xref: /openbmc/linux/drivers/soundwire/bus.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3 
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include "bus.h"
11 #include "sysfs_local.h"
12 
13 static DEFINE_IDA(sdw_ida);
14 
15 static int sdw_get_id(struct sdw_bus *bus)
16 {
17 	int rc = ida_alloc(&sdw_ida, GFP_KERNEL);
18 
19 	if (rc < 0)
20 		return rc;
21 
22 	bus->id = rc;
23 	return 0;
24 }
25 
26 /**
27  * sdw_bus_master_add() - add a bus Master instance
28  * @bus: bus instance
29  * @parent: parent device
30  * @fwnode: firmware node handle
31  *
32  * Initializes the bus instance, read properties and create child
33  * devices.
34  */
35 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
36 		       struct fwnode_handle *fwnode)
37 {
38 	struct sdw_master_prop *prop = NULL;
39 	int ret;
40 
41 	if (!parent) {
42 		pr_err("SoundWire parent device is not set\n");
43 		return -ENODEV;
44 	}
45 
46 	ret = sdw_get_id(bus);
47 	if (ret) {
48 		dev_err(parent, "Failed to get bus id\n");
49 		return ret;
50 	}
51 
52 	ret = sdw_master_device_add(bus, parent, fwnode);
53 	if (ret) {
54 		dev_err(parent, "Failed to add master device at link %d\n",
55 			bus->link_id);
56 		return ret;
57 	}
58 
59 	if (!bus->ops) {
60 		dev_err(bus->dev, "SoundWire Bus ops are not set\n");
61 		return -EINVAL;
62 	}
63 
64 	mutex_init(&bus->msg_lock);
65 	mutex_init(&bus->bus_lock);
66 	INIT_LIST_HEAD(&bus->slaves);
67 	INIT_LIST_HEAD(&bus->m_rt_list);
68 
69 	/*
70 	 * Initialize multi_link flag
71 	 * TODO: populate this flag by reading property from FW node
72 	 */
73 	bus->multi_link = false;
74 	if (bus->ops->read_prop) {
75 		ret = bus->ops->read_prop(bus);
76 		if (ret < 0) {
77 			dev_err(bus->dev,
78 				"Bus read properties failed:%d\n", ret);
79 			return ret;
80 		}
81 	}
82 
83 	sdw_bus_debugfs_init(bus);
84 
85 	/*
86 	 * Device numbers in SoundWire are 0 through 15. Enumeration device
87 	 * number (0), Broadcast device number (15), Group numbers (12 and
88 	 * 13) and Master device number (14) are not used for assignment so
89 	 * mask these and other higher bits.
90 	 */
91 
92 	/* Set higher order bits */
93 	*bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
94 
95 	/* Set enumuration device number and broadcast device number */
96 	set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
97 	set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
98 
99 	/* Set group device numbers and master device number */
100 	set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
101 	set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
102 	set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
103 
104 	/*
105 	 * SDW is an enumerable bus, but devices can be powered off. So,
106 	 * they won't be able to report as present.
107 	 *
108 	 * Create Slave devices based on Slaves described in
109 	 * the respective firmware (ACPI/DT)
110 	 */
111 	if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
112 		ret = sdw_acpi_find_slaves(bus);
113 	else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
114 		ret = sdw_of_find_slaves(bus);
115 	else
116 		ret = -ENOTSUPP; /* No ACPI/DT so error out */
117 
118 	if (ret) {
119 		dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
120 		return ret;
121 	}
122 
123 	/*
124 	 * Initialize clock values based on Master properties. The max
125 	 * frequency is read from max_clk_freq property. Current assumption
126 	 * is that the bus will start at highest clock frequency when
127 	 * powered on.
128 	 *
129 	 * Default active bank will be 0 as out of reset the Slaves have
130 	 * to start with bank 0 (Table 40 of Spec)
131 	 */
132 	prop = &bus->prop;
133 	bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
134 	bus->params.curr_dr_freq = bus->params.max_dr_freq;
135 	bus->params.curr_bank = SDW_BANK0;
136 	bus->params.next_bank = SDW_BANK1;
137 
138 	return 0;
139 }
140 EXPORT_SYMBOL(sdw_bus_master_add);
141 
142 static int sdw_delete_slave(struct device *dev, void *data)
143 {
144 	struct sdw_slave *slave = dev_to_sdw_dev(dev);
145 	struct sdw_bus *bus = slave->bus;
146 
147 	pm_runtime_disable(dev);
148 
149 	sdw_slave_debugfs_exit(slave);
150 
151 	mutex_lock(&bus->bus_lock);
152 
153 	if (slave->dev_num) /* clear dev_num if assigned */
154 		clear_bit(slave->dev_num, bus->assigned);
155 
156 	list_del_init(&slave->node);
157 	mutex_unlock(&bus->bus_lock);
158 
159 	device_unregister(dev);
160 	return 0;
161 }
162 
163 /**
164  * sdw_bus_master_delete() - delete the bus master instance
165  * @bus: bus to be deleted
166  *
167  * Remove the instance, delete the child devices.
