1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 // Copyright(c) 2015-17 Intel Corporation. 3 4 /* 5 * Soundwire Intel Master Driver 6 */ 7 8 #include <linux/acpi.h> 9 #include <linux/debugfs.h> 10 #include <linux/delay.h> 11 #include <linux/module.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/auxiliary_bus.h> 15 #include <sound/pcm_params.h> 16 #include <linux/pm_runtime.h> 17 #include <sound/soc.h> 18 #include <linux/soundwire/sdw_registers.h> 19 #include <linux/soundwire/sdw.h> 20 #include <linux/soundwire/sdw_intel.h> 21 #include "cadence_master.h" 22 #include "bus.h" 23 #include "intel.h" 24 25 #define INTEL_MASTER_SUSPEND_DELAY_MS 3000 26 #define INTEL_MASTER_RESET_ITERATIONS 10 27 28 /* 29 * debug/config flags for the Intel SoundWire Master. 30 * 31 * Since we may have multiple masters active, we can have up to 8 32 * flags reused in each byte, with master0 using the ls-byte, etc. 33 */ 34 35 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME BIT(0) 36 #define SDW_INTEL_MASTER_DISABLE_CLOCK_STOP BIT(1) 37 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE BIT(2) 38 #define SDW_INTEL_MASTER_DISABLE_MULTI_LINK BIT(3) 39 40 static int md_flags; 41 module_param_named(sdw_md_flags, md_flags, int, 0444); 42 MODULE_PARM_DESC(sdw_md_flags, "SoundWire Intel Master device flags (0x0 all off)"); 43 44 enum intel_pdi_type { 45 INTEL_PDI_IN = 0, 46 INTEL_PDI_OUT = 1, 47 INTEL_PDI_BD = 2, 48 }; 49 50 #define cdns_to_intel(_cdns) container_of(_cdns, struct sdw_intel, cdns) 51 52 /* 53 * Read, write helpers for HW registers 54 */ 55 static inline int intel_readl(void __iomem *base, int offset) 56 { 57 return readl(base + offset); 58 } 59 60 static inline void intel_writel(void __iomem *base, int offset, int value) 61 { 62 writel(value, base + offset); 63 } 64 65 static inline u16 intel_readw(void __iomem *base, int offset) 66 { 67 return readw(base + offset); 68 } 69 70 static inline void intel_writew(void __iomem *base, int offset, u16 value) 71 { 72 writew(value, base + offset); 73 } 74 75 static int intel_wait_bit(void __iomem *base, int offset, u32 mask, u32 target) 76 { 77 int timeout = 10; 78 u32 reg_read; 79 80 do { 81 reg_read = readl(base + offset); 82 if ((reg_read & mask) == target) 83 return 0; 84 85 timeout--; 86 usleep_range(50, 100); 87 } while (timeout != 0); 88 89 return -EAGAIN; 90 } 91 92 static int intel_clear_bit(void __iomem *base, int offset, u32 value, u32 mask) 93 { 94 writel(value, base + offset); 95 return intel_wait_bit(base, offset, mask, 0); 96 } 97 98 static int intel_set_bit(void __iomem *base, int offset, u32 value, u32 mask) 99 { 100 writel(value, base + offset); 101 return intel_wait_bit(base, offset, mask, mask); 102 } 103 104 /* 105 * debugfs 106 */ 107 #ifdef CONFIG_DEBUG_FS 108 109 #define RD_BUF (2 * PAGE_SIZE) 110 111 static ssize_t intel_sprintf(void __iomem *mem, bool l, 112 char *buf, size_t pos, unsigned int reg) 113 { 114 int value; 115 116 if (l) 117 value = intel_readl(mem, reg); 118 else 119 value = intel_readw(mem, reg); 120 121 return scnprintf(buf + pos, RD_BUF - pos, "%4x\t%4x\n", reg, value); 122 } 123 124 static int intel_reg_show(struct seq_file *s_file, void *data) 125 { 126 struct sdw_intel *sdw = s_file->private; 127 void __iomem *s = sdw->link_res->shim; 128 void __iomem *a = sdw->link_res->alh; 129 char *buf; 130 ssize_t ret; 131 int i, j; 132 unsigned int links, reg; 133 134 buf = kzalloc(RD_BUF, GFP_KERNEL); 135 if (!buf) 136 return -ENOMEM; 137 138 links = intel_readl(s, SDW_SHIM_LCAP) & GENMASK(2, 0); 139 140 ret = scnprintf(buf, RD_BUF, "Register Value\n"); 141 ret += scnprintf(buf + ret, RD_BUF - ret, "\nShim\n"); 142 143 for (i = 0; i < links; i++) { 144 reg = SDW_SHIM_LCAP + i * 4; 145 ret += intel_sprintf(s, true, buf, ret, reg); 146 } 147 148 for (i = 0; i < links; i++) { 149 ret += scnprintf(buf + ret, RD_BUF - ret, "\nLink%d\n", i); 150 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLSCAP(i)); 151 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS0CM(i)); 152 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS1CM(i)); 153 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS2CM(i)); 154 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS3CM(i)); 155 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSCAP(i)); 156 157 ret += scnprintf(buf + ret, RD_BUF - ret, "\n PCMSyCH registers\n"); 158 159 /* 160 * the value 10 is the number of PDIs. We will need a 161 * cleanup to remove hard-coded Intel configurations 162 * from cadence_master.c 163 */ 164 for (j = 0; j < 10; j++) { 165 ret += intel_sprintf(s, false, buf, ret, 166 SDW_SHIM_PCMSYCHM(i, j)); 167 ret += intel_sprintf(s, false, buf, ret, 168 SDW_SHIM_PCMSYCHC(i, j)); 169 } 170 ret += scnprintf(buf + ret, RD_BUF - ret, "\n PDMSCAP, IOCTL, CTMCTL\n"); 171 172 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PDMSCAP(i)); 173 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_IOCTL(i)); 174 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTMCTL(i)); 175 } 176 177 ret += scnprintf(buf + ret, RD_BUF - ret, "\nWake registers\n"); 178 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKEEN); 179 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKESTS); 180 181 ret += scnprintf(buf + ret, RD_BUF - ret, "\nALH STRMzCFG\n"); 182 for (i = 0; i < SDW_ALH_NUM_STREAMS; i++) 183 ret += intel_sprintf(a, true, buf, ret, SDW_ALH_STRMZCFG(i)); 184 185 seq_printf(s_file, "%s", buf); 186 kfree(buf); 187 188 return 0; 189 } 190 DEFINE_SHOW_ATTRIBUTE(intel_reg); 191 192 static int intel_set_m_datamode(void *data, u64 value) 193 { 194 struct sdw_intel *sdw = data; 195 struct sdw_bus *bus = &sdw->cdns.bus; 196 197 if (value > SDW_PORT_DATA_MODE_STATIC_1) 198 return -EINVAL; 199 200 /* Userspace changed the hardware state behind the kernel's back */ 201 add_taint(TAINT_USER, LOCKDEP_STILL_OK); 202 203 bus->params.m_data_mode = value; 204 205 return 0; 206 } 207 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_m_datamode_fops, NULL, 208 intel_set_m_datamode, "%llu\n"); 209 210 static int intel_set_s_datamode(void *data, u64 value) 211 { 212 struct sdw_intel *sdw = data; 213 struct sdw_bus *bus = &sdw->cdns.bus; 214 215 if (value > SDW_PORT_DATA_MODE_STATIC_1) 216 return -EINVAL; 217 218 /* Userspace changed the hardware state behind the kernel's back */ 219 add_taint(TAINT_USER, LOCKDEP_STILL_OK); 220 221 bus->params.s_data_mode = value; 222 223 return 0; 224 } 225 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_s_datamode_fops, NULL, 226 intel_set_s_datamode, "%llu\n"); 227 228 static void intel_debugfs_init(struct sdw_intel *sdw) 229 { 230 struct dentry *root = sdw->cdns.bus.debugfs; 231 232 if (!root) 233 return; 234 235 sdw->debugfs = debugfs_create_dir("intel-sdw", root); 236 237 debugfs_create_file("intel-registers", 0400, sdw->debugfs, sdw, 238 &intel_reg_fops); 239 240 debugfs_create_file("intel-m-datamode", 0200, sdw->debugfs, sdw, 241 &intel_set_m_datamode_fops); 242 243 debugfs_create_file("intel-s-datamode", 0200, sdw->debugfs, sdw, 244 &intel_set_s_datamode_fops); 245 246 sdw_cdns_debugfs_init(&sdw->cdns, sdw->debugfs); 247 } 248 249 static void intel_debugfs_exit(struct sdw_intel *sdw) 250 { 251 debugfs_remove_recursive(sdw->debugfs); 252 } 253 #else 254 static void intel_debugfs_init(struct sdw_intel *sdw) {} 255 static void intel_debugfs_exit(struct sdw_intel *sdw) {} 256 #endif /* CONFIG_DEBUG_FS */ 257 258 /* 259 * shim ops 260 */ 261 262 static int intel_link_power_up(struct sdw_intel *sdw) 263 { 264 unsigned int link_id = sdw->instance; 265 void __iomem *shim = sdw->link_res->shim; 266 u32 *shim_mask = sdw->link_res->shim_mask; 267 struct sdw_bus *bus = &sdw->cdns.bus; 268 struct sdw_master_prop *prop = &bus->prop; 269 u32 spa_mask, cpa_mask; 270 u32 link_control; 271 int ret = 0; 272 u32 syncprd; 273 u32 sync_reg; 274 275 mutex_lock(sdw->link_res->shim_lock); 276 277 /* 278 * The hardware relies on an internal counter, typically 4kHz, 279 * to generate the SoundWire SSP - which defines a 'safe' 280 * synchronization point between commands and audio transport 281 * and allows for multi link synchronization. The SYNCPRD value 282 * is only dependent on the oscillator clock provided to 283 * the IP, so adjust based on _DSD properties reported in DSDT 284 * tables. The values reported are based on either 24MHz 285 * (CNL/CML) or 38.4 MHz (ICL/TGL+). 