1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 // Copyright(c) 2015-17 Intel Corporation. 3 4 /* 5 * Soundwire Intel Master Driver 6 */ 7 8 #include <linux/acpi.h> 9 #include <linux/debugfs.h> 10 #include <linux/delay.h> 11 #include <linux/module.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/auxiliary_bus.h> 15 #include <sound/pcm_params.h> 16 #include <linux/pm_runtime.h> 17 #include <sound/soc.h> 18 #include <linux/soundwire/sdw_registers.h> 19 #include <linux/soundwire/sdw.h> 20 #include <linux/soundwire/sdw_intel.h> 21 #include "cadence_master.h" 22 #include "bus.h" 23 #include "intel.h" 24 25 #define INTEL_MASTER_SUSPEND_DELAY_MS 3000 26 #define INTEL_MASTER_RESET_ITERATIONS 10 27 28 /* 29 * debug/config flags for the Intel SoundWire Master. 30 * 31 * Since we may have multiple masters active, we can have up to 8 32 * flags reused in each byte, with master0 using the ls-byte, etc. 33 */ 34 35 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME BIT(0) 36 #define SDW_INTEL_MASTER_DISABLE_CLOCK_STOP BIT(1) 37 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE BIT(2) 38 #define SDW_INTEL_MASTER_DISABLE_MULTI_LINK BIT(3) 39 40 static int md_flags; 41 module_param_named(sdw_md_flags, md_flags, int, 0444); 42 MODULE_PARM_DESC(sdw_md_flags, "SoundWire Intel Master device flags (0x0 all off)"); 43 44 enum intel_pdi_type { 45 INTEL_PDI_IN = 0, 46 INTEL_PDI_OUT = 1, 47 INTEL_PDI_BD = 2, 48 }; 49 50 #define cdns_to_intel(_cdns) container_of(_cdns, struct sdw_intel, cdns) 51 52 /* 53 * Read, write helpers for HW registers 54 */ 55 static inline int intel_readl(void __iomem *base, int offset) 56 { 57 return readl(base + offset); 58 } 59 60 static inline void intel_writel(void __iomem *base, int offset, int value) 61 { 62 writel(value, base + offset); 63 } 64 65 static inline u16 intel_readw(void __iomem *base, int offset) 66 { 67 return readw(base + offset); 68 } 69 70 static inline void intel_writew(void __iomem *base, int offset, u16 value) 71 { 72 writew(value, base + offset); 73 } 74 75 static int intel_wait_bit(void __iomem *base, int offset, u32 mask, u32 target) 76 { 77 int timeout = 10; 78 u32 reg_read; 79 80 do { 81 reg_read = readl(base + offset); 82 if ((reg_read & mask) == target) 83 return 0; 84 85 timeout--; 86 usleep_range(50, 100); 87 } while (timeout != 0); 88 89 return -EAGAIN; 90 } 91 92 static int intel_clear_bit(void __iomem *base, int offset, u32 value, u32 mask) 93 { 94 writel(value, base + offset); 95 return intel_wait_bit(base, offset, mask, 0); 96 } 97 98 static int intel_set_bit(void __iomem *base, int offset, u32 value, u32 mask) 99 { 100 writel(value, base + offset); 101 return intel_wait_bit(base, offset, mask, mask); 102 } 103 104 /* 105 * debugfs 106 */ 107 #ifdef CONFIG_DEBUG_FS 108 109 #define RD_BUF (2 * PAGE_SIZE) 110 111 static ssize_t intel_sprintf(void __iomem *mem, bool l, 112 char *buf, size_t pos, unsigned int reg) 113 { 114 int value; 115 116 if (l) 117 value = intel_readl(mem, reg); 118 else 119 value = intel_readw(mem, reg); 120 121 return scnprintf(buf + pos, RD_BUF - pos, "%4x\t%4x\n", reg, value); 122 } 123 124 static int intel_reg_show(struct seq_file *s_file, void *data) 125 { 126 struct sdw_intel *sdw = s_file->private; 127 void __iomem *s = sdw->link_res->shim; 128 void __iomem *a = sdw->link_res->alh; 129 char *buf; 130 ssize_t ret; 131 int i, j; 132 unsigned int links, reg; 133 134 buf = kzalloc(RD_BUF, GFP_KERNEL); 135 if (!buf) 136 return -ENOMEM; 137 138 links = intel_readl(s, SDW_SHIM_LCAP) & GENMASK(2, 0); 139 140 ret = scnprintf(buf, RD_BUF, "Register Value\n"); 141 ret += scnprintf(buf + ret, RD_BUF - ret, "\nShim\n"); 142 143 for (i = 0; i < links; i++) { 144 reg = SDW_SHIM_LCAP + i * 4; 145 ret += intel_sprintf(s, true, buf, ret, reg); 146 } 147 148 for (i = 0; i < links; i++) { 149 ret += scnprintf(buf + ret, RD_BUF - ret, "\nLink%d\n", i); 150 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLSCAP(i)); 151 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS0CM(i)); 152 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS1CM(i)); 153 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS2CM(i)); 154 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS3CM(i)); 155 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSCAP(i)); 156 157 ret += scnprintf(buf + ret, RD_BUF - ret, "\n PCMSyCH registers\n"); 158 159 /* 160 * the value 10 is the number of PDIs. We will need a 161 * cleanup to remove hard-coded Intel configurations 162 * from cadence_master.c 163 */ 164 for (j = 0; j < 10; j++) { 165 ret += intel_sprintf(s, false, buf, ret, 166 SDW_SHIM_PCMSYCHM(i, j)); 167 ret += intel_sprintf(s, false, buf, ret, 168 SDW_SHIM_PCMSYCHC(i, j)); 169 } 170 ret += scnprintf(buf + ret, RD_BUF - ret, "\n PDMSCAP, IOCTL, CTMCTL\n"); 171 172 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PDMSCAP(i)); 173 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_IOCTL(i)); 174 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTMCTL(i)); 175 } 176 177 ret += scnprintf(buf + ret, RD_BUF - ret, "\nWake registers\n"); 178 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKEEN); 179 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKESTS); 180 181 ret += scnprintf(buf + ret, RD_BUF - ret, "\nALH STRMzCFG\n"); 182 for (i = 0; i < SDW_ALH_NUM_STREAMS; i++) 183 ret += intel_sprintf(a, true, buf, ret, SDW_ALH_STRMZCFG(i)); 184 185 seq_printf(s_file, "%s", buf); 186 kfree(buf); 187 188 return 0; 189 } 190 DEFINE_SHOW_ATTRIBUTE(intel_reg); 191 192 static int intel_set_m_datamode(void *data, u64 value) 193 { 194 struct sdw_intel *sdw = data; 195 struct sdw_bus *bus = &sdw->cdns.bus; 196 197 if (value > SDW_PORT_DATA_MODE_STATIC_1) 198 return -EINVAL; 199 200 /* Userspace changed the hardware state behind the kernel's back */ 201 add_taint(TAINT_USER, LOCKDEP_STILL_OK); 202 203 bus->params.m_data_mode = value; 204 205 return 0; 206 } 207 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_m_datamode_fops, NULL, 208 intel_set_m_datamode, "%llu\n"); 209 210 static int intel_set_s_datamode(void *data, u64 value) 211 { 212 struct sdw_intel *sdw = data; 213 struct sdw_bus *bus = &sdw->cdns.bus; 214 215 if (value > SDW_PORT_DATA_MODE_STATIC_1) 216 return -EINVAL; 217 218 /* Userspace changed the hardware state behind the kernel's back */ 219 add_taint(TAINT_USER, LOCKDEP_STILL_OK); 220 221 bus->params.s_data_mode = value; 222 223 return 0; 224 } 225 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_s_datamode_fops, NULL, 226 intel_set_s_datamode, "%llu\n"); 227 228 static void intel_debugfs_init(struct sdw_intel *sdw) 229 { 230 struct dentry *root = sdw->cdns.bus.debugfs; 231 232 if (!root) 233 return; 234 235 sdw->debugfs = debugfs_create_dir("intel-sdw", root); 236 237 debugfs_create_file("intel-registers", 0400, sdw->debugfs, sdw, 238 &intel_reg_fops); 239 240 debugfs_create_file("intel-m-datamode", 0200, sdw->debugfs, sdw, 241 &intel_set_m_datamode_fops); 242 243 debugfs_create_file("intel-s-datamode", 0200, sdw->debugfs, sdw, 244 &intel_set_s_datamode_fops); 245 246 sdw_cdns_debugfs_init(&sdw->cdns, sdw->debugfs); 247 } 248 249 static void intel_debugfs_exit(struct sdw_intel *sdw) 250 { 251 debugfs_remove_recursive(sdw->debugfs); 252 } 253 #else 254 static void intel_debugfs_init(struct sdw_intel *sdw) {} 255 static void intel_debugfs_exit(struct sdw_intel *sdw) {} 256 #endif /* CONFIG_DEBUG_FS */ 257 258 /* 259 * shim ops 260 */ 261 262 static int intel_link_power_up(struct sdw_intel *sdw) 263 { 264 unsigned int link_id = sdw->instance; 265 void __iomem *shim = sdw->link_res->shim; 266 u32 *shim_mask = sdw->link_res->shim_mask; 267 struct sdw_bus *bus = &sdw->cdns.bus; 268 struct sdw_master_prop *prop = &bus->prop; 269 u32 spa_mask, cpa_mask; 270 u32 link_control; 271 int ret = 0; 272 u32 syncprd; 273 u32 sync_reg; 274 275 mutex_lock(sdw->link_res->shim_lock); 276 277 /* 278 * The hardware relies on an internal counter, typically 4kHz, 279 * to generate the SoundWire SSP - which defines a 'safe' 280 * synchronization point between commands and audio transport 281 * and allows for multi link synchronization. The SYNCPRD value 282 * is only dependent on the oscillator clock provided to 283 * the IP, so adjust based on _DSD properties reported in DSDT 284 * tables. The values reported are based on either 24MHz 285 * (CNL/CML) or 38.4 MHz (ICL/TGL+). 