1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 // Copyright(c) 2015-17 Intel Corporation. 3 4 #include <linux/acpi.h> 5 #include <linux/delay.h> 6 #include <linux/mod_devicetable.h> 7 #include <linux/pm_runtime.h> 8 #include <linux/soundwire/sdw_registers.h> 9 #include <linux/soundwire/sdw.h> 10 #include "bus.h" 11 #include "sysfs_local.h" 12 13 static DEFINE_IDA(sdw_ida); 14 15 static int sdw_get_id(struct sdw_bus *bus) 16 { 17 int rc = ida_alloc(&sdw_ida, GFP_KERNEL); 18 19 if (rc < 0) 20 return rc; 21 22 bus->id = rc; 23 return 0; 24 } 25 26 /** 27 * sdw_bus_master_add() - add a bus Master instance 28 * @bus: bus instance 29 * @parent: parent device 30 * @fwnode: firmware node handle 31 * 32 * Initializes the bus instance, read properties and create child 33 * devices. 34 */ 35 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent, 36 struct fwnode_handle *fwnode) 37 { 38 struct sdw_master_prop *prop = NULL; 39 int ret; 40 41 if (!parent) { 42 pr_err("SoundWire parent device is not set\n"); 43 return -ENODEV; 44 } 45 46 ret = sdw_get_id(bus); 47 if (ret < 0) { 48 dev_err(parent, "Failed to get bus id\n"); 49 return ret; 50 } 51 52 ret = sdw_master_device_add(bus, parent, fwnode); 53 if (ret < 0) { 54 dev_err(parent, "Failed to add master device at link %d\n", 55 bus->link_id); 56 return ret; 57 } 58 59 if (!bus->ops) { 60 dev_err(bus->dev, "SoundWire Bus ops are not set\n"); 61 return -EINVAL; 62 } 63 64 if (!bus->compute_params) { 65 dev_err(bus->dev, 66 "Bandwidth allocation not configured, compute_params no set\n"); 67 return -EINVAL; 68 } 69 70 mutex_init(&bus->msg_lock); 71 mutex_init(&bus->bus_lock); 72 INIT_LIST_HEAD(&bus->slaves); 73 INIT_LIST_HEAD(&bus->m_rt_list); 74 75 /* 76 * Initialize multi_link flag 77 * TODO: populate this flag by reading property from FW node 78 */ 79 bus->multi_link = false; 80 if (bus->ops->read_prop) { 81 ret = bus->ops->read_prop(bus); 82 if (ret < 0) { 83 dev_err(bus->dev, 84 "Bus read properties failed:%d\n", ret); 85 return ret; 86 } 87 } 88 89 sdw_bus_debugfs_init(bus); 90 91 /* 92 * Device numbers in SoundWire are 0 through 15. Enumeration device 93 * number (0), Broadcast device number (15), Group numbers (12 and 94 * 13) and Master device number (14) are not used for assignment so 95 * mask these and other higher bits. 96 */ 97 98 /* Set higher order bits */ 99 *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM); 100 101 /* Set enumuration device number and broadcast device number */ 102 set_bit(SDW_ENUM_DEV_NUM, bus->assigned); 103 set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned); 104 105 /* Set group device numbers and master device number */ 106 set_bit(SDW_GROUP12_DEV_NUM, bus->assigned); 107 set_bit(SDW_GROUP13_DEV_NUM, bus->assigned); 108 set_bit(SDW_MASTER_DEV_NUM, bus->assigned); 109 110 /* 111 * SDW is an enumerable bus, but devices can be powered off. So, 112 * they won't be able to report as present. 113 * 114 * Create Slave devices based on Slaves described in 115 * the respective firmware (ACPI/DT) 116 */ 117 if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev)) 118 ret = sdw_acpi_find_slaves(bus); 119 else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node) 120 ret = sdw_of_find_slaves(bus); 121 else 122 ret = -ENOTSUPP; /* No ACPI/DT so error out */ 123 124 if (ret < 0) { 125 dev_err(bus->dev, "Finding slaves failed:%d\n", ret); 126 return ret; 127 } 128 129 /* 130 * Initialize clock values based on Master properties. The max 131 * frequency is read from max_clk_freq property. Current assumption 132 * is that the bus will start at highest clock frequency when 133 * powered on. 134 * 135 * Default active bank will be 0 as out of reset the Slaves have 136 * to start with bank 0 (Table 40 of Spec) 137 */ 138 prop = &bus->prop; 139 bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR; 140 bus->params.curr_dr_freq = bus->params.max_dr_freq; 141 bus->params.curr_bank = SDW_BANK0; 142 bus->params.next_bank = SDW_BANK1; 143 144 return 0; 145 } 146 EXPORT_SYMBOL(sdw_bus_master_add); 147 148 static int sdw_delete_slave(struct device *dev, void *data) 149 { 150 struct sdw_slave *slave = dev_to_sdw_dev(dev); 151 struct sdw_bus *bus = slave->bus; 152 153 pm_runtime_disable(dev); 154 155 sdw_slave_debugfs_exit(slave); 156 157 mutex_lock(&bus->bus_lock); 158 159 if (slave->dev_num) /* clear dev_num if assigned */ 160 clear_bit(slave->dev_num, bus->assigned); 161 162 list_del_init(&slave->node); 163 mutex_unlock(&bus->bus_lock); 164 165 device_unregister(dev); 166 return 0; 167 } 168 169 /** 170 * sdw_bus_master_delete() - delete the bus master instance 171 * @bus: bus to be deleted 172 * 173 * Remove the instance, delete the child devices. 174 */ 175 void sdw_bus_master_delete(struct sdw_bus *bus) 176 { 177 device_for_each_child(bus->dev, NULL, sdw_delete_slave); 178 sdw_master_device_del(bus); 179 180 sdw_bus_debugfs_exit(bus); 181 ida_free(&sdw_ida, bus->id); 182 } 183 EXPORT_SYMBOL(sdw_bus_master_delete); 184 185 /* 186 * SDW IO Calls 187 */ 188 189 static inline int find_response_code(enum sdw_command_response resp) 190 { 191 switch (resp) { 192 case SDW_CMD_OK: 193 return 0; 194 195 case SDW_CMD_IGNORED: 196 return -ENODATA; 197 198 case SDW_CMD_TIMEOUT: 199 return -ETIMEDOUT; 200 201 default: 202 return -EIO; 203 } 204 } 205 206 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg) 207 { 208 int retry = bus->prop.err_threshold; 209 enum sdw_command_response resp; 210 int ret = 0, i; 211 212 for (i = 0; i <= retry; i++) { 213 resp = bus->ops->xfer_msg(bus, msg); 214 ret = find_response_code(resp); 215 216 /* if cmd is ok or ignored return */ 217 if (ret == 0 || ret == -ENODATA) 218 return ret; 219 } 220 221 return ret; 222 } 223 224 static inline int do_transfer_defer(struct sdw_bus *bus, 225 struct sdw_msg *msg, 226 struct sdw_defer *defer) 227 { 228 int retry = bus->prop.err_threshold; 229 enum sdw_command_response resp; 230 int ret = 0, i; 231 232 defer->msg = msg; 233 defer->length = msg->len; 234 init_completion(&defer->complete); 235 236 for (i = 0; i <= retry; i++) { 237 resp = bus->ops->xfer_msg_defer(bus, msg, defer); 238 ret = find_response_code(resp); 239 /* if cmd is ok or ignored return */ 240 if (ret == 0 || ret == -ENODATA) 241 return ret; 242 } 243 244 return ret; 245 } 246 247 static int sdw_reset_page(struct sdw_bus *bus, u16 dev_num) 248 { 249 int retry = bus->prop.err_threshold; 250 enum sdw_command_response resp; 251 int ret = 0, i; 252 253 for (i = 0; i <= retry; i++) { 254 resp = bus->ops->reset_page_addr(bus, dev_num); 255 ret = find_response_code(resp); 256 /* if cmd is ok or ignored return */ 257 if (ret == 0 || ret == -ENODATA) 258 return ret; 259 } 260 261 return ret; 262 } 263 264 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg) 265 { 266 int ret; 267 268 ret = do_transfer(bus, msg); 269 if (ret != 0 && ret != -ENODATA) 270 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n", 271 msg->dev_num, ret, 272 (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read", 273 msg->addr, msg->len); 274 275 if (msg->page) 276 sdw_reset_page(bus, msg->dev_num); 277 278 return ret; 279 } 280 281 /** 282 * sdw_transfer() - Synchronous transfer message to a SDW Slave device 283 * @bus: SDW bus 284 * @msg: SDW message to be xfered 285 */ 286 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg) 287 { 288 int ret; 289 290 mutex_lock(&bus->msg_lock); 291 292 ret = sdw_transfer_unlocked(bus, msg); 293 294 mutex_unlock(&bus->msg_lock); 295 296 return ret; 297 } 298 299 /** 300 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device 301 * @bus: SDW bus 302 * @msg: SDW message to be xfered 303 * @defer: Defer block for signal completion 304 * 305 * Caller needs to hold the msg_lock lock while calling this 306 */ 307 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg, 308 struct sdw_defer *defer) 309 { 310 int ret; 311 312 if (!bus->ops->xfer_msg_defer) 313 return -ENOTSUPP; 314 315 ret = do_transfer_defer(bus, msg, defer); 316 if (ret != 0 && ret != -ENODATA) 317 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n", 318 msg->dev_num, ret); 319 320 if (msg->page) 321 sdw_reset_page(bus, msg->dev_num); 322 323 return ret; 324 } 325 326 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave, 327 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf) 328 { 329 memset(msg, 0, sizeof(*msg)); 330 msg->addr = addr; /* addr is 16 bit and truncated here */ 331 msg->len = count; 332 msg->dev_num = dev_num; 333 msg->flags = flags; 334 msg->buf = buf; 335 336 if (addr < SDW_REG_NO_PAGE) /* no paging area */ 337 return 0; 338 339 if (addr >= SDW_REG_MAX) { /* illegal addr */ 340 pr_err("SDW: Invalid address %x passed\n", addr); 341 return -EINVAL; 342 } 343 344 if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */ 345 if (slave && !slave->prop.paging_support) 346 return 0; 347 /* no need for else as that will fall-through to paging */ 348 } 349 350 /* paging mandatory */ 351 if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) { 352 pr_err("SDW: Invalid device for paging :%d\n", dev_num); 353 return -EINVAL; 354 } 355 356 if (!slave) { 357 pr_err("SDW: No slave for paging addr\n"); 358 return -EINVAL; 359 } 360 361 if (!slave->prop.paging_support) { 362 dev_err(&slave->dev, 363 "address %x needs paging but no support\n", addr); 364 return -EINVAL; 365 } 366 367 msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr); 368 msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr); 369 msg->addr |= BIT(15); 370 msg->page = true; 371 372 return 0; 373 } 374 375 /* 376 * Read/Write IO functions. 377 * no_pm versions can only be called by the bus, e.g. while enumerating or 378 * handling suspend-resume sequences. 379 * all clients need to use the pm versions 380 */ 381 382 static int 383 sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) 384 { 385 struct sdw_msg msg; 386 int ret; 387 388 ret = sdw_fill_msg(&msg, slave, addr, count, 389 slave->dev_num, SDW_MSG_FLAG_READ, val); 390 if (ret < 0) 391 return ret; 392 393 ret = sdw_transfer(slave->bus, &msg); 394 if (slave->is_mockup_device) 395 ret = 0; 396 return ret; 397 } 398 399 static int 400 sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val) 401 { 402 struct sdw_msg msg; 403 int ret; 404 405 ret = sdw_fill_msg(&msg, slave, addr, count, 406 slave->dev_num, SDW_MSG_FLAG_WRITE, (u8 *)val); 407 if (ret < 0) 408 return ret; 409 410 ret = sdw_transfer(slave->bus, &msg); 411 if (slave->is_mockup_device) 412 ret = 0; 413 return ret; 414 } 415 416 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value) 417 { 418 return sdw_nwrite_no_pm(slave, addr, 1, &value); 419 } 420 EXPORT_SYMBOL(sdw_write_no_pm); 421 422 static int 423 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr) 424 { 425 struct sdw_msg msg; 426 u8 buf; 427 int ret; 428 429 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 430 SDW_MSG_FLAG_READ, &buf); 431 if (ret < 0) 432 return ret; 433 434 ret = sdw_transfer(bus, &msg); 435 if (ret < 0) 436 return ret; 437 438 return buf; 439 } 440 441 static int 442 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value) 443 { 444 struct sdw_msg msg; 445 int ret; 446 447 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 448 SDW_MSG_FLAG_WRITE, &value); 449 if (ret < 0) 450 return ret; 451 452 return sdw_transfer(bus, &msg); 453 } 454 455 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr) 456 { 457 struct sdw_msg msg; 458 u8 buf; 459 int ret; 460 461 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 462 SDW_MSG_FLAG_READ, &buf); 463 if (ret < 0) 464 return ret; 465 466 ret = sdw_transfer_unlocked(bus, &msg); 467 if (ret < 0) 468 return ret; 469 470 return buf; 471 } 472 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked); 473 474 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value) 475 { 476 struct sdw_msg msg; 477 int ret; 478 479 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 480 SDW_MSG_FLAG_WRITE, &value); 481 if (ret < 0) 482 return ret; 483 484 return sdw_transfer_unlocked(bus, &msg); 485 } 486 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked); 487 488 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr) 489 { 490 u8 buf; 491 int ret; 492 493 ret = sdw_nread_no_pm(slave, addr, 1, &buf); 494 if (ret < 0) 495 return ret; 496 else 497 return buf; 498 } 499 EXPORT_SYMBOL(sdw_read_no_pm); 500 501 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val) 502 { 503 int tmp; 504 505 tmp = sdw_read_no_pm(slave, addr); 