xref: /openbmc/linux/drivers/soundwire/intel.c (revision 0980bb1f)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3 
4 /*
5  * Soundwire Intel Master Driver
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/auxiliary_bus.h>
15 #include <sound/pcm_params.h>
16 #include <linux/pm_runtime.h>
17 #include <sound/soc.h>
18 #include <linux/soundwire/sdw_registers.h>
19 #include <linux/soundwire/sdw.h>
20 #include <linux/soundwire/sdw_intel.h>
21 #include "cadence_master.h"
22 #include "bus.h"
23 #include "intel.h"
24 
25 #define INTEL_MASTER_SUSPEND_DELAY_MS	3000
26 #define INTEL_MASTER_RESET_ITERATIONS	10
27 
28 /*
29  * debug/config flags for the Intel SoundWire Master.
30  *
31  * Since we may have multiple masters active, we can have up to 8
32  * flags reused in each byte, with master0 using the ls-byte, etc.
33  */
34 
35 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME		BIT(0)
36 #define SDW_INTEL_MASTER_DISABLE_CLOCK_STOP		BIT(1)
37 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE	BIT(2)
38 #define SDW_INTEL_MASTER_DISABLE_MULTI_LINK		BIT(3)
39 
40 static int md_flags;
41 module_param_named(sdw_md_flags, md_flags, int, 0444);
42 MODULE_PARM_DESC(sdw_md_flags, "SoundWire Intel Master device flags (0x0 all off)");
43 
44 enum intel_pdi_type {
45 	INTEL_PDI_IN = 0,
46 	INTEL_PDI_OUT = 1,
47 	INTEL_PDI_BD = 2,
48 };
49 
50 #define cdns_to_intel(_cdns) container_of(_cdns, struct sdw_intel, cdns)
51 
52 /*
53  * Read, write helpers for HW registers
54  */
55 static inline int intel_readl(void __iomem *base, int offset)
56 {
57 	return readl(base + offset);
58 }
59 
60 static inline void intel_writel(void __iomem *base, int offset, int value)
61 {
62 	writel(value, base + offset);
63 }
64 
65 static inline u16 intel_readw(void __iomem *base, int offset)
66 {
67 	return readw(base + offset);
68 }
69 
70 static inline void intel_writew(void __iomem *base, int offset, u16 value)
71 {
72 	writew(value, base + offset);
73 }
74 
75 static int intel_wait_bit(void __iomem *base, int offset, u32 mask, u32 target)
76 {
77 	int timeout = 10;
78 	u32 reg_read;
79 
80 	do {
81 		reg_read = readl(base + offset);
82 		if ((reg_read & mask) == target)
83 			return 0;
84 
85 		timeout--;
86 		usleep_range(50, 100);
87 	} while (timeout != 0);
88 
89 	return -EAGAIN;
90 }
91 
92 static int intel_clear_bit(void __iomem *base, int offset, u32 value, u32 mask)
93 {
94 	writel(value, base + offset);
95 	return intel_wait_bit(base, offset, mask, 0);
96 }
97 
98 static int intel_set_bit(void __iomem *base, int offset, u32 value, u32 mask)
99 {
100 	writel(value, base + offset);
101 	return intel_wait_bit(base, offset, mask, mask);
102 }
103 
104 /*
105  * debugfs
106  */
107 #ifdef CONFIG_DEBUG_FS
108 
109 #define RD_BUF (2 * PAGE_SIZE)
110 
111 static ssize_t intel_sprintf(void __iomem *mem, bool l,
112 			     char *buf, size_t pos, unsigned int reg)
113 {
114 	int value;
115 
116 	if (l)
117 		value = intel_readl(mem, reg);
118 	else
119 		value = intel_readw(mem, reg);
120 
121 	return scnprintf(buf + pos, RD_BUF - pos, "%4x\t%4x\n", reg, value);
122 }
123 
124 static int intel_reg_show(struct seq_file *s_file, void *data)
125 {
126 	struct sdw_intel *sdw = s_file->private;
127 	void __iomem *s = sdw->link_res->shim;
128 	void __iomem *a = sdw->link_res->alh;
129 	char *buf;
130 	ssize_t ret;
131 	int i, j;
132 	unsigned int links, reg;
133 
134 	buf = kzalloc(RD_BUF, GFP_KERNEL);
135 	if (!buf)
136 		return -ENOMEM;
137 
138 	links = intel_readl(s, SDW_SHIM_LCAP) & GENMASK(2, 0);
139 
140 	ret = scnprintf(buf, RD_BUF, "Register  Value\n");
141 	ret += scnprintf(buf + ret, RD_BUF - ret, "\nShim\n");
142 
143 	for (i = 0; i < links; i++) {
144 		reg = SDW_SHIM_LCAP + i * 4;
145 		ret += intel_sprintf(s, true, buf, ret, reg);
146 	}
147 
148 	for (i = 0; i < links; i++) {
149 		ret += scnprintf(buf + ret, RD_BUF - ret, "\nLink%d\n", i);
150 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLSCAP(i));
151 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS0CM(i));
152 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS1CM(i));
153 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS2CM(i));
154 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS3CM(i));
155 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSCAP(i));
156 
157 		ret += scnprintf(buf + ret, RD_BUF - ret, "\n PCMSyCH registers\n");
158 
159 		/*
160 		 * the value 10 is the number of PDIs. We will need a
161 		 * cleanup to remove hard-coded Intel configurations
162 		 * from cadence_master.c
163 		 */
164 		for (j = 0; j < 10; j++) {
165 			ret += intel_sprintf(s, false, buf, ret,
166 					SDW_SHIM_PCMSYCHM(i, j));
167 			ret += intel_sprintf(s, false, buf, ret,
168 					SDW_SHIM_PCMSYCHC(i, j));
169 		}
170 		ret += scnprintf(buf + ret, RD_BUF - ret, "\n PDMSCAP, IOCTL, CTMCTL\n");
171 
172 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PDMSCAP(i));
173 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_IOCTL(i));
174 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTMCTL(i));
175 	}
176 
177 	ret += scnprintf(buf + ret, RD_BUF - ret, "\nWake registers\n");
178 	ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKEEN);
179 	ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKESTS);
180 
181 	ret += scnprintf(buf + ret, RD_BUF - ret, "\nALH STRMzCFG\n");
182 	for (i = 0; i < SDW_ALH_NUM_STREAMS; i++)
183 		ret += intel_sprintf(a, true, buf, ret, SDW_ALH_STRMZCFG(i));
184 
185 	seq_printf(s_file, "%s", buf);
186 	kfree(buf);
187 
188 	return 0;
189 }
190 DEFINE_SHOW_ATTRIBUTE(intel_reg);
191 
192 static int intel_set_m_datamode(void *data, u64 value)
193 {
194 	struct sdw_intel *sdw = data;
195 	struct sdw_bus *bus = &sdw->cdns.bus;
196 
197 	if (value > SDW_PORT_DATA_MODE_STATIC_1)
198 		return -EINVAL;
199 
200 	/* Userspace changed the hardware state behind the kernel's back */
201 	add_taint(TAINT_USER, LOCKDEP_STILL_OK);
202 
203 	bus->params.m_data_mode = value;
204 
205 	return 0;
206 }
207 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_m_datamode_fops, NULL,
208 			 intel_set_m_datamode, "%llu\n");
209 
210 static int intel_set_s_datamode(void *data, u64 value)
211 {
212 	struct sdw_intel *sdw = data;
213 	struct sdw_bus *bus = &sdw->cdns.bus;
214 
215 	if (value > SDW_PORT_DATA_MODE_STATIC_1)
216 		return -EINVAL;
217 
218 	/* Userspace changed the hardware state behind the kernel's back */
219 	add_taint(TAINT_USER, LOCKDEP_STILL_OK);
220 
221 	bus->params.s_data_mode = value;
222 
223 	return 0;
224 }
225 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_s_datamode_fops, NULL,
226 			 intel_set_s_datamode, "%llu\n");
227 
228 static void intel_debugfs_init(struct sdw_intel *sdw)
229 {
230 	struct dentry *root = sdw->cdns.bus.debugfs;
231 
232 	if (!root)
233 		return;
234 
235 	sdw->debugfs = debugfs_create_dir("intel-sdw", root);
236 
237 	debugfs_create_file("intel-registers", 0400, sdw->debugfs, sdw,
238 			    &intel_reg_fops);
239 
240 	debugfs_create_file("intel-m-datamode", 0200, sdw->debugfs, sdw,
241 			    &intel_set_m_datamode_fops);
242 
243 	debugfs_create_file("intel-s-datamode", 0200, sdw->debugfs, sdw,
244 			    &intel_set_s_datamode_fops);
245 
246 	sdw_cdns_debugfs_init(&sdw->cdns, sdw->debugfs);
247 }
248 
249 static void intel_debugfs_exit(struct sdw_intel *sdw)
250 {
251 	debugfs_remove_recursive(sdw->debugfs);
252 }
253 #else
254 static void intel_debugfs_init(struct sdw_intel *sdw) {}
255 static void intel_debugfs_exit(struct sdw_intel *sdw) {}
256 #endif /* CONFIG_DEBUG_FS */
257 
258 /*
259  * shim ops
260  */
261 
262 static int intel_link_power_up(struct sdw_intel *sdw)
263 {
264 	unsigned int link_id = sdw->instance;
265 	void __iomem *shim = sdw->link_res->shim;
266 	u32 *shim_mask = sdw->link_res->shim_mask;
267 	struct sdw_bus *bus = &sdw->cdns.bus;
268 	struct sdw_master_prop *prop = &bus->prop;
269 	u32 spa_mask, cpa_mask;
270 	u32 link_control;
271 	int ret = 0;
272 	u32 syncprd;
273 	u32 sync_reg;
274 
275 	mutex_lock(sdw->link_res->shim_lock);
276 
277 	/*
278 	 * The hardware relies on an internal counter, typically 4kHz,
279 	 * to generate the SoundWire SSP - which defines a 'safe'
280 	 * synchronization point between commands and audio transport
281 	 * and allows for multi link synchronization. The SYNCPRD value
282 	 * is only dependent on the oscillator clock provided to
283 	 * the IP, so adjust based on _DSD properties reported in DSDT
284 	 * tables. The values reported are based on either 24MHz
285 	 * (CNL/CML) or 38.4 MHz (ICL/TGL+).
