA_XFER,
1610 					&as->dma_addr_tx_bbuf,
1611 					GFP_KERNEL | GFP_DMA);
1612 			if (!as->addr_tx_bbuf) {
1613 				as->use_dma = false;
1614 				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1615 						  as->addr_rx_bbuf,
1616 						  as->dma_addr_rx_bbuf);
1617 			}
1618 		}
1619 		if (!as->use_dma)
1620 			dev_info(master->dev.parent,
1621 				 "  can not allocate dma coherent memory\n");
1622 	}
1623 
1624 	if (as->caps.has_dma_support && !as->use_dma)
1625 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1626 
1627 	if (as->use_pdc) {
1628 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1629 					0, dev_name(&pdev->dev), master);
1630 	} else {
1631 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1632 					0, dev_name(&pdev->dev), master);
1633 	}
1634 	if (ret)
1635 		goto out_unmap_regs;
1636 
1637 	/* Initialize the hardware */
1638 	ret = clk_prepare_enable(clk);
1639 	if (ret)
1640 		goto out_free_irq;
1641 
1642 	as->spi_clk = clk_get_rate(clk);
1643 
1644 	as->fifo_size = 0;
1645 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1646 				  &as->fifo_size)) {
1647 		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1648 	}
1649 
1650 	atmel_spi_init(as);
1651 
1652 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1653 	pm_runtime_use_autosuspend(&pdev->dev);
1654 	pm_runtime_set_active(&pdev->dev);
1655 	pm_runtime_enable(&pdev->dev);
1656 
1657 	ret = devm_spi_register_master(&pdev->dev, master);
1658 	if (ret)
1659 		goto out_free_dma;
1660 
1661 	/* go! */
1662 	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1663 			atmel_get_version(as), (unsigned long)regs->start,
1664 			irq);
1665 
1666 	return 0;
1667 
1668 out_free_dma:
1669 	pm_runtime_disable(&pdev->dev);
1670 	pm_runtime_set_suspended(&pdev->dev);
1671 
1672 	if (as->use_dma)
1673 		atmel_spi_release_dma(master);
1674 
1675 	spi_writel(as, CR, SPI_BIT(SWRST));
1676 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1677 	clk_disable_unprepare(clk);
1678 out_free_irq:
1679 out_unmap_regs:
1680 out_free:
1681 	spi_master_put(master);
1682 	return ret;
1683 }
1684 
1685 static int atmel_spi_remove(struct platform_device *pdev)
1686 {
1687 	struct spi_master	*master = platform_get_drvdata(pdev);
1688 	struct atmel_spi	*as = spi_master_get_devdata(master);
1689 
1690 	pm_runtime_get_sync(&pdev->dev);
1691 
1692 	/* reset the hardware and block queue progress */
1693 	if (as->use_dma) {
1694 		atmel_spi_stop_dma(master);
1695 		atmel_spi_release_dma(master);
1696 		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1697 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1698 					  as->addr_tx_bbuf,
1699 					  as->dma_addr_tx_bbuf);
1700 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1701 					  as->addr_rx_bbuf,
1702 					  as->dma_addr_rx_bbuf);
1703 		}
1704 	}
1705 
1706 	spin_lock_irq(&as->lock);
1707 	spi_writel(as, CR, SPI_BIT(SWRST));
1708 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1709 	spi_readl(as, SR);
1710 	spin_unlock_irq(&as->lock);
1711 
1712 	clk_disable_unprepare(as->clk);
1713 
1714 	pm_runtime_put_noidle(&pdev->dev);
1715 	pm_runtime_disable(&pdev->dev);
1716 
1717 	return 0;
1718 }
1719 
1720 #ifdef CONFIG_PM
1721 static int atmel_spi_runtime_suspend(struct device *dev)
1722 {
1723 	struct spi_master *master = dev_get_drvdata(dev);
1724 	struct atmel_spi *as = spi_master_get_devdata(master);
1725 
1726 	clk_disable_unprepare(as->clk);
1727 	pinctrl_pm_select_sleep_state(dev);
1728 
1729 	return 0;
1730 }
1731 
1732 static int atmel_spi_runtime_resume(struct device *dev)
1733 {
1734 	struct spi_master *master = dev_get_drvdata(dev);
1735 	struct atmel_spi *as = spi_master_get_devdata(master);
1736 
1737 	pinctrl_pm_select_default_state(dev);
1738 
1739 	return clk_prepare_enable(as->clk);
1740 }
1741 
1742 #ifdef CONFIG_PM_SLEEP
1743 static int atmel_spi_suspend(struct device *dev)
1744 {
1745 	struct spi_master *master = dev_get_drvdata(dev);
1746 	int ret;
1747 
1748 	/* Stop the queue running */
1749 	ret = spi_master_suspend(master);
1750 	if (ret)
1751 		return ret;
1752 
1753 	if (!pm_runtime_suspended(dev))
1754 		atmel_spi_runtime_suspend(dev);
1755 
1756 	return 0;
1757 }
1758 
1759 static int atmel_spi_resume(struct device *dev)
1760 {
1761 	struct spi_master *master = dev_get_drvdata(dev);
1762 	struct atmel_spi *as = spi_master_get_devdata(master);
1763 	int ret;
1764 
1765 	ret = clk_prepare_enable(as->clk);
1766 	if (ret)
1767 		return ret;
1768 
1769 	atmel_spi_init(as);
1770 
1771 	clk_disable_unprepare(as->clk);
1772 
1773 	if (!pm_runtime_suspended(dev)) {
1774 		ret = atmel_spi_runtime_resume(dev);
1775 		if (ret)
1776 			return ret;
1777 	}
1778 
1779 	/* Start the queue running */
1780 	return spi_master_resume(master);
1781 }
1782 #endif
1783 
1784 static const struct dev_pm_ops atmel_spi_pm_ops = {
1785 	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1786 	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1787 			   atmel_spi_runtime_resume, NULL)
1788 };
1789 #define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1790 #else
1791 #define ATMEL_SPI_PM_OPS	NULL
1792 #endif
1793 
1794 static const struct of_device_id atmel_spi_dt_ids[] = {
1795 	{ .compatible = "atmel,at91rm9200-spi" },
1796 	{ /* sentinel */ }
1797 };
1798 
1799 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1800 
1801 static struct platform_driver atmel_spi_driver = {
1802 	.driver		= {
1803 		.name	= "atmel_spi",
1804 		.pm	= ATMEL_SPI_PM_OPS,
1805 		.of_match_table	= atmel_spi_dt_ids,
1806 	},
1807 	.probe		= atmel_spi_probe,
1808 	.remove		= atmel_spi_remove,
1809 };
1810 module_platform_driver(atmel_spi_driver);
1811 
1812 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1813 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1814 MODULE_LICENSE("GPL");
1815 MODULE_ALIAS("platform:atmel_spi");
1816