1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 // Copyright(c) 2015-17 Intel Corporation. 3 4 /* 5 * Soundwire Intel Master Driver 6 */ 7 8 #include <linux/acpi.h> 9 #include <linux/debugfs.h> 10 #include <linux/delay.h> 11 #include <linux/io.h> 12 #include <sound/pcm_params.h> 13 #include <linux/pm_runtime.h> 14 #include <sound/soc.h> 15 #include <linux/soundwire/sdw_registers.h> 16 #include <linux/soundwire/sdw.h> 17 #include <linux/soundwire/sdw_intel.h> 18 #include "cadence_master.h" 19 #include "bus.h" 20 #include "intel.h" 21 22 23 enum intel_pdi_type { 24 INTEL_PDI_IN = 0, 25 INTEL_PDI_OUT = 1, 26 INTEL_PDI_BD = 2, 27 }; 28 29 #define cdns_to_intel(_cdns) container_of(_cdns, struct sdw_intel, cdns) 30 31 /* 32 * Read, write helpers for HW registers 33 */ 34 static inline int intel_readl(void __iomem *base, int offset) 35 { 36 return readl(base + offset); 37 } 38 39 static inline void intel_writel(void __iomem *base, int offset, int value) 40 { 41 writel(value, base + offset); 42 } 43 44 static inline u16 intel_readw(void __iomem *base, int offset) 45 { 46 return readw(base + offset); 47 } 48 49 static inline void intel_writew(void __iomem *base, int offset, u16 value) 50 { 51 writew(value, base + offset); 52 } 53 54 static int intel_wait_bit(void __iomem *base, int offset, u32 mask, u32 target) 55 { 56 int timeout = 10; 57 u32 reg_read; 58 59 do { 60 reg_read = readl(base + offset); 61 if ((reg_read & mask) == target) 62 return 0; 63 64 timeout--; 65 usleep_range(50, 100); 66 } while (timeout != 0); 67 68 return -EAGAIN; 69 } 70 71 static int intel_clear_bit(void __iomem *base, int offset, u32 value, u32 mask) 72 { 73 writel(value, base + offset); 74 return intel_wait_bit(base, offset, mask, 0); 75 } 76 77 static int intel_set_bit(void __iomem *base, int offset, u32 value, u32 mask) 78 { 79 writel(value, base + offset); 80 return intel_wait_bit(base, offset, mask, mask); 81 } 82 83 /* 84 * debugfs 85 */ 86 #ifdef CONFIG_DEBUG_FS 87 88 #define RD_BUF (2 * PAGE_SIZE) 89 90 static ssize_t intel_sprintf(void __iomem *mem, bool l, 91 char *buf, size_t pos, unsigned int reg) 92 { 93 int value; 94 95 if (l) 96 value = intel_readl(mem, reg); 97 else 98 value = intel_readw(mem, reg); 99 100 return scnprintf(buf + pos, RD_BUF - pos, "%4x\t%4x\n", reg, value); 101 } 102 103 static int intel_reg_show(struct seq_file *s_file, void *data) 104 { 105 struct sdw_intel *sdw = s_file->private; 106 void __iomem *s = sdw->link_res->shim; 107 void __iomem *a = sdw->link_res->alh; 108 char *buf; 109 ssize_t ret; 110 int i, j; 111 unsigned int links, reg; 112 113 buf = kzalloc(RD_BUF, GFP_KERNEL); 114 if (!buf) 115 return -ENOMEM; 116 117 links = intel_readl(s, SDW_SHIM_LCAP) & SDW_SHIM_LCAP_LCOUNT_MASK; 118 119 ret = scnprintf(buf, RD_BUF, "Register Value\n"); 120 ret += scnprintf(buf + ret, RD_BUF - ret, "\nShim\n"); 121 122 for (i = 0; i < links; i++) { 123 reg = SDW_SHIM_LCAP + i * 4; 124 ret += intel_sprintf(s, true, buf, ret, reg); 125 } 126 127 for (i = 0; i < links; i++) { 128 ret += scnprintf(buf + ret, RD_BUF - ret, "\nLink%d\n", i); 129 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLSCAP(i)); 130 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS0CM(i)); 131 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS1CM(i)); 132 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS2CM(i)); 133 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS3CM(i)); 134 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSCAP(i)); 135 136 ret += scnprintf(buf + ret, RD_BUF - ret, "\n PCMSyCH registers\n"); 137 138 /* 139 * the value 10 is the number of PDIs. We will need a 140 * cleanup to remove hard-coded Intel configurations 141 * from cadence_master.c 142 */ 143 for (j = 0; j < 10; j++) { 144 ret += intel_sprintf(s, false, buf, ret, 145 SDW_SHIM_PCMSYCHM(i, j)); 146 ret += intel_sprintf(s, false, buf, ret, 147 SDW_SHIM_PCMSYCHC(i, j)); 148 } 149 ret += scnprintf(buf + ret, RD_BUF - ret, "\n IOCTL, CTMCTL\n"); 150 151 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_IOCTL(i)); 152 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTMCTL(i)); 153 } 154 155 ret += scnprintf(buf + ret, RD_BUF - ret, "\nWake registers\n"); 156 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKEEN); 157 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKESTS); 158 159 ret += scnprintf(buf + ret, RD_BUF - ret, "\nALH STRMzCFG\n"); 160 for (i = 0; i < SDW_ALH_NUM_STREAMS; i++) 161 ret += intel_sprintf(a, true, buf, ret, SDW_ALH_STRMZCFG(i)); 162 163 seq_printf(s_file, "%s", buf); 164 kfree(buf); 165 166 return 0; 167 } 168 DEFINE_SHOW_ATTRIBUTE(intel_reg); 169 170 static int intel_set_m_datamode(void *data, u64 value) 171 { 172 struct sdw_intel *sdw = data; 173 struct sdw_bus *bus = &sdw->cdns.bus; 174 175 if (value > SDW_PORT_DATA_MODE_STATIC_1) 176 return -EINVAL; 177 178 /* Userspace changed the hardware state behind the kernel's back */ 179 add_taint(TAINT_USER, LOCKDEP_STILL_OK); 180 181 bus->params.m_data_mode = value; 182 183 return 0; 184 } 185 