506 if (tmp < 0) 507 return tmp; 508 509 tmp = (tmp & ~mask) | val; 510 return sdw_write_no_pm(slave, addr, tmp); 511 } 512 EXPORT_SYMBOL(sdw_update_no_pm); 513 514 /* Read-Modify-Write Slave register */ 515 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val) 516 { 517 int tmp; 518 519 tmp = sdw_read(slave, addr); 520 if (tmp < 0) 521 return tmp; 522 523 tmp = (tmp & ~mask) | val; 524 return sdw_write(slave, addr, tmp); 525 } 526 EXPORT_SYMBOL(sdw_update); 527 528 /** 529 * sdw_nread() - Read "n" contiguous SDW Slave registers 530 * @slave: SDW Slave 531 * @addr: Register address 532 * @count: length 533 * @val: Buffer for values to be read 534 */ 535 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) 536 { 537 int ret; 538 539 ret = pm_runtime_get_sync(&slave->dev); 540 if (ret < 0 && ret != -EACCES) { 541 pm_runtime_put_noidle(&slave->dev); 542 return ret; 543 } 544 545 ret = sdw_nread_no_pm(slave, addr, count, val); 546 547 pm_runtime_mark_last_busy(&slave->dev); 548 pm_runtime_put(&slave->dev); 549 550 return ret; 551 } 552 EXPORT_SYMBOL(sdw_nread); 553 554 /** 555 * sdw_nwrite() - Write "n" contiguous SDW Slave registers 556 * @slave: SDW Slave 557 * @addr: Register address 558 * @count: length 559 * @val: Buffer for values to be written 560 */ 561 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val) 562 { 563 int ret; 564 565 ret = pm_runtime_get_sync(&slave->dev); 566 if (ret < 0 && ret != -EACCES) { 567 pm_runtime_put_noidle(&slave->dev); 568 return ret; 569 } 570 571 ret = sdw_nwrite_no_pm(slave, addr, count, val); 572 573 pm_runtime_mark_last_busy(&slave->dev); 574 pm_runtime_put(&slave->dev); 575 576 return ret; 577 } 578 EXPORT_SYMBOL(sdw_nwrite); 579 580 /** 581 * sdw_read() - Read a SDW Slave register 582 * @slave: SDW Slave 583 * @addr: Register address 584 */ 585 int sdw_read(struct sdw_slave *slave, u32 addr) 586 { 587 u8 buf; 588 int ret; 589 590 ret = sdw_nread(slave, addr, 1, &buf); 591 if (ret < 0) 592 return ret; 593 594 return buf; 595 } 596 EXPORT_SYMBOL(sdw_read); 597 598 /** 599 * sdw_write() - Write a SDW Slave register 600 * @slave: SDW Slave 601 * @addr: Register address 602 * @value: Register value 603 */ 604 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value) 605 { 606 return sdw_nwrite(slave, addr, 1, &value); 607 } 608 EXPORT_SYMBOL(sdw_write); 609 610 /* 611 * SDW alert handling 612 */ 613 614 /* called with bus_lock held */ 615 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i) 616 { 617 struct sdw_slave *slave; 618 619 list_for_each_entry(slave, &bus->slaves, node) { 620 if (slave->dev_num == i) 621 return slave; 622 } 623 624 return NULL; 625 } 626 627 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id) 628 { 629 if (slave->id.mfg_id != id.mfg_id || 630 slave->id.part_id != id.part_id || 631 slave->id.class_id != id.class_id || 632 (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID && 633 slave->id.unique_id != id.unique_id)) 634 return -ENODEV; 635 636 return 0; 637 } 638 EXPORT_SYMBOL(sdw_compare_devid); 639 640 /* called with bus_lock held */ 641 static int sdw_get_device_num(struct sdw_slave *slave) 642 { 643 int bit; 644 645 bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES); 646 if (bit == SDW_MAX_DEVICES) { 647 bit = -ENODEV; 648 goto err; 649 } 650 651 /* 652 * Do not update dev_num in Slave data structure here, 653 * Update once program dev_num is successful 654 */ 655 set_bit(bit, slave->bus->assigned); 656 657 err: 658 return bit; 659 } 660 661 static int sdw_assign_device_num(struct sdw_slave *slave) 662 { 663 struct sdw_bus *bus = slave->bus; 664 int ret, dev_num; 665 bool new_device = false; 666 667 /* check first if device number is assigned, if so reuse that */ 668 if (!slave->dev_num) { 669 if (!slave->dev_num_sticky) { 670 mutex_lock(&slave->bus->bus_lock); 671 dev_num = sdw_get_device_num(slave); 672 mutex_unlock(&slave->bus->bus_lock); 673 if (dev_num < 0) { 674 dev_err(bus->dev, "Get dev_num failed: %d\n", 675 dev_num); 676 return dev_num; 677 } 678 slave->dev_num = dev_num; 679 slave->dev_num_sticky = dev_num; 680 new_device = true; 681 } else { 682 slave->dev_num = slave->dev_num_sticky; 683 } 684 } 685 686 if (!new_device) 687 dev_dbg(bus->dev, 688 "Slave already registered, reusing dev_num:%d\n", 689 slave->dev_num); 690 691 /* Clear the slave->dev_num to transfer message on device 0 */ 692 dev_num = slave->dev_num; 693 slave->dev_num = 0; 694 695 ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num); 696 if (ret < 0) { 697 dev_err(bus->dev, "Program device_num %d failed: %d\n", 698 dev_num, ret); 699 return ret; 700 } 701 702 /* After xfer of msg, restore dev_num */ 703 slave->dev_num = slave->dev_num_sticky; 704 705 return 0; 706 } 707 708 void sdw_extract_slave_id(struct sdw_bus *bus, 709 u64 addr, struct sdw_slave_id *id) 710 { 711 dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr); 712 713 id->sdw_version = SDW_VERSION(addr); 714 id->unique_id = SDW_UNIQUE_ID(addr); 715 id->mfg_id = SDW_MFG_ID(addr); 716 id->part_id = SDW_PART_ID(addr); 717 id->class_id = SDW_CLASS_ID(addr); 718 719 dev_dbg(bus->dev, 720 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n", 721 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version); 722 } 723 EXPORT_SYMBOL(sdw_extract_slave_id); 724 725 static int sdw_program_device_num(struct sdw_bus *bus) 726 { 727 u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0}; 728 struct sdw_slave *slave, *_s; 729 struct sdw_slave_id id; 730 struct sdw_msg msg; 731 bool found; 732 int count = 0, ret; 733 u64 addr; 734 735 /* No Slave, so use raw xfer api */ 736 ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0, 737 SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf); 738 if (ret < 0) 739 return ret; 740 741 do { 742 ret = sdw_transfer(bus, &msg); 743 if (ret == -ENODATA) { /* end of device id reads */ 744 dev_dbg(bus->dev, "No more devices to enumerate\n"); 745 ret = 0; 746 break; 747 } 748 if (ret < 0) { 749 dev_err(bus->dev, "DEVID read fail:%d\n", ret); 750 break; 751 } 752 753 /* 754 * Construct the addr and extract. Cast the higher shift 755 * bits to avoid truncation due to size limit. 