xref: /openbmc/linux/drivers/soundwire/bus.c (revision cd99b9eb)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3 
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/irq.h>
7 #include <linux/mod_devicetable.h>
8 #include <linux/pm_runtime.h>
9 #include <linux/soundwire/sdw_registers.h>
10 #include <linux/soundwire/sdw.h>
11 #include <linux/soundwire/sdw_type.h>
12 #include "bus.h"
13 #include "sysfs_local.h"
14 
15 static DEFINE_IDA(sdw_bus_ida);
16 static DEFINE_IDA(sdw_peripheral_ida);
17 
18 static int sdw_get_id(struct sdw_bus *bus)
19 {
20 	int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
21 
22 	if (rc < 0)
23 		return rc;
24 
25 	bus->id = rc;
26 	return 0;
27 }
28 
29 static int sdw_irq_map(struct irq_domain *h, unsigned int virq,
30 		       irq_hw_number_t hw)
31 {
32 	struct sdw_bus *bus = h->host_data;
33 
34 	irq_set_chip_data(virq, bus);
35 	irq_set_chip(virq, &bus->irq_chip);
36 	irq_set_nested_thread(virq, 1);
37 	irq_set_noprobe(virq);
38 
39 	return 0;
40 }
41 
42 static const struct irq_domain_ops sdw_domain_ops = {
43 	.map	= sdw_irq_map,
44 };
45 
46 /**
47  * sdw_bus_master_add() - add a bus Master instance
48  * @bus: bus instance
49  * @parent: parent device
50  * @fwnode: firmware node handle
51  *
52  * Initializes the bus instance, read properties and create child
53  * devices.
54  */
55 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
56 		       struct fwnode_handle *fwnode)
57 {
58 	struct sdw_master_prop *prop = NULL;
59 	int ret;
60 
61 	if (!parent) {
62 		pr_err("SoundWire parent device is not set\n");
63 		return -ENODEV;
64 	}
65 
66 	ret = sdw_get_id(bus);
67 	if (ret < 0) {
68 		dev_err(parent, "Failed to get bus id\n");
69 		return ret;
70 	}
71 
72 	ret = sdw_master_device_add(bus, parent, fwnode);
73 	if (ret < 0) {
74 		dev_err(parent, "Failed to add master device at link %d\n",
75 			bus->link_id);
76 		return ret;
77 	}
78 
79 	if (!bus->ops) {
80 		dev_err(bus->dev, "SoundWire Bus ops are not set\n");
81 		return -EINVAL;
82 	}
83 
84 	if (!bus->compute_params) {
85 		dev_err(bus->dev,
86 			"Bandwidth allocation not configured, compute_params no set\n");
87 		return -EINVAL;
88 	}
89 
90 	/*
91 	 * Give each bus_lock and msg_lock a unique key so that lockdep won't
92 	 * trigger a deadlock warning when the locks of several buses are
93 	 * grabbed during configuration of a multi-bus stream.
94 	 */
95 	lockdep_register_key(&bus->msg_lock_key);
96 	__mutex_init(&bus->msg_lock, "msg_lock", &bus->msg_lock_key);
97 
98 	lockdep_register_key(&bus->bus_lock_key);
99 	__mutex_init(&bus->bus_lock, "bus_lock", &bus->bus_lock_key);
100 
101 	INIT_LIST_HEAD(&bus->slaves);
102 	INIT_LIST_HEAD(&bus->m_rt_list);
103 
104 	/*
105 	 * Initialize multi_link flag
106 	 */
107 	bus->multi_link = false;
108 	if (bus->ops->read_prop) {
109 		ret = bus->ops->read_prop(bus);
110 		if (ret < 0) {
111 			dev_err(bus->dev,
112 				"Bus read properties failed:%d\n", ret);
113 			return ret;
114 		}
115 	}
116 
117 	sdw_bus_debugfs_init(bus);
118 
119 	/*
120 	 * Device numbers in SoundWire are 0 through 15. Enumeration device
121 	 * number (0), Broadcast device number (15), Group numbers (12 and
122 	 * 13) and Master device number (14) are not used for assignment so
123 	 * mask these and other higher bits.
124 	 */
125 
126 	/* Set higher order bits */
127 	*bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
128 
129 	/* Set enumuration device number and broadcast device number */
130 	set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
131 	set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
132 
133 	/* Set group device numbers and master device number */
134 	set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
135 	set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
136 	set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
137 
138 	/*
139 	 * SDW is an enumerable bus, but devices can be powered off. So,
140 	 * they won't be able to report as present.
141 	 *
142 	 * Create Slave devices based on Slaves described in
143 	 * the respective firmware (ACPI/DT)
144 	 */
145 	if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
146 		ret = sdw_acpi_find_slaves(bus);
147 	else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
148 		ret = sdw_of_find_slaves(bus);
149 	else
150 		ret = -ENOTSUPP; /* No ACPI/DT so error out */
151 
152 	if (ret < 0) {
153 		dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
154 		return ret;
155 	}
156 
157 	/*
158 	 * Initialize clock values based on Master properties. The max
159 	 * frequency is read from max_clk_freq property. Current assumption
160 	 * is that the bus will start at highest clock frequency when
161 	 * powered on.
162 	 *
163 	 * Default active bank will be 0 as out of reset the Slaves have
164 	 * to start with bank 0 (Table 40 of Spec)
165 	 */
166 	prop = &bus->prop;
167 	bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
168 	bus->params.curr_dr_freq = bus->params.max_dr_freq;
169 	bus->params.curr_bank = SDW_BANK0;
170 	bus->params.next_bank = SDW_BANK1;
171 
172 	bus->irq_chip.name = dev_name(bus->dev);
173 	bus->domain = irq_domain_create_linear(fwnode, SDW_MAX_DEVICES,
174 					       &sdw_domain_ops, bus);
175 	if (!bus->domain) {
176 		dev_err(bus->dev, "Failed to add IRQ domain\n");
177 		return -EINVAL;
178 	}
179 
180 	return 0;
181 }
182 EXPORT_SYMBOL(sdw_bus_master_add);
183 
184 static int sdw_delete_slave(struct device *dev, void *data)
185 {
186 	struct sdw_slave *slave = dev_to_sdw_dev(dev);
187 	struct sdw_bus *bus = slave->bus;
188 
189 	pm_runtime_disable(dev);
190 
191 	sdw_slave_debugfs_exit(slave);
192 
193 	mutex_lock(&bus->bus_lock);
194 
195 	if (slave->dev_num) { /* clear dev_num if assigned */
196 		clear_bit(slave->dev_num, bus->assigned);
197 		if (bus->dev_num_ida_min)
198 			ida_free(&sdw_peripheral_ida, slave->dev_num);
199 	}
200 	list_del_init(&slave->node);
201 	mutex_unlock(&bus->bus_lock);
202 
203 	device_unregister(dev);
204 	return 0;
205 }
206 
207 /**
208  * sdw_bus_master_delete() - delete the bus master instance
209  * @bus: bus to be deleted
210  *
211  * Remove the instance, delete the child devices.