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_m_datamode_fops, NULL, 186 intel_set_m_datamode, "%llu\n"); 187 188 static int intel_set_s_datamode(void *data, u64 value) 189 { 190 struct sdw_intel *sdw = data; 191 struct sdw_bus *bus = &sdw->cdns.bus; 192 193 if (value > SDW_PORT_DATA_MODE_STATIC_1) 194 return -EINVAL; 195 196 /* Userspace changed the hardware state behind the kernel's back */ 197 add_taint(TAINT_USER, LOCKDEP_STILL_OK); 198 199 bus->params.s_data_mode = value; 200 201 return 0; 202 } 203 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_s_datamode_fops, NULL, 204 intel_set_s_datamode, "%llu\n"); 205 206 static void intel_debugfs_init(struct sdw_intel *sdw) 207 { 208 struct dentry *root = sdw->cdns.bus.debugfs; 209 210 if (!root) 211 return; 212 213 sdw->debugfs = debugfs_create_dir("intel-sdw", root); 214 215 debugfs_create_file("intel-registers", 0400, sdw->debugfs, sdw, 216 &intel_reg_fops); 217 218 debugfs_create_file("intel-m-datamode", 0200, sdw->debugfs, sdw, 219 &intel_set_m_datamode_fops); 220 221 debugfs_create_file("intel-s-datamode", 0200, sdw->debugfs, sdw, 222 &intel_set_s_datamode_fops); 223 224 sdw_cdns_debugfs_init(&sdw->cdns, sdw->debugfs); 225 } 226 227 static void intel_debugfs_exit(struct sdw_intel *sdw) 228 { 229 debugfs_remove_recursive(sdw->debugfs); 230 } 231 #else 232 static void intel_debugfs_init(struct sdw_intel *sdw) {} 233 static void intel_debugfs_exit(struct sdw_intel *sdw) {} 234 #endif /* CONFIG_DEBUG_FS */ 235 236 /* 237 * shim ops 238 */ 239 /* this needs to be called with shim_lock */ 240 static void intel_shim_glue_to_master_ip(struct sdw_intel *sdw) 241 { 242 void __iomem *shim = sdw->link_res->shim; 243 unsigned int link_id = sdw->instance; 244 u16 ioctl; 245 246 /* Switch to MIP from Glue logic */ 247 ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id)); 248 249 ioctl &= ~(SDW_SHIM_IOCTL_DOE); 250 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 251 usleep_range(10, 15); 252 253 ioctl &= ~(SDW_SHIM_IOCTL_DO); 254 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 255 usleep_range(10, 15); 256 257 ioctl |= (SDW_SHIM_IOCTL_MIF); 258 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 259 usleep_range(10, 15); 260 261 ioctl &= ~(SDW_SHIM_IOCTL_BKE); 262 ioctl &= ~(SDW_SHIM_IOCTL_COE); 263 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 264 usleep_range(10, 15); 265 266 /* at this point Master IP has full control of the I/Os */ 267 } 268 269 /* this needs to be called with shim_lock */ 270 static void intel_shim_master_ip_to_glue(struct sdw_intel *sdw) 271 { 272 unsigned int link_id = sdw->instance; 273 void __iomem *shim = sdw->link_res->shim; 274 u16 ioctl; 275 276 /* Glue logic */ 277 ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id)); 278 ioctl |= SDW_SHIM_IOCTL_BKE; 279 ioctl |= SDW_SHIM_IOCTL_COE; 280 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 281 usleep_range(10, 15); 282 283 ioctl &= ~(SDW_SHIM_IOCTL_MIF); 284 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 285 usleep_range(10, 15); 286 287 /* at this point Integration Glue has full control of the I/Os */ 288 } 289 290 /* this needs to be called with shim_lock */ 291 static void intel_shim_init(struct sdw_intel *sdw) 292 { 293 void __iomem *shim = sdw->link_res->shim; 294 unsigned int link_id = sdw->instance; 295 u16 ioctl = 0, act = 0; 296 297 /* Initialize Shim */ 298 ioctl |= SDW_SHIM_IOCTL_BKE; 299 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 300 usleep_range(10, 15); 301 302 ioctl |= SDW_SHIM_IOCTL_WPDD; 303 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 304 usleep_range(10, 15); 305 306 ioctl |= SDW_SHIM_IOCTL_DO; 307 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 308 usleep_range(10, 15); 309 310 ioctl |= SDW_SHIM_IOCTL_DOE; 311 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 312 usleep_range(10, 15); 313 314 intel_shim_glue_to_master_ip(sdw); 315 316 u16p_replace_bits(&act, 0x1, SDW_SHIM_CTMCTL_DOAIS); 317 act |= SDW_SHIM_CTMCTL_DACTQE; 318 act |= SDW_SHIM_CTMCTL_DODS; 319 intel_writew(shim, SDW_SHIM_CTMCTL(link_id), act); 320 usleep_range(10, 15); 321 } 322 323 static int intel_shim_check_wake(struct sdw_intel *sdw) 324 { 325 void __iomem *shim; 326 u16 wake_sts; 327 328 shim = sdw->link_res->shim; 329 wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS); 330 331 return wake_sts & BIT(sdw->instance); 332 } 333 334 static void intel_shim_wake(struct sdw_intel *sdw, bool wake_enable) 335 { 336 void __iomem *shim = sdw->link_res->shim; 337 unsigned int link_id = sdw->instance; 338 u16 wake_en, wake_sts; 339 340 mutex_lock(sdw->link_res->shim_lock); 341 wake_en = intel_readw(shim, SDW_SHIM_WAKEEN); 342 343 if (wake_enable) { 344 /* Enable the wakeup */ 345 wake_en |= (SDW_SHIM_WAKEEN_ENABLE << link_id); 346 intel_writew(shim, SDW_SHIM_WAKEEN, wake_en); 347 } else { 348 /* Disable the wake up interrupt */ 349 wake_en &= ~(SDW_SHIM_WAKEEN_ENABLE << link_id); 350 intel_writew(shim, SDW_SHIM_WAKEEN, wake_en); 351 352 /* Clear wake status */ 353 wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS); 