286 */ 287 if (prop->mclk_freq % 6000000) 288 syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_38_4; 289 else 290 syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_24; 291 292 if (!*shim_mask) { 293 dev_dbg(sdw->cdns.dev, "%s: powering up all links\n", __func__); 294 295 /* we first need to program the SyncPRD/CPU registers */ 296 dev_dbg(sdw->cdns.dev, 297 "%s: first link up, programming SYNCPRD\n", __func__); 298 299 /* set SyncPRD period */ 300 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 301 u32p_replace_bits(&sync_reg, syncprd, SDW_SHIM_SYNC_SYNCPRD); 302 303 /* Set SyncCPU bit */ 304 sync_reg |= SDW_SHIM_SYNC_SYNCCPU; 305 intel_writel(shim, SDW_SHIM_SYNC, sync_reg); 306 307 /* Link power up sequence */ 308 link_control = intel_readl(shim, SDW_SHIM_LCTL); 309 310 /* only power-up enabled links */ 311 spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, sdw->link_res->link_mask); 312 cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask); 313 314 link_control |= spa_mask; 315 316 ret = intel_set_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask); 317 if (ret < 0) { 318 dev_err(sdw->cdns.dev, "Failed to power up link: %d\n", ret); 319 goto out; 320 } 321 322 /* SyncCPU will change once link is active */ 323 ret = intel_wait_bit(shim, SDW_SHIM_SYNC, 324 SDW_SHIM_SYNC_SYNCCPU, 0); 325 if (ret < 0) { 326 dev_err(sdw->cdns.dev, 327 "Failed to set SHIM_SYNC: %d\n", ret); 328 goto out; 329 } 330 } 331 332 *shim_mask |= BIT(link_id); 333 334 sdw->cdns.link_up = true; 335 out: 336 mutex_unlock(sdw->link_res->shim_lock); 337 338 return ret; 339 } 340 341 /* this needs to be called with shim_lock */ 342 static void intel_shim_glue_to_master_ip(struct sdw_intel *sdw) 343 { 344 void __iomem *shim = sdw->link_res->shim; 345 unsigned int link_id = sdw->instance; 346 u16 ioctl; 347 348 /* Switch to MIP from Glue logic */ 349 ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id)); 350 351 ioctl &= ~(SDW_SHIM_IOCTL_DOE); 352 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 353 usleep_range(10, 15); 354 355 ioctl &= ~(SDW_SHIM_IOCTL_DO); 356 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 357 usleep_range(10, 15); 358 359 ioctl |= (SDW_SHIM_IOCTL_MIF); 360 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 361 usleep_range(10, 15); 362 363 ioctl &= ~(SDW_SHIM_IOCTL_BKE); 364 ioctl &= ~(SDW_SHIM_IOCTL_COE); 365 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 366 usleep_range(10, 15); 367 368 /* at this point Master IP has full control of the I/Os */ 369 } 370 371 /* this needs to be called with shim_lock */ 372 static void intel_shim_master_ip_to_glue(struct sdw_intel *sdw) 373 { 374 unsigned int link_id = sdw->instance; 375 void __iomem *shim = sdw->link_res->shim; 376 u16 ioctl; 377 378 /* Glue logic */ 379 ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id)); 380 ioctl |= SDW_SHIM_IOCTL_BKE; 381 ioctl |= SDW_SHIM_IOCTL_COE; 382 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 383 usleep_range(10, 15); 384 385 ioctl &= ~(SDW_SHIM_IOCTL_MIF); 386 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 387 usleep_range(10, 15); 388 389 /* at this point Integration Glue has full control of the I/Os */ 390 } 391 392 static int intel_shim_init(struct sdw_intel *sdw, bool clock_stop) 393 { 394 void __iomem *shim = sdw->link_res->shim; 395 unsigned int link_id = sdw->instance; 396 int ret = 0; 397 u16 ioctl = 0, act = 0; 398 399 mutex_lock(sdw->link_res->shim_lock); 400 401 /* Initialize Shim */ 402 ioctl |= SDW_SHIM_IOCTL_BKE; 403 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 404 usleep_range(10, 15); 405 406 ioctl |= SDW_SHIM_IOCTL_WPDD; 407 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 408 usleep_range(10, 15); 409 410 ioctl |= SDW_SHIM_IOCTL_DO; 411 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 412 usleep_range(10, 15); 413 414 ioctl |= SDW_SHIM_IOCTL_DOE; 415 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 416 usleep_range(10, 15); 417 418 intel_shim_glue_to_master_ip(sdw); 419 420 u16p_replace_bits(&act, 0x1, SDW_SHIM_CTMCTL_DOAIS); 421 act |= SDW_SHIM_CTMCTL_DACTQE; 422 act |= SDW_SHIM_CTMCTL_DODS; 423 intel_writew(shim, SDW_SHIM_CTMCTL(link_id), act); 424 usleep_range(10, 15); 425 426 mutex_unlock(sdw->link_res->shim_lock); 427 428 return ret; 429 } 430 431 static void intel_shim_wake(struct sdw_intel *sdw, bool wake_enable) 432 { 433 void __iomem *shim = sdw->link_res->shim; 434 unsigned int link_id = sdw->instance; 435 u16 wake_en, wake_sts; 436 437 mutex_lock(sdw->link_res->shim_lock); 438 wake_en = intel_readw(shim, SDW_SHIM_WAKEEN); 439 440 if (wake_enable) { 441 /* Enable the wakeup */ 442 wake_en |= (SDW_SHIM_WAKEEN_ENABLE << link_id); 443 intel_writew(shim, SDW_SHIM_WAKEEN, wake_en); 444 } else { 445 /* Disable the wake up interrupt */ 446 wake_en &= ~(SDW_SHIM_WAKEEN_ENABLE << link_id); 447 intel_writew(shim, SDW_SHIM_WAKEEN, wake_en); 448 449 /* Clear wake status */ 450 wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS); 451 wake_sts |= (SDW_SHIM_WAKESTS_STATUS << link_id); 452 intel_writew(shim, SDW_SHIM_WAKESTS, wake_sts); 453 } 454 mutex_unlock(sdw->link_res->shim_lock); 455 } 456 457 static int intel_link_power_down(struct sdw_intel *sdw) 458 { 459 u32 link_control, spa_mask, cpa_mask; 460 unsigned int link_id = sdw->instance; 461 void __iomem *shim = sdw->link_res->shim; 462 u32 *shim_mask = sdw->link_res->shim_mask; 463 int ret = 0; 464 465 mutex_lock(sdw->link_res->shim_lock); 466 467 if (!(*shim_mask & BIT(link_id))) 468 dev_err(sdw->cdns.dev, 469 "%s: Unbalanced power-up/down calls\n", __func__); 470 471 sdw->cdns.link_up = false; 472 473 intel_shim_master_ip_to_glue(sdw); 474 475 *shim_mask &= ~BIT(link_id); 476 477 if (!*shim_mask) { 478 479 dev_dbg(sdw->cdns.dev, "%s: powering down all links\n", __func__); 480 481 /* Link power down sequence */ 482 link_control = intel_readl(shim, SDW_SHIM_LCTL); 483 484 /* only power-down enabled links */ 485 spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, ~sdw->link_res->link_mask); 486 cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask); 487 488 link_control &= spa_mask; 489 490 ret = intel_clear_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask); 491 if (ret < 0) { 492 dev_err(sdw->cdns.dev, "%s: could not power down link\n", __func__); 493 494 /* 495 * we leave the sdw->cdns.link_up flag as false since we've disabled 496 * the link at this point and cannot handle interrupts any longer. 