xref: /openbmc/linux/drivers/spi/spi-aspeed-smc.c (revision e79b548b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * ASPEED FMC/SPI Memory Controller Driver
4  *
5  * Copyright (c) 2015-2022, IBM Corporation.
6  * Copyright (c) 2020, ASPEED Corporation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_platform.h>
13 #include <linux/platform_device.h>
14 #include <linux/spi/spi.h>
15 #include <linux/spi/spi-mem.h>
16 
17 #define DEVICE_NAME "spi-aspeed-smc"
18 
19 /* Type setting Register */
20 #define CONFIG_REG			0x0
21 #define   CONFIG_TYPE_SPI		0x2
22 
23 /* CE Control Register */
24 #define CE_CTRL_REG			0x4
25 
26 /* CEx Control Register */
27 #define CE0_CTRL_REG			0x10
28 #define   CTRL_IO_MODE_MASK		GENMASK(30, 28)
29 #define   CTRL_IO_SINGLE_DATA	        0x0
30 #define   CTRL_IO_DUAL_DATA		BIT(29)
31 #define   CTRL_IO_QUAD_DATA		BIT(30)
32 #define   CTRL_COMMAND_SHIFT		16
33 #define   CTRL_IO_ADDRESS_4B		BIT(13)	/* AST2400 SPI only */
34 #define   CTRL_IO_DUMMY_SET(dummy)					\
35 	(((((dummy) >> 2) & 0x1) << 14) | (((dummy) & 0x3) << 6))
36 #define   CTRL_FREQ_SEL_SHIFT		8
37 #define   CTRL_FREQ_SEL_MASK		GENMASK(11, CTRL_FREQ_SEL_SHIFT)
38 #define   CTRL_CE_STOP_ACTIVE		BIT(2)
39 #define   CTRL_IO_MODE_CMD_MASK		GENMASK(1, 0)
40 #define   CTRL_IO_MODE_NORMAL		0x0
41 #define   CTRL_IO_MODE_READ		0x1
42 #define   CTRL_IO_MODE_WRITE		0x2
43 #define   CTRL_IO_MODE_USER		0x3
44 
45 #define   CTRL_IO_CMD_MASK		0xf0ff40c3
46 
47 /* CEx Address Decoding Range Register */
48 #define CE0_SEGMENT_ADDR_REG		0x30
49 
50 /* CEx Read timing compensation register */
51 #define CE0_TIMING_COMPENSATION_REG	0x94
52 
53 enum aspeed_spi_ctl_reg_value {
54 	ASPEED_SPI_BASE,
55 	ASPEED_SPI_READ,
56 	ASPEED_SPI_WRITE,
57 	ASPEED_SPI_MAX,
58 };
59 
60 struct aspeed_spi;
61 
62 struct aspeed_spi_chip {
63 	struct aspeed_spi	*aspi;
64 	u32			 cs;
65 	void __iomem		*ctl;
66 	void __iomem		*ahb_base;
67 	u32			 ahb_window_size;
68 	u32			 ctl_val[ASPEED_SPI_MAX];
69 	u32			 clk_freq;
70 };
71 
72 struct aspeed_spi_data {
73 	u32	ctl0;
74 	u32	max_cs;
75 	bool	hastype;
76 	u32	mode_bits;
77 	u32	we0;
78 	u32	timing;
79 	u32	hclk_mask;
80 	u32	hdiv_max;
81 
82 	u32 (*segment_start)(struct aspeed_spi *aspi, u32 reg);
83 	u32 (*segment_end)(struct aspeed_spi *aspi, u32 reg);
84 	u32 (*segment_reg)(struct aspeed_spi *aspi, u32 start, u32 end);
85 	int (*calibrate)(struct aspeed_spi_chip *chip, u32 hdiv,
86 			 const u8 *golden_buf, u8 *test_buf);
87 };
88 
89 #define ASPEED_SPI_MAX_NUM_CS	5
90 
91 struct aspeed_spi {
92 	const struct aspeed_spi_data	*data;
93 
94 	void __iomem		*regs;
95 	void __iomem		*ahb_base;
96 	u32			 ahb_base_phy;
97 	u32			 ahb_window_size;
98 	struct device		*dev;
99 
100 	struct clk		*clk;
101 	u32			 clk_freq;
102 
103 	struct aspeed_spi_chip	 chips[ASPEED_SPI_MAX_NUM_CS];
104 };
105 
106 static u32 aspeed_spi_get_io_mode(const struct spi_mem_op *op)
107 {
108 	switch (op->data.buswidth) {
109 	case 1:
110 		return CTRL_IO_SINGLE_DATA;
111 	case 2:
112 		return CTRL_IO_DUAL_DATA;
113 	case 4:
114 		return CTRL_IO_QUAD_DATA;
115 	default:
116 		return CTRL_IO_SINGLE_DATA;
117 	}
118 }
119 
120 static void aspeed_spi_set_io_mode(struct aspeed_spi_chip *chip, u32 io_mode)
121 {
122 	u32 ctl;
123 
124 	if (io_mode > 0) {
125 		ctl = readl(chip->ctl) & ~CTRL_IO_MODE_MASK;
126 		ctl |= io_mode;
127 		writel(ctl, chip->ctl);
128 	}
129 }
130 
131 static void aspeed_spi_start_user(struct aspeed_spi_chip *chip)
132 {
133 	u32 ctl = chip->ctl_val[ASPEED_SPI_BASE];
134 
135 	ctl |= CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
136 	writel(ctl, chip->ctl);
137 
138 	ctl &= ~CTRL_CE_STOP_ACTIVE;
139 	writel(ctl, chip->ctl);
140 }
141 
142 static void aspeed_spi_stop_user(struct aspeed_spi_chip *chip)
143 {
144 	u32 ctl = chip->ctl_val[ASPEED_SPI_READ] |
145 		CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
146 
147 	writel(ctl, chip->ctl);
148 
149 	/* Restore defaults */
150 	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
151 }
152 
153 static int aspeed_spi_read_from_ahb(void *buf, void __iomem *src, size_t len)
154 {
155 	size_t offset = 0;
156 
157 	if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
158 	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
159 		ioread32_rep(src, buf, len >> 2);
160 		offset = len & ~0x3;
161 		len -= offset;
162 	}
163 	ioread8_rep(src, (u8 *)buf + offset, len);
164 	return 0;
165 }
166 
167 static int aspeed_spi_write_to_ahb(void __iomem *dst, const void *buf, size_t len)
168 {
169 	size_t offset = 0;
170 
171 	if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