354 wake_sts |= (SDW_SHIM_WAKESTS_STATUS << link_id); 355 intel_writew(shim, SDW_SHIM_WAKESTS, wake_sts); 356 } 357 mutex_unlock(sdw->link_res->shim_lock); 358 } 359 360 static int intel_link_power_up(struct sdw_intel *sdw) 361 { 362 unsigned int link_id = sdw->instance; 363 void __iomem *shim = sdw->link_res->shim; 364 u32 *shim_mask = sdw->link_res->shim_mask; 365 struct sdw_bus *bus = &sdw->cdns.bus; 366 struct sdw_master_prop *prop = &bus->prop; 367 u32 spa_mask, cpa_mask; 368 u32 link_control; 369 int ret = 0; 370 u32 syncprd; 371 u32 sync_reg; 372 373 mutex_lock(sdw->link_res->shim_lock); 374 375 /* 376 * The hardware relies on an internal counter, typically 4kHz, 377 * to generate the SoundWire SSP - which defines a 'safe' 378 * synchronization point between commands and audio transport 379 * and allows for multi link synchronization. The SYNCPRD value 380 * is only dependent on the oscillator clock provided to 381 * the IP, so adjust based on _DSD properties reported in DSDT 382 * tables. The values reported are based on either 24MHz 383 * (CNL/CML) or 38.4 MHz (ICL/TGL+). 384 */ 385 if (prop->mclk_freq % 6000000) 386 syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_38_4; 387 else 388 syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_24; 389 390 if (!*shim_mask) { 391 dev_dbg(sdw->cdns.dev, "powering up all links\n"); 392 393 /* we first need to program the SyncPRD/CPU registers */ 394 dev_dbg(sdw->cdns.dev, 395 "first link up, programming SYNCPRD\n"); 396 397 /* set SyncPRD period */ 398 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 399 u32p_replace_bits(&sync_reg, syncprd, SDW_SHIM_SYNC_SYNCPRD); 400 401 /* Set SyncCPU bit */ 402 sync_reg |= SDW_SHIM_SYNC_SYNCCPU; 403 intel_writel(shim, SDW_SHIM_SYNC, sync_reg); 404 405 /* Link power up sequence */ 406 link_control = intel_readl(shim, SDW_SHIM_LCTL); 407 408 /* only power-up enabled links */ 409 spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, sdw->link_res->link_mask); 410 cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask); 411 412 link_control |= spa_mask; 413 414 ret = intel_set_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask); 415 if (ret < 0) { 416 dev_err(sdw->cdns.dev, "Failed to power up link: %d\n", ret); 417 goto out; 418 } 419 420 /* SyncCPU will change once link is active */ 421 ret = intel_wait_bit(shim, SDW_SHIM_SYNC, 422 SDW_SHIM_SYNC_SYNCCPU, 0); 423 if (ret < 0) { 424 dev_err(sdw->cdns.dev, 425 "Failed to set SHIM_SYNC: %d\n", ret); 426 goto out; 427 } 428 } 429 430 *shim_mask |= BIT(link_id); 431 432 sdw->cdns.link_up = true; 433 434 intel_shim_init(sdw); 435 436 out: 437 mutex_unlock(sdw->link_res->shim_lock); 438 439 return ret; 440 } 441 442 static int intel_link_power_down(struct sdw_intel *sdw) 443 { 444 u32 link_control, spa_mask, cpa_mask; 445 unsigned int link_id = sdw->instance; 446 void __iomem *shim = sdw->link_res->shim; 447 u32 *shim_mask = sdw->link_res->shim_mask; 448 int ret = 0; 449 450 mutex_lock(sdw->link_res->shim_lock); 451 452 if (!(*shim_mask & BIT(link_id))) 453 dev_err(sdw->cdns.dev, 454 "%s: Unbalanced power-up/down calls\n", __func__); 455 456 sdw->cdns.link_up = false; 457 458 intel_shim_master_ip_to_glue(sdw); 459 460 *shim_mask &= ~BIT(link_id); 461 462 if (!*shim_mask) { 463 464 dev_dbg(sdw->cdns.dev, "powering down all links\n"); 465 466 /* Link power down sequence */ 467 link_control = intel_readl(shim, SDW_SHIM_LCTL); 468 469 /* only power-down enabled links */ 470 spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, ~sdw->link_res->link_mask); 471 cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask); 472 473 link_control &= spa_mask; 474 475 ret = intel_clear_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask); 476 if (ret < 0) { 477 dev_err(sdw->cdns.dev, "%s: could not power down link\n", __func__); 478 479 /* 480 * we leave the sdw->cdns.link_up flag as false since we've disabled 481 * the link at this point and cannot handle interrupts any longer. 482 */ 483 } 484 } 485 486 mutex_unlock(sdw->link_res->shim_lock); 487 488 return ret; 489 } 490 491 static void intel_shim_sync_arm(struct sdw_intel *sdw) 492 { 493 void __iomem *shim = sdw->link_res->shim; 494 u32 sync_reg; 495 496 mutex_lock(sdw->link_res->shim_lock); 497 498 /* update SYNC register */ 499 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 500 sync_reg |= (SDW_SHIM_SYNC_CMDSYNC << sdw->instance); 501 intel_writel(shim, SDW_SHIM_SYNC, sync_reg); 502 503 mutex_unlock(sdw->link_res->shim_lock); 504 } 505 506 static int intel_shim_sync_go_unlocked(struct sdw_intel *sdw) 507 { 508 void __iomem *shim = sdw->link_res->shim; 509 u32 sync_reg; 510 int ret; 511 512 /* Read SYNC register */ 513 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 514 515 /* 516 * Set SyncGO bit to synchronously trigger a bank switch for 517 * all the masters. A write to SYNCGO bit clears CMDSYNC bit for all 518 * the Masters. 