168  */
169 void sdw_bus_master_delete(struct sdw_bus *bus)
170 {
171 	device_for_each_child(bus->dev, NULL, sdw_delete_slave);
172 	sdw_master_device_del(bus);
173 
174 	sdw_bus_debugfs_exit(bus);
175 	ida_free(&sdw_ida, bus->id);
176 }
177 EXPORT_SYMBOL(sdw_bus_master_delete);
178 
179 /*
180  * SDW IO Calls
181  */
182 
183 static inline int find_response_code(enum sdw_command_response resp)
184 {
185 	switch (resp) {
186 	case SDW_CMD_OK:
187 		return 0;
188 
189 	case SDW_CMD_IGNORED:
190 		return -ENODATA;
191 
192 	case SDW_CMD_TIMEOUT:
193 		return -ETIMEDOUT;
194 
195 	default:
196 		return -EIO;
197 	}
198 }
199 
200 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
201 {
202 	int retry = bus->prop.err_threshold;
203 	enum sdw_command_response resp;
204 	int ret = 0, i;
205 
206 	for (i = 0; i <= retry; i++) {
207 		resp = bus->ops->xfer_msg(bus, msg);
208 		ret = find_response_code(resp);
209 
210 		/* if cmd is ok or ignored return */
211 		if (ret == 0 || ret == -ENODATA)
212 			return ret;
213 	}
214 
215 	return ret;
216 }
217 
218 static inline int do_transfer_defer(struct sdw_bus *bus,
219 				    struct sdw_msg *msg,
220 				    struct sdw_defer *defer)
221 {
222 	int retry = bus->prop.err_threshold;
223 	enum sdw_command_response resp;
224 	int ret = 0, i;
225 
226 	defer->msg = msg;
227 	defer->length = msg->len;
228 	init_completion(&defer->complete);
229 
230 	for (i = 0; i <= retry; i++) {
231 		resp = bus->ops->xfer_msg_defer(bus, msg, defer);
232 		ret = find_response_code(resp);
233 		/* if cmd is ok or ignored return */
234 		if (ret == 0 || ret == -ENODATA)
235 			return ret;
236 	}
237 
238 	return ret;
239 }
240 
241 static int sdw_reset_page(struct sdw_bus *bus, u16 dev_num)
242 {
243 	int retry = bus->prop.err_threshold;
244 	enum sdw_command_response resp;
245 	int ret = 0, i;
246 
247 	for (i = 0; i <= retry; i++) {
248 		resp = bus->ops->reset_page_addr(bus, dev_num);
249 		ret = find_response_code(resp);
250 		/* if cmd is ok or ignored return */
251 		if (ret == 0 || ret == -ENODATA)
252 			return ret;
253 	}
254 
255 	return ret;
256 }
257 
258 /**
259  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
260  * @bus: SDW bus
261  * @msg: SDW message to be xfered
262  */
263 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
264 {
265 	int ret;
266 
267 	mutex_lock(&bus->msg_lock);
268 
269 	ret = do_transfer(bus, msg);
270 	if (ret != 0 && ret != -ENODATA)
271 		dev_err(bus->dev, "trf on Slave %d failed:%d\n",
272 			msg->dev_num, ret);
273 
274 	if (msg->page)
275 		sdw_reset_page(bus, msg->dev_num);
276 
277 	mutex_unlock(&bus->msg_lock);
278 
279 	return ret;
280 }
281 
282 /**
283  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
284  * @bus: SDW bus
285  * @msg: SDW message to be xfered
286  * @defer: Defer block for signal completion
287  *
288  * Caller needs to hold the msg_lock lock while calling this
289  */
290 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg,
291 		       struct sdw_defer *defer)
292 {
293 	int ret;
294 
295 	if (!bus->ops->xfer_msg_defer)
296 		return -ENOTSUPP;
297 
298 	ret = do_transfer_defer(bus, msg, defer);
299 	if (ret != 0 && ret != -ENODATA)
300 		dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
301 			msg->dev_num, ret);
302 
303 	if (msg->page)
304 		sdw_reset_page(bus, msg->dev_num);
305 
306 	return ret;
307 }
308 
309 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
310 		 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
311 {
312 	memset(msg, 0, sizeof(*msg));
313 	msg->addr = addr; /* addr is 16 bit and truncated here */
314 	msg->len = count;
315 	msg->dev_num = dev_num;
316 	msg->flags = flags;
317 	msg->buf = buf;
318 
319 	if (addr < SDW_REG_NO_PAGE) /* no paging area */
320 		return 0;
321 
322 	if (addr >= SDW_REG_MAX) { /* illegal addr */
323 		pr_err("SDW: Invalid address %x passed\n", addr);
324 		return -EINVAL;
325 	}
326 
327 	if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
328 		if (slave && !slave->prop.paging_support)
329 			return 0;
330 		/* no need for else as that will fall-through to paging */
331 	}
332 
333 	/* paging mandatory */
334 	if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
335 		pr_err("SDW: Invalid device for paging :%d\n", dev_num);
336 		return -EINVAL;
337 	}
338 
339 	if (!slave) {
340 		pr_err("SDW: No slave for paging addr\n");
341 		return -EINVAL;
342 	}
343 
344 	if (!slave->prop.paging_support) {
345 		dev_err(&slave->dev,
346 			"address %x needs paging but no support\n", addr);
347 		return -EINVAL;
348 	}
349 
350 	msg->addr_page1 = (addr >> SDW_REG_SHIFT(SDW_SCP_ADDRPAGE1_MASK));
351 	msg->addr_page2 = (addr >> SDW_REG_SHIFT(SDW_SCP_ADDRPAGE2_MASK));
352 	msg->addr |= BIT(15);
353 	msg->page = true;
354 
355 	return 0;
356 }
357 
358 /*
359  * Read/Write IO functions.
360  * no_pm versions can only be called by the bus, e.g. while enumerating or
361  * handling suspend-resume sequences.