212  */
213 void sdw_bus_master_delete(struct sdw_bus *bus)
214 {
215 	device_for_each_child(bus->dev, NULL, sdw_delete_slave);
216 
217 	irq_domain_remove(bus->domain);
218 
219 	sdw_master_device_del(bus);
220 
221 	sdw_bus_debugfs_exit(bus);
222 	lockdep_unregister_key(&bus->bus_lock_key);
223 	lockdep_unregister_key(&bus->msg_lock_key);
224 	ida_free(&sdw_bus_ida, bus->id);
225 }
226 EXPORT_SYMBOL(sdw_bus_master_delete);
227 
228 /*
229  * SDW IO Calls
230  */
231 
232 static inline int find_response_code(enum sdw_command_response resp)
233 {
234 	switch (resp) {
235 	case SDW_CMD_OK:
236 		return 0;
237 
238 	case SDW_CMD_IGNORED:
239 		return -ENODATA;
240 
241 	case SDW_CMD_TIMEOUT:
242 		return -ETIMEDOUT;
243 
244 	default:
245 		return -EIO;
246 	}
247 }
248 
249 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
250 {
251 	int retry = bus->prop.err_threshold;
252 	enum sdw_command_response resp;
253 	int ret = 0, i;
254 
255 	for (i = 0; i <= retry; i++) {
256 		resp = bus->ops->xfer_msg(bus, msg);
257 		ret = find_response_code(resp);
258 
259 		/* if cmd is ok or ignored return */
260 		if (ret == 0 || ret == -ENODATA)
261 			return ret;
262 	}
263 
264 	return ret;
265 }
266 
267 static inline int do_transfer_defer(struct sdw_bus *bus,
268 				    struct sdw_msg *msg)
269 {
270 	struct sdw_defer *defer = &bus->defer_msg;
271 	int retry = bus->prop.err_threshold;
272 	enum sdw_command_response resp;
273 	int ret = 0, i;
274 
275 	defer->msg = msg;
276 	defer->length = msg->len;
277 	init_completion(&defer->complete);
278 
279 	for (i = 0; i <= retry; i++) {
280 		resp = bus->ops->xfer_msg_defer(bus);
281 		ret = find_response_code(resp);
282 		/* if cmd is ok or ignored return */
283 		if (ret == 0 || ret == -ENODATA)
284 			return ret;
285 	}
286 
287 	return ret;
288 }
289 
290 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
291 {
292 	int ret;
293 
294 	ret = do_transfer(bus, msg);
295 	if (ret != 0 && ret != -ENODATA)
296 		dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
297 			msg->dev_num, ret,
298 			(msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
299 			msg->addr, msg->len);
300 
301 	return ret;
302 }
303 
304 /**
305  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
306  * @bus: SDW bus
307  * @msg: SDW message to be xfered
308  */
309 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
310 {
311 	int ret;
312 
313 	mutex_lock(&bus->msg_lock);
314 
315 	ret = sdw_transfer_unlocked(bus, msg);
316 
317 	mutex_unlock(&bus->msg_lock);
318 
319 	return ret;
320 }
321 
322 /**
323  * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
324  * @bus: SDW bus
325  * @sync_delay: Delay before reading status
326  */
327 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
328 {
329 	u32 status;
330 
331 	if (!bus->ops->read_ping_status)
332 		return;
333 
334 	/*
335 	 * wait for peripheral to sync if desired. 10-15ms should be more than
336 	 * enough in most cases.
337 	 */
338 	if (sync_delay)
339 		usleep_range(10000, 15000);
340 
341 	mutex_lock(&bus->msg_lock);
342 
343 	status = bus->ops->read_ping_status(bus);
344 
345 	mutex_unlock(&bus->msg_lock);
346 
347 	if (!status)
348 		dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
349 	else
350 		dev_dbg(bus->dev, "PING status: %#x\n", status);
351 }
352 EXPORT_SYMBOL(sdw_show_ping_status);
353 
354 /**
355  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
356  * @bus: SDW bus
357  * @msg: SDW message to be xfered
358  *
359  * Caller needs to hold the msg_lock lock while calling this
360  */
361 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
362 {
363 	int ret;
364 
365 	if (!bus->ops->xfer_msg_defer)
366 		return -ENOTSUPP;
367 
368 	ret = do_transfer_defer(bus, msg);
369 	if (ret != 0 && ret != -ENODATA)
370 		dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
371 			msg->dev_num, ret);
372 
373 	return ret;
374 }
375 
376 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
377 		 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
378 {
379 	memset(msg, 0, sizeof(*msg));
380 	msg->addr = addr; /* addr is 16 bit and truncated here */
381 	msg->len = count;
382 	msg->dev_num = dev_num;
383 	msg->flags = flags;
384 	msg->buf = buf;
385 
386 	if (addr < SDW_REG_NO_PAGE) /* no paging area */
387 		return 0;
388 
389 	if (addr >= SDW_REG_MAX) { /* illegal addr */
390 		pr_err("SDW: Invalid address %x passed\n", addr);
391 		return -EINVAL;
392 	}
393 
394 	if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
395 		if (slave && !slave->prop.paging_support)
396 			return 0;
397 		/* no need for else as that will fall-through to paging */
398 	}
399 
400 	/* paging mandatory */
401 	if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
402 		pr_err("SDW: Invalid device for paging :%d\n", dev_num);
403 		return -EINVAL;
404 	}
405 
406 	if (!slave) {
407 		pr_err("SDW: No slave for paging addr\n");
408 		return -EINVAL;
409 	}
410 
411 	if (!slave->prop.paging_support) {
412 		dev_err(&slave->dev,
413 			"address %x needs paging but no support\n", addr);
414 		return -EINVAL;
415 	}
416 
417 	msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
418 	msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
419 	msg->addr |= BIT(15);
420 	msg->page = true;
421 
422 	return 0;
423 }
424 
425 /*
426  * Read/Write IO functions.
427  */
428 
429 static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags,
430 			       size_t count, u8 *val)
431 {
432 	struct sdw_msg msg;
433 	size_t size;
434 	int ret;
435 
436 	while (count) {
437 		// Only handle bytes up to next page boundary
438 		size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR));
439 
440 		ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val);
441 		if (ret < 0)
442 			return ret;
443 
444 		ret = sdw_transfer(slave->bus, &msg);
445 		if (ret < 0 && !slave->is_mockup_device)
446 			return ret;
447 
448 		addr += size;
449 		val += size;
450 		count -= size;
451 	}
452 
453 	return 0;
454 }
455 
456 /**
457  * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
458  * @slave: SDW Slave
459  * @addr: Register address
460  * @count: length
461  * @val: Buffer for values to be read
462  *
463  * Note that if the message crosses a page boundary each page will be
464  * transferred under a separate invocation of the msg_lock.
465  */
466 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
467 {
468 	return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val);
469 }
470 EXPORT_SYMBOL(sdw_nread_no_pm);
471 
472 /**
473  * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
474  * @slave: SDW Slave
475  * @addr: Register address
476  * @count: length
477  * @val: Buffer for values to be written
478  *
479  * Note that if the message crosses a page boundary each page will be
480  * transferred under a separate invocation of the msg_lock.