286 */ 287 if (prop->mclk_freq % 6000000) 288 syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_38_4; 289 else 290 syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_24; 291 292 if (!*shim_mask) { 293 dev_dbg(sdw->cdns.dev, "%s: powering up all links\n", __func__); 294 295 /* we first need to program the SyncPRD/CPU registers */ 296 dev_dbg(sdw->cdns.dev, 297 "%s: first link up, programming SYNCPRD\n", __func__); 298 299 /* set SyncPRD period */ 300 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 301 u32p_replace_bits(&sync_reg, syncprd, SDW_SHIM_SYNC_SYNCPRD); 302 303 /* Set SyncCPU bit */ 304 sync_reg |= SDW_SHIM_SYNC_SYNCCPU; 305 intel_writel(shim, SDW_SHIM_SYNC, sync_reg); 306 307 /* Link power up sequence */ 308 link_control = intel_readl(shim, SDW_SHIM_LCTL); 309 310 /* only power-up enabled links */ 311 spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, sdw->link_res->link_mask); 312 cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask); 313 314 link_control |= spa_mask; 315 316 ret = intel_set_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask); 317 if (ret < 0) { 318 dev_err(sdw->cdns.dev, "Failed to power up link: %d\n", ret); 319 goto out; 320 } 321 322 /* SyncCPU will change once link is active */ 323 ret = intel_wait_bit(shim, SDW_SHIM_SYNC, 324 SDW_SHIM_SYNC_SYNCCPU, 0); 325 if (ret < 0) { 326 dev_err(sdw->cdns.dev, 327 "Failed to set SHIM_SYNC: %d\n", ret); 328 goto out; 329 } 330 } 331 332 *shim_mask |= BIT(link_id); 333 334 sdw->cdns.link_up = true; 335 out: 336 mutex_unlock(sdw->link_res->shim_lock); 337 338 return ret; 339 } 340 341 /* this needs to be called with shim_lock */ 342 static void intel_shim_glue_to_master_ip(struct sdw_intel *sdw) 343 { 344 void __iomem *shim = sdw->link_res->shim; 345 unsigned int link_id = sdw->instance; 346 u16 ioctl; 347 348 /* Switch to MIP from Glue logic */ 349 ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id)); 350 351 ioctl &= ~(SDW_SHIM_IOCTL_DOE); 352 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 353 usleep_range(10, 15); 354 355 ioctl &= ~(SDW_SHIM_IOCTL_DO); 356 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 357 usleep_range(10, 15); 358 359 ioctl |= (SDW_SHIM_IOCTL_MIF); 360 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 361 usleep_range(10, 15); 362 363 ioctl &= ~(SDW_SHIM_IOCTL_BKE); 364 ioctl &= ~(SDW_SHIM_IOCTL_COE); 365 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 366 usleep_range(10, 15); 367 368 /* at this point Master IP has full control of the I/Os */ 369 } 370 371 /* this needs to be called with shim_lock */ 372 static void intel_shim_master_ip_to_glue(struct sdw_intel *sdw) 373 { 374 unsigned int link_id = sdw->instance; 375 void __iomem *shim = sdw->link_res->shim; 376 u16 ioctl; 377 378 /* Glue logic */ 379 ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id)); 380 ioctl |= SDW_SHIM_IOCTL_BKE; 381 ioctl |= SDW_SHIM_IOCTL_COE; 382 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 383 usleep_range(10, 15); 384 385 ioctl &= ~(SDW_SHIM_IOCTL_MIF); 386 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 387 usleep_range(10, 15); 388 389 /* at this point Integration Glue has full control of the I/Os */ 390 } 391 392 static int intel_shim_init(struct sdw_intel *sdw, bool clock_stop) 393 { 394 void __iomem *shim = sdw->link_res->shim; 395 unsigned int link_id = sdw->instance; 396 int ret = 0; 397 u16 ioctl = 0, act = 0; 398 399 mutex_lock(sdw->link_res->shim_lock); 400 401 /* Initialize Shim */ 402 ioctl |= SDW_SHIM_IOCTL_BKE; 403 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 404 usleep_range(10, 15); 405 406 ioctl |= SDW_SHIM_IOCTL_WPDD; 407 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 408 usleep_range(10, 15); 409 410 ioctl |= SDW_SHIM_IOCTL_DO; 411 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 412 usleep_range(10, 15); 413 414 ioctl |= SDW_SHIM_IOCTL_DOE; 415 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 416 usleep_range(10, 15); 417 418 intel_shim_glue_to_master_ip(sdw); 419 420 u16p_replace_bits(&act, 0x1, SDW_SHIM_CTMCTL_DOAIS); 421 act |= SDW_SHIM_CTMCTL_DACTQE; 422 act |= SDW_SHIM_CTMCTL_DODS; 423 intel_writew(shim, SDW_SHIM_CTMCTL(link_id), act); 424 usleep_range(10, 15); 425 426 mutex_unlock(sdw->link_res->shim_lock); 427 428 return ret; 429 } 430 431 static void intel_shim_wake(struct sdw_intel *sdw, bool wake_enable) 432 { 433 void __iomem *shim = sdw->link_res->shim; 434 unsigned int link_id = sdw->instance; 435 u16 wake_en, wake_sts; 436 437 mutex_lock(sdw->link_res->shim_lock); 438 wake_en = intel_readw(shim, SDW_SHIM_WAKEEN); 439 440 if (wake_enable) { 441 /* Enable the wakeup */ 442 wake_en |= (SDW_SHIM_WAKEEN_ENABLE << link_id); 443 intel_writew(shim, SDW_SHIM_WAKEEN, wake_en); 444 } else { 445 /* Disable the wake up interrupt */ 446 wake_en &= ~(SDW_SHIM_WAKEEN_ENABLE << link_id); 447 intel_writew(shim, SDW_SHIM_WAKEEN, wake_en); 448 449 /* Clear wake status */ 450 wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS); 451 wake_sts |= (SDW_SHIM_WAKESTS_STATUS << link_id); 452 intel_writew(shim, SDW_SHIM_WAKESTS, wake_sts); 453 } 454 mutex_unlock(sdw->link_res->shim_lock); 455 } 456 457 static int intel_link_power_down(struct sdw_intel *sdw) 458 { 459 u32 link_control, spa_mask, cpa_mask; 460 unsigned int link_id = sdw->instance; 461 void __iomem *shim = sdw->link_res->shim; 462 u32 *shim_mask = sdw->link_res->shim_mask; 463 int ret = 0; 464 465 mutex_lock(sdw->link_res->shim_lock); 466 467 if (!(*shim_mask & BIT(link_id))) 468 dev_err(sdw->cdns.dev, 469 "%s: Unbalanced power-up/down calls\n", __func__); 470 471 sdw->cdns.link_up = false; 472 473 intel_shim_master_ip_to_glue(sdw); 474 475 *shim_mask &= ~BIT(link_id); 476 477 if (!*shim_mask) { 478 479 dev_dbg(sdw->cdns.dev, "%s: powering down all links\n", __func__); 480 481 /* Link power down sequence */ 482 link_control = intel_readl(shim, SDW_SHIM_LCTL); 483 484 /* only power-down enabled links */ 485 spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, ~sdw->link_res->link_mask); 486 cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask); 487 488 link_control &= spa_mask; 489 490 ret = intel_clear_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask); 491 if (ret < 0) { 492 dev_err(sdw->cdns.dev, "%s: could not power down link\n", __func__); 493 494 /* 495 * we leave the sdw->cdns.link_up flag as false since we've disabled 496 * the link at this point and cannot handle interrupts any longer. 