362  * all clients need to use the pm versions
363  */
364 
365 static int
366 sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
367 {
368 	struct sdw_msg msg;
369 	int ret;
370 
371 	ret = sdw_fill_msg(&msg, slave, addr, count,
372 			   slave->dev_num, SDW_MSG_FLAG_READ, val);
373 	if (ret < 0)
374 		return ret;
375 
376 	return sdw_transfer(slave->bus, &msg);
377 }
378 
379 static int
380 sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
381 {
382 	struct sdw_msg msg;
383 	int ret;
384 
385 	ret = sdw_fill_msg(&msg, slave, addr, count,
386 			   slave->dev_num, SDW_MSG_FLAG_WRITE, val);
387 	if (ret < 0)
388 		return ret;
389 
390 	return sdw_transfer(slave->bus, &msg);
391 }
392 
393 static int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
394 {
395 	return sdw_nwrite_no_pm(slave, addr, 1, &value);
396 }
397 
398 static int
399 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
400 {
401 	struct sdw_msg msg;
402 	u8 buf;
403 	int ret;
404 
405 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
406 			   SDW_MSG_FLAG_READ, &buf);
407 	if (ret)
408 		return ret;
409 
410 	ret = sdw_transfer(bus, &msg);
411 	if (ret < 0)
412 		return ret;
413 
414 	return buf;
415 }
416 
417 static int
418 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
419 {
420 	struct sdw_msg msg;
421 	int ret;
422 
423 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
424 			   SDW_MSG_FLAG_WRITE, &value);
425 	if (ret)
426 		return ret;
427 
428 	return sdw_transfer(bus, &msg);
429 }
430 
431 static int
432 sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
433 {
434 	u8 buf;
435 	int ret;
436 
437 	ret = sdw_nread_no_pm(slave, addr, 1, &buf);
438 	if (ret < 0)
439 		return ret;
440 	else
441 		return buf;
442 }
443 
444 /**
445  * sdw_nread() - Read "n" contiguous SDW Slave registers
446  * @slave: SDW Slave
447  * @addr: Register address
448  * @count: length
449  * @val: Buffer for values to be read
450  */
451 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
452 {
453 	int ret;
454 
455 	ret = pm_runtime_get_sync(slave->bus->dev);
456 	if (ret < 0 && ret != -EACCES) {
457 		pm_runtime_put_noidle(slave->bus->dev);
458 		return ret;
459 	}
460 
461 	ret = sdw_nread_no_pm(slave, addr, count, val);
462 
463 	pm_runtime_mark_last_busy(slave->bus->dev);
464 	pm_runtime_put(slave->bus->dev);
465 
466 	return ret;
467 }
468 EXPORT_SYMBOL(sdw_nread);
469 
470 /**
471  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
472  * @slave: SDW Slave
473  * @addr: Register address
474  * @count: length
475  * @val: Buffer for values to be read
476  */
477 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
478 {
479 	int ret;
480 
481 	ret = pm_runtime_get_sync(slave->bus->dev);
482 	if (ret < 0 && ret != -EACCES) {
483 		pm_runtime_put_noidle(slave->bus->dev);
484 		return ret;
485 	}
486 
487 	ret = sdw_nwrite_no_pm(slave, addr, count, val);
488 
489 	pm_runtime_mark_last_busy(slave->bus->dev);
490 	pm_runtime_put(slave->bus->dev);
491 
492 	return ret;
493 }
494 EXPORT_SYMBOL(sdw_nwrite);
495 
496 /**
497  * sdw_read() - Read a SDW Slave register
498  * @slave: SDW Slave
499  * @addr: Register address
500  */
501 int sdw_read(struct sdw_slave *slave, u32 addr)
502 {
503 	u8 buf;
504 	int ret;
505 
506 	ret = sdw_nread(slave, addr, 1, &buf);
507 	if (ret < 0)
508 		return ret;
509 
510 	return buf;
511 }
512 EXPORT_SYMBOL(sdw_read);
513 
514 /**
515  * sdw_write() - Write a SDW Slave register
516  * @slave: SDW Slave
517  * @addr: Register address
518  * @value: Register value
519  */
520 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
521 {
522 	return sdw_nwrite(slave, addr, 1, &value);
523 }
524 EXPORT_SYMBOL(sdw_write);
525 
526 /*
527  * SDW alert handling
528  */
529 
530 /* called with bus_lock held */
531 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
532 {
533 	struct sdw_slave *slave = NULL;
534 
535 	list_for_each_entry(slave, &bus->slaves, node) {
536 		if (slave->dev_num == i)
537 			return slave;
538 	}
539 
540 	return NULL;
541 }
542 
543 static int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
544 {
545 	if (slave->id.mfg_id != id.mfg_id ||
546 	    slave->id.part_id != id.part_id ||
547 	    slave->id.class_id != id.class_id ||
548 	    (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
549 	     slave->id.unique_id != id.unique_id))
550 		return -ENODEV;
551 
552 	return 0;
553 }
554 
555 /* called with bus_lock held */
556 static int sdw_get_device_num(struct sdw_slave *slave)
557 {
558 	int bit;
559 
560 	bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
561 	if (bit == SDW_MAX_DEVICES) {
562 		bit = -ENODEV;
563 		goto err;
564 	}
565 
566 	/*
567 	 * Do not update dev_num in Slave data structure here,
568 	 * Update once program dev_num is successful
569 	 */
570 	set_bit(bit, slave->bus->assigned);
571 
572 err:
573 	return bit;
574 }
575 
576 static int sdw_assign_device_num(struct sdw_slave *slave)
577 {
578 	int ret, dev_num;
579 	bool new_device = false;
580 
581 	/* check first if device number is assigned, if so reuse that */
582 	if (!slave->dev_num) {
583 		if (!slave->dev_num_sticky) {
584 			mutex_lock(&slave->bus->bus_lock);
585 			dev_num = sdw_get_device_num(slave);
586 			mutex_unlock(&slave->bus->bus_lock);
587 			if (dev_num < 0) {
588 				dev_err(slave->bus->dev, "Get dev_num failed: %d\n",
589 					dev_num);
590 				return dev_num;
591 			}
592 			slave->dev_num = dev_num;
593 			slave->dev_num_sticky = dev_num;
594 			new_device = true;
595 		} else {
596 			slave->dev_num = slave->dev_num_sticky;
597 		}
598 	}
599 
600 	if (!new_device)
601 		dev_dbg(slave->bus->dev,
602 			"Slave already registered, reusing dev_num:%d\n",
603 			slave->dev_num);
604 
605 	/* Clear the slave->dev_num to transfer message on device 0 */
606 	dev_num = slave->dev_num;
607 	slave->dev_num = 0;
608 
609 	ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
610 	if (ret < 0) {
611 		dev_err(&slave->dev, "Program device_num %d failed: %d\n",
612 			dev_num, ret);
613 		return ret;
614 	}
615 
616 	/* After xfer of msg, restore dev_num */
617 	slave->dev_num = slave->dev_num_sticky;
618 
619 	return 0;
620 }
621 
622 void sdw_extract_slave_id(struct sdw_bus *bus,
623 			  u64 addr, struct sdw_slave_id *id)
624 {
625 	dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
626 
627 	id->sdw_version = SDW_VERSION(addr);
628 	id->unique_id = SDW_UNIQUE_ID(addr);
629 	id->mfg_id = SDW_MFG_ID(addr);
630 	id->part_id = SDW_PART_ID(addr);
631 	id->class_id = SDW_CLASS_ID(addr);
632 
633 	dev_dbg(bus->dev,
634 		"SDW Slave class_id %x, part_id %x, mfg_id %x, unique_id %x, version %x\n",
635 				id->class_id, id->part_id, id->mfg_id,
636 				id->unique_id, id->sdw_version);
637 }
638 
639 static int sdw_program_device_num(struct sdw_bus *bus)
640 {
641 	u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
642 	struct sdw_slave *slave, *_s;
643 	struct sdw_slave_id id;
644 	struct sdw_msg msg;
645 	bool found = false;
646 	int count = 0, ret;
647 	u64 addr;
648 
649 	/* No Slave, so use raw xfer api */
650 	ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
651 			   SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
652 	if (ret < 0)
653 		return ret;
654 
655 	do {
656 		ret = sdw_transfer(bus, &msg);
657 		if (ret == -ENODATA) { /* end of device id reads */
658 			dev_dbg(bus->dev, "No more devices to enumerate\n");
659 			ret = 0;
660 			break;
661 		}
662 		if (ret < 0) {
663 			dev_err(bus->dev, "DEVID read fail:%d\n", ret);
664 			break;
665 		}
666 
667 		/*
668 		 * Construct the addr and extract. Cast the higher shift
669 		 * bits to avoid truncation due to size limit.
