xref: /openbmc/linux/drivers/soundwire/bus.c (revision a9ebfc40)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3 
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
11 #include "bus.h"
12 #include "irq.h"
13 #include "sysfs_local.h"
14 
15 static DEFINE_IDA(sdw_bus_ida);
16 
17 static int sdw_get_id(struct sdw_bus *bus)
18 {
19 	int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
20 
21 	if (rc < 0)
22 		return rc;
23 
24 	bus->id = rc;
25 
26 	if (bus->controller_id == -1)
27 		bus->controller_id = rc;
28 
29 	return 0;
30 }
31 
32 /**
33  * sdw_bus_master_add() - add a bus Master instance
34  * @bus: bus instance
35  * @parent: parent device
36  * @fwnode: firmware node handle
37  *
38  * Initializes the bus instance, read properties and create child
39  * devices.
40  */
41 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
42 		       struct fwnode_handle *fwnode)
43 {
44 	struct sdw_master_prop *prop = NULL;
45 	int ret;
46 
47 	if (!parent) {
48 		pr_err("SoundWire parent device is not set\n");
49 		return -ENODEV;
50 	}
51 
52 	ret = sdw_get_id(bus);
53 	if (ret < 0) {
54 		dev_err(parent, "Failed to get bus id\n");
55 		return ret;
56 	}
57 
58 	ret = sdw_master_device_add(bus, parent, fwnode);
59 	if (ret < 0) {
60 		dev_err(parent, "Failed to add master device at link %d\n",
61 			bus->link_id);
62 		return ret;
63 	}
64 
65 	if (!bus->ops) {
66 		dev_err(bus->dev, "SoundWire Bus ops are not set\n");
67 		return -EINVAL;
68 	}
69 
70 	if (!bus->compute_params) {
71 		dev_err(bus->dev,
72 			"Bandwidth allocation not configured, compute_params no set\n");
73 		return -EINVAL;
74 	}
75 
76 	/*
77 	 * Give each bus_lock and msg_lock a unique key so that lockdep won't
78 	 * trigger a deadlock warning when the locks of several buses are
79 	 * grabbed during configuration of a multi-bus stream.
80 	 */
81 	lockdep_register_key(&bus->msg_lock_key);
82 	__mutex_init(&bus->msg_lock, "msg_lock", &bus->msg_lock_key);
83 
84 	lockdep_register_key(&bus->bus_lock_key);
85 	__mutex_init(&bus->bus_lock, "bus_lock", &bus->bus_lock_key);
86 
87 	INIT_LIST_HEAD(&bus->slaves);
88 	INIT_LIST_HEAD(&bus->m_rt_list);
89 
90 	/*
91 	 * Initialize multi_link flag
92 	 */
93 	bus->multi_link = false;
94 	if (bus->ops->read_prop) {
95 		ret = bus->ops->read_prop(bus);
96 		if (ret < 0) {
97 			dev_err(bus->dev,
98 				"Bus read properties failed:%d\n", ret);
99 			return ret;
100 		}
101 	}
102 
103 	sdw_bus_debugfs_init(bus);
104 
105 	/*
106 	 * Device numbers in SoundWire are 0 through 15. Enumeration device
107 	 * number (0), Broadcast device number (15), Group numbers (12 and
108 	 * 13) and Master device number (14) are not used for assignment so
109 	 * mask these and other higher bits.
110 	 */
111 
112 	/* Set higher order bits */
113 	*bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
114 
115 	/* Set enumuration device number and broadcast device number */
116 	set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
117 	set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
118 
119 	/* Set group device numbers and master device number */
120 	set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
121 	set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
122 	set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
123 
124 	/*
125 	 * SDW is an enumerable bus, but devices can be powered off. So,
126 	 * they won't be able to report as present.
127 	 *
128 	 * Create Slave devices based on Slaves described in
129 	 * the respective firmware (ACPI/DT)
130 	 */
131 	if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
132 		ret = sdw_acpi_find_slaves(bus);
133 	else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
134 		ret = sdw_of_find_slaves(bus);
135 	else
136 		ret = -ENOTSUPP; /* No ACPI/DT so error out */
137 
138 	if (ret < 0) {
139 		dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
140 		return ret;
141 	}
142 
143 	/*
144 	 * Initialize clock values based on Master properties. The max
145 	 * frequency is read from max_clk_freq property. Current assumption
146 	 * is that the bus will start at highest clock frequency when
147 	 * powered on.