756 */ 757 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) | 758 ((u64)buf[2] << 24) | ((u64)buf[1] << 32) | 759 ((u64)buf[0] << 40); 760 761 sdw_extract_slave_id(bus, addr, &id); 762 763 found = false; 764 /* Now compare with entries */ 765 list_for_each_entry_safe(slave, _s, &bus->slaves, node) { 766 if (sdw_compare_devid(slave, id) == 0) { 767 found = true; 768 769 /* 770 * Assign a new dev_num to this Slave and 771 * not mark it present. It will be marked 772 * present after it reports ATTACHED on new 773 * dev_num 774 */ 775 ret = sdw_assign_device_num(slave); 776 if (ret < 0) { 777 dev_err(bus->dev, 778 "Assign dev_num failed:%d\n", 779 ret); 780 return ret; 781 } 782 783 break; 784 } 785 } 786 787 if (!found) { 788 /* TODO: Park this device in Group 13 */ 789 790 /* 791 * add Slave device even if there is no platform 792 * firmware description. There will be no driver probe 793 * but the user/integration will be able to see the 794 * device, enumeration status and device number in sysfs 795 */ 796 sdw_slave_add(bus, &id, NULL); 797 798 dev_err(bus->dev, "Slave Entry not found\n"); 799 } 800 801 count++; 802 803 /* 804 * Check till error out or retry (count) exhausts. 805 * Device can drop off and rejoin during enumeration 806 * so count till twice the bound. 807 */ 808 809 } while (ret == 0 && count < (SDW_MAX_DEVICES * 2)); 810 811 return ret; 812 } 813 814 static void sdw_modify_slave_status(struct sdw_slave *slave, 815 enum sdw_slave_status status) 816 { 817 struct sdw_bus *bus = slave->bus; 818 819 mutex_lock(&bus->bus_lock); 820 821 dev_vdbg(bus->dev, 822 "%s: changing status slave %d status %d new status %d\n", 823 __func__, slave->dev_num, slave->status, status); 824 825 if (status == SDW_SLAVE_UNATTACHED) { 826 dev_dbg(&slave->dev, 827 "%s: initializing enumeration and init completion for Slave %d\n", 828 __func__, slave->dev_num); 829 830 init_completion(&slave->enumeration_complete); 831 init_completion(&slave->initialization_complete); 832 833 } else if ((status == SDW_SLAVE_ATTACHED) && 834 (slave->status == SDW_SLAVE_UNATTACHED)) { 835 dev_dbg(&slave->dev, 836 "%s: signaling enumeration completion for Slave %d\n", 837 __func__, slave->dev_num); 838 839 complete(&slave->enumeration_complete); 840 } 841 slave->status = status; 842 mutex_unlock(&bus->bus_lock); 843 } 844 845 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave, 846 enum sdw_clk_stop_mode mode, 847 enum sdw_clk_stop_type type) 848 { 849 int ret; 850 851 if (slave->ops && slave->ops->clk_stop) { 852 ret = slave->ops->clk_stop(slave, mode, type); 853 if (ret < 0) 854 return ret; 855 } 856 857 return 0; 858 } 859 860 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave, 861 enum sdw_clk_stop_mode mode, 862 bool prepare) 863 { 864 bool wake_en; 865 u32 val = 0; 866 int ret; 867 868 wake_en = slave->prop.wake_capable; 869 870 if (prepare) { 871 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP; 872 873 if (mode == SDW_CLK_STOP_MODE1) 874 val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1; 875 876 if (wake_en) 877 val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN; 878 } else { 879 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL); 880 if (ret < 0) { 881 if (ret != -ENODATA) 882 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret); 883 return ret; 884 } 885 val = ret; 886 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP); 887 } 888 889 ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val); 890 891 if (ret < 0 && ret != -ENODATA) 892 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret); 893 894 return ret; 895 } 896 897 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num) 898 { 899 int retry = bus->clk_stop_timeout; 900 int val; 901 902 do { 903 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT); 904 if (val < 0) { 905 if (val != -ENODATA) 906 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val); 907 return val; 908 } 909 val &= SDW_SCP_STAT_CLK_STP_NF; 910 if (!val) { 911 dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n", 912 dev_num); 913 return 0; 914 } 915 916 usleep_range(1000, 1500); 917 retry--; 918 } while (retry); 919 920 dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n", 921 dev_num); 922 923 return -ETIMEDOUT; 924 } 925 926 /** 927 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop 928 * 929 * @bus: SDW bus instance 930 * 931 * Query Slave for clock stop mode and prepare for that mode. 932 */ 933 int sdw_bus_prep_clk_stop(struct sdw_bus *bus) 934 { 935 bool simple_clk_stop = true; 936 struct sdw_slave *slave; 937 bool is_slave = false; 938 int ret = 0; 939 940 /* 941 * In order to save on transition time, prepare 942 * each Slave and then wait for all Slave(s) to be 943 * prepared for clock stop. 944 * If one of the Slave devices has lost sync and 945 * replies with Command Ignored/-ENODATA, we continue 946 * the loop 947 */ 948 list_for_each_entry(slave, &bus->slaves, node) { 949 if (!slave->dev_num) 950 continue; 951 952 if (slave->status != SDW_SLAVE_ATTACHED && 953 slave->status != SDW_SLAVE_ALERT) 954 continue; 955 956 /* Identify if Slave(s) are available on Bus */ 957 is_slave = true; 958 959 ret = sdw_slave_clk_stop_callback(slave, 960 SDW_CLK_STOP_MODE0, 961 SDW_CLK_PRE_PREPARE); 962 if (ret < 0 && ret != -ENODATA) { 963 dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret); 964 return ret; 965 } 966 967 /* Only prepare a Slave device if needed */ 968 if (!slave->prop.simple_clk_stop_capable) { 969 simple_clk_stop = false; 970 971 ret = sdw_slave_clk_stop_prepare(slave, 972 SDW_CLK_STOP_MODE0, 973 true); 974 if (ret < 0 && ret != -ENODATA) { 975 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret); 976 return ret; 977 } 978 } 979 } 980 981 /* Skip remaining clock stop preparation if no Slave is attached */ 982 if (!is_slave) 983 return 0; 984 985 /* 986 * Don't wait for all Slaves to be ready if they follow the simple 987 * state machine 988 */ 989 if (!simple_clk_stop) { 990 ret = sdw_bus_wait_for_clk_prep_deprep(bus, 991 SDW_BROADCAST_DEV_NUM); 992 /* 993 * if there are no Slave devices present and the reply is 994 * Command_Ignored/-ENODATA, we don't need to continue with the 995 * flow and can just return here. The error code is not modified 996 * and its handling left as an exercise for the caller. 