670 		 */
671 		addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
672 			((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
673 			((u64)buf[0] << 40);
674 
675 		sdw_extract_slave_id(bus, addr, &id);
676 
677 		/* Now compare with entries */
678 		list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
679 			if (sdw_compare_devid(slave, id) == 0) {
680 				found = true;
681 
682 				/*
683 				 * Assign a new dev_num to this Slave and
684 				 * not mark it present. It will be marked
685 				 * present after it reports ATTACHED on new
686 				 * dev_num
687 				 */
688 				ret = sdw_assign_device_num(slave);
689 				if (ret) {
690 					dev_err(slave->bus->dev,
691 						"Assign dev_num failed:%d\n",
692 						ret);
693 					return ret;
694 				}
695 
696 				break;
697 			}
698 		}
699 
700 		if (!found) {
701 			/* TODO: Park this device in Group 13 */
702 			dev_err(bus->dev, "Slave Entry not found\n");
703 		}
704 
705 		count++;
706 
707 		/*
708 		 * Check till error out or retry (count) exhausts.
709 		 * Device can drop off and rejoin during enumeration
710 		 * so count till twice the bound.
711 		 */
712 
713 	} while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
714 
715 	return ret;
716 }
717 
718 static void sdw_modify_slave_status(struct sdw_slave *slave,
719 				    enum sdw_slave_status status)
720 {
721 	mutex_lock(&slave->bus->bus_lock);
722 
723 	dev_vdbg(&slave->dev,
724 		 "%s: changing status slave %d status %d new status %d\n",
725 		 __func__, slave->dev_num, slave->status, status);
726 
727 	if (status == SDW_SLAVE_UNATTACHED) {
728 		dev_dbg(&slave->dev,
729 			"%s: initializing completion for Slave %d\n",
730 			__func__, slave->dev_num);
731 
732 		init_completion(&slave->enumeration_complete);
733 		init_completion(&slave->initialization_complete);
734 
735 	} else if ((status == SDW_SLAVE_ATTACHED) &&
736 		   (slave->status == SDW_SLAVE_UNATTACHED)) {
737 		dev_dbg(&slave->dev,
738 			"%s: signaling completion for Slave %d\n",
739 			__func__, slave->dev_num);
740 
741 		complete(&slave->enumeration_complete);
742 	}
743 	slave->status = status;
744 	mutex_unlock(&slave->bus->bus_lock);
745 }
746 
747 static enum sdw_clk_stop_mode sdw_get_clk_stop_mode(struct sdw_slave *slave)
748 {
749 	enum sdw_clk_stop_mode mode;
750 
751 	/*
752 	 * Query for clock stop mode if Slave implements
753 	 * ops->get_clk_stop_mode, else read from property.
754 	 */
755 	if (slave->ops && slave->ops->get_clk_stop_mode) {
756 		mode = slave->ops->get_clk_stop_mode(slave);
757 	} else {
758 		if (slave->prop.clk_stop_mode1)
759 			mode = SDW_CLK_STOP_MODE1;
760 		else
761 			mode = SDW_CLK_STOP_MODE0;
762 	}
763 
764 	return mode;
765 }
766 
767 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
768 				       enum sdw_clk_stop_mode mode,
769 				       enum sdw_clk_stop_type type)
770 {
771 	int ret;
772 
773 	if (slave->ops && slave->ops->clk_stop) {
774 		ret = slave->ops->clk_stop(slave, mode, type);
775 		if (ret < 0) {
776 			dev_err(&slave->dev,
777 				"Clk Stop type =%d failed: %d\n", type, ret);
778 			return ret;
779 		}
780 	}
781 
782 	return 0;
783 }
784 
785 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
786 				      enum sdw_clk_stop_mode mode,
787 				      bool prepare)
788 {
789 	bool wake_en;
790 	u32 val = 0;
791 	int ret;
792 
793 	wake_en = slave->prop.wake_capable;
794 
795 	if (prepare) {
796 		val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
797 
798 		if (mode == SDW_CLK_STOP_MODE1)
799 			val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
800 
801 		if (wake_en)
802 			val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
803 	} else {
804 		val = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
805 
806 		val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
807 	}
808 
809 	ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
810 
811 	if (ret != 0)
812 		dev_err(&slave->dev,
813 			"Clock Stop prepare failed for slave: %d", ret);
814 
815 	return ret;
816 }
817 
818 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
819 {
820 	int retry = bus->clk_stop_timeout;
821 	int val;
822 
823 	do {
824 		val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT) &
825 			SDW_SCP_STAT_CLK_STP_NF;
826 		if (!val) {
827 			dev_info(bus->dev, "clock stop prep/de-prep done slave:%d",
828 				 dev_num);
829 			return 0;
830 		}
831 
832 		usleep_range(1000, 1500);
833 		retry--;
834 	} while (retry);
835 
836 	dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d",
837 		dev_num);
838 
839 	return -ETIMEDOUT;
840 }
841 
842 /**
843  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
844  *
845  * @bus: SDW bus instance
846  *
847  * Query Slave for clock stop mode and prepare for that mode.