148 	 *
149 	 * Default active bank will be 0 as out of reset the Slaves have
150 	 * to start with bank 0 (Table 40 of Spec)
151 	 */
152 	prop = &bus->prop;
153 	bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
154 	bus->params.curr_dr_freq = bus->params.max_dr_freq;
155 	bus->params.curr_bank = SDW_BANK0;
156 	bus->params.next_bank = SDW_BANK1;
157 
158 	ret = sdw_irq_create(bus, fwnode);
159 	if (ret)
160 		return ret;
161 
162 	return 0;
163 }
164 EXPORT_SYMBOL(sdw_bus_master_add);
165 
166 static int sdw_delete_slave(struct device *dev, void *data)
167 {
168 	struct sdw_slave *slave = dev_to_sdw_dev(dev);
169 	struct sdw_bus *bus = slave->bus;
170 
171 	pm_runtime_disable(dev);
172 
173 	sdw_slave_debugfs_exit(slave);
174 
175 	mutex_lock(&bus->bus_lock);
176 
177 	if (slave->dev_num) { /* clear dev_num if assigned */
178 		clear_bit(slave->dev_num, bus->assigned);
179 		if (bus->ops && bus->ops->put_device_num)
180 			bus->ops->put_device_num(bus, slave);
181 	}
182 	list_del_init(&slave->node);
183 	mutex_unlock(&bus->bus_lock);
184 
185 	device_unregister(dev);
186 	return 0;
187 }
188 
189 /**
190  * sdw_bus_master_delete() - delete the bus master instance
191  * @bus: bus to be deleted
192  *
193  * Remove the instance, delete the child devices.
194  */
195 void sdw_bus_master_delete(struct sdw_bus *bus)
196 {
197 	device_for_each_child(bus->dev, NULL, sdw_delete_slave);
198 
199 	sdw_irq_delete(bus);
200 
201 	sdw_master_device_del(bus);
202 
203 	sdw_bus_debugfs_exit(bus);
204 	lockdep_unregister_key(&bus->bus_lock_key);
205 	lockdep_unregister_key(&bus->msg_lock_key);
206 	ida_free(&sdw_bus_ida, bus->id);
207 }
208 EXPORT_SYMBOL(sdw_bus_master_delete);
209 
210 /*
211  * SDW IO Calls
212  */
213 
214 static inline int find_response_code(enum sdw_command_response resp)
215 {
216 	switch (resp) {
217 	case SDW_CMD_OK:
218 		return 0;
219 
220 	case SDW_CMD_IGNORED:
221 		return -ENODATA;
222 
223 	case SDW_CMD_TIMEOUT:
224 		return -ETIMEDOUT;
225 
226 	default:
227 		return -EIO;
228 	}
229 }
230 
231 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
232 {
233 	int retry = bus->prop.err_threshold;
234 	enum sdw_command_response resp;
235 	int ret = 0, i;
236 
237 	for (i = 0; i <= retry; i++) {
238 		resp = bus->ops->xfer_msg(bus, msg);
239 		ret = find_response_code(resp);
240 
241 		/* if cmd is ok or ignored return */
242 		if (ret == 0 || ret == -ENODATA)
243 			return ret;
244 	}
245 
246 	return ret;
247 }
248 
249 static inline int do_transfer_defer(struct sdw_bus *bus,
250 				    struct sdw_msg *msg)
251 {
252 	struct sdw_defer *defer = &bus->defer_msg;
253 	int retry = bus->prop.err_threshold;
254 	enum sdw_command_response resp;
255 	int ret = 0, i;
256 
257 	defer->msg = msg;
258 	defer->length = msg->len;
259 	init_completion(&defer->complete);
260 
261 	for (i = 0; i <= retry; i++) {
262 		resp = bus->ops->xfer_msg_defer(bus);
263 		ret = find_response_code(resp);
264 		/* if cmd is ok or ignored return */
265 		if (ret == 0 || ret == -ENODATA)
266 			return ret;
267 	}
268 
269 	return ret;
270 }
271 
272 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
273 {
274 	int ret;
275 
276 	ret = do_transfer(bus, msg);
277 	if (ret != 0 && ret != -ENODATA)
278 		dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
279 			msg->dev_num, ret,
280 			(msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
281 			msg->addr, msg->len);
282 
283 	return ret;
284 }
285 
286 /**
287  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
288  * @bus: SDW bus
289  * @msg: SDW message to be xfered
290  */
291 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
292 {
293 	int ret;
294 
295 	mutex_lock(&bus->msg_lock);
296 
297 	ret = sdw_transfer_unlocked(bus, msg);
298 
299 	mutex_unlock(&bus->msg_lock);
300 
301 	return ret;
302 }
303 
304 /**
305  * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
306  * @bus: SDW bus
307  * @sync_delay: Delay before reading status
308  */
309 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
310 {
311 	u32 status;
312 
313 	if (!bus->ops->read_ping_status)
314 		return;
315 
316 	/*
317 	 * wait for peripheral to sync if desired. 10-15ms should be more than
318 	 * enough in most cases.