997 */ 998 if (ret < 0) 999 return ret; 1000 } 1001 1002 /* Inform slaves that prep is done */ 1003 list_for_each_entry(slave, &bus->slaves, node) { 1004 if (!slave->dev_num) 1005 continue; 1006 1007 if (slave->status != SDW_SLAVE_ATTACHED && 1008 slave->status != SDW_SLAVE_ALERT) 1009 continue; 1010 1011 ret = sdw_slave_clk_stop_callback(slave, 1012 SDW_CLK_STOP_MODE0, 1013 SDW_CLK_POST_PREPARE); 1014 1015 if (ret < 0 && ret != -ENODATA) { 1016 dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret); 1017 return ret; 1018 } 1019 } 1020 1021 return 0; 1022 } 1023 EXPORT_SYMBOL(sdw_bus_prep_clk_stop); 1024 1025 /** 1026 * sdw_bus_clk_stop: stop bus clock 1027 * 1028 * @bus: SDW bus instance 1029 * 1030 * After preparing the Slaves for clock stop, stop the clock by broadcasting 1031 * write to SCP_CTRL register. 1032 */ 1033 int sdw_bus_clk_stop(struct sdw_bus *bus) 1034 { 1035 int ret; 1036 1037 /* 1038 * broadcast clock stop now, attached Slaves will ACK this, 1039 * unattached will ignore 1040 */ 1041 ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM, 1042 SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW); 1043 if (ret < 0) { 1044 if (ret != -ENODATA) 1045 dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret); 1046 return ret; 1047 } 1048 1049 return 0; 1050 } 1051 EXPORT_SYMBOL(sdw_bus_clk_stop); 1052 1053 /** 1054 * sdw_bus_exit_clk_stop: Exit clock stop mode 1055 * 1056 * @bus: SDW bus instance 1057 * 1058 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves 1059 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate 1060 * back. 1061 */ 1062 int sdw_bus_exit_clk_stop(struct sdw_bus *bus) 1063 { 1064 bool simple_clk_stop = true; 1065 struct sdw_slave *slave; 1066 bool is_slave = false; 1067 int ret; 1068 1069 /* 1070 * In order to save on transition time, de-prepare 1071 * each Slave and then wait for all Slave(s) to be 1072 * de-prepared after clock resume. 1073 */ 1074 list_for_each_entry(slave, &bus->slaves, node) { 1075 if (!slave->dev_num) 1076 continue; 1077 1078 if (slave->status != SDW_SLAVE_ATTACHED && 1079 slave->status != SDW_SLAVE_ALERT) 1080 continue; 1081 1082 /* Identify if Slave(s) are available on Bus */ 1083 is_slave = true; 1084 1085 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0, 1086 SDW_CLK_PRE_DEPREPARE); 1087 if (ret < 0) 1088 dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret); 1089 1090 /* Only de-prepare a Slave device if needed */ 1091 if (!slave->prop.simple_clk_stop_capable) { 1092 simple_clk_stop = false; 1093 1094 ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0, 1095 false); 1096 1097 if (ret < 0) 1098 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret); 1099 } 1100 } 1101 1102 /* Skip remaining clock stop de-preparation if no Slave is attached */ 1103 if (!is_slave) 1104 return 0; 1105 1106 /* 1107 * Don't wait for all Slaves to be ready if they follow the simple 1108 * state machine 1109 */ 1110 if (!simple_clk_stop) { 1111 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM); 1112 if (ret < 0) 1113 dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret); 1114 } 1115 1116 list_for_each_entry(slave, &bus->slaves, node) { 1117 if (!slave->dev_num) 1118 continue; 1119 1120 if (slave->status != SDW_SLAVE_ATTACHED && 1121 slave->status != SDW_SLAVE_ALERT) 1122 continue; 1123 1124 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0, 1125 SDW_CLK_POST_DEPREPARE); 1126 if (ret < 0) 1127 dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret); 1128 } 1129 1130 return 0; 1131 } 1132 EXPORT_SYMBOL(sdw_bus_exit_clk_stop); 1133 1134 int sdw_configure_dpn_intr(struct sdw_slave *slave, 1135 int port, bool enable, int mask) 1136 { 1137 u32 addr; 1138 int ret; 1139 u8 val = 0; 1140 1141 if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) { 1142 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n", 1143 enable ? "on" : "off"); 1144 mask |= SDW_DPN_INT_TEST_FAIL; 1145 } 1146 1147 addr = SDW_DPN_INTMASK(port); 1148 1149 /* Set/Clear port ready interrupt mask */ 1150 if (enable) { 1151 val |= mask; 1152 val |= SDW_DPN_INT_PORT_READY; 1153 } else { 1154 val &= ~(mask); 1155 val &= ~SDW_DPN_INT_PORT_READY; 1156 } 1157 1158 ret = sdw_update(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val); 1159 if (ret < 0) 1160 dev_err(&slave->dev, 1161 "SDW_DPN_INTMASK write failed:%d\n", val); 1162 1163 return ret; 1164 } 1165 1166 static int sdw_slave_set_frequency(struct sdw_slave *slave) 1167 { 1168 u32 mclk_freq = slave->bus->prop.mclk_freq; 1169 u32 curr_freq = slave->bus->params.curr_dr_freq >> 1; 1170 unsigned int scale; 1171 u8 scale_index; 1172 u8 base; 1173 int ret; 1174 1175 /* 1176 * frequency base and scale registers are required for SDCA 1177 * devices. They may also be used for 1.2+/non-SDCA devices, 1178 * but we will need a DisCo property to cover this case 1179 */ 1180 if (!slave->id.class_id) 1181 return 0; 1182 1183 if (!mclk_freq) { 1184 dev_err(&slave->dev, 1185 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n"); 1186 return -EINVAL; 1187 } 1188 1189 /* 1190 * map base frequency using Table 89 of SoundWire 1.2 spec. 1191 * The order of the tests just follows the specification, this 1192 * is not a selection between possible values or a search for 1193 * the best value but just a mapping. Only one case per platform 1194 * is relevant. 1195 * Some BIOS have inconsistent values for mclk_freq but a 1196 * correct root so we force the mclk_freq to avoid variations. 1197 */ 1198 if (!(19200000 % mclk_freq)) { 1199 mclk_freq = 19200000; 1200 base = SDW_SCP_BASE_CLOCK_19200000_HZ; 1201 } else if (!(24000000 % mclk_freq)) { 1202 mclk_freq = 24000000; 1203 base = SDW_SCP_BASE_CLOCK_24000000_HZ; 1204 } else if (!(24576000 % mclk_freq)) { 1205 mclk_freq = 24576000; 1206 base = SDW_SCP_BASE_CLOCK_24576000_HZ; 1207 } else if (!(22579200 % mclk_freq)) { 1208 mclk_freq = 22579200; 1209 base = SDW_SCP_BASE_CLOCK_22579200_HZ; 1210 } else if (!