286 	 */
287 	if (prop->mclk_freq % 6000000)
288 		syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_38_4;
289 	else
290 		syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_24;
291 
292 	if (!*shim_mask) {
293 		dev_dbg(sdw->cdns.dev, "%s: powering up all links\n", __func__);
294 
295 		/* we first need to program the SyncPRD/CPU registers */
296 		dev_dbg(sdw->cdns.dev,
297 			"%s: first link up, programming SYNCPRD\n", __func__);
298 
299 		/* set SyncPRD period */
300 		sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
301 		u32p_replace_bits(&sync_reg, syncprd, SDW_SHIM_SYNC_SYNCPRD);
302 
303 		/* Set SyncCPU bit */
304 		sync_reg |= SDW_SHIM_SYNC_SYNCCPU;
305 		intel_writel(shim, SDW_SHIM_SYNC, sync_reg);
306 
307 		/* Link power up sequence */
308 		link_control = intel_readl(shim, SDW_SHIM_LCTL);
309 
310 		/* only power-up enabled links */
311 		spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, sdw->link_res->link_mask);
312 		cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask);
313 
314 		link_control |=  spa_mask;
315 
316 		ret = intel_set_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask);
317 		if (ret < 0) {
318 			dev_err(sdw->cdns.dev, "Failed to power up link: %d\n", ret);
319 			goto out;
320 		}
321 
322 		/* SyncCPU will change once link is active */
323 		ret = intel_wait_bit(shim, SDW_SHIM_SYNC,
324 				     SDW_SHIM_SYNC_SYNCCPU, 0);
325 		if (ret < 0) {
326 			dev_err(sdw->cdns.dev,
327 				"Failed to set SHIM_SYNC: %d\n", ret);
328 			goto out;
329 		}
330 	}
331 
332 	*shim_mask |= BIT(link_id);
333 
334 	sdw->cdns.link_up = true;
335 out:
336 	mutex_unlock(sdw->link_res->shim_lock);
337 
338 	return ret;
339 }
340 
341 /* this needs to be called with shim_lock */
342 static void intel_shim_glue_to_master_ip(struct sdw_intel *sdw)
343 {
344 	void __iomem *shim = sdw->link_res->shim;
345 	unsigned int link_id = sdw->instance;
346 	u16 ioctl;
347 
348 	/* Switch to MIP from Glue logic */
349 	ioctl = intel_readw(shim,  SDW_SHIM_IOCTL(link_id));
350 
351 	ioctl &= ~(SDW_SHIM_IOCTL_DOE);
352 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
353 	usleep_range(10, 15);
354 
355 	ioctl &= ~(SDW_SHIM_IOCTL_DO);
356 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
357 	usleep_range(10, 15);
358 
359 	ioctl |= (SDW_SHIM_IOCTL_MIF);
360 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
361 	usleep_range(10, 15);
362 
363 	ioctl &= ~(SDW_SHIM_IOCTL_BKE);
364 	ioctl &= ~(SDW_SHIM_IOCTL_COE);
365 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
366 	usleep_range(10, 15);
367 
368 	/* at this point Master IP has full control of the I/Os */
369 }
370 
371 /* this needs to be called with shim_lock */
372 static void intel_shim_master_ip_to_glue(struct sdw_intel *sdw)
373 {
374 	unsigned int link_id = sdw->instance;
375 	void __iomem *shim = sdw->link_res->shim;
376 	u16 ioctl;
377 
378 	/* Glue logic */
379 	ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id));
380 	ioctl |= SDW_SHIM_IOCTL_BKE;
381 	ioctl |= SDW_SHIM_IOCTL_COE;
382 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
383 	usleep_range(10, 15);
384 
385 	ioctl &= ~(SDW_SHIM_IOCTL_MIF);
386 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
387 	usleep_range(10, 15);
388 
389 	/* at this point Integration Glue has full control of the I/Os */
390 }
391 
392 static int intel_shim_init(struct sdw_intel *sdw, bool clock_stop)
393 {
394 	void __iomem *shim = sdw->link_res->shim;
395 	unsigned int link_id = sdw->instance;
396 	int ret = 0;
397 	u16 ioctl = 0, act = 0;
398 
399 	mutex_lock(sdw->link_res->shim_lock);
400 
401 	/* Initialize Shim */
402 	ioctl |= SDW_SHIM_IOCTL_BKE;
403 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
404 	usleep_range(10, 15);
405 
406 	ioctl |= SDW_SHIM_IOCTL_WPDD;
407 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
408 	usleep_range(10, 15);
409 
410 	ioctl |= SDW_SHIM_IOCTL_DO;
411 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
412 	usleep_range(10, 15);
413 
414 	ioctl |= SDW_SHIM_IOCTL_DOE;
415 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
416 	usleep_range(10, 15);
417 
418 	intel_shim_glue_to_master_ip(sdw);
419 
420 	u16p_replace_bits(&act, 0x1, SDW_SHIM_CTMCTL_DOAIS);
421 	act |= SDW_SHIM_CTMCTL_DACTQE;
422 	act |= SDW_SHIM_CTMCTL_DODS;
423 	intel_writew(shim, SDW_SHIM_CTMCTL(link_id), act);
424 	usleep_range(10, 15);
425 
426 	mutex_unlock(sdw->link_res->shim_lock);
427 
428 	return ret;
429 }
430 
431 static void intel_shim_wake(struct sdw_intel *sdw, bool wake_enable)
432 {
433 	void __iomem *shim = sdw->link_res->shim;
434 	unsigned int link_id = sdw->instance;
435 	u16 wake_en, wake_sts;
436 
437 	mutex_lock(sdw->link_res->shim_lock);
438 	wake_en = intel_readw(shim, SDW_SHIM_WAKEEN);
439 
440 	if (wake_enable) {
441 		/* Enable the wakeup */
442 		wake_en |= (SDW_SHIM_WAKEEN_ENABLE << link_id);
443 		intel_writew(shim, SDW_SHIM_WAKEEN, wake_en);
444 	} else {
445 		/* Disable the wake up interrupt */
446 		wake_en &= ~(SDW_SHIM_WAKEEN_ENABLE << link_id);
447 		intel_writew(shim, SDW_SHIM_WAKEEN, wake_en);
448 
449 		/* Clear wake status */
450 		wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS);
451 		wake_sts |= (SDW_SHIM_WAKESTS_STATUS << link_id);
452 		intel_writew(shim, SDW_SHIM_WAKESTS, wake_sts);
453 	}
454 	mutex_unlock(sdw->link_res->shim_lock);
455 }
456 
457 static int intel_link_power_down(struct sdw_intel *sdw)
458 {
459 	u32 link_control, spa_mask, cpa_mask;
460 	unsigned int link_id = sdw->instance;
461 	void __iomem *shim = sdw->link_res->shim;
462 	u32 *shim_mask = sdw->link_res->shim_mask;
463 	int ret = 0;
464 
465 	mutex_lock(sdw->link_res->shim_lock);
466 
467 	if (!(*shim_mask & BIT(link_id)))
468 		dev_err(sdw->cdns.dev,
469 			"%s: Unbalanced power-up/down calls\n", __func__);
470 
471 	sdw->cdns.link_up = false;
472 
473 	intel_shim_master_ip_to_glue(sdw);
474 
475 	*shim_mask &= ~BIT(link_id);
476 
477 	if (!*shim_mask) {
478 
479 		dev_dbg(sdw->cdns.dev, "%s: powering down all links\n", __func__);
480 
481 		/* Link power down sequence */
482 		link_control = intel_readl(shim, SDW_SHIM_LCTL);
483 
484 		/* only power-down enabled links */
485 		spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, ~sdw->link_res->link_mask);
486 		cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask);
487 
488 		link_control &=  spa_mask;
489 
490 		ret = intel_clear_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask);
491 		if (ret < 0) {
492 			dev_err(sdw->cdns.dev, "%s: could not power down link\n", __func__);
493 
494 			/*
495 			 * we leave the sdw->cdns.link_up flag as false since we've disabled
496 			 * the link at this point and cannot handle interrupts any longer.