481  */
482 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
483 {
484 	return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val);
485 }
486 EXPORT_SYMBOL(sdw_nwrite_no_pm);
487 
488 /**
489  * sdw_write_no_pm() - Write a SDW Slave register with no PM
490  * @slave: SDW Slave
491  * @addr: Register address
492  * @value: Register value
493  */
494 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
495 {
496 	return sdw_nwrite_no_pm(slave, addr, 1, &value);
497 }
498 EXPORT_SYMBOL(sdw_write_no_pm);
499 
500 static int
501 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
502 {
503 	struct sdw_msg msg;
504 	u8 buf;
505 	int ret;
506 
507 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
508 			   SDW_MSG_FLAG_READ, &buf);
509 	if (ret < 0)
510 		return ret;
511 
512 	ret = sdw_transfer(bus, &msg);
513 	if (ret < 0)
514 		return ret;
515 
516 	return buf;
517 }
518 
519 static int
520 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
521 {
522 	struct sdw_msg msg;
523 	int ret;
524 
525 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
526 			   SDW_MSG_FLAG_WRITE, &value);
527 	if (ret < 0)
528 		return ret;
529 
530 	return sdw_transfer(bus, &msg);
531 }
532 
533 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
534 {
535 	struct sdw_msg msg;
536 	u8 buf;
537 	int ret;
538 
539 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
540 			   SDW_MSG_FLAG_READ, &buf);
541 	if (ret < 0)
542 		return ret;
543 
544 	ret = sdw_transfer_unlocked(bus, &msg);
545 	if (ret < 0)
546 		return ret;
547 
548 	return buf;
549 }
550 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
551 
552 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
553 {
554 	struct sdw_msg msg;
555 	int ret;
556 
557 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
558 			   SDW_MSG_FLAG_WRITE, &value);
559 	if (ret < 0)
560 		return ret;
561 
562 	return sdw_transfer_unlocked(bus, &msg);
563 }
564 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
565 
566 /**
567  * sdw_read_no_pm() - Read a SDW Slave register with no PM
568  * @slave: SDW Slave
569  * @addr: Register address
570  */
571 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
572 {
573 	u8 buf;
574 	int ret;
575 
576 	ret = sdw_nread_no_pm(slave, addr, 1, &buf);
577 	if (ret < 0)
578 		return ret;
579 	else
580 		return buf;
581 }
582 EXPORT_SYMBOL(sdw_read_no_pm);
583 
584 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
585 {
586 	int tmp;
587 
588 	tmp = sdw_read_no_pm(slave, addr);
589 	if (tmp < 0)
590 		return tmp;
591 
592 	tmp = (tmp & ~mask) | val;
593 	return sdw_write_no_pm(slave, addr, tmp);
594 }
595 EXPORT_SYMBOL(sdw_update_no_pm);
596 
597 /* Read-Modify-Write Slave register */
598 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
599 {
600 	int tmp;
601 
602 	tmp = sdw_read(slave, addr);
603 	if (tmp < 0)
604 		return tmp;
605 
606 	tmp = (tmp & ~mask) | val;
607 	return sdw_write(slave, addr, tmp);
608 }
609 EXPORT_SYMBOL(sdw_update);
610 
611 /**
612  * sdw_nread() - Read "n" contiguous SDW Slave registers
613  * @slave: SDW Slave
614  * @addr: Register address
615  * @count: length
616  * @val: Buffer for values to be read
617  *
618  * This version of the function will take a PM reference to the slave
619  * device.
620  * Note that if the message crosses a page boundary each page will be
621  * transferred under a separate invocation of the msg_lock.
622  */
623 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
624 {
625 	int ret;
626 
627 	ret = pm_runtime_get_sync(&slave->dev);
628 	if (ret < 0 && ret != -EACCES) {
629 		pm_runtime_put_noidle(&slave->dev);
630 		return ret;
631 	}
632 
633 	ret = sdw_nread_no_pm(slave, addr, count, val);
634 
635 	pm_runtime_mark_last_busy(&slave->dev);
636 	pm_runtime_put(&slave->dev);
637 
638 	return ret;
639 }
640 EXPORT_SYMBOL(sdw_nread);
641 
642 /**
643  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
644  * @slave: SDW Slave
645  * @addr: Register address
646  * @count: length
647  * @val: Buffer for values to be written
648  *
649  * This version of the function will take a PM reference to the slave
650  * device.
651  * Note that if the message crosses a page boundary each page will be
652  * transferred under a separate invocation of the msg_lock.
653  */
654 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
655 {
656 	int ret;
657 
658 	ret = pm_runtime_get_sync(&slave->dev);
659 	if (ret < 0 && ret != -EACCES) {
660 		pm_runtime_put_noidle(&slave->dev);
661 		return ret;
662 	}
663 
664 	ret = sdw_nwrite_no_pm(slave, addr, count, val);
665 
666 	pm_runtime_mark_last_busy(&slave->dev);
667 	pm_runtime_put(&slave->dev);
668 
669 	return ret;
670 }
671 EXPORT_SYMBOL(sdw_nwrite);
672 
673 /**
674  * sdw_read() - Read a SDW Slave register
675  * @slave: SDW Slave
676  * @addr: Register address
677  *
678  * This version of the function will take a PM reference to the slave
679  * device.
680  */
681 int sdw_read(struct sdw_slave *slave, u32 addr)
682 {
683 	u8 buf;
684 	int ret;
685 
686 	ret = sdw_nread(slave, addr, 1, &buf);
687 	if (ret < 0)
688 		return ret;
689 
690 	return buf;
691 }
692 EXPORT_SYMBOL(sdw_read);
693 
694 /**
695  * sdw_write() - Write a SDW Slave register
696  * @slave: SDW Slave
697  * @addr: Register address
698  * @value: Register value
699  *
700  * This version of the function will take a PM reference to the slave
701  * device.
702  */
703 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
704 {
705 	return sdw_nwrite(slave, addr, 1, &value);
706 }
707 EXPORT_SYMBOL(sdw_write);
708 
709 /*
710  * SDW alert handling
711  */
712 
713 /* called with bus_lock held */
714 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
715 {
716 	struct sdw_slave *slave;
717 
718 	list_for_each_entry(slave, &bus->slaves, node) {
719 		if (slave->dev_num == i)
720 			return slave;
721 	}
722 
723 	return NULL;
724 }
725 
726 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
727 {
728 	if (slave->id.mfg_id != id.mfg_id ||
729 	    slave->id.part_id != id.part_id ||
730 	    slave->id.class_id != id.class_id ||
731 	    (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
732 	     slave->id.unique_id != id.unique_id))
733 		return -ENODEV;
734 
735 	return 0;
736 }
737 EXPORT_SYMBOL(sdw_compare_devid);
738 
739 /* called with bus_lock held */
740 static int sdw_get_device_num(struct sdw_slave *slave)
741 {
742 	int bit;
743 
744 	if (slave->bus->dev_num_ida_min) {
745 		bit = ida_alloc_range(&sdw_peripheral_ida,
746 				      slave->bus->dev_num_ida_min, SDW_MAX_DEVICES,
747 				      GFP_KERNEL);
748 		if (bit < 0)
749 			goto err;
750 	} else {
751 		bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
752 		if (bit == SDW_MAX_DEVICES) {
753 			bit = -ENODEV;
754 			goto err;
755 		}
756 	}
757 
758 	/*
759 	 * Do not update dev_num in Slave data structure here,
760 	 * Update once program dev_num is successful
761 	 */
762 	set_bit(bit, slave->bus->assigned);
763 
764 err:
765 	return bit;
766 }
767 
768 static int sdw_assign_device_num(struct sdw_slave *slave)
769 {
770 	struct sdw_bus *bus = slave->bus;
771 	int ret, dev_num;
772 	bool new_device = false;
773 
774 	/* check first if device number is assigned, if so reuse that */
775 	if (!slave->dev_num) {
776 		if (!slave->dev_num_sticky) {
777 			mutex_lock(&slave->bus->bus_lock);
778 			dev_num = sdw_get_device_num(slave);
779 			mutex_unlock(&slave->bus->bus_lock);
780 			if (dev_num < 0) {
781 				dev_err(bus->dev, "Get dev_num failed: %d\n",
782 					dev_num);
783 				return dev_num;
784 			}
785 			slave->dev_num = dev_num;
786 			slave->dev_num_sticky = dev_num;
787 			new_device = true;
788 		} else {
789 			slave->dev_num = slave->dev_num_sticky;
790 		}
791 	}
792 
793 	if (!new_device)
794 		dev_dbg(bus->dev,
795 			"Slave already registered, reusing dev_num:%d\n",
796 			slave->dev_num);
797 
798 	/* Clear the slave->dev_num to transfer message on device 0 */
799 	dev_num = slave->dev_num;
800 	slave->dev_num = 0;
801 
802 	ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
803 	if (ret < 0) {
804 		dev_err(bus->dev, "Program device_num %d failed: %d\n",
805 			dev_num, ret);
806 		return ret;
807 	}
808 
809 	/* After xfer of msg, restore dev_num */
810 	slave->dev_num = slave->dev_num_sticky;
811 
812 	if (bus->ops && bus->ops->new_peripheral_assigned)
813 		bus->ops->new_peripheral_assigned(bus, dev_num);
814 
815 	return 0;
816 }
817 
818 void sdw_extract_slave_id(struct sdw_bus *bus,
819 			  u64 addr, struct sdw_slave_id *id)
820 {
821 	dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
822 
823 	id->sdw_version = SDW_VERSION(addr);
824 	id->unique_id = SDW_UNIQUE_ID(addr);
825 	id->mfg_id = SDW_MFG_ID(addr);
826 	id->part_id = SDW_PART_ID(addr);
827 	id->class_id = SDW_CLASS_ID(addr);
828 
829 	dev_dbg(bus->dev,
830 		"SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
831 		id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
832 }
833 EXPORT_SYMBOL(sdw_extract_slave_id);
834 
835 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
836 {
837 	u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
838 	struct sdw_slave *slave, *_s;
839 	struct sdw_slave_id id;
840 	struct sdw_msg msg;
841 	bool found;
842 	int count = 0, ret;
843 	u64 addr;
844 
845 	*programmed = false;
846 
847 	/* No Slave, so use raw xfer api */
848 	ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
849 			   SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
850 	if (ret < 0)
851 		return ret;
852 
853 	do {
854 		ret = sdw_transfer(bus, &msg);
855 		if (ret == -ENODATA) { /* end of device id reads */
856 			dev_dbg(bus->dev, "No more devices to enumerate\n");
857 			ret = 0;
858 			break;
859 		}
860 		if (ret < 0) {
861 			dev_err(bus->dev, "DEVID read fail:%d\n", ret);
862 			break;
863 		}
864 
865 		/*
866 		 * Construct the addr and extract. Cast the higher shift
867 		 * bits to avoid truncation due to size limit.