497 */ 498 } 499 } 500 501 mutex_unlock(sdw->link_res->shim_lock); 502 503 return ret; 504 } 505 506 static void intel_shim_sync_arm(struct sdw_intel *sdw) 507 { 508 void __iomem *shim = sdw->link_res->shim; 509 u32 sync_reg; 510 511 mutex_lock(sdw->link_res->shim_lock); 512 513 /* update SYNC register */ 514 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 515 sync_reg |= (SDW_SHIM_SYNC_CMDSYNC << sdw->instance); 516 intel_writel(shim, SDW_SHIM_SYNC, sync_reg); 517 518 mutex_unlock(sdw->link_res->shim_lock); 519 } 520 521 static int intel_shim_sync_go_unlocked(struct sdw_intel *sdw) 522 { 523 void __iomem *shim = sdw->link_res->shim; 524 u32 sync_reg; 525 int ret; 526 527 /* Read SYNC register */ 528 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 529 530 /* 531 * Set SyncGO bit to synchronously trigger a bank switch for 532 * all the masters. A write to SYNCGO bit clears CMDSYNC bit for all 533 * the Masters. 534 */ 535 sync_reg |= SDW_SHIM_SYNC_SYNCGO; 536 537 ret = intel_clear_bit(shim, SDW_SHIM_SYNC, sync_reg, 538 SDW_SHIM_SYNC_SYNCGO); 539 540 if (ret < 0) 541 dev_err(sdw->cdns.dev, "SyncGO clear failed: %d\n", ret); 542 543 return ret; 544 } 545 546 static int intel_shim_sync_go(struct sdw_intel *sdw) 547 { 548 int ret; 549 550 mutex_lock(sdw->link_res->shim_lock); 551 552 ret = intel_shim_sync_go_unlocked(sdw); 553 554 mutex_unlock(sdw->link_res->shim_lock); 555 556 return ret; 557 } 558 559 /* 560 * PDI routines 561 */ 562 static void intel_pdi_init(struct sdw_intel *sdw, 563 struct sdw_cdns_stream_config *config) 564 { 565 void __iomem *shim = sdw->link_res->shim; 566 unsigned int link_id = sdw->instance; 567 int pcm_cap; 568 569 /* PCM Stream Capability */ 570 pcm_cap = intel_readw(shim, SDW_SHIM_PCMSCAP(link_id)); 571 572 config->pcm_bd = FIELD_GET(SDW_SHIM_PCMSCAP_BSS, pcm_cap); 573 config->pcm_in = FIELD_GET(SDW_SHIM_PCMSCAP_ISS, pcm_cap); 574 config->pcm_out = FIELD_GET(SDW_SHIM_PCMSCAP_OSS, pcm_cap); 575 576 dev_dbg(sdw->cdns.dev, "PCM cap bd:%d in:%d out:%d\n", 577 config->pcm_bd, config->pcm_in, config->pcm_out); 578 } 579 580 static int 581 intel_pdi_get_ch_cap(struct sdw_intel *sdw, unsigned int pdi_num) 582 { 583 void __iomem *shim = sdw->link_res->shim; 584 unsigned int link_id = sdw->instance; 585 int count; 586 587 count = intel_readw(shim, SDW_SHIM_PCMSYCHC(link_id, pdi_num)); 588 589 /* 590 * WORKAROUND: on all existing Intel controllers, pdi 591 * number 2 reports channel count as 1 even though it 592 * supports 8 channels. Performing hardcoding for pdi 593 * number 2. 594 */ 595 if (pdi_num == 2) 596 count = 7; 597 598 /* zero based values for channel count in register */ 599 count++; 600 601 return count; 602 } 603 604 static int intel_pdi_get_ch_update(struct sdw_intel *sdw, 605 struct sdw_cdns_pdi *pdi, 606 unsigned int num_pdi, 607 unsigned int *num_ch) 608 { 609 int i, ch_count = 0; 610 611 for (i = 0; i < num_pdi; i++) { 612 pdi->ch_count = intel_pdi_get_ch_cap(sdw, pdi->num); 613 ch_count += pdi->ch_count; 614 pdi++; 615 } 616 617 *num_ch = ch_count; 618 return 0; 619 } 620 621 static int intel_pdi_stream_ch_update(struct sdw_intel *sdw, 622 struct sdw_cdns_streams *stream) 623 { 624 intel_pdi_get_ch_update(sdw, stream->bd, stream->num_bd, 625 &stream->num_ch_bd); 626 627 intel_pdi_get_ch_update(sdw, stream->in, stream->num_in, 628 &stream->num_ch_in); 629 630 intel_pdi_get_ch_update(sdw, stream->out, stream->num_out, 631 &stream->num_ch_out); 632 633 return 0; 634 } 635 636 static int intel_pdi_ch_update(struct sdw_intel *sdw) 637 { 638 intel_pdi_stream_ch_update(sdw, &sdw->cdns.pcm); 639 640 return 0; 641 } 642 643 static void 644 intel_pdi_shim_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi) 645 { 646 void __iomem *shim = sdw->link_res->shim; 647 unsigned int link_id = sdw->instance; 648 int pdi_conf = 0; 649 650 /* the Bulk and PCM streams are not contiguous */ 651 pdi->intel_alh_id = (link_id * 16) + pdi->num + 3; 652 if (pdi->num >= 2) 653 pdi->intel_alh_id += 2; 654 655 /* 656 * Program stream parameters to stream SHIM register 657 * This is applicable for PCM stream only. 658 */ 659 if (pdi->type != SDW_STREAM_PCM) 660 return; 661 662 if (pdi->dir == SDW_DATA_DIR_RX) 663 pdi_conf |= SDW_SHIM_PCMSYCM_DIR; 664 else 665 pdi_conf &= ~(SDW_SHIM_PCMSYCM_DIR); 666 667 u32p_replace_bits(&pdi_conf, pdi->intel_alh_id, SDW_SHIM_PCMSYCM_STREAM); 668 u32p_replace_bits(&pdi_conf, pdi->l_ch_num, SDW_SHIM_PCMSYCM_LCHN); 669 u32p_replace_bits(&pdi_conf, pdi->h_ch_num, SDW_SHIM_PCMSYCM_HCHN); 670 671 intel_writew(shim, SDW_SHIM_PCMSYCHM(link_id, pdi->num), pdi_conf); 672 } 673 674 static void 675 intel_pdi_alh_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi) 676 { 677 void __iomem *alh = sdw->link_res->alh; 678 unsigned int link_id = sdw->instance; 679 unsigned int conf; 680 681 /* the Bulk and PCM streams are not contiguous */ 682 pdi->intel_alh_id = (link_id * 16) + pdi->num + 3; 683 if (pdi->num >= 2) 684 pdi->intel_alh_id += 2; 685 686 /* Program Stream config ALH register */ 687 conf = intel_readl(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id)); 688 689 u32p_replace_bits(&conf, SDW_ALH_STRMZCFG_DMAT_VAL, SDW_ALH_STRMZCFG_DMAT); 690 u32p_replace_bits(&conf, pdi->ch_count - 1, SDW_ALH_STRMZCFG_CHN); 691 692 intel_writel(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id), conf); 693 } 694 695 static int intel_params_stream(struct sdw_intel *sdw, 696 int stream, 697 struct snd_soc_dai *dai, 698 struct snd_pcm_hw_params *hw_params, 699 int link_id, int alh_stream_id) 700 { 701 struct sdw_intel_link_res *res = sdw->link_res; 702 struct sdw_intel_stream_params_data params_data; 703 704 params_data.stream = stream; /* direction */ 705 params_data.dai = dai; 706 params_data.hw_params = hw_params; 707 params_data.link_id = link_id; 708 params_data.alh_stream_id = alh_stream_id; 709 710 if (res->ops && res->ops->params_stream && res->dev) 711 return res->ops->params_stream(res->dev, 712 ¶ms_data); 713 return -EIO; 714 } 715 716 static int intel_free_stream(struct sdw_intel *sdw, 717 int stream, 718 struct snd_soc_dai *dai, 719 int link_id) 720 { 721 struct sdw_intel_link_res *res = sdw->link_res; 722 struct sdw_intel_stream_free_data free_data; 723 724 free_data.stream = stream; /* direction */ 725 free_data.dai = dai; 726 free_data.link_id = link_id; 727 728 if (res->ops && res->ops->free_stream && res->dev) 729 return res->ops->free_stream(res->dev, 730 &free_data); 731 732 return 0; 733 } 734 735 /* 736 * bank switch routines 737 */ 738 739 static int intel_pre_bank_switch(struct sdw_bus *bus) 740 { 741 struct sdw_cdns *cdns = bus_to_cdns(bus); 742 struct sdw_intel *sdw = cdns_to_intel(cdns); 743 744 /* Write to register only for multi-link */ 745 if (!bus->multi_link) 746 return 0; 747 748 intel_shim_sync_arm(sdw); 749 750 return 0; 751 } 752 753 static int intel_post_bank_switch(struct sdw_bus *bus) 754 { 755 struct sdw_cdns *cdns = bus_to_cdns(bus); 756 struct sdw_intel *sdw = cdns_to_intel(cdns); 757 void __iomem *shim = sdw->link_res->shim; 758 int sync_reg, ret; 759 760 /* Write to register only for multi-link */ 761 if (!bus->multi_link) 762 return 0; 763 764 mutex_lock(sdw->link_res->shim_lock); 765 766 /* Read SYNC register */ 767 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 768 769 /* 770 * post_bank_switch() ops is called from the bus in loop for 771 * all the Masters in the steam with the expectation that 772 * we trigger the bankswitch for the only first Master in the list 773 * and do nothing for the other Masters 774 * 775 * So, set the SYNCGO bit only if CMDSYNC bit is set for any Master. 