497 			 */
498 		}
499 	}
500 
501 	mutex_unlock(sdw->link_res->shim_lock);
502 
503 	return ret;
504 }
505 
506 static void intel_shim_sync_arm(struct sdw_intel *sdw)
507 {
508 	void __iomem *shim = sdw->link_res->shim;
509 	u32 sync_reg;
510 
511 	mutex_lock(sdw->link_res->shim_lock);
512 
513 	/* update SYNC register */
514 	sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
515 	sync_reg |= (SDW_SHIM_SYNC_CMDSYNC << sdw->instance);
516 	intel_writel(shim, SDW_SHIM_SYNC, sync_reg);
517 
518 	mutex_unlock(sdw->link_res->shim_lock);
519 }
520 
521 static int intel_shim_sync_go_unlocked(struct sdw_intel *sdw)
522 {
523 	void __iomem *shim = sdw->link_res->shim;
524 	u32 sync_reg;
525 	int ret;
526 
527 	/* Read SYNC register */
528 	sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
529 
530 	/*
531 	 * Set SyncGO bit to synchronously trigger a bank switch for
532 	 * all the masters. A write to SYNCGO bit clears CMDSYNC bit for all
533 	 * the Masters.
534 	 */
535 	sync_reg |= SDW_SHIM_SYNC_SYNCGO;
536 
537 	ret = intel_clear_bit(shim, SDW_SHIM_SYNC, sync_reg,
538 			      SDW_SHIM_SYNC_SYNCGO);
539 
540 	if (ret < 0)
541 		dev_err(sdw->cdns.dev, "SyncGO clear failed: %d\n", ret);
542 
543 	return ret;
544 }
545 
546 static int intel_shim_sync_go(struct sdw_intel *sdw)
547 {
548 	int ret;
549 
550 	mutex_lock(sdw->link_res->shim_lock);
551 
552 	ret = intel_shim_sync_go_unlocked(sdw);
553 
554 	mutex_unlock(sdw->link_res->shim_lock);
555 
556 	return ret;
557 }
558 
559 /*
560  * PDI routines
561  */
562 static void intel_pdi_init(struct sdw_intel *sdw,
563 			   struct sdw_cdns_stream_config *config)
564 {
565 	void __iomem *shim = sdw->link_res->shim;
566 	unsigned int link_id = sdw->instance;
567 	int pcm_cap;
568 
569 	/* PCM Stream Capability */
570 	pcm_cap = intel_readw(shim, SDW_SHIM_PCMSCAP(link_id));
571 
572 	config->pcm_bd = FIELD_GET(SDW_SHIM_PCMSCAP_BSS, pcm_cap);
573 	config->pcm_in = FIELD_GET(SDW_SHIM_PCMSCAP_ISS, pcm_cap);
574 	config->pcm_out = FIELD_GET(SDW_SHIM_PCMSCAP_OSS, pcm_cap);
575 
576 	dev_dbg(sdw->cdns.dev, "PCM cap bd:%d in:%d out:%d\n",
577 		config->pcm_bd, config->pcm_in, config->pcm_out);
578 }
579 
580 static int
581 intel_pdi_get_ch_cap(struct sdw_intel *sdw, unsigned int pdi_num)
582 {
583 	void __iomem *shim = sdw->link_res->shim;
584 	unsigned int link_id = sdw->instance;
585 	int count;
586 
587 	count = intel_readw(shim, SDW_SHIM_PCMSYCHC(link_id, pdi_num));
588 
589 	/*
590 	 * WORKAROUND: on all existing Intel controllers, pdi
591 	 * number 2 reports channel count as 1 even though it
592 	 * supports 8 channels. Performing hardcoding for pdi
593 	 * number 2.
594 	 */
595 	if (pdi_num == 2)
596 		count = 7;
597 
598 	/* zero based values for channel count in register */
599 	count++;
600 
601 	return count;
602 }
603 
604 static int intel_pdi_get_ch_update(struct sdw_intel *sdw,
605 				   struct sdw_cdns_pdi *pdi,
606 				   unsigned int num_pdi,
607 				   unsigned int *num_ch)
608 {
609 	int i, ch_count = 0;
610 
611 	for (i = 0; i < num_pdi; i++) {
612 		pdi->ch_count = intel_pdi_get_ch_cap(sdw, pdi->num);
613 		ch_count += pdi->ch_count;
614 		pdi++;
615 	}
616 
617 	*num_ch = ch_count;
618 	return 0;
619 }
620 
621 static int intel_pdi_stream_ch_update(struct sdw_intel *sdw,
622 				      struct sdw_cdns_streams *stream)
623 {
624 	intel_pdi_get_ch_update(sdw, stream->bd, stream->num_bd,
625 				&stream->num_ch_bd);
626 
627 	intel_pdi_get_ch_update(sdw, stream->in, stream->num_in,
628 				&stream->num_ch_in);
629 
630 	intel_pdi_get_ch_update(sdw, stream->out, stream->num_out,
631 				&stream->num_ch_out);
632 
633 	return 0;
634 }
635 
636 static int intel_pdi_ch_update(struct sdw_intel *sdw)
637 {
638 	intel_pdi_stream_ch_update(sdw, &sdw->cdns.pcm);
639 
640 	return 0;
641 }
642 
643 static void
644 intel_pdi_shim_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi)
645 {
646 	void __iomem *shim = sdw->link_res->shim;
647 	unsigned int link_id = sdw->instance;
648 	int pdi_conf = 0;
649 
650 	/* the Bulk and PCM streams are not contiguous */
651 	pdi->intel_alh_id = (link_id * 16) + pdi->num + 3;
652 	if (pdi->num >= 2)
653 		pdi->intel_alh_id += 2;
654 
655 	/*
656 	 * Program stream parameters to stream SHIM register
657 	 * This is applicable for PCM stream only.
658 	 */
659 	if (pdi->type != SDW_STREAM_PCM)
660 		return;
661 
662 	if (pdi->dir == SDW_DATA_DIR_RX)
663 		pdi_conf |= SDW_SHIM_PCMSYCM_DIR;
664 	else
665 		pdi_conf &= ~(SDW_SHIM_PCMSYCM_DIR);
666 
667 	u32p_replace_bits(&pdi_conf, pdi->intel_alh_id, SDW_SHIM_PCMSYCM_STREAM);
668 	u32p_replace_bits(&pdi_conf, pdi->l_ch_num, SDW_SHIM_PCMSYCM_LCHN);
669 	u32p_replace_bits(&pdi_conf, pdi->h_ch_num, SDW_SHIM_PCMSYCM_HCHN);
670 
671 	intel_writew(shim, SDW_SHIM_PCMSYCHM(link_id, pdi->num), pdi_conf);
672 }
673 
674 static void
675 intel_pdi_alh_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi)
676 {
677 	void __iomem *alh = sdw->link_res->alh;
678 	unsigned int link_id = sdw->instance;
679 	unsigned int conf;
680 
681 	/* the Bulk and PCM streams are not contiguous */
682 	pdi->intel_alh_id = (link_id * 16) + pdi->num + 3;
683 	if (pdi->num >= 2)
684 		pdi->intel_alh_id += 2;
685 
686 	/* Program Stream config ALH register */
687 	conf = intel_readl(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id));
688 
689 	u32p_replace_bits(&conf, SDW_ALH_STRMZCFG_DMAT_VAL, SDW_ALH_STRMZCFG_DMAT);
690 	u32p_replace_bits(&conf, pdi->ch_count - 1, SDW_ALH_STRMZCFG_CHN);
691 
692 	intel_writel(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id), conf);
693 }
694 
695 static int intel_params_stream(struct sdw_intel *sdw,
696 			       int stream,
697 			       struct snd_soc_dai *dai,
698 			       struct snd_pcm_hw_params *hw_params,
699 			       int link_id, int alh_stream_id)
700 {
701 	struct sdw_intel_link_res *res = sdw->link_res;
702 	struct sdw_intel_stream_params_data params_data;
703 
704 	params_data.stream = stream; /* direction */
705 	params_data.dai = dai;
706 	params_data.hw_params = hw_params;
707 	params_data.link_id = link_id;
708 	params_data.alh_stream_id = alh_stream_id;
709 
710 	if (res->ops && res->ops->params_stream && res->dev)
711 		return res->ops->params_stream(res->dev,
712 					       &params_data);
713 	return -EIO;
714 }
715 
716 static int intel_free_stream(struct sdw_intel *sdw,
717 			     int stream,
718 			     struct snd_soc_dai *dai,
719 			     int link_id)
720 {
721 	struct sdw_intel_link_res *res = sdw->link_res;
722 	struct sdw_intel_stream_free_data free_data;
723 
724 	free_data.stream = stream; /* direction */
725 	free_data.dai = dai;
726 	free_data.link_id = link_id;
727 
728 	if (res->ops && res->ops->free_stream && res->dev)
729 		return res->ops->free_stream(res->dev,
730 					     &free_data);
731 
732 	return 0;
733 }
734 
735 /*
736  * bank switch routines
737  */
738 
739 static int intel_pre_bank_switch(struct sdw_bus *bus)
740 {
741 	struct sdw_cdns *cdns = bus_to_cdns(bus);
742 	struct sdw_intel *sdw = cdns_to_intel(cdns);
743 
744 	/* Write to register only for multi-link */
745 	if (!bus->multi_link)
746 		return 0;
747 
748 	intel_shim_sync_arm(sdw);
749 
750 	return 0;
751 }
752 
753 static int intel_post_bank_switch(struct sdw_bus *bus)
754 {
755 	struct sdw_cdns *cdns = bus_to_cdns(bus);
756 	struct sdw_intel *sdw = cdns_to_intel(cdns);
757 	void __iomem *shim = sdw->link_res->shim;
758 	int sync_reg, ret;
759 
760 	/* Write to register only for multi-link */
761 	if (!bus->multi_link)
762 		return 0;
763 
764 	mutex_lock(sdw->link_res->shim_lock);
765 
766 	/* Read SYNC register */
767 	sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
768 
769 	/*
770 	 * post_bank_switch() ops is called from the bus in loop for
771 	 * all the Masters in the steam with the expectation that
772 	 * we trigger the bankswitch for the only first Master in the list
773 	 * and do nothing for the other Masters
774 	 *
775 	 * So, set the SYNCGO bit only if CMDSYNC bit is set for any Master.