868 		 */
869 		addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
870 			((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
871 			((u64)buf[0] << 40);
872 
873 		sdw_extract_slave_id(bus, addr, &id);
874 
875 		found = false;
876 		/* Now compare with entries */
877 		list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
878 			if (sdw_compare_devid(slave, id) == 0) {
879 				found = true;
880 
881 				/*
882 				 * To prevent skipping state-machine stages don't
883 				 * program a device until we've seen it UNATTACH.
884 				 * Must return here because no other device on #0
885 				 * can be detected until this one has been
886 				 * assigned a device ID.
887 				 */
888 				if (slave->status != SDW_SLAVE_UNATTACHED)
889 					return 0;
890 
891 				/*
892 				 * Assign a new dev_num to this Slave and
893 				 * not mark it present. It will be marked
894 				 * present after it reports ATTACHED on new
895 				 * dev_num
896 				 */
897 				ret = sdw_assign_device_num(slave);
898 				if (ret < 0) {
899 					dev_err(bus->dev,
900 						"Assign dev_num failed:%d\n",
901 						ret);
902 					return ret;
903 				}
904 
905 				*programmed = true;
906 
907 				break;
908 			}
909 		}
910 
911 		if (!found) {
912 			/* TODO: Park this device in Group 13 */
913 
914 			/*
915 			 * add Slave device even if there is no platform
916 			 * firmware description. There will be no driver probe
917 			 * but the user/integration will be able to see the
918 			 * device, enumeration status and device number in sysfs
919 			 */
920 			sdw_slave_add(bus, &id, NULL);
921 
922 			dev_err(bus->dev, "Slave Entry not found\n");
923 		}
924 
925 		count++;
926 
927 		/*
928 		 * Check till error out or retry (count) exhausts.
929 		 * Device can drop off and rejoin during enumeration
930 		 * so count till twice the bound.
931 		 */
932 
933 	} while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
934 
935 	return ret;
936 }
937 
938 static void sdw_modify_slave_status(struct sdw_slave *slave,
939 				    enum sdw_slave_status status)
940 {
941 	struct sdw_bus *bus = slave->bus;
942 
943 	mutex_lock(&bus->bus_lock);
944 
945 	dev_vdbg(bus->dev,
946 		 "changing status slave %d status %d new status %d\n",
947 		 slave->dev_num, slave->status, status);
948 
949 	if (status == SDW_SLAVE_UNATTACHED) {
950 		dev_dbg(&slave->dev,
951 			"initializing enumeration and init completion for Slave %d\n",
952 			slave->dev_num);
953 
954 		reinit_completion(&slave->enumeration_complete);
955 		reinit_completion(&slave->initialization_complete);
956 
957 	} else if ((status == SDW_SLAVE_ATTACHED) &&
958 		   (slave->status == SDW_SLAVE_UNATTACHED)) {
959 		dev_dbg(&slave->dev,
960 			"signaling enumeration completion for Slave %d\n",
961 			slave->dev_num);
962 
963 		complete_all(&slave->enumeration_complete);
964 	}
965 	slave->status = status;
966 	mutex_unlock(&bus->bus_lock);
967 }
968 
969 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
970 				       enum sdw_clk_stop_mode mode,
971 				       enum sdw_clk_stop_type type)
972 {
973 	int ret = 0;
974 
975 	mutex_lock(&slave->sdw_dev_lock);
976 
977 	if (slave->probed)  {
978 		struct device *dev = &slave->dev;
979 		struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
980 
981 		if (drv->ops && drv->ops->clk_stop)
982 			ret = drv->ops->clk_stop(slave, mode, type);
983 	}
984 
985 	mutex_unlock(&slave->sdw_dev_lock);
986 
987 	return ret;
988 }
989 
990 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
991 				      enum sdw_clk_stop_mode mode,
992 				      bool prepare)
993 {
994 	bool wake_en;
995 	u32 val = 0;
996 	int ret;
997 
998 	wake_en = slave->prop.wake_capable;
999 
1000 	if (prepare) {
1001 		val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
1002 
1003 		if (mode == SDW_CLK_STOP_MODE1)
1004 			val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
1005 
1006 		if (wake_en)
1007 			val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
1008 	} else {
1009 		ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
1010 		if (ret < 0) {
1011 			if (ret != -ENODATA)
1012 				dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
1013 			return ret;
1014 		}
1015 		val = ret;
1016 		val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
1017 	}
1018 
1019 	ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
1020 
1021 	if (ret < 0 && ret != -ENODATA)
1022 		dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
1023 
1024 	return ret;
1025 }
1026 
1027 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
1028 {
1029 	int retry = bus->clk_stop_timeout;
1030 	int val;
1031 
1032 	do {
1033 		val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
1034 		if (val < 0) {
1035 			if (val != -ENODATA)
1036 				dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
1037 			return val;
1038 		}
1039 		val &= SDW_SCP_STAT_CLK_STP_NF;
1040 		if (!val) {
1041 			dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
1042 				dev_num);
1043 			return 0;
1044 		}
1045 
1046 		usleep_range(1000, 1500);
1047 		retry--;
1048 	} while (retry);
1049 
1050 	dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
1051 		dev_num);
1052 
1053 	return -ETIMEDOUT;
1054 }
1055 
1056 /**
1057  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
1058  *
1059  * @bus: SDW bus instance
1060  *
1061  * Query Slave for clock stop mode and prepare for that mode.
1062  */
1063 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
1064 {
1065 	bool simple_clk_stop = true;
1066 	struct sdw_slave *slave;
1067 	bool is_slave = false;
1068 	int ret = 0;
1069 
1070 	/*
1071 	 * In order to save on transition time, prepare
1072 	 * each Slave and then wait for all Slave(s) to be
1073 	 * prepared for clock stop.