519 */ 520 sync_reg |= SDW_SHIM_SYNC_SYNCGO; 521 522 ret = intel_clear_bit(shim, SDW_SHIM_SYNC, sync_reg, 523 SDW_SHIM_SYNC_SYNCGO); 524 525 if (ret < 0) 526 dev_err(sdw->cdns.dev, "SyncGO clear failed: %d\n", ret); 527 528 return ret; 529 } 530 531 static int intel_shim_sync_go(struct sdw_intel *sdw) 532 { 533 int ret; 534 535 mutex_lock(sdw->link_res->shim_lock); 536 537 ret = intel_shim_sync_go_unlocked(sdw); 538 539 mutex_unlock(sdw->link_res->shim_lock); 540 541 return ret; 542 } 543 544 /* 545 * PDI routines 546 */ 547 static void intel_pdi_init(struct sdw_intel *sdw, 548 struct sdw_cdns_stream_config *config) 549 { 550 void __iomem *shim = sdw->link_res->shim; 551 unsigned int link_id = sdw->instance; 552 int pcm_cap; 553 554 /* PCM Stream Capability */ 555 pcm_cap = intel_readw(shim, SDW_SHIM_PCMSCAP(link_id)); 556 557 config->pcm_bd = FIELD_GET(SDW_SHIM_PCMSCAP_BSS, pcm_cap); 558 config->pcm_in = FIELD_GET(SDW_SHIM_PCMSCAP_ISS, pcm_cap); 559 config->pcm_out = FIELD_GET(SDW_SHIM_PCMSCAP_OSS, pcm_cap); 560 561 dev_dbg(sdw->cdns.dev, "PCM cap bd:%d in:%d out:%d\n", 562 config->pcm_bd, config->pcm_in, config->pcm_out); 563 } 564 565 static int 566 intel_pdi_get_ch_cap(struct sdw_intel *sdw, unsigned int pdi_num) 567 { 568 void __iomem *shim = sdw->link_res->shim; 569 unsigned int link_id = sdw->instance; 570 int count; 571 572 count = intel_readw(shim, SDW_SHIM_PCMSYCHC(link_id, pdi_num)); 573 574 /* 575 * WORKAROUND: on all existing Intel controllers, pdi 576 * number 2 reports channel count as 1 even though it 577 * supports 8 channels. Performing hardcoding for pdi 578 * number 2. 579 */ 580 if (pdi_num == 2) 581 count = 7; 582 583 /* zero based values for channel count in register */ 584 count++; 585 586 return count; 587 } 588 589 static int intel_pdi_get_ch_update(struct sdw_intel *sdw, 590 struct sdw_cdns_pdi *pdi, 591 unsigned int num_pdi, 592 unsigned int *num_ch) 593 { 594 int i, ch_count = 0; 595 596 for (i = 0; i < num_pdi; i++) { 597 pdi->ch_count = intel_pdi_get_ch_cap(sdw, pdi->num); 598 ch_count += pdi->ch_count; 599 pdi++; 600 } 601 602 *num_ch = ch_count; 603 return 0; 604 } 605 606 static int intel_pdi_stream_ch_update(struct sdw_intel *sdw, 607 struct sdw_cdns_streams *stream) 608 { 609 intel_pdi_get_ch_update(sdw, stream->bd, stream->num_bd, 610 &stream->num_ch_bd); 611 612 intel_pdi_get_ch_update(sdw, stream->in, stream->num_in, 613 &stream->num_ch_in); 614 615 intel_pdi_get_ch_update(sdw, stream->out, stream->num_out, 616 &stream->num_ch_out); 617 618 return 0; 619 } 620 621 static int intel_pdi_ch_update(struct sdw_intel *sdw) 622 { 623 intel_pdi_stream_ch_update(sdw, &sdw->cdns.pcm); 624 625 return 0; 626 } 627 628 static void 629 intel_pdi_shim_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi) 630 { 631 void __iomem *shim = sdw->link_res->shim; 632 unsigned int link_id = sdw->instance; 633 int pdi_conf = 0; 634 635 /* the Bulk and PCM streams are not contiguous */ 636 pdi->intel_alh_id = (link_id * 16) + pdi->num + 3; 637 if (pdi->num >= 2) 638 pdi->intel_alh_id += 2; 639 640 /* 641 * Program stream parameters to stream SHIM register 642 * This is applicable for PCM stream only. 643 */ 644 if (pdi->type != SDW_STREAM_PCM) 645 return; 646 647 if (pdi->dir == SDW_DATA_DIR_RX) 648 pdi_conf |= SDW_SHIM_PCMSYCM_DIR; 649 else 650 pdi_conf &= ~(SDW_SHIM_PCMSYCM_DIR); 651 652 u32p_replace_bits(&pdi_conf, pdi->intel_alh_id, SDW_SHIM_PCMSYCM_STREAM); 653 u32p_replace_bits(&pdi_conf, pdi->l_ch_num, SDW_SHIM_PCMSYCM_LCHN); 654 u32p_replace_bits(&pdi_conf, pdi->h_ch_num, SDW_SHIM_PCMSYCM_HCHN); 655 656 intel_writew(shim, SDW_SHIM_PCMSYCHM(link_id, pdi->num), pdi_conf); 657 } 658 659 static void 660 intel_pdi_alh_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi) 661 { 662 void __iomem *alh = sdw->link_res->alh; 663 unsigned int link_id = sdw->instance; 664 unsigned int conf; 665 666 /* the Bulk and PCM streams are not contiguous */ 667 pdi->intel_alh_id = (link_id * 16) + pdi->num + 3; 668 if (pdi->num >= 2) 669 pdi->intel_alh_id += 2; 670 671 /* Program Stream config ALH register */ 672 conf = intel_readl(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id)); 673 674 u32p_replace_bits(&conf, SDW_ALH_STRMZCFG_DMAT_VAL, SDW_ALH_STRMZCFG_DMAT); 675 u32p_replace_bits(&conf, pdi->ch_count - 1, SDW_ALH_STRMZCFG_CHN); 676 677 intel_writel(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id), conf); 678 } 679 680 static int intel_params_stream(struct sdw_intel *sdw, 681 int stream, 682 struct snd_soc_dai *dai, 683 struct snd_pcm_hw_params *hw_params, 684 int link_id, int alh_stream_id) 685 { 686 struct sdw_intel_link_res *res = sdw->link_res; 687 struct sdw_intel_stream_params_data params_data; 688 689 params_data.stream = stream; /* direction */ 690 params_data.dai = dai; 691 params_data.hw_params = hw_params; 692 params_data.link_id = link_id; 693 params_data.alh_stream_id = alh_stream_id; 694 695 if (res->ops && res->ops->params_stream && res->dev) 696 return res->ops->params_stream(res->dev, 697 ¶ms_data); 698 return -EIO; 699 } 700 701 static int intel_free_stream(struct sdw_intel *sdw, 702 int stream, 703 struct snd_soc_dai *dai, 