(32000000 % mclk_freq)) { 1211 mclk_freq = 32000000; 1212 base = SDW_SCP_BASE_CLOCK_32000000_HZ; 1213 } else { 1214 dev_err(&slave->dev, 1215 "Unsupported clock base, mclk %d\n", 1216 mclk_freq); 1217 return -EINVAL; 1218 } 1219 1220 if (mclk_freq % curr_freq) { 1221 dev_err(&slave->dev, 1222 "mclk %d is not multiple of bus curr_freq %d\n", 1223 mclk_freq, curr_freq); 1224 return -EINVAL; 1225 } 1226 1227 scale = mclk_freq / curr_freq; 1228 1229 /* 1230 * map scale to Table 90 of SoundWire 1.2 spec - and check 1231 * that the scale is a power of two and maximum 64 1232 */ 1233 scale_index = ilog2(scale); 1234 1235 if (BIT(scale_index) != scale || scale_index > 6) { 1236 dev_err(&slave->dev, 1237 "No match found for scale %d, bus mclk %d curr_freq %d\n", 1238 scale, mclk_freq, curr_freq); 1239 return -EINVAL; 1240 } 1241 scale_index++; 1242 1243 ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base); 1244 if (ret < 0) { 1245 dev_err(&slave->dev, 1246 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret); 1247 return ret; 1248 } 1249 1250 /* initialize scale for both banks */ 1251 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index); 1252 if (ret < 0) { 1253 dev_err(&slave->dev, 1254 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret); 1255 return ret; 1256 } 1257 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index); 1258 if (ret < 0) 1259 dev_err(&slave->dev, 1260 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret); 1261 1262 dev_dbg(&slave->dev, 1263 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n", 1264 base, scale_index, mclk_freq, curr_freq); 1265 1266 return ret; 1267 } 1268 1269 static int sdw_initialize_slave(struct sdw_slave *slave) 1270 { 1271 struct sdw_slave_prop *prop = &slave->prop; 1272 int status; 1273 int ret; 1274 u8 val; 1275 1276 ret = sdw_slave_set_frequency(slave); 1277 if (ret < 0) 1278 return ret; 1279 1280 if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) { 1281 /* Clear bus clash interrupt before enabling interrupt mask */ 1282 status = sdw_read_no_pm(slave, SDW_SCP_INT1); 1283 if (status < 0) { 1284 dev_err(&slave->dev, 1285 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status); 1286 return status; 1287 } 1288 if (status & SDW_SCP_INT1_BUS_CLASH) { 1289 dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n"); 1290 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH); 1291 if (ret < 0) { 1292 dev_err(&slave->dev, 1293 "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret); 1294 return ret; 1295 } 1296 } 1297 } 1298 if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) && 1299 !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) { 1300 /* Clear parity interrupt before enabling interrupt mask */ 1301 status = sdw_read_no_pm(slave, SDW_SCP_INT1); 1302 if (status < 0) { 1303 dev_err(&slave->dev, 1304 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status); 1305 return status; 1306 } 1307 if (status & SDW_SCP_INT1_PARITY) { 1308 dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n"); 1309 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY); 1310 if (ret < 0) { 1311 dev_err(&slave->dev, 1312 "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret); 1313 return ret; 1314 } 1315 } 1316 } 1317 1318 /* 1319 * Set SCP_INT1_MASK register, typically bus clash and 1320 * implementation-defined interrupt mask. The Parity detection 1321 * may not always be correct on startup so its use is 1322 * device-dependent, it might e.g. only be enabled in 1323 * steady-state after a couple of frames. 1324 */ 1325 val = slave->prop.scp_int1_mask; 1326 1327 /* Enable SCP interrupts */ 1328 ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val); 1329 if (ret < 0) { 1330 dev_err(&slave->dev, 1331 "SDW_SCP_INTMASK1 write failed:%d\n", ret); 1332 return ret; 1333 } 1334 1335 /* No need to continue if DP0 is not present */ 1336 if (!slave->prop.dp0_prop) 1337 return 0; 1338 1339 /* Enable DP0 interrupts */ 1340 val = prop->dp0_prop->imp_def_interrupts; 1341 val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE; 1342 1343 ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val); 1344 if (ret < 0) 1345 dev_err(&slave->dev, 1346 "SDW_DP0_INTMASK read failed:%d\n", ret); 1347 return ret; 1348 } 1349 1350 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status) 1351 { 1352 u8 clear, impl_int_mask; 1353 int status, status2, ret, count = 0; 1354 1355 status = sdw_read_no_pm(slave, SDW_DP0_INT); 1356 if (status < 0) { 1357 dev_err(&slave->dev, 1358 "SDW_DP0_INT read failed:%d\n", status); 1359 return status; 1360 } 1361 1362 do { 1363 clear = status & ~SDW_DP0_INTERRUPTS; 1364 1365 if (status & SDW_DP0_INT_TEST_FAIL) { 1366 dev_err(&slave->dev, "Test fail for port 0\n"); 1367 clear |= SDW_DP0_INT_TEST_FAIL; 1368 } 1369 1370 /* 1371 * Assumption: PORT_READY interrupt will be received only for 1372 * ports implementing Channel Prepare state machine (CP_SM) 1373 */ 1374 1375 if (status & SDW_DP0_INT_PORT_READY) { 1376 complete(&slave->port_ready[0]); 1377 clear |= SDW_DP0_INT_PORT_READY; 1378 } 1379 1380 if (status & SDW_DP0_INT_BRA_FAILURE) { 1381 dev_err(&slave->dev, "BRA failed\n"); 1382 clear |= SDW_DP0_INT_BRA_FAILURE; 1383 } 1384 1385 impl_int_mask = SDW_DP0_INT_IMPDEF1 | 1386 SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3; 1387 1388 if (status & impl_int_mask) { 1389 clear |= impl_int_mask; 1390 *slave_status = clear; 1391 } 1392 1393 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */ 1394 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear); 1395 if (ret < 0) { 1396 dev_err(&slave->dev, 1397 "SDW_DP0_INT write failed:%d\n", ret); 1398 return ret; 1399 } 1400 1401 /* Read DP0 interrupt again */ 1402 status2 = sdw_read_no_pm(slave, SDW_DP0_INT); 1403 if (status2 < 0) { 1404 dev_err(&slave->dev, 1405 "SDW_DP0_INT read failed:%d\n", status2); 1406 return status2; 1407 } 1408 /* filter to limit loop to interrupts identified in the first status read */ 1409 status &= status2; 1410 1411 count++; 1412 1413 /* we can get alerts while processing so keep retrying */ 1414 } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY)); 1415 1416 if (count == SDW_READ_INTR_CLEAR_RETRY) 1417 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n"); 1418 1419 return ret; 1420 } 1421 1422 static int sdw_handle_port_interrupt(struct sdw_slave *slave, 1423 int port, u8 *slave_status) 1424 { 1425 u8 clear, impl_int_mask; 1426 int status, status2, ret, count = 0; 1427 u32 addr; 1428 1429 if (port == 0) 1430 return