1074 	 * If one of the Slave devices has lost sync and
1075 	 * replies with Command Ignored/-ENODATA, we continue
1076 	 * the loop
1077 	 */
1078 	list_for_each_entry(slave, &bus->slaves, node) {
1079 		if (!slave->dev_num)
1080 			continue;
1081 
1082 		if (slave->status != SDW_SLAVE_ATTACHED &&
1083 		    slave->status != SDW_SLAVE_ALERT)
1084 			continue;
1085 
1086 		/* Identify if Slave(s) are available on Bus */
1087 		is_slave = true;
1088 
1089 		ret = sdw_slave_clk_stop_callback(slave,
1090 						  SDW_CLK_STOP_MODE0,
1091 						  SDW_CLK_PRE_PREPARE);
1092 		if (ret < 0 && ret != -ENODATA) {
1093 			dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1094 			return ret;
1095 		}
1096 
1097 		/* Only prepare a Slave device if needed */
1098 		if (!slave->prop.simple_clk_stop_capable) {
1099 			simple_clk_stop = false;
1100 
1101 			ret = sdw_slave_clk_stop_prepare(slave,
1102 							 SDW_CLK_STOP_MODE0,
1103 							 true);
1104 			if (ret < 0 && ret != -ENODATA) {
1105 				dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1106 				return ret;
1107 			}
1108 		}
1109 	}
1110 
1111 	/* Skip remaining clock stop preparation if no Slave is attached */
1112 	if (!is_slave)
1113 		return 0;
1114 
1115 	/*
1116 	 * Don't wait for all Slaves to be ready if they follow the simple
1117 	 * state machine
1118 	 */
1119 	if (!simple_clk_stop) {
1120 		ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1121 						       SDW_BROADCAST_DEV_NUM);
1122 		/*
1123 		 * if there are no Slave devices present and the reply is
1124 		 * Command_Ignored/-ENODATA, we don't need to continue with the
1125 		 * flow and can just return here. The error code is not modified
1126 		 * and its handling left as an exercise for the caller.
1127 		 */
1128 		if (ret < 0)
1129 			return ret;
1130 	}
1131 
1132 	/* Inform slaves that prep is done */
1133 	list_for_each_entry(slave, &bus->slaves, node) {
1134 		if (!slave->dev_num)
1135 			continue;
1136 
1137 		if (slave->status != SDW_SLAVE_ATTACHED &&
1138 		    slave->status != SDW_SLAVE_ALERT)
1139 			continue;
1140 
1141 		ret = sdw_slave_clk_stop_callback(slave,
1142 						  SDW_CLK_STOP_MODE0,
1143 						  SDW_CLK_POST_PREPARE);
1144 
1145 		if (ret < 0 && ret != -ENODATA) {
1146 			dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1147 			return ret;
1148 		}
1149 	}
1150 
1151 	return 0;
1152 }
1153 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1154 
1155 /**
1156  * sdw_bus_clk_stop: stop bus clock
1157  *
1158  * @bus: SDW bus instance
1159  *
1160  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1161  * write to SCP_CTRL register.
1162  */
1163 int sdw_bus_clk_stop(struct sdw_bus *bus)
1164 {
1165 	int ret;
1166 
1167 	/*
1168 	 * broadcast clock stop now, attached Slaves will ACK this,
1169 	 * unattached will ignore
1170 	 */
1171 	ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1172 			       SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1173 	if (ret < 0) {
1174 		if (ret != -ENODATA)
1175 			dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1176 		return ret;
1177 	}
1178 
1179 	return 0;
1180 }
1181 EXPORT_SYMBOL(sdw_bus_clk_stop);
1182 
1183 /**
1184  * sdw_bus_exit_clk_stop: Exit clock stop mode
1185  *
1186  * @bus: SDW bus instance
1187  *
1188  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1189  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1190  * back.
1191  */
1192 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1193 {
1194 	bool simple_clk_stop = true;
1195 	struct sdw_slave *slave;
1196 	bool is_slave = false;
1197 	int ret;
1198 
1199 	/*
1200 	 * In order to save on transition time, de-prepare
1201 	 * each Slave and then wait for all Slave(s) to be
1202 	 * de-prepared after clock resume.
1203 	 */
1204 	list_for_each_entry(slave, &bus->slaves, node) {
1205 		if (!slave->dev_num)
1206 			continue;
1207 
1208 		if (slave->status != SDW_SLAVE_ATTACHED &&
1209 		    slave->status != SDW_SLAVE_ALERT)
1210 			continue;
1211 
1212 		/* Identify if Slave(s) are available on Bus */
1213 		is_slave = true;
1214 
1215 		ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1216 						  SDW_CLK_PRE_DEPREPARE);
1217 		if (ret < 0)
1218 			dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1219 
1220 		/* Only de-prepare a Slave device if needed */
1221 		if (!slave->prop.simple_clk_stop_capable) {
1222 			simple_clk_stop = false;
1223 
1224 			ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1225 							 false);
1226 
1227 			if (ret < 0)
1228 				dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1229 		}
1230 	}
1231 
1232 	/* Skip remaining clock stop de-preparation if no Slave is attached */
1233 	if (!is_slave)
1234 		return 0;
1235 
1236 	/*
1237 	 * Don't wait for all Slaves to be ready if they follow the simple
1238 	 * state machine
1239 	 */
1240 	if (!simple_clk_stop) {
1241 		ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1242 		if (ret < 0)
1243 			dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1244 	}
1245 
1246 	list_for_each_entry(slave, &bus->slaves, node) {
1247 		if (!slave->dev_num)
1248 			continue;
1249 
1250 		if (slave->status != SDW_SLAVE_ATTACHED &&
1251 		    slave->status != SDW_SLAVE_ALERT)
1252 			continue;
1253 
1254 		ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1255 						  SDW_CLK_POST_DEPREPARE);
1256 		if (ret < 0)
1257 			dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1258 	}
1259 
1260 	return 0;
1261 }
1262 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1263 
1264 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1265 			   int port, bool enable, int mask)
1266 {
1267 	u32 addr;
1268 	int ret;
1269 	u8 val = 0;
1270 
1271 	if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1272 		dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1273 			enable ? "on" : "off");
1274 		mask |= SDW_DPN_INT_TEST_FAIL;
1275 	}
1276 
1277 	addr = SDW_DPN_INTMASK(port);
1278 
1279 	/* Set/Clear port ready interrupt mask */
1280 	if (enable) {
1281 		val |= mask;
1282 		val |= SDW_DPN_INT_PORT_READY;
1283 	} else {
1284 		val &= ~(mask);
1285 		val &= ~SDW_DPN_INT_PORT_READY;
1286 	}
1287 
1288 	ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1289 	if (ret < 0)
1290 		dev_err(&slave->dev,
1291 			"SDW_DPN_INTMASK write failed:%d\n", val);
1292 
1293 	return ret;
1294 }
1295 
1296 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1297 {
1298 	u32 mclk_freq = slave->bus->prop.mclk_freq;
1299 	u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1300 	unsigned int scale;
1301 	u8 scale_index;
1302 	u8 base;
1303 	int ret;
1304 
1305 	/*
1306 	 * frequency base and scale registers are required for SDCA
1307 	 * devices. They may also be used for 1.2+/non-SDCA devices.
1308 	 * Driver can set the property, we will need a DisCo property
1309 	 * to discover this case from platform firmware.
1310 	 */
1311 	if (!slave->id.class_id && !slave->prop.clock_reg_supported)
1312 		return 0;
1313 
1314 	if (!mclk_freq) {
1315 		dev_err(&slave->dev,
1316 			"no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1317 		return -EINVAL;
1318 	}
1319 
1320 	/*
1321 	 * map base frequency using Table 89 of SoundWire 1.2 spec.
1322 	 * The order of the tests just follows the specification, this
1323 	 * is not a selection between possible values or a search for
1324 	 * the best value but just a mapping.  Only one case per platform
1325 	 * is relevant.