848  */
849 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
850 {
851 	enum sdw_clk_stop_mode slave_mode;
852 	bool simple_clk_stop = true;
853 	struct sdw_slave *slave;
854 	bool is_slave = false;
855 	int ret = 0;
856 
857 	/*
858 	 * In order to save on transition time, prepare
859 	 * each Slave and then wait for all Slave(s) to be
860 	 * prepared for clock stop.
861 	 */
862 	list_for_each_entry(slave, &bus->slaves, node) {
863 		if (!slave->dev_num)
864 			continue;
865 
866 		/* Identify if Slave(s) are available on Bus */
867 		is_slave = true;
868 
869 		if (slave->status != SDW_SLAVE_ATTACHED &&
870 		    slave->status != SDW_SLAVE_ALERT)
871 			continue;
872 
873 		slave_mode = sdw_get_clk_stop_mode(slave);
874 		slave->curr_clk_stop_mode = slave_mode;
875 
876 		ret = sdw_slave_clk_stop_callback(slave, slave_mode,
877 						  SDW_CLK_PRE_PREPARE);
878 		if (ret < 0) {
879 			dev_err(&slave->dev,
880 				"pre-prepare failed:%d", ret);
881 			return ret;
882 		}
883 
884 		ret = sdw_slave_clk_stop_prepare(slave,
885 						 slave_mode, true);
886 		if (ret < 0) {
887 			dev_err(&slave->dev,
888 				"pre-prepare failed:%d", ret);
889 			return ret;
890 		}
891 
892 		if (slave_mode == SDW_CLK_STOP_MODE1)
893 			simple_clk_stop = false;
894 	}
895 
896 	if (is_slave && !simple_clk_stop) {
897 		ret = sdw_bus_wait_for_clk_prep_deprep(bus,
898 						       SDW_BROADCAST_DEV_NUM);
899 		if (ret < 0)
900 			return ret;
901 	}
902 
903 	/* Inform slaves that prep is done */
904 	list_for_each_entry(slave, &bus->slaves, node) {
905 		if (!slave->dev_num)
906 			continue;
907 
908 		if (slave->status != SDW_SLAVE_ATTACHED &&
909 		    slave->status != SDW_SLAVE_ALERT)
910 			continue;
911 
912 		slave_mode = slave->curr_clk_stop_mode;
913 
914 		if (slave_mode == SDW_CLK_STOP_MODE1) {
915 			ret = sdw_slave_clk_stop_callback(slave,
916 							  slave_mode,
917 							  SDW_CLK_POST_PREPARE);
918 
919 			if (ret < 0) {
920 				dev_err(&slave->dev,
921 					"post-prepare failed:%d", ret);
922 			}
923 		}
924 	}
925 
926 	return ret;
927 }
928 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
929 
930 /**
931  * sdw_bus_clk_stop: stop bus clock
932  *
933  * @bus: SDW bus instance
934  *
935  * After preparing the Slaves for clock stop, stop the clock by broadcasting
936  * write to SCP_CTRL register.
937  */
938 int sdw_bus_clk_stop(struct sdw_bus *bus)
939 {
940 	int ret;
941 
942 	/*
943 	 * broadcast clock stop now, attached Slaves will ACK this,
944 	 * unattached will ignore
945 	 */
946 	ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
947 			       SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
948 	if (ret < 0) {
949 		if (ret == -ENODATA)
950 			dev_dbg(bus->dev,
951 				"ClockStopNow Broadcast msg ignored %d", ret);
952 		else
953 			dev_err(bus->dev,
954 				"ClockStopNow Broadcast msg failed %d", ret);
955 		return ret;
956 	}
957 
958 	return 0;
959 }
960 EXPORT_SYMBOL(sdw_bus_clk_stop);
961 
962 /**
963  * sdw_bus_exit_clk_stop: Exit clock stop mode
964  *
965  * @bus: SDW bus instance
966  *
967  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
968  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
969  * back.
970  */
971 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
972 {
973 	enum sdw_clk_stop_mode mode;
974 	bool simple_clk_stop = true;
975 	struct sdw_slave *slave;
976 	bool is_slave = false;
977 	int ret;
978 
979 	/*
980 	 * In order to save on transition time, de-prepare
981 	 * each Slave and then wait for all Slave(s) to be
982 	 * de-prepared after clock resume.
983 	 */
984 	list_for_each_entry(slave, &bus->slaves, node) {
985 		if (!slave->dev_num)
986 			continue;
987 
988 		/* Identify if Slave(s) are available on Bus */
989 		is_slave = true;
990 
991 		if (slave->status != SDW_SLAVE_ATTACHED &&
992 		    slave->status != SDW_SLAVE_ALERT)
993 			continue;
994 
995 		mode = slave->curr_clk_stop_mode;
996 
997 		if (mode == SDW_CLK_STOP_MODE1) {
998 			simple_clk_stop = false;
999 			continue;
1000 		}
1001 
1002 		ret = sdw_slave_clk_stop_callback(slave, mode,
1003 						  SDW_CLK_PRE_DEPREPARE);
1004 		if (ret < 0)
1005 			dev_warn(&slave->dev,
1006 				 "clk stop deprep failed:%d", ret);
1007 
1008 		ret = sdw_slave_clk_stop_prepare(slave, mode,
1009 						 false);
1010 
1011 		if (ret < 0)
1012 			dev_warn(&slave->dev,
1013 				 "clk stop deprep failed:%d", ret);
1014 	}
1015 
1016 	if (is_slave && !simple_clk_stop)
1017 		sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1018 
1019 	list_for_each_entry(slave, &bus->slaves, node) {
1020 		if (!slave->dev_num)
1021 			continue;
1022 
1023 		if (slave->status != SDW_SLAVE_ATTACHED &&
1024 		    slave->status != SDW_SLAVE_ALERT)
1025 			continue;
1026 
1027 		mode = slave->curr_clk_stop_mode;