776 	 */
777 	if (!(sync_reg & SDW_SHIM_SYNC_CMDSYNC_MASK)) {
778 		ret = 0;
779 		goto unlock;
780 	}
781 
782 	ret = intel_shim_sync_go_unlocked(sdw);
783 unlock:
784 	mutex_unlock(sdw->link_res->shim_lock);
785 
786 	if (ret < 0)
787 		dev_err(sdw->cdns.dev, "Post bank switch failed: %d\n", ret);
788 
789 	return ret;
790 }
791 
792 /*
793  * DAI routines
794  */
795 
796 static int intel_startup(struct snd_pcm_substream *substream,
797 			 struct snd_soc_dai *dai)
798 {
799 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
800 	int ret;
801 
802 	ret = pm_runtime_resume_and_get(cdns->dev);
803 	if (ret < 0 && ret != -EACCES) {
804 		dev_err_ratelimited(cdns->dev,
805 				    "pm_runtime_resume_and_get failed in %s, ret %d\n",
806 				    __func__, ret);
807 		return ret;
808 	}
809 	return 0;
810 }
811 
812 static int intel_hw_params(struct snd_pcm_substream *substream,
813 			   struct snd_pcm_hw_params *params,
814 			   struct snd_soc_dai *dai)
815 {
816 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
817 	struct sdw_intel *sdw = cdns_to_intel(cdns);
818 	struct sdw_cdns_dma_data *dma;
819 	struct sdw_cdns_pdi *pdi;
820 	struct sdw_stream_config sconfig;
821 	struct sdw_port_config *pconfig;
822 	int ch, dir;
823 	int ret;
824 
825 	dma = snd_soc_dai_get_dma_data(dai, substream);
826 	if (!dma)
827 		return -EIO;
828 
829 	ch = params_channels(params);
830 	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
831 		dir = SDW_DATA_DIR_RX;
832 	else
833 		dir = SDW_DATA_DIR_TX;
834 
835 	pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pcm, ch, dir, dai->id);
836 
837 	if (!pdi) {
838 		ret = -EINVAL;
839 		goto error;
840 	}
841 
842 	/* do run-time configurations for SHIM, ALH and PDI/PORT */
843 	intel_pdi_shim_configure(sdw, pdi);
844 	intel_pdi_alh_configure(sdw, pdi);
845 	sdw_cdns_config_stream(cdns, ch, dir, pdi);
846 
847 	/* store pdi and hw_params, may be needed in prepare step */
848 	dma->paused = false;
849 	dma->suspended = false;
850 	dma->pdi = pdi;
851 	dma->hw_params = params;
852 
853 	/* Inform DSP about PDI stream number */
854 	ret = intel_params_stream(sdw, substream->stream, dai, params,
855 				  sdw->instance,
856 				  pdi->intel_alh_id);
857 	if (ret)
858 		goto error;
859 
860 	sconfig.direction = dir;
861 	sconfig.ch_count = ch;
862 	sconfig.frame_rate = params_rate(params);
863 	sconfig.type = dma->stream_type;
864 
865 	sconfig.bps = snd_pcm_format_width(params_format(params));
866 
867 	/* Port configuration */
868 	pconfig = kzalloc(sizeof(*pconfig), GFP_KERNEL);
869 	if (!pconfig) {
870 		ret =  -ENOMEM;
871 		goto error;
872 	}
873 
874 	pconfig->num = pdi->num;
875 	pconfig->ch_mask = (1 << ch) - 1;
876 
877 	ret = sdw_stream_add_master(&cdns->bus, &sconfig,
878 				    pconfig, 1, dma->stream);
879 	if (ret)
880 		dev_err(cdns->dev, "add master to stream failed:%d\n", ret);
881 
882 	kfree(pconfig);
883 error:
884 	return ret;
885 }
886 
887 static int intel_prepare(struct snd_pcm_substream *substream,
888 			 struct snd_soc_dai *dai)
889 {
890 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
891 	struct sdw_intel *sdw = cdns_to_intel(cdns);
892 	struct sdw_cdns_dma_data *dma;
893 	int ch, dir;
894 	int ret = 0;
895 
896 	dma = snd_soc_dai_get_dma_data(dai, substream);
897 	if (!dma) {
898 		dev_err(dai->dev, "failed to get dma data in %s\n",
899 			__func__);
900 		return -EIO;
901 	}
902 
903 	if (dma->suspended) {
904 		dma->suspended = false;
905 
906 		/*
907 		 * .prepare() is called after system resume, where we
908 		 * need to reinitialize the SHIM/ALH/Cadence IP.
909 		 * .prepare() is also called to deal with underflows,
910 		 * but in those cases we cannot touch ALH/SHIM
911 		 * registers
912 		 */
913 
914 		/* configure stream */
915 		ch = params_channels(dma->hw_params);
916 		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
917 			dir = SDW_DATA_DIR_RX;
918 		else
919 			dir = SDW_DATA_DIR_TX;
920 
921 		intel_pdi_shim_configure(sdw, dma->pdi);
922 		intel_pdi_alh_configure(sdw, dma->pdi);
923 		sdw_cdns_config_stream(cdns, ch, dir, dma->pdi);
924 
925 		/* Inform DSP about PDI stream number */
926 		ret = intel_params_stream(sdw, substream->stream, dai,
927 					  dma->hw_params,
928 					  sdw->instance,
929 					  dma->pdi->intel_alh_id);
930 	}
931 
932 	return ret;
933 }
934 
935 static int
936 intel_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai)
937 {
938 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
939 	struct sdw_intel *sdw = cdns_to_intel(cdns);
940 	struct sdw_cdns_dma_data *dma;
941 	int ret;
942 
943 	dma = snd_soc_dai_get_dma_data(dai, substream);
944 	if (!dma)
945 		return -EIO;
946 
947 	/*
948 	 * The sdw stream state will transition to RELEASED when stream->
949 	 * master_list is empty. So the stream state will transition to
950 	 * DEPREPARED for the first cpu-dai and to RELEASED for the last
951 	 * cpu-dai.
952 	 */
953 	ret = sdw_stream_remove_master(&cdns->bus, dma->stream);
954 	if (ret < 0) {
955 		dev_err(dai->dev, "remove master from stream %s failed: %d\n",
956 			dma->stream->name, ret);
957 		return ret;
958 	}
959 
960 	ret = intel_free_stream(sdw, substream->stream, dai, sdw->instance);
961 	if (ret < 0) {
962 		dev_err(dai->dev, "intel_free_stream: failed %d\n", ret);
963 		return ret;
964 	}
965 
966 	dma->hw_params = NULL;
967 	dma->pdi = NULL;
968 
969 	return 0;
970 }
971 
972 static void intel_shutdown(struct snd_pcm_substream *substream,
973 			   struct snd_soc_dai *dai)
974 {
975 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
976 
977 	pm_runtime_mark_last_busy(cdns->dev);
978 	pm_runtime_put_autosuspend(cdns->dev);
979 }
980 
981 static int intel_pcm_set_sdw_stream(struct snd_soc_dai *dai,
982 				    void *stream, int direction)
983 {
984 	return cdns_set_sdw_stream(dai, stream, direction);
985 }
986 
987 static void *intel_get_sdw_stream(struct snd_soc_dai *dai,
988 				  int direction)
989 {
990 	struct sdw_cdns_dma_data *dma;
991 
992 	if (direction == SNDRV_PCM_STREAM_PLAYBACK)
993 		dma = dai->playback_dma_data;
994 	else
995 		dma = dai->capture_dma_data;
996 
997 	if (!dma)
998 		return ERR_PTR(-EINVAL);
999 
1000 	return dma->stream;
1001 }
1002 
1003 static int intel_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai)
1004 {
1005 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
1006 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1007 	struct sdw_intel_link_res *res = sdw->link_res;
1008 	struct sdw_cdns_dma_data *dma;
1009 	int ret = 0;
1010 
1011 	/*
1012 	 * The .trigger callback is used to send required IPC to audio
1013 	 * firmware. The .free_stream callback will still be called
1014 	 * by intel_free_stream() in the TRIGGER_SUSPEND case.