319 	 */
320 	if (sync_delay)
321 		usleep_range(10000, 15000);
322 
323 	mutex_lock(&bus->msg_lock);
324 
325 	status = bus->ops->read_ping_status(bus);
326 
327 	mutex_unlock(&bus->msg_lock);
328 
329 	if (!status)
330 		dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
331 	else
332 		dev_dbg(bus->dev, "PING status: %#x\n", status);
333 }
334 EXPORT_SYMBOL(sdw_show_ping_status);
335 
336 /**
337  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
338  * @bus: SDW bus
339  * @msg: SDW message to be xfered
340  *
341  * Caller needs to hold the msg_lock lock while calling this
342  */
343 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
344 {
345 	int ret;
346 
347 	if (!bus->ops->xfer_msg_defer)
348 		return -ENOTSUPP;
349 
350 	ret = do_transfer_defer(bus, msg);
351 	if (ret != 0 && ret != -ENODATA)
352 		dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
353 			msg->dev_num, ret);
354 
355 	return ret;
356 }
357 
358 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
359 		 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
360 {
361 	memset(msg, 0, sizeof(*msg));
362 	msg->addr = addr; /* addr is 16 bit and truncated here */
363 	msg->len = count;
364 	msg->dev_num = dev_num;
365 	msg->flags = flags;
366 	msg->buf = buf;
367 
368 	if (addr < SDW_REG_NO_PAGE) /* no paging area */
369 		return 0;
370 
371 	if (addr >= SDW_REG_MAX) { /* illegal addr */
372 		pr_err("SDW: Invalid address %x passed\n", addr);
373 		return -EINVAL;
374 	}
375 
376 	if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
377 		if (slave && !slave->prop.paging_support)
378 			return 0;
379 		/* no need for else as that will fall-through to paging */
380 	}
381 
382 	/* paging mandatory */
383 	if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
384 		pr_err("SDW: Invalid device for paging :%d\n", dev_num);
385 		return -EINVAL;
386 	}
387 
388 	if (!slave) {
389 		pr_err("SDW: No slave for paging addr\n");
390 		return -EINVAL;
391 	}
392 
393 	if (!slave->prop.paging_support) {
394 		dev_err(&slave->dev,
395 			"address %x needs paging but no support\n", addr);
396 		return -EINVAL;
397 	}
398 
399 	msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
400 	msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
401 	msg->addr |= BIT(15);
402 	msg->page = true;
403 
404 	return 0;
405 }
406 
407 /*
408  * Read/Write IO functions.
409  */
410 
411 static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags,
412 			       size_t count, u8 *val)
413 {
414 	struct sdw_msg msg;
415 	size_t size;
416 	int ret;
417 
418 	while (count) {
419 		// Only handle bytes up to next page boundary
420 		size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR));
421 
422 		ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val);
423 		if (ret < 0)
424 			return ret;
425 
426 		ret = sdw_transfer(slave->bus, &msg);
427 		if (ret < 0 && !slave->is_mockup_device)
428 			return ret;
429 
430 		addr += size;
431 		val += size;
432 		count -= size;
433 	}
434 
435 	return 0;
436 }
437 
438 /**
439  * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
440  * @slave: SDW Slave
441  * @addr: Register address
442  * @count: length
443  * @val: Buffer for values to be read
444  *
445  * Note that if the message crosses a page boundary each page will be
446  * transferred under a separate invocation of the msg_lock.
447  */
448 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
449 {
450 	return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val);
451 }
452 EXPORT_SYMBOL(sdw_nread_no_pm);
453 
454 /**
455  * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
456  * @slave: SDW Slave
457  * @addr: Register address
458  * @count: length
459  * @val: Buffer for values to be written
460  *
461  * Note that if the message crosses a page boundary each page will be
462  * transferred under a separate invocation of the msg_lock.
463  */
464 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
465 {
466 	return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val);
467 }
468 EXPORT_SYMBOL(sdw_nwrite_no_pm);
469 
470 /**
471  * sdw_write_no_pm() - Write a SDW Slave register with no PM
472  * @slave: SDW Slave
473  * @addr: Register address
474  * @value: Register value
475  */
476 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
477 {
478 	return sdw_nwrite_no_pm(slave, addr, 1, &value);
479 }
480 EXPORT_SYMBOL(sdw_write_no_pm);
481 
482 static int
483 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
484 {
485 	struct sdw_msg msg;
486 	u8 buf;
487 	int ret;
488 
489 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
490 			   SDW_MSG_FLAG_READ, &buf);
491 	if (ret < 0)