1028 		sdw_slave_clk_stop_callback(slave, mode,
1029 					    SDW_CLK_POST_DEPREPARE);
1030 	}
1031 
1032 	return 0;
1033 }
1034 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1035 
1036 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1037 			   int port, bool enable, int mask)
1038 {
1039 	u32 addr;
1040 	int ret;
1041 	u8 val = 0;
1042 
1043 	addr = SDW_DPN_INTMASK(port);
1044 
1045 	/* Set/Clear port ready interrupt mask */
1046 	if (enable) {
1047 		val |= mask;
1048 		val |= SDW_DPN_INT_PORT_READY;
1049 	} else {
1050 		val &= ~(mask);
1051 		val &= ~SDW_DPN_INT_PORT_READY;
1052 	}
1053 
1054 	ret = sdw_update(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1055 	if (ret < 0)
1056 		dev_err(slave->bus->dev,
1057 			"SDW_DPN_INTMASK write failed:%d\n", val);
1058 
1059 	return ret;
1060 }
1061 
1062 static int sdw_initialize_slave(struct sdw_slave *slave)
1063 {
1064 	struct sdw_slave_prop *prop = &slave->prop;
1065 	int ret;
1066 	u8 val;
1067 
1068 	/*
1069 	 * Set bus clash, parity and SCP implementation
1070 	 * defined interrupt mask
1071 	 * TODO: Read implementation defined interrupt mask
1072 	 * from Slave property
1073 	 */
1074 	val = SDW_SCP_INT1_IMPL_DEF | SDW_SCP_INT1_BUS_CLASH |
1075 					SDW_SCP_INT1_PARITY;
1076 
1077 	/* Enable SCP interrupts */
1078 	ret = sdw_update(slave, SDW_SCP_INTMASK1, val, val);
1079 	if (ret < 0) {
1080 		dev_err(slave->bus->dev,
1081 			"SDW_SCP_INTMASK1 write failed:%d\n", ret);
1082 		return ret;
1083 	}
1084 
1085 	/* No need to continue if DP0 is not present */
1086 	if (!slave->prop.dp0_prop)
1087 		return 0;
1088 
1089 	/* Enable DP0 interrupts */
1090 	val = prop->dp0_prop->imp_def_interrupts;
1091 	val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1092 
1093 	ret = sdw_update(slave, SDW_DP0_INTMASK, val, val);
1094 	if (ret < 0)
1095 		dev_err(slave->bus->dev,
1096 			"SDW_DP0_INTMASK read failed:%d\n", ret);
1097 	return ret;
1098 }
1099 
1100 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1101 {
1102 	u8 clear = 0, impl_int_mask;
1103 	int status, status2, ret, count = 0;
1104 
1105 	status = sdw_read(slave, SDW_DP0_INT);
1106 	if (status < 0) {
1107 		dev_err(slave->bus->dev,
1108 			"SDW_DP0_INT read failed:%d\n", status);
1109 		return status;
1110 	}
1111 
1112 	do {
1113 		if (status & SDW_DP0_INT_TEST_FAIL) {
1114 			dev_err(&slave->dev, "Test fail for port 0\n");
1115 			clear |= SDW_DP0_INT_TEST_FAIL;
1116 		}
1117 
1118 		/*
1119 		 * Assumption: PORT_READY interrupt will be received only for
1120 		 * ports implementing Channel Prepare state machine (CP_SM)
1121 		 */
1122 
1123 		if (status & SDW_DP0_INT_PORT_READY) {
1124 			complete(&slave->port_ready[0]);
1125 			clear |= SDW_DP0_INT_PORT_READY;
1126 		}
1127 
1128 		if (status & SDW_DP0_INT_BRA_FAILURE) {
1129 			dev_err(&slave->dev, "BRA failed\n");
1130 			clear |= SDW_DP0_INT_BRA_FAILURE;
1131 		}
1132 
1133 		impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1134 			SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1135 
1136 		if (status & impl_int_mask) {
1137 			clear |= impl_int_mask;
1138 			*slave_status = clear;
1139 		}
1140 
1141 		/* clear the interrupt */
1142 		ret = sdw_write(slave, SDW_DP0_INT, clear);
1143 		if (ret < 0) {
1144 			dev_err(slave->bus->dev,
1145 				"SDW_DP0_INT write failed:%d\n", ret);
1146 			return ret;
1147 		}
1148 
1149 		/* Read DP0 interrupt again */
1150 		status2 = sdw_read(slave, SDW_DP0_INT);
1151 		if (status2 < 0) {
1152 			dev_err(slave->bus->dev,
1153 				"SDW_DP0_INT read failed:%d\n", status2);
1154 			return status2;
1155 		}
1156 		status &= status2;
1157 
1158 		count++;
1159 
1160 		/* we can get alerts while processing so keep retrying */
1161 	} while (status != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1162 
1163 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1164 		dev_warn(slave->bus->dev, "Reached MAX_RETRY on DP0 read\n");
1165 
1166 	return ret;
1167 }
1168 
1169 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1170 				     int port, u8 *slave_status)
1171 {
1172 	u8 clear = 0, impl_int_mask;
1173 	int status, status2, ret, count = 0;
1174 	u32 addr;
1175 
1176 	if (port == 0)
1177 		return sdw_handle_dp0_interrupt(slave, slave_status);
1178 
1179 	addr = SDW_DPN_INT(port);
1180 	status = sdw_read(slave, addr);
1181 	if (status < 0) {
1182 		dev_err(slave->bus->dev,
1183 			"SDW_DPN_INT read failed:%d\n", status);
1184 
1185 		return status;
1186 	}
1187 
1188 	do {
1189 		if (status & SDW_DPN_INT_TEST_FAIL) {
1190 			dev_err(&slave->dev, "Test fail for port:%d\n", port);
1191 			clear |= SDW_DPN_INT_TEST_FAIL;
1192 		}
1193 
1194 		/*
1195 		 * Assumption: PORT_READY interrupt will be received only
1196 		 * for ports implementing CP_SM.