1015 	 */
1016 	if (res->ops && res->ops->trigger)
1017 		res->ops->trigger(dai, cmd, substream->stream);
1018 
1019 	dma = snd_soc_dai_get_dma_data(dai, substream);
1020 	if (!dma) {
1021 		dev_err(dai->dev, "failed to get dma data in %s\n",
1022 			__func__);
1023 		return -EIO;
1024 	}
1025 
1026 	switch (cmd) {
1027 	case SNDRV_PCM_TRIGGER_SUSPEND:
1028 
1029 		/*
1030 		 * The .prepare callback is used to deal with xruns and resume operations.
1031 		 * In the case of xruns, the DMAs and SHIM registers cannot be touched,
1032 		 * but for resume operations the DMAs and SHIM registers need to be initialized.
1033 		 * the .trigger callback is used to track the suspend case only.
1034 		 */
1035 
1036 		dma->suspended = true;
1037 
1038 		ret = intel_free_stream(sdw, substream->stream, dai, sdw->instance);
1039 		break;
1040 
1041 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1042 		dma->paused = true;
1043 		break;
1044 	case SNDRV_PCM_TRIGGER_STOP:
1045 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1046 		dma->paused = false;
1047 		break;
1048 	default:
1049 		break;
1050 	}
1051 
1052 	return ret;
1053 }
1054 
1055 static int intel_component_dais_suspend(struct snd_soc_component *component)
1056 {
1057 	struct snd_soc_dai *dai;
1058 
1059 	/*
1060 	 * In the corner case where a SUSPEND happens during a PAUSE, the ALSA core
1061 	 * does not throw the TRIGGER_SUSPEND. This leaves the DAIs in an unbalanced state.
1062 	 * Since the component suspend is called last, we can trap this corner case
1063 	 * and force the DAIs to release their resources.
1064 	 */
1065 	for_each_component_dais(component, dai) {
1066 		struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
1067 		struct sdw_intel *sdw = cdns_to_intel(cdns);
1068 		struct sdw_cdns_dma_data *dma;
1069 		int stream;
1070 		int ret;
1071 
1072 		dma = dai->playback_dma_data;
1073 		stream = SNDRV_PCM_STREAM_PLAYBACK;
1074 		if (!dma) {
1075 			dma = dai->capture_dma_data;
1076 			stream = SNDRV_PCM_STREAM_CAPTURE;
1077 		}
1078 
1079 		if (!dma)
1080 			continue;
1081 
1082 		if (dma->suspended)
1083 			continue;
1084 
1085 		if (dma->paused) {
1086 			dma->suspended = true;
1087 
1088 			ret = intel_free_stream(sdw, stream, dai, sdw->instance);
1089 			if (ret < 0)
1090 				return ret;
1091 		}
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 static const struct snd_soc_dai_ops intel_pcm_dai_ops = {
1098 	.startup = intel_startup,
1099 	.hw_params = intel_hw_params,
1100 	.prepare = intel_prepare,
1101 	.hw_free = intel_hw_free,
1102 	.trigger = intel_trigger,
1103 	.shutdown = intel_shutdown,
1104 	.set_stream = intel_pcm_set_sdw_stream,
1105 	.get_stream = intel_get_sdw_stream,
1106 };
1107 
1108 static const struct snd_soc_component_driver dai_component = {
1109 	.name			= "soundwire",
1110 	.suspend		= intel_component_dais_suspend,
1111 	.legacy_dai_naming	= 1,
1112 };
1113 
1114 static int intel_create_dai(struct sdw_cdns *cdns,
1115 			    struct snd_soc_dai_driver *dais,
1116 			    enum intel_pdi_type type,
1117 			    u32 num, u32 off, u32 max_ch)
1118 {
1119 	int i;
1120 
1121 	if (num == 0)
1122 		return 0;
1123 
1124 	 /* TODO: Read supported rates/formats from hardware */
1125 	for (i = off; i < (off + num); i++) {
1126 		dais[i].name = devm_kasprintf(cdns->dev, GFP_KERNEL,
1127 					      "SDW%d Pin%d",
1128 					      cdns->instance, i);
1129 		if (!dais[i].name)
1130 			return -ENOMEM;
1131 
1132 		if (type == INTEL_PDI_BD || type == INTEL_PDI_OUT) {
1133 			dais[i].playback.channels_min = 1;
1134 			dais[i].playback.channels_max = max_ch;
1135 			dais[i].playback.rates = SNDRV_PCM_RATE_48000;
1136 			dais[i].playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1137 		}
1138 
1139 		if (type == INTEL_PDI_BD || type == INTEL_PDI_IN) {
1140 			dais[i].capture.channels_min = 1;
1141 			dais[i].capture.channels_max = max_ch;
1142 			dais[i].capture.rates = SNDRV_PCM_RATE_48000;
1143 			dais[i].capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1144 		}
1145 
1146 		dais[i].ops = &intel_pcm_dai_ops;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 static int intel_register_dai(struct sdw_intel *sdw)
1153 {
1154 	struct sdw_cdns *cdns = &sdw->cdns;
1155 	struct sdw_cdns_streams *stream;
1156 	struct snd_soc_dai_driver *dais;
1157 	int num_dai, ret, off = 0;
1158 
1159 	/* DAIs are created based on total number of PDIs supported */
1160 	num_dai = cdns->pcm.num_pdi;
1161 
1162 	dais = devm_kcalloc(cdns->dev, num_dai, sizeof(*dais), GFP_KERNEL);
1163 	if (!dais)
1164 		return -ENOMEM;
1165 
1166 	/* Create PCM DAIs */
1167 	stream = &cdns->pcm;
1168 
1169 	ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pcm.num_in,
1170 			       off, stream->num_ch_in);
1171 	if (ret)
1172 		return ret;
1173 
1174 	off += cdns->pcm.num_in;
1175 	ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pcm.num_out,
1176 			       off, stream->num_ch_out);
1177 	if (ret)
1178 		return ret;
1179 
1180 	off += cdns->pcm.num_out;
1181 	ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pcm.num_bd,
1182 			       off, stream->num_ch_bd);
1183 	if (ret)
1184 		return ret;
1185 
1186 	return snd_soc_register_component(cdns->dev, &dai_component,
1187 					  dais, num_dai);
1188 }
1189 
1190 static int sdw_master_read_intel_prop(struct sdw_bus *bus)
1191 {
1192 	struct sdw_master_prop *prop = &bus->prop;
1193 	struct fwnode_handle *link;
1194 	char name[32];
1195 	u32 quirk_mask;
1196 
1197 	/* Find master handle */
1198 	snprintf(name, sizeof(name),
1199 		 "mipi-sdw-link-%d-subproperties", bus->link_id);
1200 
1201 	link = device_get_named_child_node(bus->dev, name);
1202 	if (!link) {
1203 		dev_err(bus->dev, "Master node %s not found\n", name);
1204 		return -EIO;
1205 	}
1206 
1207 	fwnode_property_read_u32(link,
1208 				 "intel-sdw-ip-clock",
1209 				 &prop->mclk_freq);
1210 
1211 	/* the values reported by BIOS are the 2x clock, not the bus clock */
1212 	prop->mclk_freq /= 2;
1213 
1214 	fwnode_property_read_u32(link,
1215 				 "intel-quirk-mask",
1216 				 &quirk_mask);
1217 
1218 	if (quirk_mask & SDW_INTEL_QUIRK_MASK_BUS_DISABLE)
1219 		prop->hw_disabled = true;
1220 
1221 	prop->quirks = SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH |
1222 		SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY;
1223 
1224 	return 0;
1225 }
1226 
1227 static int intel_prop_read(struct sdw_bus *bus)
1228 {
1229 	/* Initialize with default handler to read all DisCo properties */
1230 	sdw_master_read_prop(bus);
1231 
1232 	/* read Intel-specific properties */
1233 	sdw_master_read_intel_prop(bus);
1234 
1235 	return 0;
1236 }
1237 
1238 static struct sdw_master_ops sdw_intel_ops = {
1239 	.read_prop = sdw_master_read_prop,
1240 	.override_adr = sdw_dmi_override_adr,
1241 	.xfer_msg = cdns_xfer_msg,
1242 	.xfer_msg_defer = cdns_xfer_msg_defer,
1243 	.reset_page_addr = cdns_reset_page_addr,
1244 	.set_bus_conf = cdns_bus_conf,
1245 	.pre_bank_switch = intel_pre_bank_switch,
1246 	.post_bank_switch = intel_post_bank_switch,
1247 };
1248 
1249 static int intel_init(struct sdw_intel *sdw)
1250 {
1251 	bool clock_stop;
1252 
1253 	/* Initialize shim and controller */
1254 	intel_link_power_up(sdw);
1255 
1256 	clock_stop = sdw_cdns_is_clock_stop(&sdw->cdns);
1257 
1258 	intel_shim_init(sdw, clock_stop);
1259 
1260 	return 0;
1261 }
1262 
1263 /*
1264  * probe and init (aux_dev_id argument is required by function prototype but not used)
1265  */
1266 static int intel_link_probe(struct auxiliary_device *auxdev,
1267 			    const struct auxiliary_device_id *aux_dev_id)
1268 
1269 {
1270 	struct device *dev = &auxdev->dev;
1271 	struct sdw_intel_link_dev *ldev = auxiliary_dev_to_sdw_intel_link_dev(auxdev);
1272 	struct sdw_intel *sdw;
1273 	struct sdw_cdns *cdns;
1274 	struct sdw_bus *bus;