172 	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
173 		iowrite32_rep(dst, buf, len >> 2);
174 		offset = len & ~0x3;
175 		len -= offset;
176 	}
177 	iowrite8_rep(dst, (const u8 *)buf + offset, len);
178 	return 0;
179 }
180 
181 static int aspeed_spi_send_cmd_addr(struct aspeed_spi_chip *chip, u8 addr_nbytes,
182 				    u64 offset, u32 opcode)
183 {
184 	__be32 temp;
185 	u32 cmdaddr;
186 
187 	switch (addr_nbytes) {
188 	case 3:
189 		cmdaddr = offset & 0xFFFFFF;
190 		cmdaddr |= opcode << 24;
191 
192 		temp = cpu_to_be32(cmdaddr);
193 		aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4);
194 		break;
195 	case 4:
196 		temp = cpu_to_be32(offset);
197 		aspeed_spi_write_to_ahb(chip->ahb_base, &opcode, 1);
198 		aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4);
199 		break;
200 	default:
201 		WARN_ONCE(1, "Unexpected address width %u", addr_nbytes);
202 		return -EOPNOTSUPP;
203 	}
204 	return 0;
205 }
206 
207 static int aspeed_spi_read_reg(struct aspeed_spi_chip *chip,
208 			       const struct spi_mem_op *op)
209 {
210 	aspeed_spi_start_user(chip);
211 	aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1);
212 	aspeed_spi_read_from_ahb(op->data.buf.in,
213 				 chip->ahb_base, op->data.nbytes);
214 	aspeed_spi_stop_user(chip);
215 	return 0;
216 }
217 
218 static int aspeed_spi_write_reg(struct aspeed_spi_chip *chip,
219 				const struct spi_mem_op *op)
220 {
221 	aspeed_spi_start_user(chip);
222 	aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1);
223 	aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out,
224 				op->data.nbytes);
225 	aspeed_spi_stop_user(chip);
226 	return 0;
227 }
228 
229 static ssize_t aspeed_spi_read_user(struct aspeed_spi_chip *chip,
230 				    const struct spi_mem_op *op,
231 				    u64 offset, size_t len, void *buf)
232 {
233 	int io_mode = aspeed_spi_get_io_mode(op);
234 	u8 dummy = 0xFF;
235 	int i;
236 	int ret;
237 
238 	aspeed_spi_start_user(chip);
239 
240 	ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, offset, op->cmd.opcode);
241 	if (ret < 0)
242 		return ret;
243 
244 	if (op->dummy.buswidth && op->dummy.nbytes) {
245 		for (i = 0; i < op->dummy.nbytes / op->dummy.buswidth; i++)
246 			aspeed_spi_write_to_ahb(chip->ahb_base, &dummy,	sizeof(dummy));
247 	}
248 
249 	aspeed_spi_set_io_mode(chip, io_mode);
250 
251 	aspeed_spi_read_from_ahb(buf, chip->ahb_base, len);
252 	aspeed_spi_stop_user(chip);
253 	return 0;
254 }
255 
256 static ssize_t aspeed_spi_write_user(struct aspeed_spi_chip *chip,
257 				     const struct spi_mem_op *op)
258 {
259 	int ret;
260 
261 	aspeed_spi_start_user(chip);
262 	ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, op->addr.val, op->cmd.opcode);
263 	if (ret < 0)
264 		return ret;
265 	aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out, op->data.nbytes);
266 	aspeed_spi_stop_user(chip);
267 	return 0;
268 }
269 
270 /* support for 1-1-1, 1-1-2 or 1-1-4 */
271 static bool aspeed_spi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
272 {
273 	if (op->cmd.buswidth > 1)
274 		return false;
275 
276 	if (op->addr.nbytes != 0) {
277 		if (op->addr.buswidth > 1)
278 			return false;
279 		if (op->addr.nbytes < 3 || op->addr.nbytes > 4)
280 			return false;
281 	}
282 
283 	if (op->dummy.nbytes != 0) {
284 		if (op->dummy.buswidth > 1 || op->dummy.nbytes > 7)
285 			return false;
286 	}
287 
288 	if (op->data.nbytes != 0 && op->data.buswidth > 4)
289 		return false;
290 
291 	return spi_mem_default_supports_op(mem, op);
292 }
293 
294 static const struct aspeed_spi_data ast2400_spi_data;
295 
296 static int do_aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
297 {
298 	struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->master);
299 	struct aspeed_spi_chip *chip = &aspi->chips[mem->spi->chip_select];
300 	u32 addr_mode, addr_mode_backup;
301 	u32 ctl_val;
302 	int ret = 0;
303 
304 	dev_dbg(aspi->dev,
305 		"CE%d %s OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x len:%#x",
306 		chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write",
307 		op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
308 		op->dummy.buswidth, op->data.buswidth,
309 		op->addr.nbytes, op->dummy.nbytes, op->data.nbytes);
310 
311 	addr_mode = readl(aspi->regs + CE_CTRL_REG);
312 	addr_mode_backup = addr_mode;
313 
314 	ctl_val = chip->ctl_val[ASPEED_SPI_BASE];
315 	ctl_val &= ~CTRL_IO_CMD_MASK;
316 
317 	ctl_val |= op->cmd.opcode << CTRL_COMMAND_SHIFT;
318 
319 	/* 4BYTE address mode */
320 	if (op->addr.nbytes) {
321 		if (op->addr.nbytes == 4)
322 			addr_mode |= (0x11 << chip->cs);
323 		else
324 			addr_mode &= ~(0x11 << chip->cs);
325 