1197 		 */
1198 		if (status & SDW_DPN_INT_PORT_READY) {
1199 			complete(&slave->port_ready[port]);
1200 			clear |= SDW_DPN_INT_PORT_READY;
1201 		}
1202 
1203 		impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1204 			SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1205 
1206 		if (status & impl_int_mask) {
1207 			clear |= impl_int_mask;
1208 			*slave_status = clear;
1209 		}
1210 
1211 		/* clear the interrupt */
1212 		ret = sdw_write(slave, addr, clear);
1213 		if (ret < 0) {
1214 			dev_err(slave->bus->dev,
1215 				"SDW_DPN_INT write failed:%d\n", ret);
1216 			return ret;
1217 		}
1218 
1219 		/* Read DPN interrupt again */
1220 		status2 = sdw_read(slave, addr);
1221 		if (status2 < 0) {
1222 			dev_err(slave->bus->dev,
1223 				"SDW_DPN_INT read failed:%d\n", status2);
1224 			return status2;
1225 		}
1226 		status &= status2;
1227 
1228 		count++;
1229 
1230 		/* we can get alerts while processing so keep retrying */
1231 	} while (status != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1232 
1233 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1234 		dev_warn(slave->bus->dev, "Reached MAX_RETRY on port read");
1235 
1236 	return ret;
1237 }
1238 
1239 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1240 {
1241 	struct sdw_slave_intr_status slave_intr;
1242 	u8 clear = 0, bit, port_status[15] = {0};
1243 	int port_num, stat, ret, count = 0;
1244 	unsigned long port;
1245 	bool slave_notify = false;
1246 	u8 buf, buf2[2], _buf, _buf2[2];
1247 
1248 	sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1249 
1250 	ret = pm_runtime_get_sync(&slave->dev);
1251 	if (ret < 0 && ret != -EACCES) {
1252 		dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1253 		pm_runtime_put_noidle(slave->bus->dev);
1254 		return ret;
1255 	}
1256 
1257 	/* Read Instat 1, Instat 2 and Instat 3 registers */
1258 	ret = sdw_read(slave, SDW_SCP_INT1);
1259 	if (ret < 0) {
1260 		dev_err(slave->bus->dev,
1261 			"SDW_SCP_INT1 read failed:%d\n", ret);
1262 		goto io_err;
1263 	}
1264 	buf = ret;
1265 
1266 	ret = sdw_nread(slave, SDW_SCP_INTSTAT2, 2, buf2);
1267 	if (ret < 0) {
1268 		dev_err(slave->bus->dev,
1269 			"SDW_SCP_INT2/3 read failed:%d\n", ret);
1270 		goto io_err;
1271 	}
1272 
1273 	do {
1274 		/*
1275 		 * Check parity, bus clash and Slave (impl defined)
1276 		 * interrupt
1277 		 */
1278 		if (buf & SDW_SCP_INT1_PARITY) {
1279 			dev_err(&slave->dev, "Parity error detected\n");
1280 			clear |= SDW_SCP_INT1_PARITY;
1281 		}
1282 
1283 		if (buf & SDW_SCP_INT1_BUS_CLASH) {
1284 			dev_err(&slave->dev, "Bus clash error detected\n");
1285 			clear |= SDW_SCP_INT1_BUS_CLASH;
1286 		}
1287 
1288 		/*
1289 		 * When bus clash or parity errors are detected, such errors
1290 		 * are unlikely to be recoverable errors.
1291 		 * TODO: In such scenario, reset bus. Make this configurable
1292 		 * via sysfs property with bus reset being the default.
1293 		 */
1294 
1295 		if (buf & SDW_SCP_INT1_IMPL_DEF) {
1296 			dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1297 			clear |= SDW_SCP_INT1_IMPL_DEF;
1298 			slave_notify = true;
1299 		}
1300 
1301 		/* Check port 0 - 3 interrupts */
1302 		port = buf & SDW_SCP_INT1_PORT0_3;
1303 
1304 		/* To get port number corresponding to bits, shift it */
1305 		port = port >> SDW_REG_SHIFT(SDW_SCP_INT1_PORT0_3);
1306 		for_each_set_bit(bit, &port, 8) {
1307 			sdw_handle_port_interrupt(slave, bit,
1308 						  &port_status[bit]);
1309 		}
1310 
1311 		/* Check if cascade 2 interrupt is present */
1312 		if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1313 			port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1314 			for_each_set_bit(bit, &port, 8) {
1315 				/* scp2 ports start from 4 */
1316 				port_num = bit + 3;
1317 				sdw_handle_port_interrupt(slave,
1318 						port_num,
1319 						&port_status[port_num]);
1320 			}
1321 		}
1322 
1323 		/* now check last cascade */
1324 		if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1325 			port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1326 			for_each_set_bit(bit, &port, 8) {
1327 				/* scp3 ports start from 11 */
1328 				port_num = bit + 10;
1329 				sdw_handle_port_interrupt(slave,
1330 						port_num,
1331 						&port_status[port_num]);
1332 			}
1333 		}
1334 
1335 		/* Update the Slave driver */
1336 		if (slave_notify && slave->ops &&
1337 		    slave->ops->interrupt_callback) {
1338 			slave_intr.control_port = clear;
1339 			memcpy(slave_intr.port, &port_status,
1340 			       sizeof(slave_intr.port));
1341 
1342 			slave->ops->interrupt_callback(slave, &slave_intr);
1343 		}
1344 
1345 		/* Ack interrupt */
1346 		ret = sdw_write(slave, SDW_SCP_INT1, clear);
1347 		if (ret < 0) {
1348 			dev_err(slave->bus->dev,
1349 				"SDW_SCP_INT1 write failed:%d\n", ret);
1350 			goto io_err;
1351 		}
1352 
1353 		/*
1354 		 * Read status again to ensure no new interrupts arrived
1355 		 * while servicing interrupts.
1356 		 */
1357 		ret = sdw_read(slave, SDW_SCP_INT1);
1358 		if (ret < 0) {
1359 			dev_err(slave->bus->dev,
1360 				"SDW_SCP_INT1 read failed:%d\n", ret);
1361 			goto io_err;
1362 		}
1363 		_buf = ret;
1364 
1365 		ret = sdw_nread(slave, SDW_SCP_INTSTAT2, 2, _buf2);
1366 		if (ret < 0) {
1367 			dev_err(slave->bus->dev,
1368 				"SDW_SCP_INT2/3 read failed:%d\n", ret);
1369 			goto io_err;
1370 		}
1371 
1372 		/* Make sure no interrupts are pending */
1373 		buf &= _buf;
1374 		buf2[0] &= _buf2[0];
1375 		buf2[1] &= _buf2[1];
1376 		stat = buf || buf2[0] || buf2[1];
1377 
1378 		/*
1379 		 * Exit loop if Slave is continuously in ALERT state even
1380 		 * after servicing the interrupt multiple times.