776 */ 777 if (!(sync_reg & SDW_SHIM_SYNC_CMDSYNC_MASK)) { 778 ret = 0; 779 goto unlock; 780 } 781 782 ret = intel_shim_sync_go_unlocked(sdw); 783 unlock: 784 mutex_unlock(sdw->link_res->shim_lock); 785 786 if (ret < 0) 787 dev_err(sdw->cdns.dev, "Post bank switch failed: %d\n", ret); 788 789 return ret; 790 } 791 792 /* 793 * DAI routines 794 */ 795 796 static int intel_startup(struct snd_pcm_substream *substream, 797 struct snd_soc_dai *dai) 798 { 799 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 800 int ret; 801 802 ret = pm_runtime_resume_and_get(cdns->dev); 803 if (ret < 0 && ret != -EACCES) { 804 dev_err_ratelimited(cdns->dev, 805 "pm_runtime_resume_and_get failed in %s, ret %d\n", 806 __func__, ret); 807 return ret; 808 } 809 return 0; 810 } 811 812 static int intel_hw_params(struct snd_pcm_substream *substream, 813 struct snd_pcm_hw_params *params, 814 struct snd_soc_dai *dai) 815 { 816 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 817 struct sdw_intel *sdw = cdns_to_intel(cdns); 818 struct sdw_cdns_dma_data *dma; 819 struct sdw_cdns_pdi *pdi; 820 struct sdw_stream_config sconfig; 821 struct sdw_port_config *pconfig; 822 int ch, dir; 823 int ret; 824 825 dma = snd_soc_dai_get_dma_data(dai, substream); 826 if (!dma) 827 return -EIO; 828 829 ch = params_channels(params); 830 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 831 dir = SDW_DATA_DIR_RX; 832 else 833 dir = SDW_DATA_DIR_TX; 834 835 pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pcm, ch, dir, dai->id); 836 837 if (!pdi) { 838 ret = -EINVAL; 839 goto error; 840 } 841 842 /* do run-time configurations for SHIM, ALH and PDI/PORT */ 843 intel_pdi_shim_configure(sdw, pdi); 844 intel_pdi_alh_configure(sdw, pdi); 845 sdw_cdns_config_stream(cdns, ch, dir, pdi); 846 847 /* store pdi and hw_params, may be needed in prepare step */ 848 dma->paused = false; 849 dma->suspended = false; 850 dma->pdi = pdi; 851 dma->hw_params = params; 852 853 /* Inform DSP about PDI stream number */ 854 ret = intel_params_stream(sdw, substream->stream, dai, params, 855 sdw->instance, 856 pdi->intel_alh_id); 857 if (ret) 858 goto error; 859 860 sconfig.direction = dir; 861 sconfig.ch_count = ch; 862 sconfig.frame_rate = params_rate(params); 863 sconfig.type = dma->stream_type; 864 865 sconfig.bps = snd_pcm_format_width(params_format(params)); 866 867 /* Port configuration */ 868 pconfig = kzalloc(sizeof(*pconfig), GFP_KERNEL); 869 if (!pconfig) { 870 ret = -ENOMEM; 871 goto error; 872 } 873 874 pconfig->num = pdi->num; 875 pconfig->ch_mask = (1 << ch) - 1; 876 877 ret = sdw_stream_add_master(&cdns->bus, &sconfig, 878 pconfig, 1, dma->stream); 879 if (ret) 880 dev_err(cdns->dev, "add master to stream failed:%d\n", ret); 881 882 kfree(pconfig); 883 error: 884 return ret; 885 } 886 887 static int intel_prepare(struct snd_pcm_substream *substream, 888 struct snd_soc_dai *dai) 889 { 890 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 891 struct sdw_intel *sdw = cdns_to_intel(cdns); 892 struct sdw_cdns_dma_data *dma; 893 int ch, dir; 894 int ret = 0; 895 896 dma = snd_soc_dai_get_dma_data(dai, substream); 897 if (!dma) { 898 dev_err(dai->dev, "failed to get dma data in %s\n", 899 __func__); 900 return -EIO; 901 } 902 903 if (dma->suspended) { 904 dma->suspended = false; 905 906 /* 907 * .prepare() is called after system resume, where we 908 * need to reinitialize the SHIM/ALH/Cadence IP. 909 * .prepare() is also called to deal with underflows, 910 * but in those cases we cannot touch ALH/SHIM 911 * registers 912 */ 913 914 /* configure stream */ 915 ch = params_channels(dma->hw_params); 916 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 917 dir = SDW_DATA_DIR_RX; 918 else 919 dir = SDW_DATA_DIR_TX; 920 921 intel_pdi_shim_configure(sdw, dma->pdi); 922 intel_pdi_alh_configure(sdw, dma->pdi); 923 sdw_cdns_config_stream(cdns, ch, dir, dma->pdi); 924 925 /* Inform DSP about PDI stream number */ 926 ret = intel_params_stream(sdw, substream->stream, dai, 927 dma->hw_params, 928 sdw->instance, 929 dma->pdi->intel_alh_id); 930 } 931 932 return ret; 933 } 934 935 static int 936 intel_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) 937 { 938 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 939 struct sdw_intel *sdw = cdns_to_intel(cdns); 940 struct sdw_cdns_dma_data *dma; 941 int ret; 942 943 dma = snd_soc_dai_get_dma_data(dai, substream); 944 if (!dma) 945 return -EIO; 946 947 /* 948 * The sdw stream state will transition to RELEASED when stream-> 949 * master_list is empty. So the stream state will transition to 950 * DEPREPARED for the first cpu-dai and to RELEASED for the last 951 * cpu-dai. 952 */ 953 ret = sdw_stream_remove_master(&cdns->bus, dma->stream); 954 if (ret < 0) { 955 dev_err(dai->dev, "remove master from stream %s failed: %d\n", 956 dma->stream->name, ret); 957 return ret; 958 } 959 960 ret = intel_free_stream(sdw, substream->stream, dai, sdw->instance); 961 if (ret < 0) { 962 dev_err(dai->dev, "intel_free_stream: failed %d\n", ret); 963 return ret; 964 } 965 966 dma->hw_params = NULL; 967 dma->pdi = NULL; 968 969 return 0; 970 } 971 972 static void intel_shutdown(struct snd_pcm_substream *substream, 973 struct snd_soc_dai *dai) 974 { 975 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 976 977 pm_runtime_mark_last_busy(cdns->dev); 978 pm_runtime_put_autosuspend(cdns->dev); 979 } 980 981 static int intel_pcm_set_sdw_stream(struct snd_soc_dai *dai, 982 void *stream, int direction) 983 { 984 return cdns_set_sdw_stream(dai, stream, direction); 985 } 986 987 static void *intel_get_sdw_stream(struct snd_soc_dai *dai, 988 int direction) 989 { 990 struct sdw_cdns_dma_data *dma; 991 992 if (direction == SNDRV_PCM_STREAM_PLAYBACK) 993 dma = dai->playback_dma_data; 994 else 995 dma = dai->capture_dma_data; 996 997 if (!dma) 998 return ERR_PTR(-EINVAL); 999 1000 return dma->stream; 1001 } 1002 1003 static int intel_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) 1004 { 1005 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 1006 struct sdw_intel *sdw = cdns_to_intel(cdns); 1007 struct sdw_intel_link_res *res = sdw->link_res; 1008 struct sdw_cdns_dma_data *dma; 1009 int ret = 0; 1010 1011 /* 1012 * The .trigger callback is used to send required IPC to audio 1013 * firmware. The .free_stream callback will still be called 1014 * by intel_free_stream() in the TRIGGER_SUSPEND case. 1015 */ 1016 if (res->ops && res->ops->trigger) 1017 res->ops->trigger(dai, cmd, substream->stream); 1018 1019 dma = snd_soc_dai_get_dma_data(dai, substream); 1020 if (!dma) { 1021 dev_err(dai->dev, "failed to get dma data in %s\n", 1022 __func__); 1023 return -EIO; 1024 } 1025 1026 switch (cmd) { 1027 case SNDRV_PCM_TRIGGER_SUSPEND: 1028 1029 /* 1030 * The .prepare callback is used to deal with xruns and resume operations. 1031 * In the case of xruns, the DMAs and SHIM registers cannot be touched, 1032 * but for resume operations the DMAs and SHIM registers need to be initialized. 