1326 	 * Some BIOS have inconsistent values for mclk_freq but a
1327 	 * correct root so we force the mclk_freq to avoid variations.
1328 	 */
1329 	if (!(19200000 % mclk_freq)) {
1330 		mclk_freq = 19200000;
1331 		base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1332 	} else if (!(24000000 % mclk_freq)) {
1333 		mclk_freq = 24000000;
1334 		base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1335 	} else if (!(24576000 % mclk_freq)) {
1336 		mclk_freq = 24576000;
1337 		base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1338 	} else if (!(22579200 % mclk_freq)) {
1339 		mclk_freq = 22579200;
1340 		base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1341 	} else if (!(32000000 % mclk_freq)) {
1342 		mclk_freq = 32000000;
1343 		base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1344 	} else {
1345 		dev_err(&slave->dev,
1346 			"Unsupported clock base, mclk %d\n",
1347 			mclk_freq);
1348 		return -EINVAL;
1349 	}
1350 
1351 	if (mclk_freq % curr_freq) {
1352 		dev_err(&slave->dev,
1353 			"mclk %d is not multiple of bus curr_freq %d\n",
1354 			mclk_freq, curr_freq);
1355 		return -EINVAL;
1356 	}
1357 
1358 	scale = mclk_freq / curr_freq;
1359 
1360 	/*
1361 	 * map scale to Table 90 of SoundWire 1.2 spec - and check
1362 	 * that the scale is a power of two and maximum 64
1363 	 */
1364 	scale_index = ilog2(scale);
1365 
1366 	if (BIT(scale_index) != scale || scale_index > 6) {
1367 		dev_err(&slave->dev,
1368 			"No match found for scale %d, bus mclk %d curr_freq %d\n",
1369 			scale, mclk_freq, curr_freq);
1370 		return -EINVAL;
1371 	}
1372 	scale_index++;
1373 
1374 	ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1375 	if (ret < 0) {
1376 		dev_err(&slave->dev,
1377 			"SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1378 		return ret;
1379 	}
1380 
1381 	/* initialize scale for both banks */
1382 	ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1383 	if (ret < 0) {
1384 		dev_err(&slave->dev,
1385 			"SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1386 		return ret;
1387 	}
1388 	ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1389 	if (ret < 0)
1390 		dev_err(&slave->dev,
1391 			"SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1392 
1393 	dev_dbg(&slave->dev,
1394 		"Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1395 		base, scale_index, mclk_freq, curr_freq);
1396 
1397 	return ret;
1398 }
1399 
1400 static int sdw_initialize_slave(struct sdw_slave *slave)
1401 {
1402 	struct sdw_slave_prop *prop = &slave->prop;
1403 	int status;
1404 	int ret;
1405 	u8 val;
1406 
1407 	ret = sdw_slave_set_frequency(slave);
1408 	if (ret < 0)
1409 		return ret;
1410 
1411 	if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1412 		/* Clear bus clash interrupt before enabling interrupt mask */
1413 		status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1414 		if (status < 0) {
1415 			dev_err(&slave->dev,
1416 				"SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1417 			return status;
1418 		}
1419 		if (status & SDW_SCP_INT1_BUS_CLASH) {
1420 			dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1421 			ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1422 			if (ret < 0) {
1423 				dev_err(&slave->dev,
1424 					"SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1425 				return ret;
1426 			}
1427 		}
1428 	}
1429 	if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1430 	    !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1431 		/* Clear parity interrupt before enabling interrupt mask */
1432 		status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1433 		if (status < 0) {
1434 			dev_err(&slave->dev,
1435 				"SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1436 			return status;
1437 		}
1438 		if (status & SDW_SCP_INT1_PARITY) {
1439 			dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1440 			ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1441 			if (ret < 0) {
1442 				dev_err(&slave->dev,
1443 					"SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1444 				return ret;
1445 			}
1446 		}
1447 	}
1448 
1449 	/*
1450 	 * Set SCP_INT1_MASK register, typically bus clash and
1451 	 * implementation-defined interrupt mask. The Parity detection
1452 	 * may not always be correct on startup so its use is
1453 	 * device-dependent, it might e.g. only be enabled in
1454 	 * steady-state after a couple of frames.
1455 	 */
1456 	val = slave->prop.scp_int1_mask;
1457 
1458 	/* Enable SCP interrupts */
1459 	ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1460 	if (ret < 0) {
1461 		dev_err(&slave->dev,
1462 			"SDW_SCP_INTMASK1 write failed:%d\n", ret);
1463 		return ret;
1464 	}
1465 
1466 	/* No need to continue if DP0 is not present */
1467 	if (!slave->prop.dp0_prop)
1468 		return 0;
1469 
1470 	/* Enable DP0 interrupts */
1471 	val = prop->dp0_prop->imp_def_interrupts;
1472 	val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1473 
1474 	ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1475 	if (ret < 0)
1476 		dev_err(&slave->dev,
1477 			"SDW_DP0_INTMASK read failed:%d\n", ret);
1478 	return ret;
1479 }
1480 
1481 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1482 {
1483 	u8 clear, impl_int_mask;
1484 	int status, status2, ret, count = 0;
1485 
1486 	status = sdw_read_no_pm(slave, SDW_DP0_INT);
1487 	if (status < 0) {
1488 		dev_err(&slave->dev,
1489 			"SDW_DP0_INT read failed:%d\n", status);
1490 		return status;
1491 	}
1492 
1493 	do {
1494 		clear = status & ~SDW_DP0_INTERRUPTS;
1495 
1496 		if (status & SDW_DP0_INT_TEST_FAIL) {
1497 			dev_err(&slave->dev, "Test fail for port 0\n");
1498 			clear |= SDW_DP0_INT_TEST_FAIL;
1499 		}
1500 
1501 		/*
1502 		 * Assumption: PORT_READY interrupt will be received only for
1503 		 * ports implementing Channel Prepare state machine (CP_SM)
1504 		 */
1505 
1506 		if (status & SDW_DP0_INT_PORT_READY) {
1507 			complete(&slave->port_ready[0]);
1508 			clear |= SDW_DP0_INT_PORT_READY;
1509 		}
1510 
1511 		if (status & SDW_DP0_INT_BRA_FAILURE) {
1512 			dev_err(&slave->dev, "BRA failed\n");
1513 			clear |= SDW_DP0_INT_BRA_FAILURE;
1514 		}
1515 
1516 		impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1517 			SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1518 
1519 		if (status & impl_int_mask) {
1520 			clear |= impl_int_mask;
1521 			*slave_status = clear;
1522 		}
1523 
1524 		/* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1525 		ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1526 		if (ret < 0) {
1527 			dev_err(&slave->dev,
1528 				"SDW_DP0_INT write failed:%d\n", ret);
1529 			return ret;
1530 		}
1531 
1532 		/* Read DP0 interrupt again */
1533 		status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1534 		if (status2 < 0) {
1535 			dev_err(&slave->dev,
1536 				"SDW_DP0_INT read failed:%d\n", status2);
1537 			return status2;
1538 		}
1539 		/* filter to limit loop to interrupts identified in the first status read */
1540 		status &= status2;
1541 
1542 		count++;
1543 
1544 		/* we can get alerts while processing so keep retrying */
1545 	} while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1546 
1547 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1548 		dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1549 
1550 	return ret;
1551 }
1552 
1553 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1554 				     int port, u8 *slave_status)
1555 {
1556 	u8 clear, impl_int_mask;
1557 	int status, status2, ret, count = 0;
1558 	u32 addr;
1559 
1560 	if (port == 0)
1561 		return sdw_handle_dp0_interrupt(slave, slave_status);
1562 
1563 	addr = SDW_DPN_INT(port);
1564 	status = sdw_read_no_pm(slave, addr);
1565 	if (status < 0) {
1566 		dev_err(&slave->dev,
1567 			"SDW_DPN_INT read failed:%d\n", status);
1568 
1569 		return status;
1570 	}
1571 
1572 	do {
1573 		clear = status & ~SDW_DPN_INTERRUPTS;
1574 
1575 		if (status & SDW_DPN_INT_TEST_FAIL) {
1576 			dev_err(&slave->dev, "Test fail for port:%d\n", port);
1577 			clear |= SDW_DPN_INT_TEST_FAIL;
1578 		}
1579 
1580 		/*
1581 		 * Assumption: PORT_READY interrupt will be received only
1582 		 * for ports implementing CP_SM.