704 int link_id) 705 { 706 struct sdw_intel_link_res *res = sdw->link_res; 707 struct sdw_intel_stream_free_data free_data; 708 709 free_data.stream = stream; /* direction */ 710 free_data.dai = dai; 711 free_data.link_id = link_id; 712 713 if (res->ops && res->ops->free_stream && res->dev) 714 return res->ops->free_stream(res->dev, 715 &free_data); 716 717 return 0; 718 } 719 720 /* 721 * bank switch routines 722 */ 723 724 static int intel_pre_bank_switch(struct sdw_intel *sdw) 725 { 726 struct sdw_cdns *cdns = &sdw->cdns; 727 struct sdw_bus *bus = &cdns->bus; 728 729 /* Write to register only for multi-link */ 730 if (!bus->multi_link) 731 return 0; 732 733 intel_shim_sync_arm(sdw); 734 735 return 0; 736 } 737 738 static int intel_post_bank_switch(struct sdw_intel *sdw) 739 { 740 struct sdw_cdns *cdns = &sdw->cdns; 741 struct sdw_bus *bus = &cdns->bus; 742 void __iomem *shim = sdw->link_res->shim; 743 int sync_reg, ret; 744 745 /* Write to register only for multi-link */ 746 if (!bus->multi_link) 747 return 0; 748 749 mutex_lock(sdw->link_res->shim_lock); 750 751 /* Read SYNC register */ 752 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 753 754 /* 755 * post_bank_switch() ops is called from the bus in loop for 756 * all the Masters in the steam with the expectation that 757 * we trigger the bankswitch for the only first Master in the list 758 * and do nothing for the other Masters 759 * 760 * So, set the SYNCGO bit only if CMDSYNC bit is set for any Master. 761 */ 762 if (!(sync_reg & SDW_SHIM_SYNC_CMDSYNC_MASK)) { 763 ret = 0; 764 goto unlock; 765 } 766 767 ret = intel_shim_sync_go_unlocked(sdw); 768 unlock: 769 mutex_unlock(sdw->link_res->shim_lock); 770 771 if (ret < 0) 772 dev_err(sdw->cdns.dev, "Post bank switch failed: %d\n", ret); 773 774 return ret; 775 } 776 777 /* 778 * DAI routines 779 */ 780 781 static int intel_startup(struct snd_pcm_substream *substream, 782 struct snd_soc_dai *dai) 783 { 784 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 785 int ret; 786 787 ret = pm_runtime_resume_and_get(cdns->dev); 788 if (ret < 0 && ret != -EACCES) { 789 dev_err_ratelimited(cdns->dev, 790 "pm_runtime_resume_and_get failed in %s, ret %d\n", 791 __func__, ret); 792 return ret; 793 } 794 return 0; 795 } 796 797 static int intel_hw_params(struct snd_pcm_substream *substream, 798 struct snd_pcm_hw_params *params, 799 struct snd_soc_dai *dai) 800 { 801 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 802 struct sdw_intel *sdw = cdns_to_intel(cdns); 803 struct sdw_cdns_dai_runtime *dai_runtime; 804 struct sdw_cdns_pdi *pdi; 805 struct sdw_stream_config sconfig; 806 struct sdw_port_config *pconfig; 807 int ch, dir; 808 int ret; 809 810 dai_runtime = cdns->dai_runtime_array[dai->id]; 811 if (!dai_runtime) 812 return -EIO; 813 814 ch = params_channels(params); 815 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 816 dir = SDW_DATA_DIR_RX; 817 else 818 dir = SDW_DATA_DIR_TX; 819 820 pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pcm, ch, dir, dai->id); 821 822 if (!pdi) { 823 ret = -EINVAL; 824 goto error; 825 } 826 827 /* do run-time configurations for SHIM, ALH and PDI/PORT */ 828 intel_pdi_shim_configure(sdw, pdi); 829 intel_pdi_alh_configure(sdw, pdi); 830 sdw_cdns_config_stream(cdns, ch, dir, pdi); 831 832 /* store pdi and hw_params, may be needed in prepare step */ 833 dai_runtime->paused = false; 834 dai_runtime->suspended = false; 835 dai_runtime->pdi = pdi; 836 dai_runtime->hw_params = params; 837 838 /* Inform DSP about PDI stream number */ 839 ret = intel_params_stream(sdw, substream->stream, dai, params, 840 sdw->instance, 841 pdi->intel_alh_id); 842 if (ret) 843 goto error; 844 845 sconfig.direction = dir; 846 sconfig.ch_count = ch; 847 sconfig.frame_rate = params_rate(params); 848 sconfig.type = dai_runtime->stream_type; 849 850 sconfig.bps = snd_pcm_format_width(params_format(params)); 851 852 /* Port configuration */ 853 pconfig = kzalloc(sizeof(*pconfig), GFP_KERNEL); 854 if (!pconfig) { 855 ret = -ENOMEM; 856 goto error; 857 } 858 859 pconfig->num = pdi->num; 860 pconfig->ch_mask = (1 << ch) - 1; 861 862 ret = sdw_stream_add_master(&cdns->bus, &sconfig, 863 pconfig, 1, dai_runtime->stream); 864 if (ret) 865 dev_err(cdns->dev, "add master to stream failed:%d\n", ret); 866 867 kfree(pconfig); 868 error: 869 return ret; 870 } 871 872 static int intel_prepare(struct snd_pcm_substream *substream, 873 struct snd_soc_dai *dai) 874 { 875 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 876 struct sdw_intel *sdw = cdns_to_intel(cdns); 877 struct sdw_cdns_dai_runtime *dai_runtime; 878 int ch, dir; 879 int ret = 0; 880 881 dai_runtime = cdns->dai_runtime_array[dai->id]; 882 if (!dai_runtime) { 883 dev_err(dai->dev, "failed to get dai runtime in %s\n", 884 __func__); 885 return -EIO; 886 } 887 888 if (dai_runtime->suspended) { 889 dai_runtime->suspended = false; 890 891 /* 892 * .prepare() is called after system resume, where we 893 * need to reinitialize the SHIM/ALH/Cadence IP. 894 * .prepare() is also called to deal with