1381 		 */
1382 		count++;
1383 
1384 		/* we can get alerts while processing so keep retrying */
1385 	} while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1386 
1387 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1388 		dev_warn(slave->bus->dev, "Reached MAX_RETRY on alert read\n");
1389 
1390 io_err:
1391 	pm_runtime_mark_last_busy(&slave->dev);
1392 	pm_runtime_put_autosuspend(&slave->dev);
1393 
1394 	return ret;
1395 }
1396 
1397 static int sdw_update_slave_status(struct sdw_slave *slave,
1398 				   enum sdw_slave_status status)
1399 {
1400 	unsigned long time;
1401 
1402 	if (!slave->probed) {
1403 		/*
1404 		 * the slave status update is typically handled in an
1405 		 * interrupt thread, which can race with the driver
1406 		 * probe, e.g. when a module needs to be loaded.
1407 		 *
1408 		 * make sure the probe is complete before updating
1409 		 * status.
1410 		 */
1411 		time = wait_for_completion_timeout(&slave->probe_complete,
1412 				msecs_to_jiffies(DEFAULT_PROBE_TIMEOUT));
1413 		if (!time) {
1414 			dev_err(&slave->dev, "Probe not complete, timed out\n");
1415 			return -ETIMEDOUT;
1416 		}
1417 	}
1418 
1419 	if (!slave->ops || !slave->ops->update_status)
1420 		return 0;
1421 
1422 	return slave->ops->update_status(slave, status);
1423 }
1424 
1425 /**
1426  * sdw_handle_slave_status() - Handle Slave status
1427  * @bus: SDW bus instance
1428  * @status: Status for all Slave(s)
1429  */
1430 int sdw_handle_slave_status(struct sdw_bus *bus,
1431 			    enum sdw_slave_status status[])
1432 {
1433 	enum sdw_slave_status prev_status;
1434 	struct sdw_slave *slave;
1435 	bool attached_initializing;
1436 	int i, ret = 0;
1437 
1438 	/* first check if any Slaves fell off the bus */
1439 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1440 		mutex_lock(&bus->bus_lock);
1441 		if (test_bit(i, bus->assigned) == false) {
1442 			mutex_unlock(&bus->bus_lock);
1443 			continue;
1444 		}
1445 		mutex_unlock(&bus->bus_lock);
1446 
1447 		slave = sdw_get_slave(bus, i);
1448 		if (!slave)
1449 			continue;
1450 
1451 		if (status[i] == SDW_SLAVE_UNATTACHED &&
1452 		    slave->status != SDW_SLAVE_UNATTACHED)
1453 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1454 	}
1455 
1456 	if (status[0] == SDW_SLAVE_ATTACHED) {
1457 		dev_dbg(bus->dev, "Slave attached, programming device number\n");
1458 		ret = sdw_program_device_num(bus);
1459 		if (ret)
1460 			dev_err(bus->dev, "Slave attach failed: %d\n", ret);
1461 		/*
1462 		 * programming a device number will have side effects,
1463 		 * so we deal with other devices at a later time
1464 		 */
1465 		return ret;
1466 	}
1467 
1468 	/* Continue to check other slave statuses */
1469 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1470 		mutex_lock(&bus->bus_lock);
1471 		if (test_bit(i, bus->assigned) == false) {
1472 			mutex_unlock(&bus->bus_lock);
1473 			continue;
1474 		}
1475 		mutex_unlock(&bus->bus_lock);
1476 
1477 		slave = sdw_get_slave(bus, i);
1478 		if (!slave)
1479 			continue;
1480 
1481 		attached_initializing = false;
1482 
1483 		switch (status[i]) {
1484 		case SDW_SLAVE_UNATTACHED:
1485 			if (slave->status == SDW_SLAVE_UNATTACHED)
1486 				break;
1487 
1488 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1489 			break;
1490 
1491 		case SDW_SLAVE_ALERT:
1492 			ret = sdw_handle_slave_alerts(slave);
1493 			if (ret)
1494 				dev_err(bus->dev,
1495 					"Slave %d alert handling failed: %d\n",
1496 					i, ret);
1497 			break;
1498 
1499 		case SDW_SLAVE_ATTACHED:
1500 			if (slave->status == SDW_SLAVE_ATTACHED)
1501 				break;
1502 
1503 			prev_status = slave->status;
1504 			sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1505 
1506 			if (prev_status == SDW_SLAVE_ALERT)
1507 				break;
1508 
1509 			attached_initializing = true;
1510 
1511 			ret = sdw_initialize_slave(slave);
1512 			if (ret)
1513 				dev_err(bus->dev,
1514 					"Slave %d initialization failed: %d\n",
1515 					i, ret);
1516 
1517 			break;
1518 
1519 		default:
1520 			dev_err(bus->dev, "Invalid slave %d status:%d\n",
1521 				i, status[i]);
1522 			break;
1523 		}
1524 
1525 		ret = sdw_update_slave_status(slave, status[i]);
1526 		if (ret)
1527 			dev_err(slave->bus->dev,
1528 				"Update Slave status failed:%d\n", ret);
1529 		if (attached_initializing)
1530 			complete(&slave->initialization_complete);
1531 	}
1532 
1533 	return ret;
1534 }
1535 EXPORT_SYMBOL(sdw_handle_slave_status);
1536 
1537 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1538 {
1539 	struct sdw_slave *slave;
1540 	int i;
1541 
1542 	/* Check all non-zero devices */
1543 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1544 		mutex_lock(&bus->bus_lock);
1545 		if (test_bit(i, bus->assigned) == false) {
1546 			mutex_unlock(&bus->bus_lock);
1547 			continue;
1548 		}
1549 		mutex_unlock(&bus->bus_lock);
1550 
1551 		slave = sdw_get_slave(bus, i);
1552 		if (!slave)
1553 			continue;
1554 
1555 		if (slave->status != SDW_SLAVE_UNATTACHED)
1556 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1557 
1558 		/* keep track of request, used in pm_runtime resume */
1559 		slave->unattach_request = request;
1560 	}
1561 }
1562 EXPORT_SYMBOL(sdw_clear_slave_status);
1563