497 */ 498 } 499 } 500 501 mutex_unlock(sdw->link_res->shim_lock); 502 503 return ret; 504 } 505 506 static void intel_shim_sync_arm(struct sdw_intel *sdw) 507 { 508 void __iomem *shim = sdw->link_res->shim; 509 u32 sync_reg; 510 511 mutex_lock(sdw->link_res->shim_lock); 512 513 /* update SYNC register */ 514 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 515 sync_reg |= (SDW_SHIM_SYNC_CMDSYNC << sdw->instance); 516 intel_writel(shim, SDW_SHIM_SYNC, sync_reg); 517 518 mutex_unlock(sdw->link_res->shim_lock); 519 } 520 521 static int intel_shim_sync_go_unlocked(struct sdw_intel *sdw) 522 { 523 void __iomem *shim = sdw->link_res->shim; 524 u32 sync_reg; 525 int ret; 526 527 /* Read SYNC register */ 528 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 529 530 /* 531 * Set SyncGO bit to synchronously trigger a bank switch for 532 * all the masters. A write to SYNCGO bit clears CMDSYNC bit for all 533 * the Masters. 534 */ 535 sync_reg |= SDW_SHIM_SYNC_SYNCGO; 536 537 ret = intel_clear_bit(shim, SDW_SHIM_SYNC, sync_reg, 538 SDW_SHIM_SYNC_SYNCGO); 539 540 if (ret < 0) 541 dev_err(sdw->cdns.dev, "SyncGO clear failed: %d\n", ret); 542 543 return ret; 544 } 545 546 static int intel_shim_sync_go(struct sdw_intel *sdw) 547 { 548 int ret; 549 550 mutex_lock(sdw->link_res->shim_lock); 551 552 ret = intel_shim_sync_go_unlocked(sdw); 553 554 mutex_unlock(sdw->link_res->shim_lock); 555 556 return ret; 557 } 558 559 /* 560 * PDI routines 561 */ 562 static void intel_pdi_init(struct sdw_intel *sdw, 563 struct sdw_cdns_stream_config *config) 564 { 565 void __iomem *shim = sdw->link_res->shim; 566 unsigned int link_id = sdw->instance; 567 int pcm_cap; 568 569 /* PCM Stream Capability */ 570 pcm_cap = intel_readw(shim, SDW_SHIM_PCMSCAP(link_id)); 571 572 config->pcm_bd = FIELD_GET(SDW_SHIM_PCMSCAP_BSS, pcm_cap); 573 config->pcm_in = FIELD_GET(SDW_SHIM_PCMSCAP_ISS, pcm_cap); 574 config->pcm_out = FIELD_GET(SDW_SHIM_PCMSCAP_OSS, pcm_cap); 575 576 dev_dbg(sdw->cdns.dev, "PCM cap bd:%d in:%d out:%d\n", 577 config->pcm_bd, config->pcm_in, config->pcm_out); 578 } 579 580 static int 581 intel_pdi_get_ch_cap(struct sdw_intel *sdw, unsigned int pdi_num) 582 { 583 void __iomem *shim = sdw->link_res->shim; 584 unsigned int link_id = sdw->instance; 585 int count; 586 587 count = intel_readw(shim, SDW_SHIM_PCMSYCHC(link_id, pdi_num)); 588 589 /* 590 * WORKAROUND: on all existing Intel controllers, pdi 591 * number 2 reports channel count as 1 even though it 592 * supports 8 channels. Performing hardcoding for pdi 593 * number 2. 594 */ 595 if (pdi_num == 2) 596 count = 7; 597 598 /* zero based values for channel count in register */ 599 count++; 600 601 return count; 602 } 603 604 static int intel_pdi_get_ch_update(struct sdw_intel *sdw, 605 struct sdw_cdns_pdi *pdi, 606 unsigned int num_pdi, 607 unsigned int *num_ch) 608 { 609 int i, ch_count = 0; 610 611 for (i = 0; i < num_pdi; i++) { 612 pdi->ch_count = intel_pdi_get_ch_cap(sdw, pdi->num); 613 ch_count += pdi->ch_count; 614 pdi++; 615 } 616 617 *num_ch = ch_count; 618 return 0; 619 } 620 621 static int intel_pdi_stream_ch_update(struct sdw_intel *sdw, 622 struct sdw_cdns_streams *stream) 623 { 624 intel_pdi_get_ch_update(sdw, stream->bd, stream->num_bd, 625 &stream->num_ch_bd); 626 627 intel_pdi_get_ch_update(sdw, stream->in, stream->num_in, 628 &stream->num_ch_in); 629 630 intel_pdi_get_ch_update(sdw, stream->out, stream->num_out, 631 &stream->num_ch_out); 632 633 return 0; 634 } 635 636 static int intel_pdi_ch_update(struct sdw_intel *sdw) 637 { 638 intel_pdi_stream_ch_update(sdw, &sdw->cdns.pcm); 639 640 return 0; 641 } 642 643 static void 644 intel_pdi_shim_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi) 645 { 646 void __iomem *shim = sdw->link_res->shim; 647 unsigned int link_id = sdw->instance; 648 int pdi_conf = 0; 649 650 /* the Bulk and PCM streams are not contiguous */ 651 pdi->intel_alh_id = (link_id * 16) + pdi->num + 3; 652 if (pdi->num >= 2) 653 pdi->intel_alh_id += 2; 654 655 /* 656 * Program stream parameters to stream SHIM register 657 * This is applicable for PCM stream only. 658 */ 659 if (pdi->type != SDW_STREAM_PCM) 660 return; 661 662 if (pdi->dir == SDW_DATA_DIR_RX) 663 pdi_conf |= SDW_SHIM_PCMSYCM_DIR; 664 else 665 pdi_conf &= ~(SDW_SHIM_PCMSYCM_DIR); 666 667 u32p_replace_bits(&pdi_conf, pdi->intel_alh_id, SDW_SHIM_PCMSYCM_STREAM); 668 u32p_replace_bits(&pdi_conf, pdi->l_ch_num, SDW_SHIM_PCMSYCM_LCHN); 669 u32p_replace_bits(&pdi_conf, pdi->h_ch_num, SDW_SHIM_PCMSYCM_HCHN); 670 671 intel_writew(shim, SDW_SHIM_PCMSYCHM(link_id, pdi->num), pdi_conf); 672 } 673 674 static void 675 intel_pdi_alh_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi) 676 { 677 void __iomem *alh = sdw->link_res->alh; 678 unsigned int link_id = sdw->instance; 679 unsigned int conf; 680 681 /* the Bulk and PCM streams are not contiguous */ 682 pdi->intel_alh_id = (link_id * 16) + pdi->num + 3; 683 if (pdi->num >= 2) 684 pdi->intel_alh_id += 2; 685 686 /* Program Stream config ALH register */ 687 conf = intel_readl(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id)); 688 689 u32p_replace_bits(&conf, SDW_ALH_STRMZCFG_DMAT_VAL, SDW_ALH_STRMZCFG_DMAT); 690 u32p_replace_bits(&conf, pdi->ch_count - 1, SDW_ALH_STRMZCFG_CHN); 691 692 intel_writel(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id), conf); 693 } 694 695 static int intel_params_stream(struct sdw_intel *sdw, 696 int stream, 697 struct snd_soc_dai *dai, 698 struct snd_pcm_hw_params *hw_params, 699 int link_id, int alh_stream_id) 700 { 701 struct sdw_intel_link_res *res = sdw->link_res; 702 struct sdw_intel_stream_params_data params_data; 703 704 params_data.stream = stream; /* direction */ 705 params_data.dai = dai; 706 params_data.hw_params = hw_params; 707 params_data.link_id = link_id; 708 params_data.alh_stream_id = alh_stream_id; 709 710 if (res->ops && res->ops->params_stream && res->dev) 711 return res->ops->params_stream(res->dev, 712 ¶ms_data); 713 return -EIO; 714 } 715 716 static int intel_free_stream(struct sdw_intel *sdw, 717 int stream, 718 struct snd_soc_dai *dai, 719 int link_id) 720 { 721 struct sdw_intel_link_res *res = sdw->link_res; 722 struct sdw_intel_stream_free_data free_data; 723 724 free_data.stream = stream; /* direction */ 725 free_data.dai = dai; 726 free_data.link_id = link_id; 727 728 if (res->ops && res->ops->free_stream && res->dev) 729 return res->ops->free_stream(res->dev, 730 &free_data); 731 732 return 0; 733 } 734 735 /* 736 * bank switch routines 737 */ 738 739 static int intel_pre_bank_switch(struct sdw_bus *bus) 740 { 741 struct sdw_cdns *cdns = bus_to_cdns(bus); 742 struct sdw_intel *sdw = cdns_to_intel(cdns); 743 744 /* Write to register only for multi-link */ 745 if (!bus->multi_link) 746 return 0; 747 748 intel_shim_sync_arm(sdw); 749 750 return 0; 751 } 752 753 static int intel_post_bank_switch(struct sdw_bus *bus) 754 { 755 struct sdw_cdns *cdns = bus_to_cdns(bus); 756 struct sdw_intel *sdw = cdns_to_intel(cdns); 757 void __iomem *shim = sdw->link_res->shim; 758 int sync_reg, ret; 759 760 /* Write to register only for multi-link */ 761 if (!bus->multi_link) 762 return 0; 763 764 mutex_lock(sdw->link_res->shim_lock); 765 766 /* Read SYNC register */ 767 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 768 769 /* 770 * post_bank_switch() ops is called from the bus in loop for 771 * all the Masters in the steam with the expectation that 772 * we trigger the bankswitch for the only first Master in the list 773 * and do nothing for the other Masters 774 * 775 * So, set the SYNCGO bit only if CMDSYNC bit is set for any Master. 