1583 		 */
1584 		if (status & SDW_DPN_INT_PORT_READY) {
1585 			complete(&slave->port_ready[port]);
1586 			clear |= SDW_DPN_INT_PORT_READY;
1587 		}
1588 
1589 		impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1590 			SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1591 
1592 		if (status & impl_int_mask) {
1593 			clear |= impl_int_mask;
1594 			*slave_status = clear;
1595 		}
1596 
1597 		/* clear the interrupt but don't touch reserved fields */
1598 		ret = sdw_write_no_pm(slave, addr, clear);
1599 		if (ret < 0) {
1600 			dev_err(&slave->dev,
1601 				"SDW_DPN_INT write failed:%d\n", ret);
1602 			return ret;
1603 		}
1604 
1605 		/* Read DPN interrupt again */
1606 		status2 = sdw_read_no_pm(slave, addr);
1607 		if (status2 < 0) {
1608 			dev_err(&slave->dev,
1609 				"SDW_DPN_INT read failed:%d\n", status2);
1610 			return status2;
1611 		}
1612 		/* filter to limit loop to interrupts identified in the first status read */
1613 		status &= status2;
1614 
1615 		count++;
1616 
1617 		/* we can get alerts while processing so keep retrying */
1618 	} while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1619 
1620 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1621 		dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1622 
1623 	return ret;
1624 }
1625 
1626 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1627 {
1628 	struct sdw_slave_intr_status slave_intr;
1629 	u8 clear = 0, bit, port_status[15] = {0};
1630 	int port_num, stat, ret, count = 0;
1631 	unsigned long port;
1632 	bool slave_notify;
1633 	u8 sdca_cascade = 0;
1634 	u8 buf, buf2[2];
1635 	bool parity_check;
1636 	bool parity_quirk;
1637 
1638 	sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1639 
1640 	ret = pm_runtime_get_sync(&slave->dev);
1641 	if (ret < 0 && ret != -EACCES) {
1642 		dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1643 		pm_runtime_put_noidle(&slave->dev);
1644 		return ret;
1645 	}
1646 
1647 	/* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1648 	ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1649 	if (ret < 0) {
1650 		dev_err(&slave->dev,
1651 			"SDW_SCP_INT1 read failed:%d\n", ret);
1652 		goto io_err;
1653 	}
1654 	buf = ret;
1655 
1656 	ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1657 	if (ret < 0) {
1658 		dev_err(&slave->dev,
1659 			"SDW_SCP_INT2/3 read failed:%d\n", ret);
1660 		goto io_err;
1661 	}
1662 
1663 	if (slave->id.class_id) {
1664 		ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1665 		if (ret < 0) {
1666 			dev_err(&slave->dev,
1667 				"SDW_DP0_INT read failed:%d\n", ret);
1668 			goto io_err;
1669 		}
1670 		sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1671 	}
1672 
1673 	do {
1674 		slave_notify = false;
1675 
1676 		/*
1677 		 * Check parity, bus clash and Slave (impl defined)
1678 		 * interrupt
1679 		 */
1680 		if (buf & SDW_SCP_INT1_PARITY) {
1681 			parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1682 			parity_quirk = !slave->first_interrupt_done &&
1683 				(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1684 
1685 			if (parity_check && !parity_quirk)
1686 				dev_err(&slave->dev, "Parity error detected\n");
1687 			clear |= SDW_SCP_INT1_PARITY;
1688 		}
1689 
1690 		if (buf & SDW_SCP_INT1_BUS_CLASH) {
1691 			if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1692 				dev_err(&slave->dev, "Bus clash detected\n");
1693 			clear |= SDW_SCP_INT1_BUS_CLASH;
1694 		}
1695 
1696 		/*
1697 		 * When bus clash or parity errors are detected, such errors
1698 		 * are unlikely to be recoverable errors.
1699 		 * TODO: In such scenario, reset bus. Make this configurable
1700 		 * via sysfs property with bus reset being the default.
1701 		 */
1702 
1703 		if (buf & SDW_SCP_INT1_IMPL_DEF) {
1704 			if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1705 				dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1706 				slave_notify = true;
1707 			}
1708 			clear |= SDW_SCP_INT1_IMPL_DEF;
1709 		}
1710 
1711 		/* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1712 		if (sdca_cascade)
1713 			slave_notify = true;
1714 
1715 		/* Check port 0 - 3 interrupts */
1716 		port = buf & SDW_SCP_INT1_PORT0_3;
1717 
1718 		/* To get port number corresponding to bits, shift it */
1719 		port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1720 		for_each_set_bit(bit, &port, 8) {
1721 			sdw_handle_port_interrupt(slave, bit,
1722 						  &port_status[bit]);
1723 		}
1724 
1725 		/* Check if cascade 2 interrupt is present */
1726 		if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1727 			port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1728 			for_each_set_bit(bit, &port, 8) {
1729 				/* scp2 ports start from 4 */
1730 				port_num = bit + 4;
1731 				sdw_handle_port_interrupt(slave,
1732 						port_num,
1733 						&port_status[port_num]);
1734 			}
1735 		}
1736 
1737 		/* now check last cascade */
1738 		if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1739 			port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1740 			for_each_set_bit(bit, &port, 8) {
1741 				/* scp3 ports start from 11 */
1742 				port_num = bit + 11;
1743 				sdw_handle_port_interrupt(slave,
1744 						port_num,
1745 						&port_status[port_num]);
1746 			}
1747 		}
1748 
1749 		/* Update the Slave driver */
1750 		if (slave_notify) {
1751 			mutex_lock(&slave->sdw_dev_lock);
1752 
1753 			if (slave->probed) {
1754 				struct device *dev = &slave->dev;
1755 				struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1756 
1757 				if (slave->prop.use_domain_irq && slave->irq)
1758 					handle_nested_irq(slave->irq);
1759 
1760 				if (drv->ops && drv->ops->interrupt_callback) {
1761 					slave_intr.sdca_cascade = sdca_cascade;
1762 					slave_intr.control_port = clear;
1763 					memcpy(slave_intr.port, &port_status,
1764 					       sizeof(slave_intr.port));
1765 
1766 					drv->ops->interrupt_callback(slave, &slave_intr);
1767 				}
1768 			}
1769 
1770 			mutex_unlock(&slave->sdw_dev_lock);
1771 		}
1772 
1773 		/* Ack interrupt */
1774 		ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1775 		if (ret < 0) {
1776 			dev_err(&slave->dev,
1777 				"SDW_SCP_INT1 write failed:%d\n", ret);
1778 			goto io_err;
1779 		}
1780 
1781 		/* at this point all initial interrupt sources were handled */
1782 		slave->first_interrupt_done = true;
1783 
1784 		/*
1785 		 * Read status again to ensure no new interrupts arrived
1786 		 * while servicing interrupts.