492 		return ret;
493 
494 	ret = sdw_transfer(bus, &msg);
495 	if (ret < 0)
496 		return ret;
497 
498 	return buf;
499 }
500 
501 static int
502 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
503 {
504 	struct sdw_msg msg;
505 	int ret;
506 
507 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
508 			   SDW_MSG_FLAG_WRITE, &value);
509 	if (ret < 0)
510 		return ret;
511 
512 	return sdw_transfer(bus, &msg);
513 }
514 
515 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
516 {
517 	struct sdw_msg msg;
518 	u8 buf;
519 	int ret;
520 
521 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
522 			   SDW_MSG_FLAG_READ, &buf);
523 	if (ret < 0)
524 		return ret;
525 
526 	ret = sdw_transfer_unlocked(bus, &msg);
527 	if (ret < 0)
528 		return ret;
529 
530 	return buf;
531 }
532 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
533 
534 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
535 {
536 	struct sdw_msg msg;
537 	int ret;
538 
539 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
540 			   SDW_MSG_FLAG_WRITE, &value);
541 	if (ret < 0)
542 		return ret;
543 
544 	return sdw_transfer_unlocked(bus, &msg);
545 }
546 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
547 
548 /**
549  * sdw_read_no_pm() - Read a SDW Slave register with no PM
550  * @slave: SDW Slave
551  * @addr: Register address
552  */
553 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
554 {
555 	u8 buf;
556 	int ret;
557 
558 	ret = sdw_nread_no_pm(slave, addr, 1, &buf);
559 	if (ret < 0)
560 		return ret;
561 	else
562 		return buf;
563 }
564 EXPORT_SYMBOL(sdw_read_no_pm);
565 
566 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
567 {
568 	int tmp;
569 
570 	tmp = sdw_read_no_pm(slave, addr);
571 	if (tmp < 0)
572 		return tmp;
573 
574 	tmp = (tmp & ~mask) | val;
575 	return sdw_write_no_pm(slave, addr, tmp);
576 }
577 EXPORT_SYMBOL(sdw_update_no_pm);
578 
579 /* Read-Modify-Write Slave register */
580 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
581 {
582 	int tmp;
583 
584 	tmp = sdw_read(slave, addr);
585 	if (tmp < 0)
586 		return tmp;
587 
588 	tmp = (tmp & ~mask) | val;
589 	return sdw_write(slave, addr, tmp);
590 }
591 EXPORT_SYMBOL(sdw_update);
592 
593 /**
594  * sdw_nread() - Read "n" contiguous SDW Slave registers
595  * @slave: SDW Slave
596  * @addr: Register address
597  * @count: length
598  * @val: Buffer for values to be read
599  *
600  * This version of the function will take a PM reference to the slave
601  * device.
602  * Note that if the message crosses a page boundary each page will be
603  * transferred under a separate invocation of the msg_lock.
604  */
605 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
606 {
607 	int ret;
608 
609 	ret = pm_runtime_get_sync(&slave->dev);
610 	if (ret < 0 && ret != -EACCES) {
611 		pm_runtime_put_noidle(&slave->dev);
612 		return ret;
613 	}
614 
615 	ret = sdw_nread_no_pm(slave, addr, count, val);
616 
617 	pm_runtime_mark_last_busy(&slave->dev);
618 	pm_runtime_put(&slave->dev);
619 
620 	return ret;
621 }
622 EXPORT_SYMBOL(sdw_nread);
623 
624 /**
625  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
626  * @slave: SDW Slave
627  * @addr: Register address
628  * @count: length
629  * @val: Buffer for values to be written
630  *
631  * This version of the function will take a PM reference to the slave
632  * device.
633  * Note that if the message crosses a page boundary each page will be
634  * transferred under a separate invocation of the msg_lock.
635  */
636 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
637 {
638 	int ret;
639 
640 	ret = pm_runtime_get_sync(&slave->dev);
641 	if (ret < 0 && ret != -EACCES) {
642 		pm_runtime_put_noidle(&slave->dev);
643 		return ret;
644 	}
645 
646 	ret = sdw_nwrite_no_pm(slave, addr, count, val);
647 
648 	pm_runtime_mark_last_busy(&slave->dev);
649 	pm_runtime_put(&slave->dev);
650 
651 	return ret;
652 }
653 EXPORT_SYMBOL(sdw_nwrite);
654 
655 /**
656  * sdw_read() - Read a SDW Slave register
657  * @slave: SDW Slave
658  * @addr: Register address
659  *
660  * This version of the function will take a PM reference to the slave
661  * device.
662  */
663 int sdw_read(struct sdw_slave *slave, u32 addr)
664 {
665 	u8 buf;
666 	int ret;
667 
668 	ret = sdw_nread(slave, addr, 1, &buf);
669 	if (ret < 0)
670 		return ret;
671 
672 	return buf;
673 }
674 EXPORT_SYMBOL(sdw_read);
675 
676 /**
677  * sdw_write() - Write a SDW Slave register
678  * @slave: SDW Slave
679  * @addr: Register address
680  * @value: Register value
681  *
682  * This version of the function will take a PM reference to the slave
683  * device.