326 		if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
327 			ctl_val |= CTRL_IO_ADDRESS_4B;
328 	}
329 
330 	if (op->dummy.nbytes)
331 		ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
332 
333 	if (op->data.nbytes)
334 		ctl_val |= aspeed_spi_get_io_mode(op);
335 
336 	if (op->data.dir == SPI_MEM_DATA_OUT)
337 		ctl_val |= CTRL_IO_MODE_WRITE;
338 	else
339 		ctl_val |= CTRL_IO_MODE_READ;
340 
341 	if (addr_mode != addr_mode_backup)
342 		writel(addr_mode, aspi->regs + CE_CTRL_REG);
343 	writel(ctl_val, chip->ctl);
344 
345 	if (op->data.dir == SPI_MEM_DATA_IN) {
346 		if (!op->addr.nbytes)
347 			ret = aspeed_spi_read_reg(chip, op);
348 		else
349 			ret = aspeed_spi_read_user(chip, op, op->addr.val,
350 						   op->data.nbytes, op->data.buf.in);
351 	} else {
352 		if (!op->addr.nbytes)
353 			ret = aspeed_spi_write_reg(chip, op);
354 		else
355 			ret = aspeed_spi_write_user(chip, op);
356 	}
357 
358 	/* Restore defaults */
359 	if (addr_mode != addr_mode_backup)
360 		writel(addr_mode_backup, aspi->regs + CE_CTRL_REG);
361 	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
362 	return ret;
363 }
364 
365 static int aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
366 {
367 	int ret;
368 
369 	ret = do_aspeed_spi_exec_op(mem, op);
370 	if (ret)
371 		dev_err(&mem->spi->dev, "operation failed: %d\n", ret);
372 	return ret;
373 }
374 
375 static const char *aspeed_spi_get_name(struct spi_mem *mem)
376 {
377 	struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->master);
378 	struct device *dev = aspi->dev;
379 
380 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
381 }
382 
383 struct aspeed_spi_window {
384 	u32 cs;
385 	u32 offset;
386 	u32 size;
387 };
388 
389 static void aspeed_spi_get_windows(struct aspeed_spi *aspi,
390 				   struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS])
391 {
392 	const struct aspeed_spi_data *data = aspi->data;
393 	u32 reg_val;
394 	u32 cs;
395 
396 	for (cs = 0; cs < aspi->data->max_cs; cs++) {
397 		reg_val = readl(aspi->regs + CE0_SEGMENT_ADDR_REG + cs * 4);
398 		windows[cs].cs = cs;
399 		windows[cs].size = data->segment_end(aspi, reg_val) -
400 			data->segment_start(aspi, reg_val);
401 		windows[cs].offset = cs ? windows[cs - 1].offset + windows[cs - 1].size : 0;
402 		dev_vdbg(aspi->dev, "CE%d offset=0x%.8x size=0x%x\n", cs,
403 			 windows[cs].offset, windows[cs].size);
404 	}
405 }
406 
407 /*
408  * On the AST2600, some CE windows are closed by default at reset but
409  * U-Boot should open all.
410  */
411 static int aspeed_spi_chip_set_default_window(struct aspeed_spi_chip *chip)
412 {
413 	struct aspeed_spi *aspi = chip->aspi;
414 	struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
415 	struct aspeed_spi_window *win = &windows[chip->cs];
416 
417 	/* No segment registers for the AST2400 SPI controller */
418 	if (aspi->data == &ast2400_spi_data) {
419 		win->offset = 0;
420 		win->size = aspi->ahb_window_size;
421 	} else {
422 		aspeed_spi_get_windows(aspi, windows);
423 	}
424 
425 	chip->ahb_base = aspi->ahb_base + win->offset;
426 	chip->ahb_window_size = win->size;
427 
428 	dev_dbg(aspi->dev, "CE%d default window [ 0x%.8x - 0x%.8x ] %dMB",
429 		chip->cs, aspi->ahb_base_phy + win->offset,
430 		aspi->ahb_base_phy + win->offset + win->size - 1,
431 		win->size >> 20);
432 
433 	return chip->ahb_window_size ? 0 : -1;
434 }
435 
436 static int aspeed_spi_set_window(struct aspeed_spi *aspi,
437 				 const struct aspeed_spi_window *win)
438 {
439 	u32 start = aspi->ahb_base_phy + win->offset;
440 	u32 end = start + win->size;
441 	void __iomem *seg_reg = aspi->regs + CE0_SEGMENT_ADDR_REG + win->cs * 4;
442 	u32 seg_val_backup = readl(seg_reg);
443 	u32 seg_val = aspi->data->segment_reg(aspi, start, end);
444 
445 	if (seg_val == seg_val_backup)
446 		return 0;
447 
448 	writel(seg_val, seg_reg);
449 
450 	/*
451 	 * Restore initial value if something goes wrong else we could
452 	 * loose access to the chip.
453 	 */
454 	if (seg_val != readl(seg_reg)) {
455 		dev_err(aspi->dev, "CE%d invalid window [ 0x%.8x - 0x%.8x ] %dMB",
456 			win->cs, start, end - 1, win->size >> 20);
457 		writel(seg_val_backup, seg_reg);
458 		return -EIO;
459 	}
460 
461 	if (win->size)
462 		dev_dbg(aspi->dev, "CE%d new window [ 0x%.8x - 0x%.8x ] %dMB",
463 			win->cs, start, end - 1,  win->size >> 20);
464 	else
465 		dev_dbg(aspi->dev, "CE%d window closed", win->cs);
466 
467 	return 0;
468 }
469 
470 /*
471  * Yet to be done when possible :
472  * - Align mappings on flash size (we don't have the info)
473  * - ioremap each window, not strictly necessary since the overall window
474  *   is correct.