1033 * the .trigger callback is used to track the suspend case only. 1034 */ 1035 1036 dma->suspended = true; 1037 1038 ret = intel_free_stream(sdw, substream->stream, dai, sdw->instance); 1039 break; 1040 1041 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1042 dma->paused = true; 1043 break; 1044 case SNDRV_PCM_TRIGGER_STOP: 1045 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1046 dma->paused = false; 1047 break; 1048 default: 1049 break; 1050 } 1051 1052 return ret; 1053 } 1054 1055 static int intel_component_probe(struct snd_soc_component *component) 1056 { 1057 int ret; 1058 1059 /* 1060 * make sure the device is pm_runtime_active before initiating 1061 * bus transactions during the card registration. 1062 * We use pm_runtime_resume() here, without taking a reference 1063 * and releasing it immediately. 1064 */ 1065 ret = pm_runtime_resume(component->dev); 1066 if (ret < 0 && ret != -EACCES) 1067 return ret; 1068 1069 return 0; 1070 } 1071 1072 static int intel_component_dais_suspend(struct snd_soc_component *component) 1073 { 1074 struct snd_soc_dai *dai; 1075 1076 /* 1077 * In the corner case where a SUSPEND happens during a PAUSE, the ALSA core 1078 * does not throw the TRIGGER_SUSPEND. This leaves the DAIs in an unbalanced state. 1079 * Since the component suspend is called last, we can trap this corner case 1080 * and force the DAIs to release their resources. 1081 */ 1082 for_each_component_dais(component, dai) { 1083 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 1084 struct sdw_intel *sdw = cdns_to_intel(cdns); 1085 struct sdw_cdns_dma_data *dma; 1086 int stream; 1087 int ret; 1088 1089 dma = dai->playback_dma_data; 1090 stream = SNDRV_PCM_STREAM_PLAYBACK; 1091 if (!dma) { 1092 dma = dai->capture_dma_data; 1093 stream = SNDRV_PCM_STREAM_CAPTURE; 1094 } 1095 1096 if (!dma) 1097 continue; 1098 1099 if (dma->suspended) 1100 continue; 1101 1102 if (dma->paused) { 1103 dma->suspended = true; 1104 1105 ret = intel_free_stream(sdw, stream, dai, sdw->instance); 1106 if (ret < 0) 1107 return ret; 1108 } 1109 } 1110 1111 return 0; 1112 } 1113 1114 static const struct snd_soc_dai_ops intel_pcm_dai_ops = { 1115 .startup = intel_startup, 1116 .hw_params = intel_hw_params, 1117 .prepare = intel_prepare, 1118 .hw_free = intel_hw_free, 1119 .trigger = intel_trigger, 1120 .shutdown = intel_shutdown, 1121 .set_stream = intel_pcm_set_sdw_stream, 1122 .get_stream = intel_get_sdw_stream, 1123 }; 1124 1125 static const struct snd_soc_component_driver dai_component = { 1126 .name = "soundwire", 1127 .probe = intel_component_probe, 1128 .suspend = intel_component_dais_suspend, 1129 .legacy_dai_naming = 1, 1130 }; 1131 1132 static int intel_create_dai(struct sdw_cdns *cdns, 1133 struct snd_soc_dai_driver *dais, 1134 enum intel_pdi_type type, 1135 u32 num, u32 off, u32 max_ch) 1136 { 1137 int i; 1138 1139 if (num == 0) 1140 return 0; 1141 1142 /* TODO: Read supported rates/formats from hardware */ 1143 for (i = off; i < (off + num); i++) { 1144 dais[i].name = devm_kasprintf(cdns->dev, GFP_KERNEL, 1145 "SDW%d Pin%d", 1146 cdns->instance, i); 1147 if (!dais[i].name) 1148 return -ENOMEM; 1149 1150 if (type == INTEL_PDI_BD || type == INTEL_PDI_OUT) { 1151 dais[i].playback.channels_min = 1; 1152 dais[i].playback.channels_max = max_ch; 1153 dais[i].playback.rates = SNDRV_PCM_RATE_48000; 1154 dais[i].playback.formats = SNDRV_PCM_FMTBIT_S16_LE; 1155 } 1156 1157 if (type == INTEL_PDI_BD || type == INTEL_PDI_IN) { 1158 dais[i].capture.channels_min = 1; 1159 dais[i].capture.channels_max = max_ch; 1160 dais[i].capture.rates = SNDRV_PCM_RATE_48000; 1161 dais[i].capture.formats = SNDRV_PCM_FMTBIT_S16_LE; 1162 } 1163 1164 dais[i].ops = &intel_pcm_dai_ops; 1165 } 1166 1167 return 0; 1168 } 1169 1170 static int intel_register_dai(struct sdw_intel *sdw) 1171 { 1172 struct sdw_cdns *cdns = &sdw->cdns; 1173 struct sdw_cdns_streams *stream; 1174 struct snd_soc_dai_driver *dais; 1175 int num_dai, ret, off = 0; 1176 1177 /* DAIs are created based on total number of PDIs supported */ 1178 num_dai = cdns->pcm.num_pdi; 1179 1180 dais = devm_kcalloc(cdns->dev, num_dai, sizeof(*dais), GFP_KERNEL); 1181 if (!dais) 1182 return -ENOMEM; 1183 1184 /* Create PCM DAIs */ 1185 stream = &cdns->pcm; 1186 1187 ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pcm.num_in, 1188 off, stream->num_ch_in); 1189 if (ret) 1190 return ret; 1191 1192 off += cdns->pcm.num_in; 1193 ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pcm.num_out, 1194 off, stream->num_ch_out); 1195 if (ret) 1196 return ret; 1197 1198 off += cdns->pcm.num_out; 1199 ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pcm.num_bd, 1200 off, stream->num_ch_bd); 1201 if (ret) 1202 return ret; 1203 1204 return snd_soc_register_component(cdns->dev, &dai_component, 1205 dais, num_dai); 1206 } 1207 1208 static int sdw_master_read_intel_prop(struct sdw_bus *bus) 1209 { 1210 struct sdw_master_prop *prop = &bus->prop; 1211 struct fwnode_handle *link; 1212 char name[32]; 1213 u32 quirk_mask; 1214 1215 /* Find master handle */ 1216 snprintf(name, sizeof(name), 1217 "mipi-sdw-link-%d-subproperties", bus->link_id); 1218 1219 link = device_get_named_child_node(bus->dev, name); 1220 if (!link) { 1221 dev_err(bus->dev, "Master node %s not found\n", name); 1222 return -EIO; 1223 } 1224 1225 fwnode_property_read_u32(link, 1226 "intel-sdw-ip-clock", 1227 &prop->mclk_freq); 1228 1229 /* the values reported by BIOS are the 2x clock, not the bus clock */ 1230 prop->mclk_freq /= 2; 1231 1232 fwnode_property_read_u32(link, 1233 "intel-quirk-mask", 1234 &quirk_mask); 1235 1236 if (quirk_mask & SDW_INTEL_QUIRK_MASK_BUS_DISABLE) 1237 prop->hw_disabled = true; 1238 1239 prop->quirks = SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH | 1240 SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY; 1241 1242 return 0; 1243 } 1244 1245 static int intel_prop_read(struct sdw_bus *bus) 1246 { 1247 /* Initialize with default handler to read all DisCo properties */ 1248 sdw_master_read_prop(bus); 1249 1250 /* read Intel-specific properties */ 1251 sdw_master_read_intel_prop(bus); 1252 1253 return 0; 1254 } 1255 1256 static struct sdw_master_ops sdw_intel_ops = { 1257 .read_prop = sdw_master_read_prop, 1258 .override_adr = sdw_dmi_override_adr, 1259 .xfer_msg = cdns_xfer_msg, 1260 .xfer_msg_defer = cdns_xfer_msg_defer, 1261 .reset_page_addr = cdns_reset_page_addr, 1262 .set_bus_conf = cdns_bus_conf, 1263 .pre_bank_switch = intel_pre_bank_switch, 1264 .post_bank_switch = intel_post_bank_switch, 1265 }; 1266 1267 static int intel_init(struct sdw_intel *sdw) 1268 { 1269 bool clock_stop; 1270 1271 /* Initialize shim and controller */ 1272 intel_link_power_up(sdw); 1273 1274 clock_stop = sdw_cdns_is_clock_stop(&sdw->cdns); 1275 1276 intel_shim_init(sdw, clock_stop); 1277 1278 return 0; 1279 } 1280 1281 /* 1282 * probe and init (aux_dev_id argument is required by function prototype but not used) 1283 */ 1284 static int intel_link_probe(struct auxiliary_device *auxdev, 1285 const struct auxiliary_device_id *aux_dev_id) 1286 1287 { 1288 struct device *dev = &auxdev->dev; 1289 struct sdw_intel_link_dev *ldev = auxiliary_dev_to_sdw_intel_link_dev(auxdev); 1290 struct sdw_intel *sdw; 1291 struct sdw_cdns *cdns; 1292 struct sdw_bus *bus; 1293 int ret; 1294 1295 