684  */
685 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
686 {
687 	return sdw_nwrite(slave, addr, 1, &value);
688 }
689 EXPORT_SYMBOL(sdw_write);
690 
691 /*
692  * SDW alert handling
693  */
694 
695 /* called with bus_lock held */
696 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
697 {
698 	struct sdw_slave *slave;
699 
700 	list_for_each_entry(slave, &bus->slaves, node) {
701 		if (slave->dev_num == i)
702 			return slave;
703 	}
704 
705 	return NULL;
706 }
707 
708 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
709 {
710 	if (slave->id.mfg_id != id.mfg_id ||
711 	    slave->id.part_id != id.part_id ||
712 	    slave->id.class_id != id.class_id ||
713 	    (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
714 	     slave->id.unique_id != id.unique_id))
715 		return -ENODEV;
716 
717 	return 0;
718 }
719 EXPORT_SYMBOL(sdw_compare_devid);
720 
721 /* called with bus_lock held */
722 static int sdw_get_device_num(struct sdw_slave *slave)
723 {
724 	struct sdw_bus *bus = slave->bus;
725 	int bit;
726 
727 	if (bus->ops && bus->ops->get_device_num) {
728 		bit = bus->ops->get_device_num(bus, slave);
729 		if (bit < 0)
730 			goto err;
731 	} else {
732 		bit = find_first_zero_bit(bus->assigned, SDW_MAX_DEVICES);
733 		if (bit == SDW_MAX_DEVICES) {
734 			bit = -ENODEV;
735 			goto err;
736 		}
737 	}
738 
739 	/*
740 	 * Do not update dev_num in Slave data structure here,
741 	 * Update once program dev_num is successful
742 	 */
743 	set_bit(bit, bus->assigned);
744 
745 err:
746 	return bit;
747 }
748 
749 static int sdw_assign_device_num(struct sdw_slave *slave)
750 {
751 	struct sdw_bus *bus = slave->bus;
752 	int ret, dev_num;
753 	bool new_device = false;
754 
755 	/* check first if device number is assigned, if so reuse that */
756 	if (!slave->dev_num) {
757 		if (!slave->dev_num_sticky) {
758 			mutex_lock(&slave->bus->bus_lock);
759 			dev_num = sdw_get_device_num(slave);
760 			mutex_unlock(&slave->bus->bus_lock);
761 			if (dev_num < 0) {
762 				dev_err(bus->dev, "Get dev_num failed: %d\n",
763 					dev_num);
764 				return dev_num;
765 			}
766 			slave->dev_num = dev_num;
767 			slave->dev_num_sticky = dev_num;
768 			new_device = true;
769 		} else {
770 			slave->dev_num = slave->dev_num_sticky;
771 		}
772 	}
773 
774 	if (!new_device)
775 		dev_dbg(bus->dev,
776 			"Slave already registered, reusing dev_num:%d\n",
777 			slave->dev_num);
778 
779 	/* Clear the slave->dev_num to transfer message on device 0 */
780 	dev_num = slave->dev_num;
781 	slave->dev_num = 0;
782 
783 	ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
784 	if (ret < 0) {
785 		dev_err(bus->dev, "Program device_num %d failed: %d\n",
786 			dev_num, ret);
787 		return ret;
788 	}
789 
790 	/* After xfer of msg, restore dev_num */
791 	slave->dev_num = slave->dev_num_sticky;
792 
793 	if (bus->ops && bus->ops->new_peripheral_assigned)
794 		bus->ops->new_peripheral_assigned(bus, slave, dev_num);
795 
796 	return 0;
797 }
798 
799 void sdw_extract_slave_id(struct sdw_bus *bus,
800 			  u64 addr, struct sdw_slave_id *id)
801 {
802 	dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
803 
804 	id->sdw_version = SDW_VERSION(addr);
805 	id->unique_id = SDW_UNIQUE_ID(addr);
806 	id->mfg_id = SDW_MFG_ID(addr);
807 	id->part_id = SDW_PART_ID(addr);
808 	id->class_id = SDW_CLASS_ID(addr);
809 
810 	dev_dbg(bus->dev,
811 		"SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
812 		id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
813 }
814 EXPORT_SYMBOL(sdw_extract_slave_id);
815 
816 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
817 {
818 	u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
819 	struct sdw_slave *slave, *_s;
820 	struct sdw_slave_id id;
821 	struct sdw_msg msg;
822 	bool found;
823 	int count = 0, ret;
824 	u64 addr;
825 
826 	*programmed = false;
827 
828 	/* No Slave, so use raw xfer api */
829 	ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
830 			   SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
831 	if (ret < 0)
832 		return ret;
833 
834 	do {
835 		ret = sdw_transfer(bus, &msg);
836 		if (ret == -ENODATA) { /* end of device id reads */
837 			dev_dbg(bus->dev, "No more devices to enumerate\n");
838 			ret = 0;
839 			break;
840 		}
841 		if (ret < 0) {
842 			dev_err(bus->dev, "DEVID read fail:%d\n", ret);
843 			break;
844 		}
845 
846 		/*
847 		 * Construct the addr and extract. Cast the higher shift
848 		 * bits to avoid truncation due to size limit.
849 		 */
850 		addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
851 			((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
852 			((u64)buf[0] << 40);
853 
854 		sdw_extract_slave_id(bus, addr, &id);
855 
856 		found = false;
857 		/* Now compare with entries */
858 		list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
859 			if (sdw_compare_devid(slave, id) == 0) {
860 				found = true;
861 
862 				/*
863 				 * To prevent skipping state-machine stages don't
864 				 * program a device until we've seen it UNATTACH.
865 				 * Must return here because no other device on #0
866 				 * can be detected until this one has been
867 				 * assigned a device ID.