1275 	int ret;
1276 
1277 	sdw = devm_kzalloc(dev, sizeof(*sdw), GFP_KERNEL);
1278 	if (!sdw)
1279 		return -ENOMEM;
1280 
1281 	cdns = &sdw->cdns;
1282 	bus = &cdns->bus;
1283 
1284 	sdw->instance = auxdev->id;
1285 	sdw->link_res = &ldev->link_res;
1286 	cdns->dev = dev;
1287 	cdns->registers = sdw->link_res->registers;
1288 	cdns->instance = sdw->instance;
1289 	cdns->msg_count = 0;
1290 
1291 	bus->link_id = auxdev->id;
1292 
1293 	sdw_cdns_probe(cdns);
1294 
1295 	/* Set property read ops */
1296 	sdw_intel_ops.read_prop = intel_prop_read;
1297 	bus->ops = &sdw_intel_ops;
1298 
1299 	/* set driver data, accessed by snd_soc_dai_get_drvdata() */
1300 	auxiliary_set_drvdata(auxdev, cdns);
1301 
1302 	/* use generic bandwidth allocation algorithm */
1303 	sdw->cdns.bus.compute_params = sdw_compute_params;
1304 
1305 	/* avoid resuming from pm_runtime suspend if it's not required */
1306 	dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND);
1307 
1308 	ret = sdw_bus_master_add(bus, dev, dev->fwnode);
1309 	if (ret) {
1310 		dev_err(dev, "sdw_bus_master_add fail: %d\n", ret);
1311 		return ret;
1312 	}
1313 
1314 	if (bus->prop.hw_disabled)
1315 		dev_info(dev,
1316 			 "SoundWire master %d is disabled, will be ignored\n",
1317 			 bus->link_id);
1318 	/*
1319 	 * Ignore BIOS err_threshold, it's a really bad idea when dealing
1320 	 * with multiple hardware synchronized links
1321 	 */
1322 	bus->prop.err_threshold = 0;
1323 
1324 	return 0;
1325 }
1326 
1327 int intel_link_startup(struct auxiliary_device *auxdev)
1328 {
1329 	struct sdw_cdns_stream_config config;
1330 	struct device *dev = &auxdev->dev;
1331 	struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev);
1332 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1333 	struct sdw_bus *bus = &cdns->bus;
1334 	int link_flags;
1335 	bool multi_link;
1336 	u32 clock_stop_quirks;
1337 	int ret;
1338 
1339 	if (bus->prop.hw_disabled) {
1340 		dev_info(dev,
1341 			 "SoundWire master %d is disabled, ignoring\n",
1342 			 sdw->instance);
1343 		return 0;
1344 	}
1345 
1346 	link_flags = md_flags >> (bus->link_id * 8);
1347 	multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
1348 	if (!multi_link) {
1349 		dev_dbg(dev, "Multi-link is disabled\n");
1350 		bus->multi_link = false;
1351 	} else {
1352 		/*
1353 		 * hardware-based synchronization is required regardless
1354 		 * of the number of segments used by a stream: SSP-based
1355 		 * synchronization is gated by gsync when the multi-master
1356 		 * mode is set.
1357 		 */
1358 		bus->multi_link = true;
1359 		bus->hw_sync_min_links = 1;
1360 	}
1361 
1362 	/* Initialize shim, controller */
1363 	ret = intel_init(sdw);
1364 	if (ret)
1365 		goto err_init;
1366 
1367 	/* Read the PDI config and initialize cadence PDI */
1368 	intel_pdi_init(sdw, &config);
1369 	ret = sdw_cdns_pdi_init(cdns, config);
1370 	if (ret)
1371 		goto err_init;
1372 
1373 	intel_pdi_ch_update(sdw);
1374 
1375 	ret = sdw_cdns_enable_interrupt(cdns, true);
1376 	if (ret < 0) {
1377 		dev_err(dev, "cannot enable interrupts\n");
1378 		goto err_init;
1379 	}
1380 
1381 	/*
1382 	 * follow recommended programming flows to avoid timeouts when
1383 	 * gsync is enabled
1384 	 */
1385 	if (multi_link)
1386 		intel_shim_sync_arm(sdw);
1387 
1388 	ret = sdw_cdns_init(cdns);
1389 	if (ret < 0) {
1390 		dev_err(dev, "unable to initialize Cadence IP\n");
1391 		goto err_interrupt;
1392 	}
1393 
1394 	ret = sdw_cdns_exit_reset(cdns);
1395 	if (ret < 0) {
1396 		dev_err(dev, "unable to exit bus reset sequence\n");
1397 		goto err_interrupt;
1398 	}
1399 
1400 	if (multi_link) {
1401 		ret = intel_shim_sync_go(sdw);
1402 		if (ret < 0) {
1403 			dev_err(dev, "sync go failed: %d\n", ret);
1404 			goto err_interrupt;
1405 		}
1406 	}
1407 	sdw_cdns_check_self_clearing_bits(cdns, __func__,
1408 					  true, INTEL_MASTER_RESET_ITERATIONS);
1409 
1410 	/* Register DAIs */
1411 	ret = intel_register_dai(sdw);
1412 	if (ret) {
1413 		dev_err(dev, "DAI registration failed: %d\n", ret);
1414 		snd_soc_unregister_component(dev);
1415 		goto err_interrupt;
1416 	}
1417 
1418 	intel_debugfs_init(sdw);
1419 
1420 	/* Enable runtime PM */
1421 	if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME)) {
1422 		pm_runtime_set_autosuspend_delay(dev,
1423 						 INTEL_MASTER_SUSPEND_DELAY_MS);
1424 		pm_runtime_use_autosuspend(dev);
1425 		pm_runtime_mark_last_busy(dev);
1426 
1427 		pm_runtime_set_active(dev);
1428 		pm_runtime_enable(dev);
1429 	}
1430 
1431 	clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1432 	if (clock_stop_quirks & SDW_INTEL_CLK_STOP_NOT_ALLOWED) {
1433 		/*
1434 		 * To keep the clock running we need to prevent
1435 		 * pm_runtime suspend from happening by increasing the
1436 		 * reference count.
1437 		 * This quirk is specified by the parent PCI device in
1438 		 * case of specific latency requirements. It will have
1439 		 * no effect if pm_runtime is disabled by the user via
1440 		 * a module parameter for testing purposes.
1441 		 */
1442 		pm_runtime_get_noresume(dev);
1443 	}
1444 
1445 	/*
1446 	 * The runtime PM status of Slave devices is "Unsupported"
1447 	 * until they report as ATTACHED. If they don't, e.g. because
1448 	 * there are no Slave devices populated or if the power-on is
1449 	 * delayed or dependent on a power switch, the Master will
1450 	 * remain active and prevent its parent from suspending.
1451 	 *
1452 	 * Conditionally force the pm_runtime core to re-evaluate the
1453 	 * Master status in the absence of any Slave activity. A quirk
1454 	 * is provided to e.g. deal with Slaves that may be powered on
1455 	 * with a delay. A more complete solution would require the
1456 	 * definition of Master properties.
1457 	 */
1458 	if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE))
1459 		pm_runtime_idle(dev);
1460 
1461 	sdw->startup_done = true;
1462 	return 0;
1463 
1464 err_interrupt:
1465 	sdw_cdns_enable_interrupt(cdns, false);
1466 err_init:
1467 	return ret;
1468 }
1469 
1470 static void intel_link_remove(struct auxiliary_device *auxdev)
1471 {
1472 	struct device *dev = &auxdev->dev;
1473 	struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev);
1474 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1475 	struct sdw_bus *bus = &cdns->bus;
1476 
1477 	/*
1478 	 * Since pm_runtime is already disabled, we don't decrease
1479 	 * the refcount when the clock_stop_quirk is
1480 	 * SDW_INTEL_CLK_STOP_NOT_ALLOWED
1481 	 */
1482 	if (!bus->prop.hw_disabled) {
1483 		intel_debugfs_exit(sdw);
1484 		sdw_cdns_enable_interrupt(cdns, false);
1485 		snd_soc_unregister_component(dev);
1486 	}
1487 	sdw_bus_master_delete(bus);
1488 }
1489 
1490 int intel_link_process_wakeen_event(struct auxiliary_device *auxdev)
1491 {
1492 	struct device *dev = &auxdev->dev;
1493 	struct sdw_intel *sdw;
1494 	struct sdw_bus *bus;
1495 	void __iomem *shim;
1496 	u16 wake_sts;
1497 
1498 	sdw = auxiliary_get_drvdata(auxdev);
1499 	bus = &sdw->cdns.bus;
1500 
1501 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1502 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1503 			bus->link_id);
1504 		return 0;
1505 	}
1506 
1507 	shim = sdw->link_res->shim;
1508 	wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS);
1509 
1510 	if (!(wake_sts & BIT(sdw->instance)))
1511 		return 0;
1512 
1513 	/* disable WAKEEN interrupt ASAP to prevent interrupt flood */
1514 	intel_shim_wake(sdw, false);
1515 
1516 	/*
1517 	 * resume the Master, which will generate a bus reset and result in
1518 	 * Slaves re-attaching and be re-enumerated. The SoundWire physical
1519 	 * device which generated the wake will trigger an interrupt, which
1520 	 * will in turn cause the corresponding Linux Slave device to be
1521 	 * resumed and the Slave codec driver to check the status.