sdw = devm_kzalloc(dev, sizeof(*sdw), GFP_KERNEL); 1296 if (!sdw) 1297 return -ENOMEM; 1298 1299 cdns = &sdw->cdns; 1300 bus = &cdns->bus; 1301 1302 sdw->instance = auxdev->id; 1303 sdw->link_res = &ldev->link_res; 1304 cdns->dev = dev; 1305 cdns->registers = sdw->link_res->registers; 1306 cdns->instance = sdw->instance; 1307 cdns->msg_count = 0; 1308 1309 bus->link_id = auxdev->id; 1310 1311 sdw_cdns_probe(cdns); 1312 1313 /* Set property read ops */ 1314 sdw_intel_ops.read_prop = intel_prop_read; 1315 bus->ops = &sdw_intel_ops; 1316 1317 /* set driver data, accessed by snd_soc_dai_get_drvdata() */ 1318 auxiliary_set_drvdata(auxdev, cdns); 1319 1320 /* use generic bandwidth allocation algorithm */ 1321 sdw->cdns.bus.compute_params = sdw_compute_params; 1322 1323 /* avoid resuming from pm_runtime suspend if it's not required */ 1324 dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND); 1325 1326 ret = sdw_bus_master_add(bus, dev, dev->fwnode); 1327 if (ret) { 1328 dev_err(dev, "sdw_bus_master_add fail: %d\n", ret); 1329 return ret; 1330 } 1331 1332 if (bus->prop.hw_disabled) 1333 dev_info(dev, 1334 "SoundWire master %d is disabled, will be ignored\n", 1335 bus->link_id); 1336 /* 1337 * Ignore BIOS err_threshold, it's a really bad idea when dealing 1338 * with multiple hardware synchronized links 1339 */ 1340 bus->prop.err_threshold = 0; 1341 1342 return 0; 1343 } 1344 1345 int intel_link_startup(struct auxiliary_device *auxdev) 1346 { 1347 struct sdw_cdns_stream_config config; 1348 struct device *dev = &auxdev->dev; 1349 struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev); 1350 struct sdw_intel *sdw = cdns_to_intel(cdns); 1351 struct sdw_bus *bus = &cdns->bus; 1352 int link_flags; 1353 bool multi_link; 1354 u32 clock_stop_quirks; 1355 int ret; 1356 1357 if (bus->prop.hw_disabled) { 1358 dev_info(dev, 1359 "SoundWire master %d is disabled, ignoring\n", 1360 sdw->instance); 1361 return 0; 1362 } 1363 1364 link_flags = md_flags >> (bus->link_id * 8); 1365 multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK); 1366 if (!multi_link) { 1367 dev_dbg(dev, "Multi-link is disabled\n"); 1368 bus->multi_link = false; 1369 } else { 1370 /* 1371 * hardware-based synchronization is required regardless 1372 * of the number of segments used by a stream: SSP-based 1373 * synchronization is gated by gsync when the multi-master 1374 * mode is set. 1375 */ 1376 bus->multi_link = true; 1377 bus->hw_sync_min_links = 1; 1378 } 1379 1380 /* Initialize shim, controller */ 1381 ret = intel_init(sdw); 1382 if (ret) 1383 goto err_init; 1384 1385 /* Read the PDI config and initialize cadence PDI */ 1386 intel_pdi_init(sdw, &config); 1387 ret = sdw_cdns_pdi_init(cdns, config); 1388 if (ret) 1389 goto err_init; 1390 1391 intel_pdi_ch_update(sdw); 1392 1393 ret = sdw_cdns_enable_interrupt(cdns, true); 1394 if (ret < 0) { 1395 dev_err(dev, "cannot enable interrupts\n"); 1396 goto err_init; 1397 } 1398 1399 /* 1400 * follow recommended programming flows to avoid timeouts when 1401 * gsync is enabled 1402 */ 1403 if (multi_link) 1404 intel_shim_sync_arm(sdw); 1405 1406 ret = sdw_cdns_init(cdns); 1407 if (ret < 0) { 1408 dev_err(dev, "unable to initialize Cadence IP\n"); 1409 goto err_interrupt; 1410 } 1411 1412 ret = sdw_cdns_exit_reset(cdns); 1413 if (ret < 0) { 1414 dev_err(dev, "unable to exit bus reset sequence\n"); 1415 goto err_interrupt; 1416 } 1417 1418 if (multi_link) { 1419 ret = intel_shim_sync_go(sdw); 1420 if (ret < 0) { 1421 dev_err(dev, "sync go failed: %d\n", ret); 1422 goto err_interrupt; 1423 } 1424 } 1425 sdw_cdns_check_self_clearing_bits(cdns, __func__, 1426 true, INTEL_MASTER_RESET_ITERATIONS); 1427 1428 /* Register DAIs */ 1429 ret = intel_register_dai(sdw); 1430 if (ret) { 1431 dev_err(dev, "DAI registration failed: %d\n", ret); 1432 snd_soc_unregister_component(dev); 1433 goto err_interrupt; 1434 } 1435 1436 intel_debugfs_init(sdw); 1437 1438 /* Enable runtime PM */ 1439 if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME)) { 1440 pm_runtime_set_autosuspend_delay(dev, 1441 INTEL_MASTER_SUSPEND_DELAY_MS); 1442 pm_runtime_use_autosuspend(dev); 1443 pm_runtime_mark_last_busy(dev); 1444 1445 pm_runtime_set_active(dev); 1446 pm_runtime_enable(dev); 1447 } 1448 1449 clock_stop_quirks = sdw->link_res->clock_stop_quirks; 1450 if (clock_stop_quirks & SDW_INTEL_CLK_STOP_NOT_ALLOWED) { 1451 /* 1452 * To keep the clock running we need to prevent 1453 * pm_runtime suspend from happening by increasing the 1454 * reference count. 1455 * This quirk is specified by the parent PCI device in 1456 * case of specific latency requirements. It will have 1457 * no effect if pm_runtime is disabled by the user via 1458 * a module parameter for testing purposes. 1459 */ 1460 pm_runtime_get_noresume(dev); 1461 } 1462 1463 /* 1464 * The runtime PM status of Slave devices is "Unsupported" 1465 * until they report as ATTACHED. If they don't, e.g. because 1466 * there are no Slave devices populated or if the power-on is 1467 * delayed or dependent on a power switch, the Master will 1468 * remain active and prevent its parent from suspending. 1469 * 1470 * Conditionally force the pm_runtime core to re-evaluate the 1471 * Master status in the absence of any Slave activity. A quirk 1472 * is provided to e.g. deal with Slaves that may be powered on 1473 * with a delay. A more complete solution would require the 1474 * definition of Master properties. 1475 */ 1476 if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE)) 1477 pm_runtime_idle(dev); 1478 1479 sdw->startup_done = true; 1480 return 0; 1481 1482 err_interrupt: 1483 sdw_cdns_enable_interrupt(cdns, false); 1484 err_init: 1485 return ret; 1486 } 1487 1488 static void intel_link_remove(struct auxiliary_device *auxdev) 1489 { 1490 struct device *dev = &auxdev->dev; 1491 struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev); 1492 struct sdw_intel *sdw = cdns_to_intel(cdns); 1493 struct sdw_bus *bus = &cdns->bus; 1494 1495 /* 1496 * Since pm_runtime is already disabled, we don't decrease 1497 * the refcount when the clock_stop_quirk is 1498 * SDW_INTEL_CLK_STOP_NOT_ALLOWED 1499 */ 1500 if (!bus->prop.hw_disabled) { 1501 intel_debugfs_exit(sdw); 1502 sdw_cdns_enable_interrupt(cdns, false); 1503 snd_soc_unregister_component(dev); 1504 } 1505 sdw_bus_master_delete(bus); 1506 } 1507 1508 int intel_link_process_wakeen_event(struct auxiliary_device *auxdev) 1509 { 1510 struct device *dev = &auxdev->dev; 1511 struct sdw_intel *sdw; 1512 struct sdw_bus *bus; 1513 void __iomem *shim; 1514 u16 wake_sts; 1515 1516 sdw = auxiliary_get_drvdata(auxdev); 1517 bus = &sdw->cdns.bus; 1518 1519 if (bus->prop.hw_disabled || !sdw->startup_done) { 1520 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1521 bus->link_id); 1522 return 0; 1523 } 1524 1525 shim = sdw->link_res->shim; 1526 wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS); 1527 1528 if (!(wake_sts & BIT(sdw->instance))) 1529 return 0; 1530 1531 /* disable WAKEEN interrupt ASAP to prevent interrupt flood */ 1532 intel_shim_wake(sdw, false); 1533 1534 /* 1535 * resume the Master, which will generate a bus reset and result in 1536 * Slaves re-attaching and be re-enumerated. The SoundWire physical 1537 * device which generated the wake will trigger an interrupt, which 1538 * will in turn cause the corresponding Linux Slave device to be 1539 * resumed and the Slave codec driver to check the status. 