sdw_handle_dp0_interrupt(slave, slave_status); 1431 1432 addr = SDW_DPN_INT(port); 1433 status = sdw_read_no_pm(slave, addr); 1434 if (status < 0) { 1435 dev_err(&slave->dev, 1436 "SDW_DPN_INT read failed:%d\n", status); 1437 1438 return status; 1439 } 1440 1441 do { 1442 clear = status & ~SDW_DPN_INTERRUPTS; 1443 1444 if (status & SDW_DPN_INT_TEST_FAIL) { 1445 dev_err(&slave->dev, "Test fail for port:%d\n", port); 1446 clear |= SDW_DPN_INT_TEST_FAIL; 1447 } 1448 1449 /* 1450 * Assumption: PORT_READY interrupt will be received only 1451 * for ports implementing CP_SM. 1452 */ 1453 if (status & SDW_DPN_INT_PORT_READY) { 1454 complete(&slave->port_ready[port]); 1455 clear |= SDW_DPN_INT_PORT_READY; 1456 } 1457 1458 impl_int_mask = SDW_DPN_INT_IMPDEF1 | 1459 SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3; 1460 1461 if (status & impl_int_mask) { 1462 clear |= impl_int_mask; 1463 *slave_status = clear; 1464 } 1465 1466 /* clear the interrupt but don't touch reserved fields */ 1467 ret = sdw_write_no_pm(slave, addr, clear); 1468 if (ret < 0) { 1469 dev_err(&slave->dev, 1470 "SDW_DPN_INT write failed:%d\n", ret); 1471 return ret; 1472 } 1473 1474 /* Read DPN interrupt again */ 1475 status2 = sdw_read_no_pm(slave, addr); 1476 if (status2 < 0) { 1477 dev_err(&slave->dev, 1478 "SDW_DPN_INT read failed:%d\n", status2); 1479 return status2; 1480 } 1481 /* filter to limit loop to interrupts identified in the first status read */ 1482 status &= status2; 1483 1484 count++; 1485 1486 /* we can get alerts while processing so keep retrying */ 1487 } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY)); 1488 1489 if (count == SDW_READ_INTR_CLEAR_RETRY) 1490 dev_warn(&slave->dev, "Reached MAX_RETRY on port read"); 1491 1492 return ret; 1493 } 1494 1495 static int sdw_handle_slave_alerts(struct sdw_slave *slave) 1496 { 1497 struct sdw_slave_intr_status slave_intr; 1498 u8 clear = 0, bit, port_status[15] = {0}; 1499 int port_num, stat, ret, count = 0; 1500 unsigned long port; 1501 bool slave_notify; 1502 u8 sdca_cascade = 0; 1503 u8 buf, buf2[2], _buf, _buf2[2]; 1504 bool parity_check; 1505 bool parity_quirk; 1506 1507 sdw_modify_slave_status(slave, SDW_SLAVE_ALERT); 1508 1509 ret = pm_runtime_get_sync(&slave->dev); 1510 if (ret < 0 && ret != -EACCES) { 1511 dev_err(&slave->dev, "Failed to resume device: %d\n", ret); 1512 pm_runtime_put_noidle(&slave->dev); 1513 return ret; 1514 } 1515 1516 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */ 1517 ret = sdw_read_no_pm(slave, SDW_SCP_INT1); 1518 if (ret < 0) { 1519 dev_err(&slave->dev, 1520 "SDW_SCP_INT1 read failed:%d\n", ret); 1521 goto io_err; 1522 } 1523 buf = ret; 1524 1525 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2); 1526 if (ret < 0) { 1527 dev_err(&slave->dev, 1528 "SDW_SCP_INT2/3 read failed:%d\n", ret); 1529 goto io_err; 1530 } 1531 1532 if (slave->prop.is_sdca) { 1533 ret = sdw_read_no_pm(slave, SDW_DP0_INT); 1534 if (ret < 0) { 1535 dev_err(&slave->dev, 1536 "SDW_DP0_INT read failed:%d\n", ret); 1537 goto io_err; 1538 } 1539 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE; 1540 } 1541 1542 do { 1543 slave_notify = false; 1544 1545 /* 1546 * Check parity, bus clash and Slave (impl defined) 1547 * interrupt 1548 */ 1549 if (buf & SDW_SCP_INT1_PARITY) { 1550 parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY; 1551 parity_quirk = !slave->first_interrupt_done && 1552 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY); 1553 1554 if (parity_check && !parity_quirk) 1555 dev_err(&slave->dev, "Parity error detected\n"); 1556 clear |= SDW_SCP_INT1_PARITY; 1557 } 1558 1559 if (buf & SDW_SCP_INT1_BUS_CLASH) { 1560 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH) 1561 dev_err(&slave->dev, "Bus clash detected\n"); 1562 clear |= SDW_SCP_INT1_BUS_CLASH; 1563 } 1564 1565 /* 1566 * When bus clash or parity errors are detected, such errors 1567 * are unlikely to be recoverable errors. 1568 * TODO: In such scenario, reset bus. Make this configurable 1569 * via sysfs property with bus reset being the default. 1570 */ 1571 1572 if (buf & SDW_SCP_INT1_IMPL_DEF) { 1573 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) { 1574 dev_dbg(&slave->dev, "Slave impl defined interrupt\n"); 1575 slave_notify = true; 1576 } 1577 clear |= SDW_SCP_INT1_IMPL_DEF; 1578 } 1579 1580 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */ 1581 if (sdca_cascade) 1582 slave_notify = true; 1583 1584 /* Check port 0 - 3 interrupts */ 1585 port = buf & SDW_SCP_INT1_PORT0_3; 1586 1587 /* To get port number corresponding to bits, shift it */ 1588 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port); 1589 for_each_set_bit(bit, &port, 8) { 1590 sdw_handle_port_interrupt(slave, bit, 1591 &port_status[bit]); 1592 } 1593 1594 /* Check if cascade 2 interrupt is present */ 1595 if (buf & SDW_SCP_INT1_SCP2_CASCADE) { 1596 port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10; 1597 for_each_set_bit(bit, &port, 8) { 1598 /* scp2 ports start from 4 */ 1599 port_num = bit + 3; 1600 sdw_handle_port_interrupt(slave, 1601 port_num, 1602 &port_status[port_num]); 1603 } 1604 } 1605 1606 /* now check last cascade */ 1607 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) { 1608 port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14; 1609 for_each_set_bit(bit, &port, 8) { 1610 /* scp3 ports start from 11 */ 1611 port_num = bit + 10; 1612 sdw_handle_port_interrupt(slave, 1613 port_num, 1614 &port_status[port_num]); 1615 } 1616 } 1617 1618 /* Update the Slave driver */ 1619 if (slave_notify && slave->ops && 1620 slave->ops->interrupt_callback) { 1621 slave_intr.sdca_cascade = sdca_cascade; 1622 slave_intr.control_port = clear; 1623 memcpy(slave_intr.port, &port_status, 1624 sizeof(slave_intr.port)); 1625 1626 slave->ops->interrupt_callback(slave, &slave_intr); 1627 } 1628 1629 /* Ack interrupt */ 1630 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear); 1631 if (ret < 0) { 1632 dev_err(&slave->dev, 1633 "SDW_SCP_INT1 write failed:%d\n", ret); 1634 goto io_err; 1635 } 1636 1637 /* at this point all initial interrupt sources were handled */ 1638 slave->first_interrupt_done = true; 1639 1640 /* 1641 * Read status again to ensure no new interrupts arrived 1642 * while servicing interrupts. 