776 */ 777 if (!(sync_reg & SDW_SHIM_SYNC_CMDSYNC_MASK)) { 778 ret = 0; 779 goto unlock; 780 } 781 782 ret = intel_shim_sync_go_unlocked(sdw); 783 unlock: 784 mutex_unlock(sdw->link_res->shim_lock); 785 786 if (ret < 0) 787 dev_err(sdw->cdns.dev, "Post bank switch failed: %d\n", ret); 788 789 return ret; 790 } 791 792 /* 793 * DAI routines 794 */ 795 796 static int intel_startup(struct snd_pcm_substream *substream, 797 struct snd_soc_dai *dai) 798 { 799 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 800 int ret; 801 802 ret = pm_runtime_resume_and_get(cdns->dev); 803 if (ret < 0 && ret != -EACCES) { 804 dev_err_ratelimited(cdns->dev, 805 "pm_runtime_resume_and_get failed in %s, ret %d\n", 806 __func__, ret); 807 return ret; 808 } 809 return 0; 810 } 811 812 static int intel_hw_params(struct snd_pcm_substream *substream, 813 struct snd_pcm_hw_params *params, 814 struct snd_soc_dai *dai) 815 { 816 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 817 struct sdw_intel *sdw = cdns_to_intel(cdns); 818 struct sdw_cdns_dma_data *dma; 819 struct sdw_cdns_pdi *pdi; 820 struct sdw_stream_config sconfig; 821 struct sdw_port_config *pconfig; 822 int ch, dir; 823 int ret; 824 825 dma = snd_soc_dai_get_dma_data(dai, substream); 826 if (!dma) 827 return -EIO; 828 829 ch = params_channels(params); 830 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 831 dir = SDW_DATA_DIR_RX; 832 else 833 dir = SDW_DATA_DIR_TX; 834 835 pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pcm, ch, dir, dai->id); 836 837 if (!pdi) { 838 ret = -EINVAL; 839 goto error; 840 } 841 842 /* do run-time configurations for SHIM, ALH and PDI/PORT */ 843 intel_pdi_shim_configure(sdw, pdi); 844 intel_pdi_alh_configure(sdw, pdi); 845 sdw_cdns_config_stream(cdns, ch, dir, pdi); 846 847 /* store pdi and hw_params, may be needed in prepare step */ 848 dma->paused = false; 849 dma->suspended = false; 850 dma->pdi = pdi; 851 dma->hw_params = params; 852 853 /* Inform DSP about PDI stream number */ 854 ret = intel_params_stream(sdw, substream->stream, dai, params, 855 sdw->instance, 856 pdi->intel_alh_id); 857 if (ret) 858 goto error; 859 860 sconfig.direction = dir; 861 sconfig.ch_count = ch; 862 sconfig.frame_rate = params_rate(params); 863 sconfig.type = dma->stream_type; 864 865 sconfig.bps = snd_pcm_format_width(params_format(params)); 866 867 /* Port configuration */ 868 pconfig = kzalloc(sizeof(*pconfig), GFP_KERNEL); 869 if (!pconfig) { 870 ret = -ENOMEM; 871 goto error; 872 } 873 874 pconfig->num = pdi->num; 875 pconfig->ch_mask = (1 << ch) - 1; 876 877 ret = sdw_stream_add_master(&cdns->bus, &sconfig, 878 pconfig, 1, dma->stream); 879 if (ret) 880 dev_err(cdns->dev, "add master to stream failed:%d\n", ret); 881 882 kfree(pconfig); 883 error: 884 return ret; 885 } 886 887 static int intel_prepare(struct snd_pcm_substream *substream, 888 struct snd_soc_dai *dai) 889 { 890 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 891 struct sdw_intel *sdw = cdns_to_intel(cdns); 892 struct sdw_cdns_dma_data *dma; 893 int ch, dir; 894 int ret = 0; 895 896 dma = snd_soc_dai_get_dma_data(dai, substream); 897 if (!dma) { 898 dev_err(dai->dev, "failed to get dma data in %s\n", 899 __func__); 900 return -EIO; 901 } 902 903 if (dma->suspended) { 904 dma->suspended = false; 905 906 /* 907 * .prepare() is called after system resume, where we 908 * need to reinitialize the SHIM/ALH/Cadence IP. 909 * .prepare() is also called to deal with underflows, 910 * but in those cases we cannot touch ALH/SHIM 911 * registers 912 */ 913 914 /* configure stream */ 915 ch = params_channels(dma->hw_params); 916 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 917 dir = SDW_DATA_DIR_RX; 918 else 919 dir = SDW_DATA_DIR_TX; 920 921 intel_pdi_shim_configure(sdw, dma->pdi); 922 intel_pdi_alh_configure(sdw, dma->pdi); 923 sdw_cdns_config_stream(cdns, ch, dir, dma->pdi); 924 925 /* Inform DSP about PDI stream number */ 926 ret = intel_params_stream(sdw, substream->stream, dai, 927 dma->hw_params, 928 sdw->instance, 929 dma->pdi->intel_alh_id); 930 } 931 932 return ret; 933 } 934 935 static int 936 intel_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) 937 { 938 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 939 struct sdw_intel *sdw = cdns_to_intel(cdns); 940 struct sdw_cdns_dma_data *dma; 941 int ret; 942 943 dma = snd_soc_dai_get_dma_data(dai, substream); 944 if (!dma) 945 return -EIO; 946 947 /* 948 * The sdw stream state will transition to RELEASED when stream-> 949 * master_list is empty. So the stream state will transition to 950 * DEPREPARED for the first cpu-dai and to RELEASED for the last 951 * cpu-dai. 952 */ 953 ret = sdw_stream_remove_master(&cdns->bus, dma->stream); 954 if (ret < 0) { 955 dev_err(dai->dev, "remove master from stream %s failed: %d\n", 956 dma->stream->name, ret); 957 return ret; 958 } 959 960 ret = intel_free_stream(sdw, substream->stream, dai, sdw->instance); 961 if (ret < 0) { 962 dev_err(dai->dev, "intel_free_stream: failed %d\n", ret); 963 return ret; 964 } 965 966 dma->hw_params = NULL; 967 dma->pdi = NULL; 968 969 return 0; 970 } 971 972 static void intel_shutdown(struct snd_pcm_substream *substream, 973 struct snd_soc_dai *dai) 974 { 975 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 976 977 pm_runtime_mark_last_busy(cdns->dev); 978 pm_runtime_put_autosuspend(cdns->dev); 979 } 980 981 static int intel_pcm_set_sdw_stream(struct snd_soc_dai *dai, 982 void *stream, int direction) 983 { 984 return cdns_set_sdw_stream(dai, stream, direction); 985 } 986 987 static void *intel_get_sdw_stream(struct snd_soc_dai *dai, 988 int direction) 989 { 990 struct sdw_cdns_dma_data *dma; 991 992 if (direction == SNDRV_PCM_STREAM_PLAYBACK) 993 dma = dai->playback_dma_data; 994 else 995 dma = dai->capture_dma_data; 996 997 if (!dma) 998 return ERR_PTR(-EINVAL); 999 1000 return dma->stream; 1001 } 1002 1003 static int intel_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) 1004 { 1005 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 1006 struct sdw_intel *sdw = cdns_to_intel(cdns); 1007 struct sdw_intel_link_res *res = sdw->link_res; 1008 struct sdw_cdns_dma_data *dma; 1009 int ret = 0; 1010 1011 /* 1012 * The .trigger callback is used to send required IPC to audio 1013 * firmware. The .free_stream callback will still be called 1014 * by intel_free_stream() in the TRIGGER_SUSPEND case. 1015 */ 1016 if (res->ops && res->ops->trigger) 1017 res->ops->trigger(dai, cmd, substream->stream); 1018 1019 dma = snd_soc_dai_get_dma_data(dai, substream); 1020 if (!dma) { 1021 dev_err(dai->dev, "failed to get dma data in %s\n", 1022 __func__); 1023 return -EIO; 1024 } 1025 1026 switch (cmd) { 1027 case SNDRV_PCM_TRIGGER_SUSPEND: 1028 1029 /* 1030 * The .prepare callback is used to deal with xruns and resume operations. 