475  */
476 static const struct aspeed_spi_data ast2500_spi_data;
477 static const struct aspeed_spi_data ast2600_spi_data;
478 static const struct aspeed_spi_data ast2600_fmc_data;
479 
480 static int aspeed_spi_chip_adjust_window(struct aspeed_spi_chip *chip,
481 					 u32 local_offset, u32 size)
482 {
483 	struct aspeed_spi *aspi = chip->aspi;
484 	struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
485 	struct aspeed_spi_window *win = &windows[chip->cs];
486 	int ret;
487 
488 	/* No segment registers for the AST2400 SPI controller */
489 	if (aspi->data == &ast2400_spi_data)
490 		return 0;
491 
492 	/*
493 	 * Due to an HW issue on the AST2500 SPI controller, the CE0
494 	 * window size should be smaller than the maximum 128MB.
495 	 */
496 	if (aspi->data == &ast2500_spi_data && chip->cs == 0 && size == SZ_128M) {
497 		size = 120 << 20;
498 		dev_info(aspi->dev, "CE%d window resized to %dMB (AST2500 HW quirk)",
499 			 chip->cs, size >> 20);
500 	}
501 
502 	/*
503 	 * The decoding size of AST2600 SPI controller should set at
504 	 * least 2MB.
505 	 */
506 	if ((aspi->data == &ast2600_spi_data || aspi->data == &ast2600_fmc_data) &&
507 	    size < SZ_2M) {
508 		size = SZ_2M;
509 		dev_info(aspi->dev, "CE%d window resized to %dMB (AST2600 Decoding)",
510 			 chip->cs, size >> 20);
511 	}
512 
513 	aspeed_spi_get_windows(aspi, windows);
514 
515 	/* Adjust this chip window */
516 	win->offset += local_offset;
517 	win->size = size;
518 
519 	if (win->offset + win->size > aspi->ahb_window_size) {
520 		win->size = aspi->ahb_window_size - win->offset;
521 		dev_warn(aspi->dev, "CE%d window resized to %dMB", chip->cs, win->size >> 20);
522 	}
523 
524 	ret = aspeed_spi_set_window(aspi, win);
525 	if (ret)
526 		return ret;
527 
528 	/* Update chip mapping info */
529 	chip->ahb_base = aspi->ahb_base + win->offset;
530 	chip->ahb_window_size = win->size;
531 
532 	/*
533 	 * Also adjust next chip window to make sure that it does not
534 	 * overlap with the current window.
535 	 */
536 	if (chip->cs < aspi->data->max_cs - 1) {
537 		struct aspeed_spi_window *next = &windows[chip->cs + 1];
538 
539 		/* Change offset and size to keep the same end address */
540 		if ((next->offset + next->size) > (win->offset + win->size))
541 			next->size = (next->offset + next->size) - (win->offset + win->size);
542 		else
543 			next->size = 0;
544 		next->offset = win->offset + win->size;
545 
546 		aspeed_spi_set_window(aspi, next);
547 	}
548 	return 0;
549 }
550 
551 static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip);
552 
553 static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
554 {
555 	struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->master);
556 	struct aspeed_spi_chip *chip = &aspi->chips[desc->mem->spi->chip_select];
557 	struct spi_mem_op *op = &desc->info.op_tmpl;
558 	u32 ctl_val;
559 	int ret = 0;
560 
561 	dev_dbg(aspi->dev,
562 		"CE%d %s dirmap [ 0x%.8llx - 0x%.8llx ] OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x\n",
563 		chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write",
564 		desc->info.offset, desc->info.offset + desc->info.length,
565 		op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
566 		op->dummy.buswidth, op->data.buswidth,
567 		op->addr.nbytes, op->dummy.nbytes);
568 
569 	chip->clk_freq = desc->mem->spi->max_speed_hz;
570 
571 	/* Only for reads */
572 	if (op->data.dir != SPI_MEM_DATA_IN)
573 		return -EOPNOTSUPP;
574 
575 	aspeed_spi_chip_adjust_window(chip, desc->info.offset, desc->info.length);
576 
577 	if (desc->info.length > chip->ahb_window_size)
578 		dev_warn(aspi->dev, "CE%d window (%dMB) too small for mapping",
579 			 chip->cs, chip->ahb_window_size >> 20);
580 
581 	/* Define the default IO read settings */
582 	ctl_val = readl(chip->ctl) & ~CTRL_IO_CMD_MASK;
583 	ctl_val |= aspeed_spi_get_io_mode(op) |
584 		op->cmd.opcode << CTRL_COMMAND_SHIFT |
585 		CTRL_IO_MODE_READ;
586 
587 	if (op->dummy.nbytes)
588 		ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
589 
590 	/* Tune 4BYTE address mode */
591 	if (op->addr.nbytes) {
592 		u32 addr_mode = readl(aspi->regs + CE_CTRL_REG);
593 
594 		if (op->addr.nbytes == 4)
595 			addr_mode |= (0x11 << chip->cs);
596 		else
597 			addr_mode &= ~(0x11 << chip->cs);
598 		writel(addr_mode, aspi->regs + CE_CTRL_REG);
599 
600 		/* AST2400 SPI controller sets 4BYTE address mode in
601 		 * CE0 Control Register
602 		 */
603 		if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
604 			ctl_val |= CTRL_IO_ADDRESS_4B;
605 	}
606 
607 	/* READ mode is the controller default setting */
608 	chip->ctl_val[ASPEED_SPI_READ] = ctl_val;
609 	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
610 
611 	ret = aspeed_spi_do_calibration(chip);
612 
613 	dev_info(aspi->dev, "CE%d read buswidth:%d [0x%08x]\n",
614 		 chip->cs, op->data.buswidth, chip->ctl_val[ASPEED_SPI_READ]);
615 
616 	return ret;
617 }
618 
619 static ssize_t aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc *desc,
620 				      u64 offset, size_t len, void *buf)
621 {
622 	struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->master);
623 	struct aspeed_spi_chip *chip = &aspi->chips[desc->mem->spi->chip_select];
624 