1643 */ 1644 ret = sdw_read_no_pm(slave, SDW_SCP_INT1); 1645 if (ret < 0) { 1646 dev_err(&slave->dev, 1647 "SDW_SCP_INT1 recheck read failed:%d\n", ret); 1648 goto io_err; 1649 } 1650 _buf = ret; 1651 1652 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2); 1653 if (ret < 0) { 1654 dev_err(&slave->dev, 1655 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret); 1656 goto io_err; 1657 } 1658 1659 if (slave->prop.is_sdca) { 1660 ret = sdw_read_no_pm(slave, SDW_DP0_INT); 1661 if (ret < 0) { 1662 dev_err(&slave->dev, 1663 "SDW_DP0_INT recheck read failed:%d\n", ret); 1664 goto io_err; 1665 } 1666 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE; 1667 } 1668 1669 /* 1670 * Make sure no interrupts are pending, but filter to limit loop 1671 * to interrupts identified in the first status read 1672 */ 1673 buf &= _buf; 1674 buf2[0] &= _buf2[0]; 1675 buf2[1] &= _buf2[1]; 1676 stat = buf || buf2[0] || buf2[1] || sdca_cascade; 1677 1678 /* 1679 * Exit loop if Slave is continuously in ALERT state even 1680 * after servicing the interrupt multiple times. 1681 */ 1682 count++; 1683 1684 /* we can get alerts while processing so keep retrying */ 1685 } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY); 1686 1687 if (count == SDW_READ_INTR_CLEAR_RETRY) 1688 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n"); 1689 1690 io_err: 1691 pm_runtime_mark_last_busy(&slave->dev); 1692 pm_runtime_put_autosuspend(&slave->dev); 1693 1694 return ret; 1695 } 1696 1697 static int sdw_update_slave_status(struct sdw_slave *slave, 1698 enum sdw_slave_status status) 1699 { 1700 unsigned long time; 1701 1702 if (!slave->probed) { 1703 /* 1704 * the slave status update is typically handled in an 1705 * interrupt thread, which can race with the driver 1706 * probe, e.g. when a module needs to be loaded. 1707 * 1708 * make sure the probe is complete before updating 1709 * status. 1710 */ 1711 time = wait_for_completion_timeout(&slave->probe_complete, 1712 msecs_to_jiffies(DEFAULT_PROBE_TIMEOUT)); 1713 if (!time) { 1714 dev_err(&slave->dev, "Probe not complete, timed out\n"); 1715 return -ETIMEDOUT; 1716 } 1717 } 1718 1719 if (!slave->ops || !slave->ops->update_status) 1720 return 0; 1721 1722 return slave->ops->update_status(slave, status); 1723 } 1724 1725 /** 1726 * sdw_handle_slave_status() - Handle Slave status 1727 * @bus: SDW bus instance 1728 * @status: Status for all Slave(s) 1729 */ 1730 int sdw_handle_slave_status(struct sdw_bus *bus, 1731 enum sdw_slave_status status[]) 1732 { 1733 enum sdw_slave_status prev_status; 1734 struct sdw_slave *slave; 1735 bool attached_initializing; 1736 int i, ret = 0; 1737 1738 /* first check if any Slaves fell off the bus */ 1739 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 1740 mutex_lock(&bus->bus_lock); 1741 if (test_bit(i, bus->assigned) == false) { 1742 mutex_unlock(&bus->bus_lock); 1743 continue; 1744 } 1745 mutex_unlock(&bus->bus_lock); 1746 1747 slave = sdw_get_slave(bus, i); 1748 if (!slave) 1749 continue; 1750 1751 if (status[i] == SDW_SLAVE_UNATTACHED && 1752 slave->status != SDW_SLAVE_UNATTACHED) 1753 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1754 } 1755 1756 if (status[0] == SDW_SLAVE_ATTACHED) { 1757 dev_dbg(bus->dev, "Slave attached, programming device number\n"); 1758 ret = sdw_program_device_num(bus); 1759 if (ret < 0) 1760 dev_err(bus->dev, "Slave attach failed: %d\n", ret); 1761 /* 1762 * programming a device number will have side effects, 1763 * so we deal with other devices at a later time 1764 */ 1765 return ret; 1766 } 1767 1768 /* Continue to check other slave statuses */ 1769 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 1770 mutex_lock(&bus->bus_lock); 1771 if (test_bit(i, bus->assigned) == false) { 1772 mutex_unlock(&bus->bus_lock); 1773 continue; 1774 } 1775 mutex_unlock(&bus->bus_lock); 1776 1777 slave = sdw_get_slave(bus, i); 1778 if (!slave) 1779 continue; 1780 1781 attached_initializing = false; 1782 1783 switch (status[i]) { 1784 case SDW_SLAVE_UNATTACHED: 1785 if (slave->status == SDW_SLAVE_UNATTACHED) 1786 break; 1787 1788 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1789 break; 1790 1791 case SDW_SLAVE_ALERT: 1792 ret = sdw_handle_slave_alerts(slave); 1793 if (ret < 0) 1794 dev_err(&slave->dev, 1795 "Slave %d alert handling failed: %d\n", 1796 i, ret); 1797 break; 1798 1799 case SDW_SLAVE_ATTACHED: 1800 if (slave->status == SDW_SLAVE_ATTACHED) 1801 break; 1802 1803 prev_status = slave->status; 1804 sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED); 1805 1806 if (prev_status == SDW_SLAVE_ALERT) 1807 break; 1808 1809 attached_initializing = true; 1810 1811 ret = sdw_initialize_slave(slave); 1812 if (ret < 0) 1813 dev_err(&slave->dev, 1814 "Slave %d initialization failed: %d\n", 1815 i, ret); 1816 1817 break; 1818 1819 default: 1820 dev_err(&slave->dev, "Invalid slave %d status:%d\n", 1821 i, status[i]); 1822 break; 1823 } 1824 1825 ret = sdw_update_slave_status(slave, status[i]); 1826 if (ret < 0) 1827 dev_err(&slave->dev, 1828 "Update Slave status failed:%d\n", ret); 1829 if (attached_initializing) { 1830 dev_dbg(&slave->dev, 1831 "%s: signaling initialization completion for Slave %d\n", 1832 __func__, slave->dev_num); 1833 1834 complete(&slave->initialization_complete); 1835 } 1836 } 1837 1838 return ret; 1839 } 1840 EXPORT_SYMBOL(sdw_handle_slave_status); 1841 1842 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request) 1843 { 1844 struct sdw_slave *slave; 1845 int i; 1846 1847 /* Check all non-zero devices */ 1848 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 1849 mutex_lock(&bus->bus_lock); 1850 if (test_bit(i, bus->assigned) == false) { 1851 mutex_unlock(&bus->bus_lock); 1852 continue; 1853 } 1854 mutex_unlock(&bus->bus_lock); 1855 1856 slave = sdw_get_slave(bus, i); 1857 if (!slave) 1858 continue; 1859 1860 if (slave->status != SDW_SLAVE_UNATTACHED) { 1861 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1862 slave->first_interrupt_done = false; 1863 sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED); 1864 } 1865 1866 /* keep track of request, used in pm_runtime resume */ 1867 slave->unattach_request = request; 1868 } 1869 } 1870 EXPORT_SYMBOL(sdw_clear_slave_status); 1871