1031 * In the case of xruns, the DMAs and SHIM registers cannot be touched, 1032 * but for resume operations the DMAs and SHIM registers need to be initialized. 1033 * the .trigger callback is used to track the suspend case only. 1034 */ 1035 1036 dma->suspended = true; 1037 1038 ret = intel_free_stream(sdw, substream->stream, dai, sdw->instance); 1039 break; 1040 1041 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1042 dma->paused = true; 1043 break; 1044 case SNDRV_PCM_TRIGGER_STOP: 1045 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1046 dma->paused = false; 1047 break; 1048 default: 1049 break; 1050 } 1051 1052 return ret; 1053 } 1054 1055 static int intel_component_dais_suspend(struct snd_soc_component *component) 1056 { 1057 struct snd_soc_dai *dai; 1058 1059 /* 1060 * In the corner case where a SUSPEND happens during a PAUSE, the ALSA core 1061 * does not throw the TRIGGER_SUSPEND. This leaves the DAIs in an unbalanced state. 1062 * Since the component suspend is called last, we can trap this corner case 1063 * and force the DAIs to release their resources. 1064 */ 1065 for_each_component_dais(component, dai) { 1066 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 1067 struct sdw_intel *sdw = cdns_to_intel(cdns); 1068 struct sdw_cdns_dma_data *dma; 1069 int stream; 1070 int ret; 1071 1072 dma = dai->playback_dma_data; 1073 stream = SNDRV_PCM_STREAM_PLAYBACK; 1074 if (!dma) { 1075 dma = dai->capture_dma_data; 1076 stream = SNDRV_PCM_STREAM_CAPTURE; 1077 } 1078 1079 if (!dma) 1080 continue; 1081 1082 if (dma->suspended) 1083 continue; 1084 1085 if (dma->paused) { 1086 dma->suspended = true; 1087 1088 ret = intel_free_stream(sdw, stream, dai, sdw->instance); 1089 if (ret < 0) 1090 return ret; 1091 } 1092 } 1093 1094 return 0; 1095 } 1096 1097 static const struct snd_soc_dai_ops intel_pcm_dai_ops = { 1098 .startup = intel_startup, 1099 .hw_params = intel_hw_params, 1100 .prepare = intel_prepare, 1101 .hw_free = intel_hw_free, 1102 .trigger = intel_trigger, 1103 .shutdown = intel_shutdown, 1104 .set_stream = intel_pcm_set_sdw_stream, 1105 .get_stream = intel_get_sdw_stream, 1106 }; 1107 1108 static const struct snd_soc_component_driver dai_component = { 1109 .name = "soundwire", 1110 .suspend = intel_component_dais_suspend, 1111 .legacy_dai_naming = 1, 1112 }; 1113 1114 static int intel_create_dai(struct sdw_cdns *cdns, 1115 struct snd_soc_dai_driver *dais, 1116 enum intel_pdi_type type, 1117 u32 num, u32 off, u32 max_ch) 1118 { 1119 int i; 1120 1121 if (num == 0) 1122 return 0; 1123 1124 /* TODO: Read supported rates/formats from hardware */ 1125 for (i = off; i < (off + num); i++) { 1126 dais[i].name = devm_kasprintf(cdns->dev, GFP_KERNEL, 1127 "SDW%d Pin%d", 1128 cdns->instance, i); 1129 if (!dais[i].name) 1130 return -ENOMEM; 1131 1132 if (type == INTEL_PDI_BD || type == INTEL_PDI_OUT) { 1133 dais[i].playback.channels_min = 1; 1134 dais[i].playback.channels_max = max_ch; 1135 dais[i].playback.rates = SNDRV_PCM_RATE_48000; 1136 dais[i].playback.formats = SNDRV_PCM_FMTBIT_S16_LE; 1137 } 1138 1139 if (type == INTEL_PDI_BD || type == INTEL_PDI_IN) { 1140 dais[i].capture.channels_min = 1; 1141 dais[i].capture.channels_max = max_ch; 1142 dais[i].capture.rates = SNDRV_PCM_RATE_48000; 1143 dais[i].capture.formats = SNDRV_PCM_FMTBIT_S16_LE; 1144 } 1145 1146 dais[i].ops = &intel_pcm_dai_ops; 1147 } 1148 1149 return 0; 1150 } 1151 1152 static int intel_register_dai(struct sdw_intel *sdw) 1153 { 1154 struct sdw_cdns *cdns = &sdw->cdns; 1155 struct sdw_cdns_streams *stream; 1156 struct snd_soc_dai_driver *dais; 1157 int num_dai, ret, off = 0; 1158 1159 /* DAIs are created based on total number of PDIs supported */ 1160 num_dai = cdns->pcm.num_pdi; 1161 1162 dais = devm_kcalloc(cdns->dev, num_dai, sizeof(*dais), GFP_KERNEL); 1163 if (!dais) 1164 return -ENOMEM; 1165 1166 /* Create PCM DAIs */ 1167 stream = &cdns->pcm; 1168 1169 ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pcm.num_in, 1170 off, stream->num_ch_in); 1171 if (ret) 1172 return ret; 1173 1174 off += cdns->pcm.num_in; 1175 ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pcm.num_out, 1176 off, stream->num_ch_out); 1177 if (ret) 1178 return ret; 1179 1180 off += cdns->pcm.num_out; 1181 ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pcm.num_bd, 1182 off, stream->num_ch_bd); 1183 if (ret) 1184 return ret; 1185 1186 return snd_soc_register_component(cdns->dev, &dai_component, 1187 dais, num_dai); 1188 } 1189 1190 static int sdw_master_read_intel_prop(struct sdw_bus *bus) 1191 { 1192 struct sdw_master_prop *prop = &bus->prop; 1193 struct fwnode_handle *link; 1194 char name[32]; 1195 u32 quirk_mask; 1196 1197 /* Find master handle */ 1198 snprintf(name, sizeof(name), 1199 "mipi-sdw-link-%d-subproperties", bus->link_id); 1200 1201 link = device_get_named_child_node(bus->dev, name); 1202 if (!link) { 1203 dev_err(bus->dev, "Master node %s not found\n", name); 1204 return -EIO; 1205 } 1206 1207 fwnode_property_read_u32(link, 1208 "intel-sdw-ip-clock", 1209 &prop->mclk_freq); 1210 1211 /* the values reported by BIOS are the 2x clock, not the bus clock */ 1212 prop->mclk_freq /= 2; 1213 1214 fwnode_property_read_u32(link, 1215 "intel-quirk-mask", 1216 &quirk_mask); 1217 1218 if (quirk_mask & SDW_INTEL_QUIRK_MASK_BUS_DISABLE) 1219 prop->hw_disabled = true; 1220 1221 prop->quirks = SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH | 1222 SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY; 1223 1224 return 0; 1225 } 1226 1227 static int intel_prop_read(struct sdw_bus *bus) 1228 { 1229 /* Initialize with default handler to read all DisCo properties */ 1230 sdw_master_read_prop(bus); 1231 1232 /* read Intel-specific properties */ 1233 sdw_master_read_intel_prop(bus); 1234 1235 return 0; 1236 } 1237 1238 static struct sdw_master_ops sdw_intel_ops = { 1239 .read_prop = sdw_master_read_prop, 1240 .override_adr = sdw_dmi_override_adr, 1241 .xfer_msg = cdns_xfer_msg, 1242 .xfer_msg_defer = cdns_xfer_msg_defer, 1243 .reset_page_addr = cdns_reset_page_addr, 1244 .set_bus_conf = cdns_bus_conf, 1245 .pre_bank_switch = intel_pre_bank_switch, 1246 .post_bank_switch = intel_post_bank_switch, 1247 }; 1248 1249 static int intel_init(struct sdw_intel *sdw) 1250 { 1251 bool clock_stop; 1252 1253 /* Initialize shim and controller */ 1254 intel_link_power_up(sdw); 1255 1256 clock_stop = sdw_cdns_is_clock_stop(&sdw->cdns); 1257 1258 intel_shim_init(sdw, clock_stop); 1259 1260 return 0; 1261 } 1262 1263 /* 1264 * probe and init (aux_dev_id argument is required by function prototype but not used) 1265 */ 1266 static int intel_link_probe(struct auxiliary_device *auxdev, 1267 const struct auxiliary_device_id *aux_dev_id) 1268 1269 { 1270 struct device *dev = &auxdev->dev; 1271 struct sdw_intel_link_dev *ldev = auxiliary_dev_to_sdw_intel_link_dev(auxdev); 1272 struct sdw_intel *sdw; 1273 struct sdw_cdns *cdns; 1274 struct sdw_bus *bus; 1275 int ret; 1276 1277 sdw = devm_kzalloc(dev, sizeof(*sdw), GFP_KERNEL); 1278 if (!sdw) 1279 return -ENOMEM; 1280 1281 cdns = &sdw->cdns; 1282 bus = &cdns->bus; 1283 1284 sdw->instance = auxdev->id; 1285 sdw->link_res = &ldev->link_res; 1286 cdns->dev = dev; 1287 cdns->registers = sdw->link_res->registers; 1288 cdns->instance = sdw->instance; 1289 cdns->msg_count = 0; 1290 1291 bus->link_id = auxdev->id; 1292 1293 sdw_cdns_probe(cdns); 1294 1295 /* Set property read ops */ 1296 sdw_intel_ops.read_prop = intel_prop_read; 1297 bus->ops = &sdw_intel_ops; 1298 1299 /* set driver data, accessed by snd_soc_dai_get_drvdata() */ 1300 auxiliary_set_drvdata(auxdev, cdns); 1301 1302 /* use generic bandwidth allocation algorithm */ 1303 sdw->cdns.bus.compute_params = sdw_compute_params; 1304 1305 /* avoid resuming from pm_runtime suspend if it's not required */ 1306 dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND); 1307 1308 ret = sdw_bus_master_add(bus, dev, dev->fwnode); 1309 if (ret) { 1310 dev_err(dev, "sdw_bus_master_add fail: %d\n", ret); 1311 return ret; 1312 } 1313 1314 if (bus->prop.hw_disabled) 1315 dev_info(dev, 1316 "SoundWire master %d is disabled, will be ignored\n", 1317 bus->link_id); 1318 /* 1319 * Ignore BIOS err_threshold, it's a really bad idea when dealing 1320 * with multiple hardware synchronized links 1321 */ 1322 bus->prop.err_threshold = 0; 1323 1324 return 0; 1325 } 1326 1327 int intel_link_startup(struct auxiliary_device *auxdev) 1328 { 1329 struct sdw_cdns_stream_config config; 1330 struct device *dev = &auxdev->dev; 1331 struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev); 1332 struct sdw_intel *sdw = cdns_to_intel(cdns); 1333 struct sdw_bus *bus = &cdns->bus; 1334 int link_flags; 1335 bool multi_link; 1336 u32 clock_stop_quirks; 1337 int ret; 1338 1339 if (bus->prop.hw_disabled) { 1340 dev_info(dev, 1341 "SoundWire master %d is disabled, ignoring\n", 1342 sdw->instance); 1343 return 0; 1344 } 1345 1346 link_flags = md_flags >> (bus->link_id * 8); 1347 multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK); 1348 if (!multi_link) { 1349 dev_dbg(dev, "Multi-link is disabled\n"); 1350 bus->multi_link = false; 1351 } else { 1352 /* 1353 * hardware-based synchronization is required regardless 1354 * of the number of segments used by a stream: SSP-based 1355 * synchronization is gated by gsync when the multi-master 1356 * mode is set. 1357 */ 1358 bus->multi_link = true; 1359 bus->hw_sync_min_links = 1; 1360 } 1361 1362 /* Initialize shim, controller */ 1363 ret = intel_init(sdw); 1364 if (ret) 1365 goto err_init; 1366 1367 /* Read the PDI config and initialize cadence PDI */ 1368 intel_pdi_init(sdw, &config); 1369 ret = sdw_cdns_pdi_init(cdns, config); 1370 if (ret) 1371 goto err_init; 1372 1373 intel_pdi_ch_update(sdw); 1374 1375 ret = sdw_cdns_enable_interrupt(cdns, true); 1376 if (ret < 0) { 1377 dev_err(dev, "cannot enable interrupts\n"); 1378 goto err_init; 1379 } 1380 1381 /* 1382 * follow recommended programming flows to avoid timeouts when 1383 * gsync is enabled 1384 */ 1385 if (multi_link) 1386 intel_shim_sync_arm(sdw); 1387 1388 ret = sdw_cdns_init(cdns); 1389 if (ret < 0) { 1390 dev_err(dev, "unable to initialize Cadence IP\n"); 1391 goto err_interrupt; 1392 } 1393 1394 ret = sdw_cdns_exit_reset(cdns); 1395 if (ret < 0) { 1396 dev_err(dev, "unable to exit bus reset sequence\n"); 1397 goto err_interrupt; 1398 } 1399 1400 if (multi_link) { 1401 ret = intel_shim_sync_go(sdw); 1402 if (ret < 0) { 1403 dev_err(dev, "sync go failed: %d\n", ret); 1404 goto err_interrupt; 1405 } 1406 } 1407 sdw_cdns_check_self_clearing_bits(cdns, __func__, 1408 true, INTEL_MASTER_RESET_ITERATIONS); 1409 1410 /* Register DAIs */ 1411 ret = intel_register_dai(sdw); 1412 if (ret) { 1413 dev_err(dev, "DAI registration failed: %d\n", ret); 1414 snd_soc_unregister_component(dev); 1415 goto err_interrupt; 1416 } 1417 1418 intel_debugfs_init(sdw); 1419 1420 /* Enable runtime PM */ 1421 if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME)) { 1422 pm_runtime_set_autosuspend_delay(dev, 1423 INTEL_MASTER_SUSPEND_DELAY_MS); 1424 pm_runtime_use_autosuspend(dev); 1425 pm_runtime_mark_last_busy(dev); 1426 1427 pm_runtime_set_active(dev); 1428 pm_runtime_enable(dev); 1429 } 1430 1431 clock_stop_quirks = sdw->link_res->clock_stop_quirks; 1432 if (clock_stop_quirks & SDW_INTEL_CLK_STOP_NOT_ALLOWED) { 1433 /* 1434 * To keep the clock running we need to prevent 1435 * pm_runtime suspend from happening by increasing the 1436 * reference count. 1437 * This quirk is specified by the parent PCI device in 1438 * case of specific latency requirements. It will have 1439 * no effect if pm_runtime is disabled by the user via 1440 * a module parameter for testing purposes. 1441 */ 1442 pm_runtime_get_noresume(dev); 1443 } 1444 1445 /* 1446 * The runtime PM status of Slave devices is "Unsupported" 1447 * until they report as ATTACHED. If they don't, e.g. because 1448 * there are no Slave devices populated or if the power-on is 1449 * delayed or dependent on a power switch, the Master will 1450 * remain active and prevent its parent from suspending. 1451 * 1452 * Conditionally force the pm_runtime core to re-evaluate the 1453 * Master status in the absence of any Slave activity. A quirk 1454 * is provided to e.g. deal with Slaves that may be powered on 1455 * with a delay. A more complete solution would require the 1456 * definition of Master properties. 1457 */ 1458 if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE)) 1459 pm_runtime_idle(dev); 1460 1461 sdw->startup_done = true; 1462 return 0; 1463 1464 err_interrupt: 1465 sdw_cdns_enable_interrupt(cdns, false); 1466 err_init: 1467 return ret; 1468 } 1469 1470 static void intel_link_remove(struct auxiliary_device *auxdev) 1471 { 1472 struct device *dev = &auxdev->dev; 1473 struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev); 1474 struct sdw_intel *sdw = cdns_to_intel(cdns); 1475 struct sdw_bus *bus = &cdns->bus; 1476 1477 /* 1478 * Since pm_runtime is already disabled, we don't decrease 1479 * the refcount when the clock_stop_quirk is 1480 * SDW_INTEL_CLK_STOP_NOT_ALLOWED 1481 */ 1482 if (!bus->prop.hw_disabled) { 1483 intel_debugfs_exit(sdw); 1484 sdw_cdns_enable_interrupt(cdns, false); 1485 snd_soc_unregister_component(dev); 1486 } 1487 sdw_bus_master_delete(bus); 1488 } 1489 1490 int intel_link_process_wakeen_event(struct auxiliary_device *auxdev) 1491 { 1492 struct device *dev = &auxdev->dev; 1493 struct sdw_intel *sdw; 1494 struct sdw_bus *bus; 1495 void __iomem *shim; 1496 u16 wake_sts; 1497 1498 sdw = auxiliary_get_drvdata(auxdev); 1499 bus = &sdw->cdns.bus; 1500 1501 if (bus->prop.hw_disabled || !sdw->startup_done) { 1502 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1503 bus->link_id); 1504 return 0; 1505 } 1506 1507 shim = sdw->link_res->shim; 1508 wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS); 1509 1510 if (!(wake_sts & BIT(sdw->instance))) 1511 return 0; 1512 1513 /* disable WAKEEN interrupt ASAP to prevent interrupt flood */ 1514 intel_shim_wake(sdw, false); 1515 1516 /* 1517 * resume the Master, which will generate a bus reset and result in 1518 * Slaves re-attaching and be re-enumerated. The SoundWire physical 1519 * device which generated the wake will trigger an interrupt, which 1520 * will in turn cause the corresponding Linux Slave device to be 1521 * resumed and the Slave codec driver to check the status. 