625 	/* Switch to USER command mode if mapping window is too small */
626 	if (chip->ahb_window_size < offset + len) {
627 		int ret;
628 
629 		ret = aspeed_spi_read_user(chip, &desc->info.op_tmpl, offset, len, buf);
630 		if (ret < 0)
631 			return ret;
632 	} else {
633 		memcpy_fromio(buf, chip->ahb_base + offset, len);
634 	}
635 
636 	return len;
637 }
638 
639 static const struct spi_controller_mem_ops aspeed_spi_mem_ops = {
640 	.supports_op = aspeed_spi_supports_op,
641 	.exec_op = aspeed_spi_exec_op,
642 	.get_name = aspeed_spi_get_name,
643 	.dirmap_create = aspeed_spi_dirmap_create,
644 	.dirmap_read = aspeed_spi_dirmap_read,
645 };
646 
647 static void aspeed_spi_chip_set_type(struct aspeed_spi *aspi, unsigned int cs, int type)
648 {
649 	u32 reg;
650 
651 	reg = readl(aspi->regs + CONFIG_REG);
652 	reg &= ~(0x3 << (cs * 2));
653 	reg |= type << (cs * 2);
654 	writel(reg, aspi->regs + CONFIG_REG);
655 }
656 
657 static void aspeed_spi_chip_enable(struct aspeed_spi *aspi, unsigned int cs, bool enable)
658 {
659 	u32 we_bit = BIT(aspi->data->we0 + cs);
660 	u32 reg = readl(aspi->regs + CONFIG_REG);
661 
662 	if (enable)
663 		reg |= we_bit;
664 	else
665 		reg &= ~we_bit;
666 	writel(reg, aspi->regs + CONFIG_REG);
667 }
668 
669 static int aspeed_spi_setup(struct spi_device *spi)
670 {
671 	struct aspeed_spi *aspi = spi_controller_get_devdata(spi->master);
672 	const struct aspeed_spi_data *data = aspi->data;
673 	unsigned int cs = spi->chip_select;
674 	struct aspeed_spi_chip *chip = &aspi->chips[cs];
675 
676 	chip->aspi = aspi;
677 	chip->cs = cs;
678 	chip->ctl = aspi->regs + data->ctl0 + cs * 4;
679 
680 	/* The driver only supports SPI type flash */
681 	if (data->hastype)
682 		aspeed_spi_chip_set_type(aspi, cs, CONFIG_TYPE_SPI);
683 
684 	if (aspeed_spi_chip_set_default_window(chip) < 0) {
685 		dev_warn(aspi->dev, "CE%d window invalid", cs);
686 		return -EINVAL;
687 	}
688 
689 	aspeed_spi_chip_enable(aspi, cs, true);
690 
691 	chip->ctl_val[ASPEED_SPI_BASE] = CTRL_CE_STOP_ACTIVE | CTRL_IO_MODE_USER;
692 
693 	dev_dbg(aspi->dev, "CE%d setup done\n", cs);
694 	return 0;
695 }
696 
697 static void aspeed_spi_cleanup(struct spi_device *spi)
698 {
699 	struct aspeed_spi *aspi = spi_controller_get_devdata(spi->master);
700 	unsigned int cs = spi->chip_select;
701 
702 	aspeed_spi_chip_enable(aspi, cs, false);
703 
704 	dev_dbg(aspi->dev, "CE%d cleanup done\n", cs);
705 }
706 
707 static void aspeed_spi_enable(struct aspeed_spi *aspi, bool enable)
708 {
709 	int cs;
710 
711 	for (cs = 0; cs < aspi->data->max_cs; cs++)
712 		aspeed_spi_chip_enable(aspi, cs, enable);
713 }
714 
715 static int aspeed_spi_probe(struct platform_device *pdev)
716 {
717 	struct device *dev = &pdev->dev;
718 	const struct aspeed_spi_data *data;
719 	struct spi_controller *ctlr;
720 	struct aspeed_spi *aspi;
721 	struct resource *res;
722 	int ret;
723 
724 	data = of_device_get_match_data(&pdev->dev);
725 	if (!data)
726 		return -ENODEV;
727 
728 	ctlr = devm_spi_alloc_master(dev, sizeof(*aspi));
729 	if (!ctlr)
730 		return -ENOMEM;
731 
732 	aspi = spi_controller_get_devdata(ctlr);
733 	platform_set_drvdata(pdev, aspi);
734 	aspi->data = data;
735 	aspi->dev = dev;
736 
737 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
738 	aspi->regs = devm_ioremap_resource(dev, res);
739 	if (IS_ERR(aspi->regs)) {
740 		dev_err(dev, "missing AHB register window\n");
741 		return PTR_ERR(aspi->regs);
742 	}
743 
744 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
745 	aspi->ahb_base = devm_ioremap_resource(dev, res);
746 	if (IS_ERR(aspi->ahb_base)) {
747 		dev_err(dev, "missing AHB mapping window\n");
748 		return PTR_ERR(aspi->ahb_base);
749 	}
750 
751 	aspi->ahb_window_size = resource_size(res);
752 	aspi->ahb_base_phy = res->start;
753 
754 	aspi->clk = devm_clk_get(&pdev->dev, NULL);
755 	if (IS_ERR(aspi->clk)) {
756 		dev_err(dev, "missing clock\n");
757 		return PTR_ERR(aspi->clk);
758 	}
759 
760 	aspi->clk_freq = clk_get_rate(aspi->clk);
761 	if (!aspi->clk_freq) {
762 		dev_err(dev, "invalid clock\n");
763 		return -EINVAL;
764 	}
765 
766 	ret = clk_prepare_enable(aspi->clk);
767 	if (ret) {
768 		dev_err(dev, "can not enable the clock\n");
769 		return ret;
770 	}
771 
772 	/* IRQ is for DMA, which the driver doesn't support yet */
773 
774 	ctlr->mode_bits = SPI_RX_DUAL | SPI_TX_DUAL | data->mode_bits;
775 	ctlr->bus_num = pdev->id;
776 	ctlr->mem_ops = &aspeed_spi_mem_ops;
777 	ctlr->setup = aspeed_spi_setup;
778 	ctlr->cleanup = aspeed_spi_cleanup;
779 	ctlr->num_chipselect = data->max_cs;
780 	ctlr->dev.of_node = dev->of_node;
781 
782 	ret = devm_spi_register_controller(dev, ctlr);
783 	if (ret) {
784 		dev_err(&pdev->dev, "spi_register_controller failed\n");
785 		goto disable_clk;
786 	}
787 	return 0;
788 
789 disable_clk:
790 	clk_disable_unprepare(aspi->clk);
791 	return ret;
792 }
793 
794 static int aspeed_spi_remove(struct platform_device *pdev)
795 {
796 	struct aspeed_spi *aspi = platform_get_drvdata(pdev);
797 
798 	aspeed_spi_enable(aspi, false);
799 	clk_disable_unprepare(aspi->clk);
800 	return 0;
801 }
802 
803 /*
804  * AHB mappings
805  */
806 
807 /*
808  * The Segment Registers of the AST2400 and AST2500 use a 8MB unit.