1787 		 */
1788 		ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1789 		if (ret < 0) {
1790 			dev_err(&slave->dev,
1791 				"SDW_SCP_INT1 recheck read failed:%d\n", ret);
1792 			goto io_err;
1793 		}
1794 		buf = ret;
1795 
1796 		ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1797 		if (ret < 0) {
1798 			dev_err(&slave->dev,
1799 				"SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1800 			goto io_err;
1801 		}
1802 
1803 		if (slave->id.class_id) {
1804 			ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1805 			if (ret < 0) {
1806 				dev_err(&slave->dev,
1807 					"SDW_DP0_INT recheck read failed:%d\n", ret);
1808 				goto io_err;
1809 			}
1810 			sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1811 		}
1812 
1813 		/*
1814 		 * Make sure no interrupts are pending
1815 		 */
1816 		stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1817 
1818 		/*
1819 		 * Exit loop if Slave is continuously in ALERT state even
1820 		 * after servicing the interrupt multiple times.
1821 		 */
1822 		count++;
1823 
1824 		/* we can get alerts while processing so keep retrying */
1825 	} while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1826 
1827 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1828 		dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1829 
1830 io_err:
1831 	pm_runtime_mark_last_busy(&slave->dev);
1832 	pm_runtime_put_autosuspend(&slave->dev);
1833 
1834 	return ret;
1835 }
1836 
1837 static int sdw_update_slave_status(struct sdw_slave *slave,
1838 				   enum sdw_slave_status status)
1839 {
1840 	int ret = 0;
1841 
1842 	mutex_lock(&slave->sdw_dev_lock);
1843 
1844 	if (slave->probed) {
1845 		struct device *dev = &slave->dev;
1846 		struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1847 
1848 		if (drv->ops && drv->ops->update_status)
1849 			ret = drv->ops->update_status(slave, status);
1850 	}
1851 
1852 	mutex_unlock(&slave->sdw_dev_lock);
1853 
1854 	return ret;
1855 }
1856 
1857 /**
1858  * sdw_handle_slave_status() - Handle Slave status
1859  * @bus: SDW bus instance
1860  * @status: Status for all Slave(s)
1861  */
1862 int sdw_handle_slave_status(struct sdw_bus *bus,
1863 			    enum sdw_slave_status status[])
1864 {
1865 	enum sdw_slave_status prev_status;
1866 	struct sdw_slave *slave;
1867 	bool attached_initializing, id_programmed;
1868 	int i, ret = 0;
1869 
1870 	/* first check if any Slaves fell off the bus */
1871 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1872 		mutex_lock(&bus->bus_lock);
1873 		if (test_bit(i, bus->assigned) == false) {
1874 			mutex_unlock(&bus->bus_lock);
1875 			continue;
1876 		}
1877 		mutex_unlock(&bus->bus_lock);
1878 
1879 		slave = sdw_get_slave(bus, i);
1880 		if (!slave)
1881 			continue;
1882 
1883 		if (status[i] == SDW_SLAVE_UNATTACHED &&
1884 		    slave->status != SDW_SLAVE_UNATTACHED) {
1885 			dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1886 				 i, slave->status);
1887 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1888 
1889 			/* Ensure driver knows that peripheral unattached */
1890 			ret = sdw_update_slave_status(slave, status[i]);
1891 			if (ret < 0)
1892 				dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1893 		}
1894 	}
1895 
1896 	if (status[0] == SDW_SLAVE_ATTACHED) {
1897 		dev_dbg(bus->dev, "Slave attached, programming device number\n");
1898 
1899 		/*
1900 		 * Programming a device number will have side effects,
1901 		 * so we deal with other devices at a later time.
1902 		 * This relies on those devices reporting ATTACHED, which will
1903 		 * trigger another call to this function. This will only
1904 		 * happen if at least one device ID was programmed.
1905 		 * Error returns from sdw_program_device_num() are currently
1906 		 * ignored because there's no useful recovery that can be done.
1907 		 * Returning the error here could result in the current status
1908 		 * of other devices not being handled, because if no device IDs
1909 		 * were programmed there's nothing to guarantee a status change
1910 		 * to trigger another call to this function.
1911 		 */
1912 		sdw_program_device_num(bus, &id_programmed);
1913 		if (id_programmed)
1914 			return 0;
1915 	}
1916 
1917 	/* Continue to check other slave statuses */
1918 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1919 		mutex_lock(&bus->bus_lock);
1920 		if (test_bit(i, bus->assigned) == false) {
1921 			mutex_unlock(&bus->bus_lock);
1922 			continue;
1923 		}
1924 		mutex_unlock(&bus->bus_lock);
1925 
1926 		slave = sdw_get_slave(bus, i);
1927 		if (!slave)
1928 			continue;
1929 
1930 		attached_initializing = false;
1931 
1932 		switch (status[i]) {
1933 		case SDW_SLAVE_UNATTACHED:
1934 			if (slave->status == SDW_SLAVE_UNATTACHED)
1935 				break;
1936 
1937 			dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1938 				 i, slave->status);
1939 
1940 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1941 			break;
1942 
1943 		case SDW_SLAVE_ALERT:
1944 			ret = sdw_handle_slave_alerts(slave);
1945 			if (ret < 0)
1946 				dev_err(&slave->dev,
1947 					"Slave %d alert handling failed: %d\n",
1948 					i, ret);
1949 			break;
1950 
1951 		case SDW_SLAVE_ATTACHED:
1952 			if (slave->status == SDW_SLAVE_ATTACHED)
1953 				break;
1954 
1955 			prev_status = slave->status;
1956 			sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1957 
1958 			if (prev_status == SDW_SLAVE_ALERT)
1959 				break;
1960 
1961 			attached_initializing = true;
1962 
1963 			ret = sdw_initialize_slave(slave);
1964 			if (ret < 0)
1965 				dev_err(&slave->dev,
1966 					"Slave %d initialization failed: %d\n",
1967 					i, ret);
1968 
1969 			break;
1970 
1971 		default:
1972 			dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1973 				i, status[i]);
1974 			break;
1975 		}
1976 
1977 		ret = sdw_update_slave_status(slave, status[i]);
1978 		if (ret < 0)
1979 			dev_err(&slave->dev,
1980 				"Update Slave status failed:%d\n", ret);
1981 		if (attached_initializing) {
1982 			dev_dbg(&slave->dev,
1983 				"signaling initialization completion for Slave %d\n",
1984 				slave->dev_num);
1985 
1986 			complete_all(&slave->initialization_complete);
1987 
1988 			/*
1989 			 * If the manager became pm_runtime active, the peripherals will be
1990 			 * restarted and attach, but their pm_runtime status may remain
1991 			 * suspended. If the 'update_slave_status' callback initiates
1992 			 * any sort of deferred processing, this processing would not be
1993 			 * cancelled on pm_runtime suspend.
1994 			 * To avoid such zombie states, we queue a request to resume.
1995 			 * This would be a no-op in case the peripheral was being resumed
1996 			 * by e.g. the ALSA/ASoC framework.
1997 			 */
1998 			pm_request_resume(&slave->dev);
1999 		}
2000 	}
2001 
2002 	return ret;
2003 }
2004 EXPORT_SYMBOL(sdw_handle_slave_status);
2005 
2006 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
2007 {
2008 	struct sdw_slave *slave;
2009 	int i;
2010 
2011 	/* Check all non-zero devices */
2012 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
2013 		mutex_lock(&bus->bus_lock);
2014 		if (test_bit(i, bus->assigned) == false) {
2015 			mutex_unlock(&bus->bus_lock);
2016 			continue;
2017 		}
2018 		mutex_unlock(&bus->bus_lock);
2019 
2020 		slave = sdw_get_slave(bus, i);
2021 		if (!slave)
2022 			continue;
2023 
2024 		if (slave->status != SDW_SLAVE_UNATTACHED) {
2025 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
2026 			slave->first_interrupt_done = false;
2027 			sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
2028 		}
2029 
2030 		/* keep track of request, used in pm_runtime resume */
2031 		slave->unattach_request = request;
2032 	}
2033 }
2034 EXPORT_SYMBOL(sdw_clear_slave_status);
2035