1522 */ 1523 pm_request_resume(dev); 1524 1525 return 0; 1526 } 1527 1528 /* 1529 * PM calls 1530 */ 1531 1532 static int intel_resume_child_device(struct device *dev, void *data) 1533 { 1534 int ret; 1535 struct sdw_slave *slave = dev_to_sdw_dev(dev); 1536 1537 if (!slave->probed) { 1538 dev_dbg(dev, "%s: skipping device, no probed driver\n", __func__); 1539 return 0; 1540 } 1541 if (!slave->dev_num_sticky) { 1542 dev_dbg(dev, "%s: skipping device, never detected on bus\n", __func__); 1543 return 0; 1544 } 1545 1546 ret = pm_request_resume(dev); 1547 if (ret < 0) 1548 dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret); 1549 1550 return ret; 1551 } 1552 1553 static int __maybe_unused intel_pm_prepare(struct device *dev) 1554 { 1555 struct sdw_cdns *cdns = dev_get_drvdata(dev); 1556 struct sdw_intel *sdw = cdns_to_intel(cdns); 1557 struct sdw_bus *bus = &cdns->bus; 1558 u32 clock_stop_quirks; 1559 int ret; 1560 1561 if (bus->prop.hw_disabled || !sdw->startup_done) { 1562 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1563 bus->link_id); 1564 return 0; 1565 } 1566 1567 clock_stop_quirks = sdw->link_res->clock_stop_quirks; 1568 1569 if (pm_runtime_suspended(dev) && 1570 pm_runtime_suspended(dev->parent) && 1571 ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) || 1572 !clock_stop_quirks)) { 1573 /* 1574 * if we've enabled clock stop, and the parent is suspended, the SHIM registers 1575 * are not accessible and the shim wake cannot be disabled. 1576 * The only solution is to resume the entire bus to full power 1577 */ 1578 1579 /* 1580 * If any operation in this block fails, we keep going since we don't want 1581 * to prevent system suspend from happening and errors should be recoverable 1582 * on resume. 1583 */ 1584 1585 /* 1586 * first resume the device for this link. This will also by construction 1587 * resume the PCI parent device. 1588 */ 1589 ret = pm_request_resume(dev); 1590 if (ret < 0) { 1591 dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret); 1592 return 0; 1593 } 1594 1595 /* 1596 * Continue resuming the entire bus (parent + child devices) to exit 1597 * the clock stop mode. If there are no devices connected on this link 1598 * this is a no-op. 1599 * The resume to full power could have been implemented with a .prepare 1600 * step in SoundWire codec drivers. This would however require a lot 1601 * of code to handle an Intel-specific corner case. It is simpler in 1602 * practice to add a loop at the link level. 1603 */ 1604 ret = device_for_each_child(bus->dev, NULL, intel_resume_child_device); 1605 1606 if (ret < 0) 1607 dev_err(dev, "%s: intel_resume_child_device failed: %d\n", __func__, ret); 1608 } 1609 1610 return 0; 1611 } 1612 1613 static int __maybe_unused intel_suspend(struct device *dev) 1614 { 1615 struct sdw_cdns *cdns = dev_get_drvdata(dev); 1616 struct sdw_intel *sdw = cdns_to_intel(cdns); 1617 struct sdw_bus *bus = &cdns->bus; 1618 u32 clock_stop_quirks; 1619 int ret; 1620 1621 if (bus->prop.hw_disabled || !sdw->startup_done) { 1622 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1623 bus->link_id); 1624 return 0; 1625 } 1626 1627 if (pm_runtime_suspended(dev)) { 1628 dev_dbg(dev, "%s: pm_runtime status: suspended\n", __func__); 1629 1630 clock_stop_quirks = sdw->link_res->clock_stop_quirks; 1631 1632 if ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) || 1633 !clock_stop_quirks) { 1634 1635 if (pm_runtime_suspended(dev->parent)) { 1636 /* 1637 * paranoia check: this should not happen with the .prepare 1638 * resume to full power 1639 */ 1640 dev_err(dev, "%s: invalid config: parent is suspended\n", __func__); 1641 } else { 1642 intel_shim_wake(sdw, false); 1643 } 1644 } 1645 1646 return 0; 1647 } 1648 1649 ret = sdw_cdns_enable_interrupt(cdns, false); 1650 if (ret < 0) { 1651 dev_err(dev, "cannot disable interrupts on suspend\n"); 1652 return ret; 1653 } 1654 1655 ret = intel_link_power_down(sdw); 1656 if (ret) { 1657 dev_err(dev, "Link power down failed: %d\n", ret); 1658 return ret; 1659 } 1660 1661 intel_shim_wake(sdw, false); 1662 1663 return 0; 1664 } 1665 1666 static int __maybe_unused intel_suspend_runtime(struct device *dev) 1667 { 1668 struct sdw_cdns *cdns = dev_get_drvdata(dev); 1669 struct sdw_intel *sdw = cdns_to_intel(cdns); 1670 struct sdw_bus *bus = &cdns->bus; 1671 u32 clock_stop_quirks; 1672 int ret; 1673 1674 if (bus->prop.hw_disabled || !sdw->startup_done) { 1675 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1676 bus->link_id); 1677 return 0; 1678 } 1679 1680 clock_stop_quirks = sdw->link_res->clock_stop_quirks; 1681 1682 if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) { 1683 1684 ret = sdw_cdns_enable_interrupt(cdns, false); 1685 if (ret < 0) { 1686 dev_err(dev, "cannot disable interrupts on suspend\n"); 1687 return ret; 1688 } 1689 1690 ret = intel_link_power_down(sdw); 1691 if (ret) { 1692 dev_err(dev, "Link power down failed: %d\n", ret); 1693 return ret; 1694 } 1695 1696 intel_shim_wake(sdw, false); 1697 1698 } else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET || 1699 !clock_stop_quirks) { 1700 bool wake_enable = true; 1701 1702 ret = sdw_cdns_clock_stop(cdns, true); 1703 if (ret < 0) { 1704 dev_err(dev, "cannot enable clock stop on suspend\n"); 1705 wake_enable = false; 1706 } 1707 1708 ret = sdw_cdns_enable_interrupt(cdns, false); 1709 if (ret < 0) { 1710 dev_err(dev, "cannot disable interrupts on suspend\n"); 1711 return ret; 1712 } 1713 1714 ret = intel_link_power_down(sdw); 1715 if (ret) { 1716 dev_err(dev, "Link power down failed: %d\n", ret); 1717 return ret; 1718 } 1719 1720 intel_shim_wake(sdw, wake_enable); 1721 } else { 1722 dev_err(dev, "%s clock_stop_quirks %x unsupported\n", 1723 __func__, clock_stop_quirks); 1724 ret = -EINVAL; 1725 } 1726 1727 return ret; 1728 } 1729 1730 static int __maybe_unused intel_resume(struct device *dev) 1731 { 1732 struct sdw_cdns *cdns = dev_get_drvdata(dev); 1733 struct sdw_intel *sdw = cdns_to_intel(cdns); 1734 struct sdw_bus *bus = &cdns->bus; 1735 int link_flags; 1736 bool multi_link; 1737 int ret; 1738 1739 if (bus->prop.hw_disabled || !sdw->startup_done) { 1740 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1741 bus->link_id); 1742 return 0; 1743 } 1744 1745 link_flags = md_flags >> (bus->link_id * 8); 1746 multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK); 1747 1748 if (pm_runtime_suspended(dev)) { 1749 dev_dbg(dev, "%s: pm_runtime status was suspended, forcing active\n", __func__); 1750 1751 /* follow required sequence from runtime_pm.rst */ 1752 pm_runtime_disable(dev); 1753 pm_runtime_set_active(dev); 1754 pm_runtime_mark_last_busy(dev); 1755 pm_runtime_enable(dev); 1756 1757 link_flags = md_flags >> (bus->link_id * 8); 1758 1759 if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE)) 1760 pm_runtime_idle(dev); 1761 } 1762 1763 ret = intel_init(sdw); 1764 if (ret) { 1765 dev_err(dev, "%s failed: %d\n", __func__, ret); 1766 return ret; 1767 } 1768 1769 /* 1770 * make sure all Slaves are tagged as UNATTACHED and provide 1771 * reason for reinitialization 1772 */ 1773 sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET); 1774 1775 ret = sdw_cdns_enable_interrupt(cdns, true); 1776 if (ret < 0) { 1777 dev_err(dev, "cannot enable interrupts during resume\n"); 1778 return ret; 1779 } 1780 1781 /* 1782 * follow recommended programming flows to avoid timeouts when 1783 * gsync is enabled 1784 */ 1785 if (multi_link) 1786 intel_shim_sync_arm(sdw); 1787 1788 ret = sdw_cdns_init(&sdw->cdns); 1789 if (ret < 0) { 1790 dev_err(dev, "unable to initialize Cadence IP during resume\n"); 1791 return ret; 1792 } 1793 1794 ret = sdw_cdns_exit_reset(cdns); 1795 if (ret < 0) { 1796 dev_err(dev, "unable to exit bus reset sequence during resume\n"); 1797 return ret; 1798 } 1799 1800 if (multi_link) { 1801 ret = intel_shim_sync_go(sdw); 1802 if (ret < 0) { 1803 dev_err(dev, "sync go failed during resume\n"); 1804 return ret; 1805 } 1806 } 1807 sdw_cdns_check_self_clearing_bits(cdns, __func__, 1808 true, INTEL_MASTER_RESET_ITERATIONS); 1809 1810 /* 1811 * after system resume, the pm_runtime suspend() may kick in 1812 * during the enumeration, before any children device force the 1813 * master device to remain active. Using pm_runtime_get() 1814 * routines is not really possible, since it'd prevent the 1815 * master from suspending. 