809  * The address range is encoded with absolute addresses in the overall
810  * mapping window.
811  */
812 static u32 aspeed_spi_segment_start(struct aspeed_spi *aspi, u32 reg)
813 {
814 	return ((reg >> 16) & 0xFF) << 23;
815 }
816 
817 static u32 aspeed_spi_segment_end(struct aspeed_spi *aspi, u32 reg)
818 {
819 	return ((reg >> 24) & 0xFF) << 23;
820 }
821 
822 static u32 aspeed_spi_segment_reg(struct aspeed_spi *aspi, u32 start, u32 end)
823 {
824 	return (((start >> 23) & 0xFF) << 16) | (((end >> 23) & 0xFF) << 24);
825 }
826 
827 /*
828  * The Segment Registers of the AST2600 use a 1MB unit. The address
829  * range is encoded with offsets in the overall mapping window.
830  */
831 
832 #define AST2600_SEG_ADDR_MASK 0x0ff00000
833 
834 static u32 aspeed_spi_segment_ast2600_start(struct aspeed_spi *aspi,
835 					    u32 reg)
836 {
837 	u32 start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
838 
839 	return aspi->ahb_base_phy + start_offset;
840 }
841 
842 static u32 aspeed_spi_segment_ast2600_end(struct aspeed_spi *aspi,
843 					  u32 reg)
844 {
845 	u32 end_offset = reg & AST2600_SEG_ADDR_MASK;
846 
847 	/* segment is disabled */
848 	if (!end_offset)
849 		return aspi->ahb_base_phy;
850 
851 	return aspi->ahb_base_phy + end_offset + 0x100000;
852 }
853 
854 static u32 aspeed_spi_segment_ast2600_reg(struct aspeed_spi *aspi,
855 					  u32 start, u32 end)
856 {
857 	/* disable zero size segments */
858 	if (start == end)
859 		return 0;
860 
861 	return ((start & AST2600_SEG_ADDR_MASK) >> 16) |
862 		((end - 1) & AST2600_SEG_ADDR_MASK);
863 }
864 
865 /*
866  * Read timing compensation sequences
867  */
868 
869 #define CALIBRATE_BUF_SIZE SZ_16K
870 
871 static bool aspeed_spi_check_reads(struct aspeed_spi_chip *chip,
872 				   const u8 *golden_buf, u8 *test_buf)
873 {
874 	int i;
875 
876 	for (i = 0; i < 10; i++) {
877 		memcpy_fromio(test_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
878 		if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0) {
879 #if defined(VERBOSE_DEBUG)
880 			print_hex_dump_bytes(DEVICE_NAME "  fail: ", DUMP_PREFIX_NONE,
881 					     test_buf, 0x100);
882 #endif
883 			return false;
884 		}
885 	}
886 	return true;
887 }
888 
889 #define FREAD_TPASS(i)	(((i) / 2) | (((i) & 1) ? 0 : 8))
890 
891 /*
892  * The timing register is shared by all devices. Only update for CE0.
893  */
894 static int aspeed_spi_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
895 				const u8 *golden_buf, u8 *test_buf)
896 {
897 	struct aspeed_spi *aspi = chip->aspi;
898 	const struct aspeed_spi_data *data = aspi->data;
899 	int i;
900 	int good_pass = -1, pass_count = 0;
901 	u32 shift = (hdiv - 1) << 2;
902 	u32 mask = ~(0xfu << shift);
903 	u32 fread_timing_val = 0;
904 
905 	/* Try HCLK delay 0..5, each one with/without delay and look for a
906 	 * good pair.
907 	 */
908 	for (i = 0; i < 12; i++) {
909 		bool pass;
910 
911 		if (chip->cs == 0) {
912 			fread_timing_val &= mask;
913 			fread_timing_val |= FREAD_TPASS(i) << shift;
914 			writel(fread_timing_val, aspi->regs + data->timing);
915 		}
916 		pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
917 		dev_dbg(aspi->dev,
918 			"  * [%08x] %d HCLK delay, %dns DI delay : %s",
919 			fread_timing_val, i / 2, (i & 1) ? 0 : 4,
920 			pass ? "PASS" : "FAIL");
921 		if (pass) {
922 			pass_count++;
923 			if (pass_count == 3) {
924 				good_pass = i - 1;
925 				break;
926 			}
927 		} else {
928 			pass_count = 0;
929 		}
930 	}
931 
932 	/* No good setting for this frequency */
933 	if (good_pass < 0)
934 		return -1;
935 
936 	/* We have at least one pass of margin, let's use first pass */
937 	if (chip->cs == 0) {
938 		fread_timing_val &= mask;
939 		fread_timing_val |= FREAD_TPASS(good_pass) << shift;
940 		writel(fread_timing_val, aspi->regs + data->timing);
941 	}
942 	dev_dbg(aspi->dev, " * -> good is pass %d [0x%08x]",
943 		good_pass, fread_timing_val);
944 	return 0;
945 }
946 
947 static bool aspeed_spi_check_calib_data(const u8 *test_buf, u32 size)
948 {
949 	const u32 *tb32 = (const u32 *)test_buf;
950 	u32 i, cnt = 0;
951 
952 	/* We check if we have enough words that are neither all 0
953 	 * nor all 1's so the calibration can be considered valid.