underflows, 895 * but in those cases we cannot touch ALH/SHIM 896 * registers 897 */ 898 899 /* configure stream */ 900 ch = params_channels(dai_runtime->hw_params); 901 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 902 dir = SDW_DATA_DIR_RX; 903 else 904 dir = SDW_DATA_DIR_TX; 905 906 intel_pdi_shim_configure(sdw, dai_runtime->pdi); 907 intel_pdi_alh_configure(sdw, dai_runtime->pdi); 908 sdw_cdns_config_stream(cdns, ch, dir, dai_runtime->pdi); 909 910 /* Inform DSP about PDI stream number */ 911 ret = intel_params_stream(sdw, substream->stream, dai, 912 dai_runtime->hw_params, 913 sdw->instance, 914 dai_runtime->pdi->intel_alh_id); 915 } 916 917 return ret; 918 } 919 920 static int 921 intel_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) 922 { 923 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 924 struct sdw_intel *sdw = cdns_to_intel(cdns); 925 struct sdw_cdns_dai_runtime *dai_runtime; 926 int ret; 927 928 dai_runtime = cdns->dai_runtime_array[dai->id]; 929 if (!dai_runtime) 930 return -EIO; 931 932 /* 933 * The sdw stream state will transition to RELEASED when stream-> 934 * master_list is empty. So the stream state will transition to 935 * DEPREPARED for the first cpu-dai and to RELEASED for the last 936 * cpu-dai. 937 */ 938 ret = sdw_stream_remove_master(&cdns->bus, dai_runtime->stream); 939 if (ret < 0) { 940 dev_err(dai->dev, "remove master from stream %s failed: %d\n", 941 dai_runtime->stream->name, ret); 942 return ret; 943 } 944 945 ret = intel_free_stream(sdw, substream->stream, dai, sdw->instance); 946 if (ret < 0) { 947 dev_err(dai->dev, "intel_free_stream: failed %d\n", ret); 948 return ret; 949 } 950 951 dai_runtime->hw_params = NULL; 952 dai_runtime->pdi = NULL; 953 954 return 0; 955 } 956 957 static void intel_shutdown(struct snd_pcm_substream *substream, 958 struct snd_soc_dai *dai) 959 { 960 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 961 962 pm_runtime_mark_last_busy(cdns->dev); 963 pm_runtime_put_autosuspend(cdns->dev); 964 } 965 966 static int intel_pcm_set_sdw_stream(struct snd_soc_dai *dai, 967 void *stream, int direction) 968 { 969 return cdns_set_sdw_stream(dai, stream, direction); 970 } 971 972 static void *intel_get_sdw_stream(struct snd_soc_dai *dai, 973 int direction) 974 { 975 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 976 struct sdw_cdns_dai_runtime *dai_runtime; 977 978 dai_runtime = cdns->dai_runtime_array[dai->id]; 979 if (!dai_runtime) 980 return ERR_PTR(-EINVAL); 981 982 return dai_runtime->stream; 983 } 984 985 static int intel_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) 986 { 987 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 988 struct sdw_intel *sdw = cdns_to_intel(cdns); 989 struct sdw_intel_link_res *res = sdw->link_res; 990 struct sdw_cdns_dai_runtime *dai_runtime; 991 int ret = 0; 992 993 /* 994 * The .trigger callback is used to send required IPC to audio 995 * firmware. The .free_stream callback will still be called 996 * by intel_free_stream() in the TRIGGER_SUSPEND case. 997 */ 998 if (res->ops && res->ops->trigger) 999 res->ops->trigger(dai, cmd, substream->stream); 1000 1001 dai_runtime = cdns->dai_runtime_array[dai->id]; 1002 if (!dai_runtime) { 1003 dev_err(dai->dev, "failed to get dai runtime in %s\n", 1004 __func__); 1005 return -EIO; 1006 } 1007 1008 switch (cmd) { 1009 case SNDRV_PCM_TRIGGER_SUSPEND: 1010 1011 /* 1012 * The .prepare callback is used to deal with xruns and resume operations. 1013 * In the case of xruns, the DMAs and SHIM registers cannot be touched, 1014 * but for resume operations the DMAs and SHIM registers need to be initialized. 1015 * the .trigger callback is used to track the suspend case only. 1016 */ 1017 1018 dai_runtime->suspended = true; 1019 1020 ret = intel_free_stream(sdw, substream->stream, dai, sdw->instance); 1021 break; 1022 1023 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1024 dai_runtime->paused = true; 1025 break; 1026 case SNDRV_PCM_TRIGGER_STOP: 1027 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1028 dai_runtime->paused = false; 1029 break; 1030 default: 1031 break; 1032 } 1033 1034 return ret; 1035 } 1036 1037 static int intel_component_probe(struct snd_soc_component *component) 1038 { 1039 int ret; 1040 1041 /* 1042 * make sure the device is pm_runtime_active before initiating 1043 * bus transactions during the card registration. 1044 * We use pm_runtime_resume() here, without taking a reference 1045 * and releasing it immediately. 1046 */ 1047 ret = pm_runtime_resume(component->dev); 1048 if (ret < 0 && ret != -EACCES) 1049 return ret; 1050 1051 return 0; 1052 } 1053 1054 static int intel_component_dais_suspend(struct snd_soc_component *component) 1055 { 1056 struct snd_soc_dai *dai; 1057 1058 /* 1059 * In the corner case where a SUSPEND happens during a PAUSE, the ALSA core 1060 * does not throw the TRIGGER_SUSPEND. This leaves the DAIs in an unbalanced state. 1061 * Since the component suspend is called last, we can trap this corner case 1062 * and force the DAIs to release their resources. 