1522 	 */
1523 	pm_request_resume(dev);
1524 
1525 	return 0;
1526 }
1527 
1528 /*
1529  * PM calls
1530  */
1531 
1532 static int intel_resume_child_device(struct device *dev, void *data)
1533 {
1534 	int ret;
1535 	struct sdw_slave *slave = dev_to_sdw_dev(dev);
1536 
1537 	if (!slave->probed) {
1538 		dev_dbg(dev, "%s: skipping device, no probed driver\n", __func__);
1539 		return 0;
1540 	}
1541 	if (!slave->dev_num_sticky) {
1542 		dev_dbg(dev, "%s: skipping device, never detected on bus\n", __func__);
1543 		return 0;
1544 	}
1545 
1546 	ret = pm_request_resume(dev);
1547 	if (ret < 0)
1548 		dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret);
1549 
1550 	return ret;
1551 }
1552 
1553 static int __maybe_unused intel_pm_prepare(struct device *dev)
1554 {
1555 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1556 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1557 	struct sdw_bus *bus = &cdns->bus;
1558 	u32 clock_stop_quirks;
1559 	int ret;
1560 
1561 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1562 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1563 			bus->link_id);
1564 		return 0;
1565 	}
1566 
1567 	clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1568 
1569 	if (pm_runtime_suspended(dev) &&
1570 	    pm_runtime_suspended(dev->parent) &&
1571 	    ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) ||
1572 	     !clock_stop_quirks)) {
1573 		/*
1574 		 * if we've enabled clock stop, and the parent is suspended, the SHIM registers
1575 		 * are not accessible and the shim wake cannot be disabled.
1576 		 * The only solution is to resume the entire bus to full power
1577 		 */
1578 
1579 		/*
1580 		 * If any operation in this block fails, we keep going since we don't want
1581 		 * to prevent system suspend from happening and errors should be recoverable
1582 		 * on resume.
1583 		 */
1584 
1585 		/*
1586 		 * first resume the device for this link. This will also by construction
1587 		 * resume the PCI parent device.
1588 		 */
1589 		ret = pm_request_resume(dev);
1590 		if (ret < 0) {
1591 			dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret);
1592 			return 0;
1593 		}
1594 
1595 		/*
1596 		 * Continue resuming the entire bus (parent + child devices) to exit
1597 		 * the clock stop mode. If there are no devices connected on this link
1598 		 * this is a no-op.
1599 		 * The resume to full power could have been implemented with a .prepare
1600 		 * step in SoundWire codec drivers. This would however require a lot
1601 		 * of code to handle an Intel-specific corner case. It is simpler in
1602 		 * practice to add a loop at the link level.
1603 		 */
1604 		ret = device_for_each_child(bus->dev, NULL, intel_resume_child_device);
1605 
1606 		if (ret < 0)
1607 			dev_err(dev, "%s: intel_resume_child_device failed: %d\n", __func__, ret);
1608 	}
1609 
1610 	return 0;
1611 }
1612 
1613 static int __maybe_unused intel_suspend(struct device *dev)
1614 {
1615 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1616 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1617 	struct sdw_bus *bus = &cdns->bus;
1618 	u32 clock_stop_quirks;
1619 	int ret;
1620 
1621 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1622 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1623 			bus->link_id);
1624 		return 0;
1625 	}
1626 
1627 	if (pm_runtime_suspended(dev)) {
1628 		dev_dbg(dev, "%s: pm_runtime status: suspended\n", __func__);
1629 
1630 		clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1631 
1632 		if ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) ||
1633 		    !clock_stop_quirks) {
1634 
1635 			if (pm_runtime_suspended(dev->parent)) {
1636 				/*
1637 				 * paranoia check: this should not happen with the .prepare
1638 				 * resume to full power
1639 				 */
1640 				dev_err(dev, "%s: invalid config: parent is suspended\n", __func__);
1641 			} else {
1642 				intel_shim_wake(sdw, false);
1643 			}
1644 		}
1645 
1646 		return 0;
1647 	}
1648 
1649 	ret = sdw_cdns_enable_interrupt(cdns, false);
1650 	if (ret < 0) {
1651 		dev_err(dev, "cannot disable interrupts on suspend\n");
1652 		return ret;
1653 	}
1654 
1655 	ret = intel_link_power_down(sdw);
1656 	if (ret) {
1657 		dev_err(dev, "Link power down failed: %d\n", ret);
1658 		return ret;
1659 	}
1660 
1661 	intel_shim_wake(sdw, false);
1662 
1663 	return 0;
1664 }
1665 
1666 static int __maybe_unused intel_suspend_runtime(struct device *dev)
1667 {
1668 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1669 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1670 	struct sdw_bus *bus = &cdns->bus;
1671 	u32 clock_stop_quirks;
1672 	int ret;
1673 
1674 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1675 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1676 			bus->link_id);
1677 		return 0;
1678 	}
1679 
1680 	clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1681 
1682 	if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) {
1683 
1684 		ret = sdw_cdns_enable_interrupt(cdns, false);
1685 		if (ret < 0) {
1686 			dev_err(dev, "cannot disable interrupts on suspend\n");
1687 			return ret;
1688 		}
1689 
1690 		ret = intel_link_power_down(sdw);
1691 		if (ret) {
1692 			dev_err(dev, "Link power down failed: %d\n", ret);
1693 			return ret;
1694 		}
1695 
1696 		intel_shim_wake(sdw, false);
1697 
1698 	} else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET ||
1699 		   !clock_stop_quirks) {
1700 		bool wake_enable = true;
1701 
1702 		ret = sdw_cdns_clock_stop(cdns, true);
1703 		if (ret < 0) {
1704 			dev_err(dev, "cannot enable clock stop on suspend\n");
1705 			wake_enable = false;
1706 		}
1707 
1708 		ret = sdw_cdns_enable_interrupt(cdns, false);
1709 		if (ret < 0) {
1710 			dev_err(dev, "cannot disable interrupts on suspend\n");
1711 			return ret;
1712 		}
1713 
1714 		ret = intel_link_power_down(sdw);
1715 		if (ret) {
1716 			dev_err(dev, "Link power down failed: %d\n", ret);
1717 			return ret;
1718 		}
1719 
1720 		intel_shim_wake(sdw, wake_enable);
1721 	} else {
1722 		dev_err(dev, "%s clock_stop_quirks %x unsupported\n",
1723 			__func__, clock_stop_quirks);
1724 		ret = -EINVAL;
1725 	}
1726 
1727 	return ret;
1728 }
1729 
1730 static int __maybe_unused intel_resume(struct device *dev)
1731 {
1732 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1733 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1734 	struct sdw_bus *bus = &cdns->bus;
1735 	int link_flags;
1736 	bool multi_link;
1737 	int ret;
1738 
1739 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1740 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1741 			bus->link_id);
1742 		return 0;
1743 	}
1744 
1745 	link_flags = md_flags >> (bus->link_id * 8);
1746 	multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
1747 
1748 	if (pm_runtime_suspended(dev)) {
1749 		dev_dbg(dev, "%s: pm_runtime status was suspended, forcing active\n", __func__);
1750 
1751 		/* follow required sequence from runtime_pm.rst */
1752 		pm_runtime_disable(dev);
1753 		pm_runtime_set_active(dev);
1754 		pm_runtime_mark_last_busy(dev);
1755 		pm_runtime_enable(dev);
1756 
1757 		link_flags = md_flags >> (bus->link_id * 8);
1758 
1759 		if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE))
1760 			pm_runtime_idle(dev);
1761 	}
1762 
1763 	ret = intel_init(sdw);
1764 	if (ret) {
1765 		dev_err(dev, "%s failed: %d\n", __func__, ret);
1766 		return ret;
1767 	}
1768 
1769 	/*
1770 	 * make sure all Slaves are tagged as UNATTACHED and provide
1771 	 * reason for reinitialization
1772 	 */
1773 	sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET);
1774 
1775 	ret = sdw_cdns_enable_interrupt(cdns, true);
1776 	if (ret < 0) {
1777 		dev_err(dev, "cannot enable interrupts during resume\n");
1778 		return ret;
1779 	}
1780 
1781 	/*
1782 	 * follow recommended programming flows to avoid timeouts when
1783 	 * gsync is enabled
1784 	 */
1785 	if (multi_link)
1786 		intel_shim_sync_arm(sdw);
1787 
1788 	ret = sdw_cdns_init(&sdw->cdns);
1789 	if (ret < 0) {
1790 		dev_err(dev, "unable to initialize Cadence IP during resume\n");
1791 		return ret;
1792 	}
1793 
1794 	ret = sdw_cdns_exit_reset(cdns);
1795 	if (ret < 0) {
1796 		dev_err(dev, "unable to exit bus reset sequence during resume\n");
1797 		return ret;
1798 	}
1799 
1800 	if (multi_link) {
1801 		ret = intel_shim_sync_go(sdw);
1802 		if (ret < 0) {
1803 			dev_err(dev, "sync go failed during resume\n");
1804 			return ret;
1805 		}
1806 	}
1807 	sdw_cdns_check_self_clearing_bits(cdns, __func__,
1808 					  true, INTEL_MASTER_RESET_ITERATIONS);
1809 
1810 	/*
1811 	 * after system resume, the pm_runtime suspend() may kick in
1812 	 * during the enumeration, before any children device force the
1813 	 * master device to remain active.  Using pm_runtime_get()
1814 	 * routines is not really possible, since it'd prevent the
1815 	 * master from suspending.