1816 * A reasonable compromise is to update the pm_runtime 1817 * counters and delay the pm_runtime suspend by several 1818 * seconds, by when all enumeration should be complete. 1819 */ 1820 pm_runtime_mark_last_busy(dev); 1821 1822 return ret; 1823 } 1824 1825 static int __maybe_unused intel_resume_runtime(struct device *dev) 1826 { 1827 struct sdw_cdns *cdns = dev_get_drvdata(dev); 1828 struct sdw_intel *sdw = cdns_to_intel(cdns); 1829 struct sdw_bus *bus = &cdns->bus; 1830 u32 clock_stop_quirks; 1831 bool clock_stop0; 1832 int link_flags; 1833 bool multi_link; 1834 int status; 1835 int ret; 1836 1837 if (bus->prop.hw_disabled || !sdw->startup_done) { 1838 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1839 bus->link_id); 1840 return 0; 1841 } 1842 1843 /* unconditionally disable WAKEEN interrupt */ 1844 intel_shim_wake(sdw, false); 1845 1846 link_flags = md_flags >> (bus->link_id * 8); 1847 multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK); 1848 1849 clock_stop_quirks = sdw->link_res->clock_stop_quirks; 1850 1851 if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) { 1852 ret = intel_init(sdw); 1853 if (ret) { 1854 dev_err(dev, "%s failed: %d\n", __func__, ret); 1855 return ret; 1856 } 1857 1858 /* 1859 * make sure all Slaves are tagged as UNATTACHED and provide 1860 * reason for reinitialization 1861 */ 1862 sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET); 1863 1864 ret = sdw_cdns_enable_interrupt(cdns, true); 1865 if (ret < 0) { 1866 dev_err(dev, "cannot enable interrupts during resume\n"); 1867 return ret; 1868 } 1869 1870 /* 1871 * follow recommended programming flows to avoid 1872 * timeouts when gsync is enabled 1873 */ 1874 if (multi_link) 1875 intel_shim_sync_arm(sdw); 1876 1877 ret = sdw_cdns_init(&sdw->cdns); 1878 if (ret < 0) { 1879 dev_err(dev, "unable to initialize Cadence IP during resume\n"); 1880 return ret; 1881 } 1882 1883 ret = sdw_cdns_exit_reset(cdns); 1884 if (ret < 0) { 1885 dev_err(dev, "unable to exit bus reset sequence during resume\n"); 1886 return ret; 1887 } 1888 1889 if (multi_link) { 1890 ret = intel_shim_sync_go(sdw); 1891 if (ret < 0) { 1892 dev_err(dev, "sync go failed during resume\n"); 1893 return ret; 1894 } 1895 } 1896 sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime TEARDOWN", 1897 true, INTEL_MASTER_RESET_ITERATIONS); 1898 1899 } else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) { 1900 ret = intel_init(sdw); 1901 if (ret) { 1902 dev_err(dev, "%s failed: %d\n", __func__, ret); 1903 return ret; 1904 } 1905 1906 /* 1907 * An exception condition occurs for the CLK_STOP_BUS_RESET 1908 * case if one or more masters remain active. In this condition, 1909 * all the masters are powered on for they are in the same power 1910 * domain. Master can preserve its context for clock stop0, so 1911 * there is no need to clear slave status and reset bus. 1912 */ 1913 clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns); 1914 1915 if (!clock_stop0) { 1916 1917 /* 1918 * make sure all Slaves are tagged as UNATTACHED and 1919 * provide reason for reinitialization 1920 */ 1921 1922 status = SDW_UNATTACH_REQUEST_MASTER_RESET; 1923 sdw_clear_slave_status(bus, status); 1924 1925 ret = sdw_cdns_enable_interrupt(cdns, true); 1926 if (ret < 0) { 1927 dev_err(dev, "cannot enable interrupts during resume\n"); 1928 return ret; 1929 } 1930 1931 /* 1932 * follow recommended programming flows to avoid 1933 * timeouts when gsync is enabled 1934 */ 1935 if (multi_link) 1936 intel_shim_sync_arm(sdw); 1937 1938 /* 1939 * Re-initialize the IP since it was powered-off 1940 */ 1941 sdw_cdns_init(&sdw->cdns); 1942 1943 } else { 1944 ret = sdw_cdns_enable_interrupt(cdns, true); 1945 if (ret < 0) { 1946 dev_err(dev, "cannot enable interrupts during resume\n"); 1947 return ret; 1948 } 1949 } 1950 1951 ret = sdw_cdns_clock_restart(cdns, !clock_stop0); 1952 if (ret < 0) { 1953 dev_err(dev, "unable to restart clock during resume\n"); 1954 return ret; 1955 } 1956 1957 if (!clock_stop0) { 1958 ret = sdw_cdns_exit_reset(cdns); 1959 if (ret < 0) { 1960 dev_err(dev, "unable to exit bus reset sequence during resume\n"); 1961 return ret; 1962 } 1963 1964 if (multi_link) { 1965 ret = intel_shim_sync_go(sdw); 1966 if (ret < 0) { 1967 dev_err(sdw->cdns.dev, "sync go failed during resume\n"); 1968 return ret; 1969 } 1970 } 1971 } 1972 sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime BUS_RESET", 1973 true, INTEL_MASTER_RESET_ITERATIONS); 1974 1975 } else if (!clock_stop_quirks) { 1976 1977 clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns); 1978 if (!clock_stop0) 1979 dev_err(dev, "%s invalid configuration, clock was not stopped", __func__); 1980 1981 ret = intel_init(sdw); 1982 if (ret) { 1983 dev_err(dev, "%s failed: %d\n", __func__, ret); 1984 return ret; 1985 } 1986 1987 ret = sdw_cdns_enable_interrupt(cdns, true); 1988 if (ret < 0) { 1989 dev_err(dev, "cannot enable interrupts during resume\n"); 1990 return ret; 1991 } 1992 1993 ret = sdw_cdns_clock_restart(cdns, false); 1994 if (ret < 0) { 1995 dev_err(dev, "unable to resume master during resume\n"); 1996 return ret; 1997 } 1998 1999 sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime no_quirks", 2000 true, INTEL_MASTER_RESET_ITERATIONS); 2001 } else { 2002 dev_err(dev, "%s clock_stop_quirks %x unsupported\n", 2003 __func__, clock_stop_quirks); 2004 ret = -EINVAL; 2005 } 2006 2007 return ret; 2008 } 2009 2010 static const struct dev_pm_ops intel_pm = { 2011 .prepare = intel_pm_prepare, 2012 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume) 2013 SET_RUNTIME_PM_OPS(intel_suspend_runtime, intel_resume_runtime, NULL) 2014 }; 2015 2016 static const struct auxiliary_device_id intel_link_id_table[] = { 2017 { .name = "soundwire_intel.link" }, 2018 {}, 2019 }; 2020 MODULE_DEVICE_TABLE(auxiliary, intel_link_id_table); 2021 2022 static struct auxiliary_driver sdw_intel_drv = { 2023 .probe = intel_link_probe, 2024 .remove = intel_link_remove, 2025 .driver = { 2026 /* auxiliary_driver_register() sets .name to be the modname */ 2027 .pm = &intel_pm, 2028 }, 2029 .id_table = intel_link_id_table 2030 }; 2031 module_auxiliary_driver(sdw_intel_drv); 2032 2033 MODULE_LICENSE("Dual BSD/GPL"); 2034 MODULE_DESCRIPTION("Intel Soundwire Link Driver"); 2035