1063 */ 1064 for_each_component_dais(component, dai) { 1065 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 1066 struct sdw_intel *sdw = cdns_to_intel(cdns); 1067 struct sdw_cdns_dai_runtime *dai_runtime; 1068 int ret; 1069 1070 dai_runtime = cdns->dai_runtime_array[dai->id]; 1071 1072 if (!dai_runtime) 1073 continue; 1074 1075 if (dai_runtime->suspended) 1076 continue; 1077 1078 if (dai_runtime->paused) { 1079 dai_runtime->suspended = true; 1080 1081 ret = intel_free_stream(sdw, dai_runtime->direction, dai, sdw->instance); 1082 if (ret < 0) 1083 return ret; 1084 } 1085 } 1086 1087 return 0; 1088 } 1089 1090 static const struct snd_soc_dai_ops intel_pcm_dai_ops = { 1091 .startup = intel_startup, 1092 .hw_params = intel_hw_params, 1093 .prepare = intel_prepare, 1094 .hw_free = intel_hw_free, 1095 .trigger = intel_trigger, 1096 .shutdown = intel_shutdown, 1097 .set_stream = intel_pcm_set_sdw_stream, 1098 .get_stream = intel_get_sdw_stream, 1099 }; 1100 1101 static const struct snd_soc_component_driver dai_component = { 1102 .name = "soundwire", 1103 .probe = intel_component_probe, 1104 .suspend = intel_component_dais_suspend, 1105 .legacy_dai_naming = 1, 1106 }; 1107 1108 static int intel_create_dai(struct sdw_cdns *cdns, 1109 struct snd_soc_dai_driver *dais, 1110 enum intel_pdi_type type, 1111 u32 num, u32 off, u32 max_ch) 1112 { 1113 int i; 1114 1115 if (num == 0) 1116 return 0; 1117 1118 /* TODO: Read supported rates/formats from hardware */ 1119 for (i = off; i < (off + num); i++) { 1120 dais[i].name = devm_kasprintf(cdns->dev, GFP_KERNEL, 1121 "SDW%d Pin%d", 1122 cdns->instance, i); 1123 if (!dais[i].name) 1124 return -ENOMEM; 1125 1126 if (type == INTEL_PDI_BD || type == INTEL_PDI_OUT) { 1127 dais[i].playback.channels_min = 1; 1128 dais[i].playback.channels_max = max_ch; 1129 dais[i].playback.rates = SNDRV_PCM_RATE_48000; 1130 dais[i].playback.formats = SNDRV_PCM_FMTBIT_S16_LE; 1131 } 1132 1133 if (type == INTEL_PDI_BD || type == INTEL_PDI_IN) { 1134 dais[i].capture.channels_min = 1; 1135 dais[i].capture.channels_max = max_ch; 1136 dais[i].capture.rates = SNDRV_PCM_RATE_48000; 1137 dais[i].capture.formats = SNDRV_PCM_FMTBIT_S16_LE; 1138 } 1139 1140 dais[i].ops = &intel_pcm_dai_ops; 1141 } 1142 1143 return 0; 1144 } 1145 1146 static int intel_register_dai(struct sdw_intel *sdw) 1147 { 1148 struct sdw_cdns_dai_runtime **dai_runtime_array; 1149 struct sdw_cdns_stream_config config; 1150 struct sdw_cdns *cdns = &sdw->cdns; 1151 struct sdw_cdns_streams *stream; 1152 struct snd_soc_dai_driver *dais; 1153 int num_dai, ret, off = 0; 1154 1155 /* Read the PDI config and initialize cadence PDI */ 1156 intel_pdi_init(sdw, &config); 1157 ret = sdw_cdns_pdi_init(cdns, config); 1158 if (ret) 1159 return ret; 1160 1161 intel_pdi_ch_update(sdw); 1162 1163 /* DAIs are created based on total number of PDIs supported */ 1164 num_dai = cdns->pcm.num_pdi; 1165 1166 dai_runtime_array = devm_kcalloc(cdns->dev, num_dai, 1167 sizeof(struct sdw_cdns_dai_runtime *), 1168 GFP_KERNEL); 1169 if (!dai_runtime_array) 1170 return -ENOMEM; 1171 cdns->dai_runtime_array = dai_runtime_array; 1172 1173 dais = devm_kcalloc(cdns->dev, num_dai, sizeof(*dais), GFP_KERNEL); 1174 if (!dais) 1175 return -ENOMEM; 1176 1177 /* Create PCM DAIs */ 1178 stream = &cdns->pcm; 1179 1180 ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pcm.num_in, 1181 off, stream->num_ch_in); 1182 if (ret) 1183 return ret; 1184 1185 off += cdns->pcm.num_in; 1186 ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pcm.num_out, 1187 off, stream->num_ch_out); 1188 if (ret) 1189 return ret; 1190 1191 off += cdns->pcm.num_out; 1192 ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pcm.num_bd, 1193 off, stream->num_ch_bd); 1194 if (ret) 1195 return ret; 1196 1197 return devm_snd_soc_register_component(cdns->dev, &dai_component, 1198 dais, num_dai); 1199 } 1200 1201 static int intel_start_bus(struct sdw_intel *sdw) 1202 { 1203 struct device *dev = sdw->cdns.dev; 1204 struct sdw_cdns *cdns = &sdw->cdns; 1205 struct sdw_bus *bus = &cdns->bus; 1206 int ret; 1207 1208 ret = sdw_cdns_enable_interrupt(cdns, true); 1209 if (ret < 0) { 1210 dev_err(dev, "%s: cannot enable interrupts: %d\n", __func__, ret); 1211 return ret; 1212 } 1213 1214 /* 1215 * follow recommended programming flows to avoid timeouts when 1216 * gsync is enabled 1217 */ 1218 if (bus->multi_link) 1219 intel_shim_sync_arm(sdw); 1220 1221 ret = sdw_cdns_init(cdns); 1222 if (ret < 0) { 1223 dev_err(dev, "%s: unable to initialize Cadence IP: %d\n", __func__, ret); 1224 goto err_interrupt; 1225 } 1226 1227 ret = sdw_cdns_exit_reset(cdns); 1228 if (ret < 0) { 1229 dev_err(dev, "%s: unable to exit bus reset sequence: %d\n", __func__, ret); 1230 goto err_interrupt; 1231 } 1232 1233 if (bus->multi_link) { 1234 ret = intel_shim_sync_go(sdw); 1235 if (ret < 0) { 1236 dev_err(dev, "%s: sync go failed: %d\n", __func__, ret); 1237 goto err_interrupt; 1238 } 1239 } 1240 sdw_cdns_check_self_clearing_bits(cdns, __func__, 1241 true, INTEL_MASTER_RESET_ITERATIONS); 1242 1243 