1540 */ 1541 pm_request_resume(dev); 1542 1543 return 0; 1544 } 1545 1546 /* 1547 * PM calls 1548 */ 1549 1550 static int intel_resume_child_device(struct device *dev, void *data) 1551 { 1552 int ret; 1553 struct sdw_slave *slave = dev_to_sdw_dev(dev); 1554 1555 if (!slave->probed) { 1556 dev_dbg(dev, "%s: skipping device, no probed driver\n", __func__); 1557 return 0; 1558 } 1559 if (!slave->dev_num_sticky) { 1560 dev_dbg(dev, "%s: skipping device, never detected on bus\n", __func__); 1561 return 0; 1562 } 1563 1564 ret = pm_request_resume(dev); 1565 if (ret < 0) 1566 dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret); 1567 1568 return ret; 1569 } 1570 1571 static int __maybe_unused intel_pm_prepare(struct device *dev) 1572 { 1573 struct sdw_cdns *cdns = dev_get_drvdata(dev); 1574 struct sdw_intel *sdw = cdns_to_intel(cdns); 1575 struct sdw_bus *bus = &cdns->bus; 1576 u32 clock_stop_quirks; 1577 int ret; 1578 1579 if (bus->prop.hw_disabled || !sdw->startup_done) { 1580 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1581 bus->link_id); 1582 return 0; 1583 } 1584 1585 clock_stop_quirks = sdw->link_res->clock_stop_quirks; 1586 1587 if (pm_runtime_suspended(dev) && 1588 pm_runtime_suspended(dev->parent) && 1589 ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) || 1590 !clock_stop_quirks)) { 1591 /* 1592 * if we've enabled clock stop, and the parent is suspended, the SHIM registers 1593 * are not accessible and the shim wake cannot be disabled. 1594 * The only solution is to resume the entire bus to full power 1595 */ 1596 1597 /* 1598 * If any operation in this block fails, we keep going since we don't want 1599 * to prevent system suspend from happening and errors should be recoverable 1600 * on resume. 1601 */ 1602 1603 /* 1604 * first resume the device for this link. This will also by construction 1605 * resume the PCI parent device. 1606 */ 1607 ret = pm_request_resume(dev); 1608 if (ret < 0) { 1609 dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret); 1610 return 0; 1611 } 1612 1613 /* 1614 * Continue resuming the entire bus (parent + child devices) to exit 1615 * the clock stop mode. If there are no devices connected on this link 1616 * this is a no-op. 1617 * The resume to full power could have been implemented with a .prepare 1618 * step in SoundWire codec drivers. This would however require a lot 1619 * of code to handle an Intel-specific corner case. It is simpler in 1620 * practice to add a loop at the link level. 1621 */ 1622 ret = device_for_each_child(bus->dev, NULL, intel_resume_child_device); 1623 1624 if (ret < 0) 1625 dev_err(dev, "%s: intel_resume_child_device failed: %d\n", __func__, ret); 1626 } 1627 1628 return 0; 1629 } 1630 1631 static int __maybe_unused intel_suspend(struct device *dev) 1632 { 1633 struct sdw_cdns *cdns = dev_get_drvdata(dev); 1634 struct sdw_intel *sdw = cdns_to_intel(cdns); 1635 struct sdw_bus *bus = &cdns->bus; 1636 u32 clock_stop_quirks; 1637 int ret; 1638 1639 if (bus->prop.hw_disabled || !sdw->startup_done) { 1640 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1641 bus->link_id); 1642 return 0; 1643 } 1644 1645 if (pm_runtime_suspended(dev)) { 1646 dev_dbg(dev, "%s: pm_runtime status: suspended\n", __func__); 1647 1648 clock_stop_quirks = sdw->link_res->clock_stop_quirks; 1649 1650 if ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) || 1651 !clock_stop_quirks) { 1652 1653 if (pm_runtime_suspended(dev->parent)) { 1654 /* 1655 * paranoia check: this should not happen with the .prepare 1656 * resume to full power 1657 */ 1658 dev_err(dev, "%s: invalid config: parent is suspended\n", __func__); 1659 } else { 1660 intel_shim_wake(sdw, false); 1661 } 1662 } 1663 1664 return 0; 1665 } 1666 1667 ret = sdw_cdns_enable_interrupt(cdns, false); 1668 if (ret < 0) { 1669 dev_err(dev, "cannot disable interrupts on suspend\n"); 1670 return ret; 1671 } 1672 1673 ret = intel_link_power_down(sdw); 1674 if (ret) { 1675 dev_err(dev, "Link power down failed: %d\n", ret); 1676 return ret; 1677 } 1678 1679 intel_shim_wake(sdw, false); 1680 1681 return 0; 1682 } 1683 1684 static int __maybe_unused intel_suspend_runtime(struct device *dev) 1685 { 1686 struct sdw_cdns *cdns = dev_get_drvdata(dev); 1687 struct sdw_intel *sdw = cdns_to_intel(cdns); 1688 struct sdw_bus *bus = &cdns->bus; 1689 u32 clock_stop_quirks; 1690 int ret; 1691 1692 if (bus->prop.hw_disabled || !sdw->startup_done) { 1693 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1694 bus->link_id); 1695 return 0; 1696 } 1697 1698 clock_stop_quirks = sdw->link_res->clock_stop_quirks; 1699 1700 if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) { 1701 1702 ret = sdw_cdns_enable_interrupt(cdns, false); 1703 if (ret < 0) { 1704 dev_err(dev, "cannot disable interrupts on suspend\n"); 1705 return ret; 1706 } 1707 1708 ret = intel_link_power_down(sdw); 1709 if (ret) { 1710 dev_err(dev, "Link power down failed: %d\n", ret); 1711 return ret; 1712 } 1713 1714 intel_shim_wake(sdw, false); 1715 1716 } else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET || 1717 !clock_stop_quirks) { 1718 bool wake_enable = true; 1719 1720 ret = sdw_cdns_clock_stop(cdns, true); 1721 if (ret < 0) { 1722 dev_err(dev, "cannot enable clock stop on suspend\n"); 1723 wake_enable = false; 1724 } 1725 1726 ret = sdw_cdns_enable_interrupt(cdns, false); 1727 if (ret < 0) { 1728 dev_err(dev, "cannot disable interrupts on suspend\n"); 1729 return ret; 1730 } 1731 1732 ret = intel_link_power_down(sdw); 1733 if (ret) { 1734 dev_err(dev, "Link power down failed: %d\n", ret); 1735 return ret; 1736 } 1737 1738 intel_shim_wake(sdw, wake_enable); 1739 } else { 1740 dev_err(dev, "%s clock_stop_quirks %x unsupported\n", 1741 __func__, clock_stop_quirks); 1742 ret = -EINVAL; 1743 } 1744 1745 return ret; 1746 } 1747 1748 static int __maybe_unused intel_resume(struct device *dev) 1749 { 1750 struct sdw_cdns *cdns = dev_get_drvdata(dev); 1751 struct sdw_intel *sdw = cdns_to_intel(cdns); 1752 struct sdw_bus *bus = &cdns->bus; 1753 int link_flags; 1754 bool multi_link; 1755 int ret; 1756 1757 if (bus->prop.hw_disabled || !sdw->startup_done) { 1758 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1759 bus->link_id); 1760 return 0; 1761 } 1762 1763 link_flags = md_flags >> (bus->link_id * 8); 1764 multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK); 1765 1766 if (pm_runtime_suspended(dev)) { 1767 dev_dbg(dev, "%s: pm_runtime status was suspended, forcing active\n", __func__); 1768 1769 /* follow required sequence from runtime_pm.rst */ 1770 pm_runtime_disable(dev); 1771 pm_runtime_set_active(dev); 1772 pm_runtime_mark_last_busy(dev); 1773 pm_runtime_enable(dev); 1774 1775 link_flags = md_flags >> (bus->link_id * 8); 1776 1777 if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE)) 1778 pm_runtime_idle(dev); 1779 } 1780 1781 ret = intel_init(sdw); 1782 if (ret) { 1783 dev_err(dev, "%s failed: %d\n", __func__, ret); 1784 return ret; 1785 } 1786 1787 /* 1788 * make sure all Slaves are tagged as UNATTACHED and provide 1789 * reason for reinitialization 1790 */ 1791 sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET); 1792 1793 ret = sdw_cdns_enable_interrupt(cdns, true); 1794 if (ret < 0) { 1795 dev_err(dev, "cannot enable interrupts during resume\n"); 1796 return ret; 1797 } 1798 1799 /* 1800 * follow recommended programming flows to avoid timeouts when 1801 * gsync is enabled 1802 */ 1803 if (multi_link) 1804 intel_shim_sync_arm(sdw); 1805 1806 ret = sdw_cdns_init(&sdw->cdns); 1807 if (ret < 0) { 1808 dev_err(dev, "unable to initialize Cadence IP during resume\n"); 1809 return ret; 1810 } 1811 1812 ret = sdw_cdns_exit_reset(cdns); 1813 if (ret < 0) { 1814 dev_err(dev, "unable to exit bus reset sequence during resume\n"); 1815 return ret; 1816 } 1817 1818 if (multi_link) { 1819 ret = intel_shim_sync_go(sdw); 1820 if (ret < 0) { 1821 dev_err(dev, "sync go failed during resume\n"); 1822 return ret; 1823 } 1824 } 1825 sdw_cdns_check_self_clearing_bits(cdns, __func__, 1826 true, INTEL_MASTER_RESET_ITERATIONS); 1827 1828 /* 1829 * after system resume, the pm_runtime suspend() may kick in 1830 * during the enumeration, before any children device force the 1831 * master device to remain active. Using pm_runtime_get() 1832 * routines is not really possible, since it'd prevent the 1833 * master from suspending. 