954 	 *
955 	 * I use an arbitrary threshold for now of 64
956 	 */
957 	size >>= 2;
958 	for (i = 0; i < size; i++) {
959 		if (tb32[i] != 0 && tb32[i] != 0xffffffff)
960 			cnt++;
961 	}
962 	return cnt >= 64;
963 }
964 
965 static const u32 aspeed_spi_hclk_divs[] = {
966 	0xf, /* HCLK */
967 	0x7, /* HCLK/2 */
968 	0xe, /* HCLK/3 */
969 	0x6, /* HCLK/4 */
970 	0xd, /* HCLK/5 */
971 };
972 
973 #define ASPEED_SPI_HCLK_DIV(i) \
974 	(aspeed_spi_hclk_divs[(i) - 1] << CTRL_FREQ_SEL_SHIFT)
975 
976 static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip)
977 {
978 	struct aspeed_spi *aspi = chip->aspi;
979 	const struct aspeed_spi_data *data = aspi->data;
980 	u32 ahb_freq = aspi->clk_freq;
981 	u32 max_freq = chip->clk_freq;
982 	u32 ctl_val;
983 	u8 *golden_buf = NULL;
984 	u8 *test_buf = NULL;
985 	int i, rc, best_div = -1;
986 
987 	dev_dbg(aspi->dev, "calculate timing compensation - AHB freq: %d MHz",
988 		ahb_freq / 1000000);
989 
990 	/*
991 	 * use the related low frequency to get check calibration data
992 	 * and get golden data.
993 	 */
994 	ctl_val = chip->ctl_val[ASPEED_SPI_READ] & data->hclk_mask;
995 	writel(ctl_val, chip->ctl);
996 
997 	test_buf = kzalloc(CALIBRATE_BUF_SIZE * 2, GFP_KERNEL);
998 	if (!test_buf)
999 		return -ENOMEM;
1000 
1001 	golden_buf = test_buf + CALIBRATE_BUF_SIZE;
1002 
1003 	memcpy_fromio(golden_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
1004 	if (!aspeed_spi_check_calib_data(golden_buf, CALIBRATE_BUF_SIZE)) {
1005 		dev_info(aspi->dev, "Calibration area too uniform, using low speed");
1006 		goto no_calib;
1007 	}
1008 
1009 #if defined(VERBOSE_DEBUG)
1010 	print_hex_dump_bytes(DEVICE_NAME "  good: ", DUMP_PREFIX_NONE,
1011 			     golden_buf, 0x100);
1012 #endif
1013 
1014 	/* Now we iterate the HCLK dividers until we find our breaking point */
1015 	for (i = ARRAY_SIZE(aspeed_spi_hclk_divs); i > data->hdiv_max - 1; i--) {
1016 		u32 tv, freq;
1017 
1018 		freq = ahb_freq / i;
1019 		if (freq > max_freq)
1020 			continue;
1021 
1022 		/* Set the timing */
1023 		tv = chip->ctl_val[ASPEED_SPI_READ] | ASPEED_SPI_HCLK_DIV(i);
1024 		writel(tv, chip->ctl);
1025 		dev_dbg(aspi->dev, "Trying HCLK/%d [%08x] ...", i, tv);
1026 		rc = data->calibrate(chip, i, golden_buf, test_buf);
1027 		if (rc == 0)
1028 			best_div = i;
1029 	}
1030 
1031 	/* Nothing found ? */
1032 	if (best_div < 0) {
1033 		dev_warn(aspi->dev, "No good frequency, using dumb slow");
1034 	} else {
1035 		dev_dbg(aspi->dev, "Found good read timings at HCLK/%d", best_div);
1036 
1037 		/* Record the freq */
1038 		for (i = 0; i < ASPEED_SPI_MAX; i++)
1039 			chip->ctl_val[i] = (chip->ctl_val[i] & data->hclk_mask) |
1040 				ASPEED_SPI_HCLK_DIV(best_div);
1041 	}
1042 
1043 no_calib:
1044 	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
1045 	kfree(test_buf);
1046 	return 0;
1047 }
1048 
1049 #define TIMING_DELAY_DI		BIT(3)
1050 #define TIMING_DELAY_HCYCLE_MAX	5
1051 #define TIMING_REG_AST2600(chip)				\
1052 	((chip)->aspi->regs + (chip)->aspi->data->timing +	\
1053 	 (chip)->cs * 4)
1054 
1055 static int aspeed_spi_ast2600_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
1056 					const u8 *golden_buf, u8 *test_buf)
1057 {
1058 	struct aspeed_spi *aspi = chip->aspi;
1059 	int hcycle;
1060 	u32 shift = (hdiv - 2) << 3;
1061 	u32 mask = ~(0xfu << shift);
1062 	u32 fread_timing_val = 0;
1063 
1064 	for (hcycle = 0; hcycle <= TIMING_DELAY_HCYCLE_MAX; hcycle++) {
1065 		int delay_ns;
1066 		bool pass = false;
1067 
1068 		fread_timing_val &= mask;
1069 		fread_timing_val |= hcycle << shift;
1070 
1071 		/* no DI input delay first  */
1072 		writel(fread_timing_val, TIMING_REG_AST2600(chip));
1073 		pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
1074 		dev_dbg(aspi->dev,
1075 			"  * [%08x] %d HCLK delay, DI delay none : %s",
1076 			fread_timing_val, hcycle, pass ? "PASS" : "FAIL");
1077 		if (pass)
1078 			return 0;
1079 
1080 		/* Add DI input delays  */
1081 		fread_timing_val &= mask;
1082 		fread_timing_val |= (TIMING_DELAY_DI | hcycle) << shift;
1083 
1084 		for (delay_ns = 0; delay_ns < 0x10; delay_ns++) {
1085 			fread_timing_val &= ~(0xf << (4 + shift));
1086 			fread_timing_val |= delay_ns << (4 + shift);
1087 
1088 			writel(fread_timing_val, TIMING_REG_AST2600(chip));
1089 			pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
1090 			dev_dbg(aspi->dev,
1091 				"  * [%08x] %d HCLK delay, DI delay %d.%dns : %s",
1092 				fread_timing_val, hcycle, (delay_ns + 1) / 2,
1093 				(delay_ns + 1) & 1 ? 5 : 5, pass ? "PASS" : "FAIL");
1094 			/*
1095 			 * TODO: This is optimistic. We should look
1096 			 * for a working interval and save the middle
1097 			 * value in the read timing register.