868 				 */
869 				if (slave->status != SDW_SLAVE_UNATTACHED)
870 					return 0;
871 
872 				/*
873 				 * Assign a new dev_num to this Slave and
874 				 * not mark it present. It will be marked
875 				 * present after it reports ATTACHED on new
876 				 * dev_num
877 				 */
878 				ret = sdw_assign_device_num(slave);
879 				if (ret < 0) {
880 					dev_err(bus->dev,
881 						"Assign dev_num failed:%d\n",
882 						ret);
883 					return ret;
884 				}
885 
886 				*programmed = true;
887 
888 				break;
889 			}
890 		}
891 
892 		if (!found) {
893 			/* TODO: Park this device in Group 13 */
894 
895 			/*
896 			 * add Slave device even if there is no platform
897 			 * firmware description. There will be no driver probe
898 			 * but the user/integration will be able to see the
899 			 * device, enumeration status and device number in sysfs
900 			 */
901 			sdw_slave_add(bus, &id, NULL);
902 
903 			dev_err(bus->dev, "Slave Entry not found\n");
904 		}
905 
906 		count++;
907 
908 		/*
909 		 * Check till error out or retry (count) exhausts.
910 		 * Device can drop off and rejoin during enumeration
911 		 * so count till twice the bound.
912 		 */
913 
914 	} while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
915 
916 	return ret;
917 }
918 
919 static void sdw_modify_slave_status(struct sdw_slave *slave,
920 				    enum sdw_slave_status status)
921 {
922 	struct sdw_bus *bus = slave->bus;
923 
924 	mutex_lock(&bus->bus_lock);
925 
926 	dev_vdbg(bus->dev,
927 		 "changing status slave %d status %d new status %d\n",
928 		 slave->dev_num, slave->status, status);
929 
930 	if (status == SDW_SLAVE_UNATTACHED) {
931 		dev_dbg(&slave->dev,
932 			"initializing enumeration and init completion for Slave %d\n",
933 			slave->dev_num);
934 
935 		reinit_completion(&slave->enumeration_complete);
936 		reinit_completion(&slave->initialization_complete);
937 
938 	} else if ((status == SDW_SLAVE_ATTACHED) &&
939 		   (slave->status == SDW_SLAVE_UNATTACHED)) {
940 		dev_dbg(&slave->dev,
941 			"signaling enumeration completion for Slave %d\n",
942 			slave->dev_num);
943 
944 		complete_all(&slave->enumeration_complete);
945 	}
946 	slave->status = status;
947 	mutex_unlock(&bus->bus_lock);
948 }
949 
950 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
951 				       enum sdw_clk_stop_mode mode,
952 				       enum sdw_clk_stop_type type)
953 {
954 	int ret = 0;
955 
956 	mutex_lock(&slave->sdw_dev_lock);
957 
958 	if (slave->probed)  {
959 		struct device *dev = &slave->dev;
960 		struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
961 
962 		if (drv->ops && drv->ops->clk_stop)
963 			ret = drv->ops->clk_stop(slave, mode, type);
964 	}
965 
966 	mutex_unlock(&slave->sdw_dev_lock);
967 
968 	return ret;
969 }
970 
971 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
972 				      enum sdw_clk_stop_mode mode,
973 				      bool prepare)
974 {
975 	bool wake_en;
976 	u32 val = 0;
977 	int ret;
978 
979 	wake_en = slave->prop.wake_capable;
980 
981 	if (prepare) {
982 		val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
983 
984 		if (mode == SDW_CLK_STOP_MODE1)
985 			val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
986 
987 		if (wake_en)
988 			val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
989 	} else {
990 		ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
991 		if (ret < 0) {
992 			if (ret != -ENODATA)
993 				dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
994 			return ret;
995 		}
996 		val = ret;
997 		val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
998 	}
999 
1000 	ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
1001 
1002 	if (ret < 0 && ret != -ENODATA)
1003 		dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
1004 
1005 	return ret;
1006 }
1007 
1008 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
1009 {
1010 	int retry = bus->clk_stop_timeout;
1011 	int val;
1012 
1013 	do {
1014 		val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
1015 		if (val < 0) {
1016 			if (val != -ENODATA)
1017 				dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
1018 			return val;
1019 		}
1020 		val &= SDW_SCP_STAT_CLK_STP_NF;
1021 		if (!val) {
1022 			dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
1023 				dev_num);
1024 			return 0;
1025 		}
1026 
1027 		usleep_range(1000, 1500);
1028 		retry--;
1029 	} while (retry);
1030 
1031 	dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
1032 		dev_num);
1033 
1034 	return -ETIMEDOUT;
1035 }
1036 
1037 /**
1038  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
1039  *
1040  * @bus: SDW bus instance
1041  *
1042  * Query Slave for clock stop mode and prepare for that mode.
1043  */
1044 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
1045 {
1046 	bool simple_clk_stop = true;
1047 	struct sdw_slave *slave;
1048 	bool is_slave = false;
1049 	int ret = 0;
1050 
1051 	/*
1052 	 * In order to save on transition time, prepare
1053 	 * each Slave and then wait for all Slave(s) to be
1054 	 * prepared for clock stop.