1834 * A reasonable compromise is to update the pm_runtime 1835 * counters and delay the pm_runtime suspend by several 1836 * seconds, by when all enumeration should be complete. 1837 */ 1838 pm_runtime_mark_last_busy(dev); 1839 1840 return ret; 1841 } 1842 1843 static int __maybe_unused intel_resume_runtime(struct device *dev) 1844 { 1845 struct sdw_cdns *cdns = dev_get_drvdata(dev); 1846 struct sdw_intel *sdw = cdns_to_intel(cdns); 1847 struct sdw_bus *bus = &cdns->bus; 1848 u32 clock_stop_quirks; 1849 bool clock_stop0; 1850 int link_flags; 1851 bool multi_link; 1852 int status; 1853 int ret; 1854 1855 if (bus->prop.hw_disabled || !sdw->startup_done) { 1856 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1857 bus->link_id); 1858 return 0; 1859 } 1860 1861 /* unconditionally disable WAKEEN interrupt */ 1862 intel_shim_wake(sdw, false); 1863 1864 link_flags = md_flags >> (bus->link_id * 8); 1865 multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK); 1866 1867 clock_stop_quirks = sdw->link_res->clock_stop_quirks; 1868 1869 if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) { 1870 ret = intel_init(sdw); 1871 if (ret) { 1872 dev_err(dev, "%s failed: %d\n", __func__, ret); 1873 return ret; 1874 } 1875 1876 /* 1877 * make sure all Slaves are tagged as UNATTACHED and provide 1878 * reason for reinitialization 1879 */ 1880 sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET); 1881 1882 ret = sdw_cdns_enable_interrupt(cdns, true); 1883 if (ret < 0) { 1884 dev_err(dev, "cannot enable interrupts during resume\n"); 1885 return ret; 1886 } 1887 1888 /* 1889 * follow recommended programming flows to avoid 1890 * timeouts when gsync is enabled 1891 */ 1892 if (multi_link) 1893 intel_shim_sync_arm(sdw); 1894 1895 ret = sdw_cdns_init(&sdw->cdns); 1896 if (ret < 0) { 1897 dev_err(dev, "unable to initialize Cadence IP during resume\n"); 1898 return ret; 1899 } 1900 1901 ret = sdw_cdns_exit_reset(cdns); 1902 if (ret < 0) { 1903 dev_err(dev, "unable to exit bus reset sequence during resume\n"); 1904 return ret; 1905 } 1906 1907 if (multi_link) { 1908 ret = intel_shim_sync_go(sdw); 1909 if (ret < 0) { 1910 dev_err(dev, "sync go failed during resume\n"); 1911 return ret; 1912 } 1913 } 1914 sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime TEARDOWN", 1915 true, INTEL_MASTER_RESET_ITERATIONS); 1916 1917 } else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) { 1918 ret = intel_init(sdw); 1919 if (ret) { 1920 dev_err(dev, "%s failed: %d\n", __func__, ret); 1921 return ret; 1922 } 1923 1924 /* 1925 * An exception condition occurs for the CLK_STOP_BUS_RESET 1926 * case if one or more masters remain active. In this condition, 1927 * all the masters are powered on for they are in the same power 1928 * domain. Master can preserve its context for clock stop0, so 1929 * there is no need to clear slave status and reset bus. 1930 */ 1931 clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns); 1932 1933 if (!clock_stop0) { 1934 1935 /* 1936 * make sure all Slaves are tagged as UNATTACHED and 1937 * provide reason for reinitialization 1938 */ 1939 1940 status = SDW_UNATTACH_REQUEST_MASTER_RESET; 1941 sdw_clear_slave_status(bus, status); 1942 1943 ret = sdw_cdns_enable_interrupt(cdns, true); 1944 if (ret < 0) { 1945 dev_err(dev, "cannot enable interrupts during resume\n"); 1946 return ret; 1947 } 1948 1949 /* 1950 * follow recommended programming flows to avoid 1951 * timeouts when gsync is enabled 1952 */ 1953 if (multi_link) 1954 intel_shim_sync_arm(sdw); 1955 1956 /* 1957 * Re-initialize the IP since it was powered-off 1958 */ 1959 sdw_cdns_init(&sdw->cdns); 1960 1961 } else { 1962 ret = sdw_cdns_enable_interrupt(cdns, true); 1963 if (ret < 0) { 1964 dev_err(dev, "cannot enable interrupts during resume\n"); 1965 return ret; 1966 } 1967 } 1968 1969 ret = sdw_cdns_clock_restart(cdns, !clock_stop0); 1970 if (ret < 0) { 1971 dev_err(dev, "unable to restart clock during resume\n"); 1972 return ret; 1973 } 1974 1975 if (!clock_stop0) { 1976 ret = sdw_cdns_exit_reset(cdns); 1977 if (ret < 0) { 1978 dev_err(dev, "unable to exit bus reset sequence during resume\n"); 1979 return ret; 1980 } 1981 1982 if (multi_link) { 1983 ret = intel_shim_sync_go(sdw); 1984 if (ret < 0) { 1985 dev_err(sdw->cdns.dev, "sync go failed during resume\n"); 1986 return ret; 1987 } 1988 } 1989 } 1990 sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime BUS_RESET", 1991 true, INTEL_MASTER_RESET_ITERATIONS); 1992 1993 } else if (!clock_stop_quirks) { 1994 1995 clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns); 1996 if (!clock_stop0) 1997 dev_err(dev, "%s invalid configuration, clock was not stopped", __func__); 1998 1999 ret = intel_init(sdw); 2000 if (ret) { 2001 dev_err(dev, "%s failed: %d\n", __func__, ret); 2002 return ret; 2003 } 2004 2005 ret = sdw_cdns_enable_interrupt(cdns, true); 2006 if (ret < 0) { 2007 dev_err(dev, "cannot enable interrupts during resume\n"); 2008 return ret; 2009 } 2010 2011 ret = sdw_cdns_clock_restart(cdns, false); 2012 if (ret < 0) { 2013 dev_err(dev, "unable to resume master during resume\n"); 2014 return ret; 2015 } 2016 2017 sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime no_quirks", 2018 true, INTEL_MASTER_RESET_ITERATIONS); 2019 } else { 2020 dev_err(dev, "%s clock_stop_quirks %x unsupported\n", 2021 __func__, clock_stop_quirks); 2022 ret = -EINVAL; 2023 } 2024 2025 return ret; 2026 } 2027 2028 static const struct dev_pm_ops intel_pm = { 2029 .prepare = intel_pm_prepare, 2030 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume) 2031 SET_RUNTIME_PM_OPS(intel_suspend_runtime, intel_resume_runtime, NULL) 2032 }; 2033 2034 static const struct auxiliary_device_id intel_link_id_table[] = { 2035 { .name = "soundwire_intel.link" }, 2036 {}, 2037 }; 2038 MODULE_DEVICE_TABLE(auxiliary, intel_link_id_table); 2039 2040 static struct auxiliary_driver sdw_intel_drv = { 2041 .probe = intel_link_probe, 2042 .remove = intel_link_remove, 2043 .driver = { 2044 /* auxiliary_driver_register() sets .name to be the modname */ 2045 .pm = &intel_pm, 2046 }, 2047 .id_table = intel_link_id_table 2048 }; 2049 module_auxiliary_driver(sdw_intel_drv); 2050 2051 MODULE_LICENSE("Dual BSD/GPL"); 2052 MODULE_DESCRIPTION("Intel Soundwire Link Driver"); 2053