1098 			 */
1099 			if (pass)
1100 				return 0;
1101 		}
1102 	}
1103 
1104 	/* No good setting for this frequency */
1105 	return -1;
1106 }
1107 
1108 /*
1109  * Platform definitions
1110  */
1111 static const struct aspeed_spi_data ast2400_fmc_data = {
1112 	.max_cs	       = 5,
1113 	.hastype       = true,
1114 	.we0	       = 16,
1115 	.ctl0	       = CE0_CTRL_REG,
1116 	.timing	       = CE0_TIMING_COMPENSATION_REG,
1117 	.hclk_mask     = 0xfffff0ff,
1118 	.hdiv_max      = 1,
1119 	.calibrate     = aspeed_spi_calibrate,
1120 	.segment_start = aspeed_spi_segment_start,
1121 	.segment_end   = aspeed_spi_segment_end,
1122 	.segment_reg   = aspeed_spi_segment_reg,
1123 };
1124 
1125 static const struct aspeed_spi_data ast2400_spi_data = {
1126 	.max_cs	       = 1,
1127 	.hastype       = false,
1128 	.we0	       = 0,
1129 	.ctl0	       = 0x04,
1130 	.timing	       = 0x14,
1131 	.hclk_mask     = 0xfffff0ff,
1132 	.hdiv_max      = 1,
1133 	.calibrate     = aspeed_spi_calibrate,
1134 	/* No segment registers */
1135 };
1136 
1137 static const struct aspeed_spi_data ast2500_fmc_data = {
1138 	.max_cs	       = 3,
1139 	.hastype       = true,
1140 	.we0	       = 16,
1141 	.ctl0	       = CE0_CTRL_REG,
1142 	.timing	       = CE0_TIMING_COMPENSATION_REG,
1143 	.hclk_mask     = 0xffffd0ff,
1144 	.hdiv_max      = 1,
1145 	.calibrate     = aspeed_spi_calibrate,
1146 	.segment_start = aspeed_spi_segment_start,
1147 	.segment_end   = aspeed_spi_segment_end,
1148 	.segment_reg   = aspeed_spi_segment_reg,
1149 };
1150 
1151 static const struct aspeed_spi_data ast2500_spi_data = {
1152 	.max_cs	       = 2,
1153 	.hastype       = false,
1154 	.we0	       = 16,
1155 	.ctl0	       = CE0_CTRL_REG,
1156 	.timing	       = CE0_TIMING_COMPENSATION_REG,
1157 	.hclk_mask     = 0xffffd0ff,
1158 	.hdiv_max      = 1,
1159 	.calibrate     = aspeed_spi_calibrate,
1160 	.segment_start = aspeed_spi_segment_start,
1161 	.segment_end   = aspeed_spi_segment_end,
1162 	.segment_reg   = aspeed_spi_segment_reg,
1163 };
1164 
1165 static const struct aspeed_spi_data ast2600_fmc_data = {
1166 	.max_cs	       = 3,
1167 	.hastype       = false,
1168 	.mode_bits     = SPI_RX_QUAD | SPI_RX_QUAD,
1169 	.we0	       = 16,
1170 	.ctl0	       = CE0_CTRL_REG,
1171 	.timing	       = CE0_TIMING_COMPENSATION_REG,
1172 	.hclk_mask     = 0xf0fff0ff,
1173 	.hdiv_max      = 2,
1174 	.calibrate     = aspeed_spi_ast2600_calibrate,
1175 	.segment_start = aspeed_spi_segment_ast2600_start,
1176 	.segment_end   = aspeed_spi_segment_ast2600_end,
1177 	.segment_reg   = aspeed_spi_segment_ast2600_reg,
1178 };
1179 
1180 static const struct aspeed_spi_data ast2600_spi_data = {
1181 	.max_cs	       = 2,
1182 	.hastype       = false,
1183 	.mode_bits     = SPI_RX_QUAD | SPI_RX_QUAD,
1184 	.we0	       = 16,
1185 	.ctl0	       = CE0_CTRL_REG,
1186 	.timing	       = CE0_TIMING_COMPENSATION_REG,
1187 	.hclk_mask     = 0xf0fff0ff,
1188 	.hdiv_max      = 2,
1189 	.calibrate     = aspeed_spi_ast2600_calibrate,
1190 	.segment_start = aspeed_spi_segment_ast2600_start,
1191 	.segment_end   = aspeed_spi_segment_ast2600_end,
1192 	.segment_reg   = aspeed_spi_segment_ast2600_reg,
1193 };
1194 
1195 static const struct of_device_id aspeed_spi_matches[] = {
1196 	{ .compatible = "aspeed,ast2400-fmc", .data = &ast2400_fmc_data },
1197 	{ .compatible = "aspeed,ast2400-spi", .data = &ast2400_spi_data },
1198 	{ .compatible = "aspeed,ast2500-fmc", .data = &ast2500_fmc_data },
1199 	{ .compatible = "aspeed,ast2500-spi", .data = &ast2500_spi_data },
1200 	{ .compatible = "aspeed,ast2600-fmc", .data = &ast2600_fmc_data },
1201 	{ .compatible = "aspeed,ast2600-spi", .data = &ast2600_spi_data },
1202 	{ }
1203 };
1204 MODULE_DEVICE_TABLE(of, aspeed_spi_matches);
1205 
1206 static struct platform_driver aspeed_spi_driver = {
1207 	.probe			= aspeed_spi_probe,
1208 	.remove			= aspeed_spi_remove,
1209 	.driver	= {
1210 		.name		= DEVICE_NAME,
1211 		.of_match_table = aspeed_spi_matches,
1212 	}
1213 };
1214 
1215 module_platform_driver(aspeed_spi_driver);
1216 
1217 MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
1218 MODULE_AUTHOR("Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com>");
1219 MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
1220 MODULE_LICENSE("GPL v2");
1221