1055 	 * If one of the Slave devices has lost sync and
1056 	 * replies with Command Ignored/-ENODATA, we continue
1057 	 * the loop
1058 	 */
1059 	list_for_each_entry(slave, &bus->slaves, node) {
1060 		if (!slave->dev_num)
1061 			continue;
1062 
1063 		if (slave->status != SDW_SLAVE_ATTACHED &&
1064 		    slave->status != SDW_SLAVE_ALERT)
1065 			continue;
1066 
1067 		/* Identify if Slave(s) are available on Bus */
1068 		is_slave = true;
1069 
1070 		ret = sdw_slave_clk_stop_callback(slave,
1071 						  SDW_CLK_STOP_MODE0,
1072 						  SDW_CLK_PRE_PREPARE);
1073 		if (ret < 0 && ret != -ENODATA) {
1074 			dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1075 			return ret;
1076 		}
1077 
1078 		/* Only prepare a Slave device if needed */
1079 		if (!slave->prop.simple_clk_stop_capable) {
1080 			simple_clk_stop = false;
1081 
1082 			ret = sdw_slave_clk_stop_prepare(slave,
1083 							 SDW_CLK_STOP_MODE0,
1084 							 true);
1085 			if (ret < 0 && ret != -ENODATA) {
1086 				dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1087 				return ret;
1088 			}
1089 		}
1090 	}
1091 
1092 	/* Skip remaining clock stop preparation if no Slave is attached */
1093 	if (!is_slave)
1094 		return 0;
1095 
1096 	/*
1097 	 * Don't wait for all Slaves to be ready if they follow the simple
1098 	 * state machine
1099 	 */
1100 	if (!simple_clk_stop) {
1101 		ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1102 						       SDW_BROADCAST_DEV_NUM);
1103 		/*
1104 		 * if there are no Slave devices present and the reply is
1105 		 * Command_Ignored/-ENODATA, we don't need to continue with the
1106 		 * flow and can just return here. The error code is not modified
1107 		 * and its handling left as an exercise for the caller.
1108 		 */
1109 		if (ret < 0)
1110 			return ret;
1111 	}
1112 
1113 	/* Inform slaves that prep is done */
1114 	list_for_each_entry(slave, &bus->slaves, node) {
1115 		if (!slave->dev_num)
1116 			continue;
1117 
1118 		if (slave->status != SDW_SLAVE_ATTACHED &&
1119 		    slave->status != SDW_SLAVE_ALERT)
1120 			continue;
1121 
1122 		ret = sdw_slave_clk_stop_callback(slave,
1123 						  SDW_CLK_STOP_MODE0,
1124 						  SDW_CLK_POST_PREPARE);
1125 
1126 		if (ret < 0 && ret != -ENODATA) {
1127 			dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1128 			return ret;
1129 		}
1130 	}
1131 
1132 	return 0;
1133 }
1134 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1135 
1136 /**
1137  * sdw_bus_clk_stop: stop bus clock
1138  *
1139  * @bus: SDW bus instance
1140  *
1141  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1142  * write to SCP_CTRL register.
1143  */
1144 int sdw_bus_clk_stop(struct sdw_bus *bus)
1145 {
1146 	int ret;
1147 
1148 	/*
1149 	 * broadcast clock stop now, attached Slaves will ACK this,
1150 	 * unattached will ignore
1151 	 */
1152 	ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1153 			       SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1154 	if (ret < 0) {
1155 		if (ret != -ENODATA)
1156 			dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1157 		return ret;
1158 	}
1159 
1160 	return 0;
1161 }
1162 EXPORT_SYMBOL(sdw_bus_clk_stop);
1163 
1164 /**
1165  * sdw_bus_exit_clk_stop: Exit clock stop mode
1166  *
1167  * @bus: SDW bus instance
1168  *
1169  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1170  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1171  * back.
1172  */
1173 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1174 {
1175 	bool simple_clk_stop = true;
1176 	struct sdw_slave *slave;
1177 	bool is_slave = false;
1178 	int ret;
1179 
1180 	/*
1181 	 * In order to save on transition time, de-prepare
1182 	 * each Slave and then wait for all Slave(s) to be
1183 	 * de-prepared after clock resume.