return 0; 1244 1245 err_interrupt: 1246 sdw_cdns_enable_interrupt(cdns, false); 1247 return ret; 1248 } 1249 1250 static int intel_start_bus_after_reset(struct sdw_intel *sdw) 1251 { 1252 struct device *dev = sdw->cdns.dev; 1253 struct sdw_cdns *cdns = &sdw->cdns; 1254 struct sdw_bus *bus = &cdns->bus; 1255 bool clock_stop0; 1256 int status; 1257 int ret; 1258 1259 /* 1260 * An exception condition occurs for the CLK_STOP_BUS_RESET 1261 * case if one or more masters remain active. In this condition, 1262 * all the masters are powered on for they are in the same power 1263 * domain. Master can preserve its context for clock stop0, so 1264 * there is no need to clear slave status and reset bus. 1265 */ 1266 clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns); 1267 1268 if (!clock_stop0) { 1269 1270 /* 1271 * make sure all Slaves are tagged as UNATTACHED and 1272 * provide reason for reinitialization 1273 */ 1274 1275 status = SDW_UNATTACH_REQUEST_MASTER_RESET; 1276 sdw_clear_slave_status(bus, status); 1277 1278 ret = sdw_cdns_enable_interrupt(cdns, true); 1279 if (ret < 0) { 1280 dev_err(dev, "cannot enable interrupts during resume\n"); 1281 return ret; 1282 } 1283 1284 /* 1285 * follow recommended programming flows to avoid 1286 * timeouts when gsync is enabled 1287 */ 1288 if (bus->multi_link) 1289 intel_shim_sync_arm(sdw); 1290 1291 /* 1292 * Re-initialize the IP since it was powered-off 1293 */ 1294 sdw_cdns_init(&sdw->cdns); 1295 1296 } else { 1297 ret = sdw_cdns_enable_interrupt(cdns, true); 1298 if (ret < 0) { 1299 dev_err(dev, "cannot enable interrupts during resume\n"); 1300 return ret; 1301 } 1302 } 1303 1304 ret = sdw_cdns_clock_restart(cdns, !clock_stop0); 1305 if (ret < 0) { 1306 dev_err(dev, "unable to restart clock during resume\n"); 1307 goto err_interrupt; 1308 } 1309 1310 if (!clock_stop0) { 1311 ret = sdw_cdns_exit_reset(cdns); 1312 if (ret < 0) { 1313 dev_err(dev, "unable to exit bus reset sequence during resume\n"); 1314 goto err_interrupt; 1315 } 1316 1317 if (bus->multi_link) { 1318 ret = intel_shim_sync_go(sdw); 1319 if (ret < 0) { 1320 dev_err(sdw->cdns.dev, "sync go failed during resume\n"); 1321 goto err_interrupt; 1322 } 1323 } 1324 } 1325 sdw_cdns_check_self_clearing_bits(cdns, __func__, true, INTEL_MASTER_RESET_ITERATIONS); 1326 1327 return 0; 1328 1329 err_interrupt: 1330 sdw_cdns_enable_interrupt(cdns, false); 1331 return ret; 1332 } 1333 1334 static void intel_check_clock_stop(struct sdw_intel *sdw) 1335 { 1336 struct device *dev = sdw->cdns.dev; 1337 bool clock_stop0; 1338 1339 clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns); 1340 if (!clock_stop0) 1341 dev_err(dev, "%s: invalid configuration, clock was not stopped\n", __func__); 1342 } 1343 1344 static int intel_start_bus_after_clock_stop(struct sdw_intel *sdw) 1345 { 1346 struct device *dev = sdw->cdns.dev; 1347 struct sdw_cdns *cdns = &sdw->cdns; 1348 int ret; 1349 1350 ret = sdw_cdns_enable_interrupt(cdns, true); 1351 if (ret < 0) { 1352 dev_err(dev, "%s: cannot enable interrupts: %d\n", __func__, ret); 1353 return ret; 1354 } 1355 1356 ret = sdw_cdns_clock_restart(cdns, false); 1357 if (ret < 0) { 1358 dev_err(dev, "%s: unable to restart clock: %d\n", __func__, ret); 1359 sdw_cdns_enable_interrupt(cdns, false); 1360 return ret; 1361 } 1362 1363 sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime no_quirks", 1364 true, INTEL_MASTER_RESET_ITERATIONS); 1365 1366 return 0; 1367 } 1368 1369 static int intel_stop_bus(struct sdw_intel *sdw, bool clock_stop) 1370 { 1371 struct device *dev = sdw->cdns.dev; 1372 struct sdw_cdns *cdns = &sdw->cdns; 1373 bool wake_enable = false; 1374 int ret; 1375 1376 if (clock_stop) { 1377 ret = sdw_cdns_clock_stop(cdns, true); 1378 if (ret < 0) 1379 dev_err(dev, "%s: cannot stop clock: %d\n", __func__, ret); 1380 else 1381 wake_enable = true; 1382 } 1383 1384 ret = sdw_cdns_enable_interrupt(cdns, false); 1385 if (ret < 0) { 1386 dev_err(dev, "%s: cannot disable interrupts: %d\n", __func__, ret); 1387 return ret; 1388 } 1389 1390 ret = intel_link_power_down(sdw); 1391 if (ret) { 1392 dev_err(dev, "%s: Link power down failed: %d\n", __func__, ret); 1393 return ret; 1394 } 1395 1396 intel_shim_wake(sdw, wake_enable); 1397 1398 return 0; 1399 } 1400 1401 const struct sdw_intel_hw_ops sdw_intel_cnl_hw_ops = { 1402 .debugfs_init = intel_debugfs_init, 1403 .debugfs_exit = intel_debugfs_exit, 1404 1405 .register_dai = intel_register_dai, 1406 1407 .check_clock_stop = intel_check_clock_stop, 1408 .start_bus = intel_start_bus, 1409 .start_bus_after_reset = intel_start_bus_after_reset, 1410 .start_bus_after_clock_stop = intel_start_bus_after_clock_stop, 1411 .stop_bus = intel_stop_bus, 1412 1413 .link_power_up = intel_link_power_up, 1414 .link_power_down = intel_link_power_down, 1415 1416 .shim_check_wake = intel_shim_check_wake, 1417 .shim_wake = intel_shim_wake, 1418 1419 .pre_bank_switch = intel_pre_bank_switch, 1420 .post_bank_switch = intel_post_bank_switch, 1421 }; 1422 EXPORT_SYMBOL_NS(sdw_intel_cnl_hw_ops, SOUNDWIRE_INTEL); 1423 1424