1816 	 * A reasonable compromise is to update the pm_runtime
1817 	 * counters and delay the pm_runtime suspend by several
1818 	 * seconds, by when all enumeration should be complete.
1819 	 */
1820 	pm_runtime_mark_last_busy(dev);
1821 
1822 	return ret;
1823 }
1824 
1825 static int __maybe_unused intel_resume_runtime(struct device *dev)
1826 {
1827 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1828 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1829 	struct sdw_bus *bus = &cdns->bus;
1830 	u32 clock_stop_quirks;
1831 	bool clock_stop0;
1832 	int link_flags;
1833 	bool multi_link;
1834 	int status;
1835 	int ret;
1836 
1837 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1838 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1839 			bus->link_id);
1840 		return 0;
1841 	}
1842 
1843 	/* unconditionally disable WAKEEN interrupt */
1844 	intel_shim_wake(sdw, false);
1845 
1846 	link_flags = md_flags >> (bus->link_id * 8);
1847 	multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
1848 
1849 	clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1850 
1851 	if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) {
1852 		ret = intel_init(sdw);
1853 		if (ret) {
1854 			dev_err(dev, "%s failed: %d\n", __func__, ret);
1855 			return ret;
1856 		}
1857 
1858 		/*
1859 		 * make sure all Slaves are tagged as UNATTACHED and provide
1860 		 * reason for reinitialization
1861 		 */
1862 		sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET);
1863 
1864 		ret = sdw_cdns_enable_interrupt(cdns, true);
1865 		if (ret < 0) {
1866 			dev_err(dev, "cannot enable interrupts during resume\n");
1867 			return ret;
1868 		}
1869 
1870 		/*
1871 		 * follow recommended programming flows to avoid
1872 		 * timeouts when gsync is enabled
1873 		 */
1874 		if (multi_link)
1875 			intel_shim_sync_arm(sdw);
1876 
1877 		ret = sdw_cdns_init(&sdw->cdns);
1878 		if (ret < 0) {
1879 			dev_err(dev, "unable to initialize Cadence IP during resume\n");
1880 			return ret;
1881 		}
1882 
1883 		ret = sdw_cdns_exit_reset(cdns);
1884 		if (ret < 0) {
1885 			dev_err(dev, "unable to exit bus reset sequence during resume\n");
1886 			return ret;
1887 		}
1888 
1889 		if (multi_link) {
1890 			ret = intel_shim_sync_go(sdw);
1891 			if (ret < 0) {
1892 				dev_err(dev, "sync go failed during resume\n");
1893 				return ret;
1894 			}
1895 		}
1896 		sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime TEARDOWN",
1897 						  true, INTEL_MASTER_RESET_ITERATIONS);
1898 
1899 	} else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) {
1900 		ret = intel_init(sdw);
1901 		if (ret) {
1902 			dev_err(dev, "%s failed: %d\n", __func__, ret);
1903 			return ret;
1904 		}
1905 
1906 		/*
1907 		 * An exception condition occurs for the CLK_STOP_BUS_RESET
1908 		 * case if one or more masters remain active. In this condition,
1909 		 * all the masters are powered on for they are in the same power
1910 		 * domain. Master can preserve its context for clock stop0, so
1911 		 * there is no need to clear slave status and reset bus.
1912 		 */
1913 		clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns);
1914 
1915 		if (!clock_stop0) {
1916 
1917 			/*
1918 			 * make sure all Slaves are tagged as UNATTACHED and
1919 			 * provide reason for reinitialization
1920 			 */
1921 
1922 			status = SDW_UNATTACH_REQUEST_MASTER_RESET;
1923 			sdw_clear_slave_status(bus, status);
1924 
1925 			ret = sdw_cdns_enable_interrupt(cdns, true);
1926 			if (ret < 0) {
1927 				dev_err(dev, "cannot enable interrupts during resume\n");
1928 				return ret;
1929 			}
1930 
1931 			/*
1932 			 * follow recommended programming flows to avoid
1933 			 * timeouts when gsync is enabled
1934 			 */
1935 			if (multi_link)
1936 				intel_shim_sync_arm(sdw);
1937 
1938 			/*
1939 			 * Re-initialize the IP since it was powered-off
1940 			 */
1941 			sdw_cdns_init(&sdw->cdns);
1942 
1943 		} else {
1944 			ret = sdw_cdns_enable_interrupt(cdns, true);
1945 			if (ret < 0) {
1946 				dev_err(dev, "cannot enable interrupts during resume\n");
1947 				return ret;
1948 			}
1949 		}
1950 
1951 		ret = sdw_cdns_clock_restart(cdns, !clock_stop0);
1952 		if (ret < 0) {
1953 			dev_err(dev, "unable to restart clock during resume\n");
1954 			return ret;
1955 		}
1956 
1957 		if (!clock_stop0) {
1958 			ret = sdw_cdns_exit_reset(cdns);
1959 			if (ret < 0) {
1960 				dev_err(dev, "unable to exit bus reset sequence during resume\n");
1961 				return ret;
1962 			}
1963 
1964 			if (multi_link) {
1965 				ret = intel_shim_sync_go(sdw);
1966 				if (ret < 0) {
1967 					dev_err(sdw->cdns.dev, "sync go failed during resume\n");
1968 					return ret;
1969 				}
1970 			}
1971 		}
1972 		sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime BUS_RESET",
1973 						  true, INTEL_MASTER_RESET_ITERATIONS);
1974 
1975 	} else if (!clock_stop_quirks) {
1976 
1977 		clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns);
1978 		if (!clock_stop0)
1979 			dev_err(dev, "%s invalid configuration, clock was not stopped", __func__);
1980 
1981 		ret = intel_init(sdw);
1982 		if (ret) {
1983 			dev_err(dev, "%s failed: %d\n", __func__, ret);
1984 			return ret;
1985 		}
1986 
1987 		ret = sdw_cdns_enable_interrupt(cdns, true);
1988 		if (ret < 0) {
1989 			dev_err(dev, "cannot enable interrupts during resume\n");
1990 			return ret;
1991 		}
1992 
1993 		ret = sdw_cdns_clock_restart(cdns, false);
1994 		if (ret < 0) {
1995 			dev_err(dev, "unable to resume master during resume\n");
1996 			return ret;
1997 		}
1998 
1999 		sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime no_quirks",
2000 						  true, INTEL_MASTER_RESET_ITERATIONS);
2001 	} else {
2002 		dev_err(dev, "%s clock_stop_quirks %x unsupported\n",
2003 			__func__, clock_stop_quirks);
2004 		ret = -EINVAL;
2005 	}
2006 
2007 	return ret;
2008 }
2009 
2010 static const struct dev_pm_ops intel_pm = {
2011 	.prepare = intel_pm_prepare,
2012 	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
2013 	SET_RUNTIME_PM_OPS(intel_suspend_runtime, intel_resume_runtime, NULL)
2014 };
2015 
2016 static const struct auxiliary_device_id intel_link_id_table[] = {
2017 	{ .name = "soundwire_intel.link" },
2018 	{},
2019 };
2020 MODULE_DEVICE_TABLE(auxiliary, intel_link_id_table);
2021 
2022 static struct auxiliary_driver sdw_intel_drv = {
2023 	.probe = intel_link_probe,
2024 	.remove = intel_link_remove,
2025 	.driver = {
2026 		/* auxiliary_driver_register() sets .name to be the modname */
2027 		.pm = &intel_pm,
2028 	},
2029 	.id_table = intel_link_id_table
2030 };
2031 module_auxiliary_driver(sdw_intel_drv);
2032 
2033 MODULE_LICENSE("Dual BSD/GPL");
2034 MODULE_DESCRIPTION("Intel Soundwire Link Driver");
2035