1184 	 */
1185 	list_for_each_entry(slave, &bus->slaves, node) {
1186 		if (!slave->dev_num)
1187 			continue;
1188 
1189 		if (slave->status != SDW_SLAVE_ATTACHED &&
1190 		    slave->status != SDW_SLAVE_ALERT)
1191 			continue;
1192 
1193 		/* Identify if Slave(s) are available on Bus */
1194 		is_slave = true;
1195 
1196 		ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1197 						  SDW_CLK_PRE_DEPREPARE);
1198 		if (ret < 0)
1199 			dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1200 
1201 		/* Only de-prepare a Slave device if needed */
1202 		if (!slave->prop.simple_clk_stop_capable) {
1203 			simple_clk_stop = false;
1204 
1205 			ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1206 							 false);
1207 
1208 			if (ret < 0)
1209 				dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1210 		}
1211 	}
1212 
1213 	/* Skip remaining clock stop de-preparation if no Slave is attached */
1214 	if (!is_slave)
1215 		return 0;
1216 
1217 	/*
1218 	 * Don't wait for all Slaves to be ready if they follow the simple
1219 	 * state machine
1220 	 */
1221 	if (!simple_clk_stop) {
1222 		ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1223 		if (ret < 0)
1224 			dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1225 	}
1226 
1227 	list_for_each_entry(slave, &bus->slaves, node) {
1228 		if (!slave->dev_num)
1229 			continue;
1230 
1231 		if (slave->status != SDW_SLAVE_ATTACHED &&
1232 		    slave->status != SDW_SLAVE_ALERT)
1233 			continue;
1234 
1235 		ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1236 						  SDW_CLK_POST_DEPREPARE);
1237 		if (ret < 0)
1238 			dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1239 	}
1240 
1241 	return 0;
1242 }
1243 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1244 
1245 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1246 			   int port, bool enable, int mask)
1247 {
1248 	u32 addr;
1249 	int ret;
1250 	u8 val = 0;
1251 
1252 	if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1253 		dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1254 			enable ? "on" : "off");
1255 		mask |= SDW_DPN_INT_TEST_FAIL;
1256 	}
1257 
1258 	addr = SDW_DPN_INTMASK(port);
1259 
1260 	/* Set/Clear port ready interrupt mask */
1261 	if (enable) {
1262 		val |= mask;
1263 		val |= SDW_DPN_INT_PORT_READY;
1264 	} else {
1265 		val &= ~(mask);
1266 		val &= ~SDW_DPN_INT_PORT_READY;
1267 	}
1268 
1269 	ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1270 	if (ret < 0)
1271 		dev_err(&slave->dev,
1272 			"SDW_DPN_INTMASK write failed:%d\n", val);
1273 
1274 	return ret;
1275 }
1276 
1277 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1278 {
1279 	u32 mclk_freq = slave->bus->prop.mclk_freq;
1280 	u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1281 	unsigned int scale;
1282 	u8 scale_index;
1283 	u8 base;
1284 	int ret;
1285 
1286 	/*
1287 	 * frequency base and scale registers are required for SDCA
1288 	 * devices. They may also be used for 1.2+/non-SDCA devices.
1289 	 * Driver can set the property, we will need a DisCo property
1290 	 * to discover this case from platform firmware.
1291 	 */
1292 	if (!slave->id.class_id && !slave->prop.clock_reg_supported)
1293 		return 0;
1294 
1295 	if (!mclk_freq) {
1296 		dev_err(&slave->dev,
1297 			"no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1298 		return -EINVAL;
1299 	}
1300 
1301 	/*
1302 	 * map base frequency using Table 89 of SoundWire 1.2 spec.
1303 	 * The order of the tests just follows the specification, this
1304 	 * is not a selection between possible values or a search for
1305 	 * the best value but just a mapping.  Only one case per platform
1306 	 * is relevant.
1307 	 * Some BIOS have inconsistent values for mclk_freq but a
1308 	 * correct root so we force the mclk_freq to avoid variations.
1309 	 */
1310 	if (!(19200000 % mclk_freq)) {
1311 		mclk_freq = 19200000;
1312 		base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1313 	} else if (!(24000000 % mclk_freq)) {
1314 		mclk_freq = 24000000;
1315 		base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1316 	} else if (!(24576000 % mclk_freq)) {
1317 		mclk_freq = 24576000;
1318 		base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1319 	} else if (!(22579200 % mclk_freq)) {
1320 		mclk_freq = 22579200;
1321 		base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1322 	} else if (!(32000000 % mclk_freq)) {
1323 		mclk_freq = 32000000;
1324 		base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1325 	} else {
1326 		dev_err(&slave->dev,
1327 			"Unsupported clock base, mclk %d\n",
1328 			mclk_freq);
1329 		return -EINVAL;
1330 	}
1331 
1332 	if (mclk_freq % curr_freq) {
1333 		dev_err(&slave->dev,
1334 			"mclk %d is not multiple of bus curr_freq %d\n",
1335 			mclk_freq, curr_freq);
1336 		return -EINVAL;
1337 	}
1338 
1339 	scale = mclk_freq / curr_freq;
1340 
1341 	/*
1342 	 * map scale to Table 90 of SoundWire 1.2 spec - and check
1343 	 * that the scale is a power of two and maximum 64
1344 	 */
1345 	scale_index = ilog2(scale);
1346 
1347 	if (BIT(scale_index) != scale || scale_index > 6) {
1348 		dev_err(&slave->dev,
1349 			"No match found for scale %d, bus mclk %d curr_freq %d\n",
1350 			scale, mclk_freq, curr_freq);
1351 		return -EINVAL;
1352 	}
1353 	scale_index++;
1354 
1355 	ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1356 	if (ret < 0) {
1357 		dev_err(&slave->dev,
1358 			"SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1359 		return ret;
1360 	}
1361 
1362 	/* initialize scale for both banks */
1363 	ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1364 	if (ret < 0) {
1365 		dev_err(&slave->dev,
1366 			"SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1367 		return ret;
1368 	}
1369 	ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1370 	if (ret < 0)
1371 		dev_err(&slave->dev,
1372 			"SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1373 
1374 	dev_dbg(&slave->dev,
1375 		"Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1376 		base, scale_index, mclk_freq, curr_freq);
1377 
1378 	return ret;
1379 }
1380 
1381 static int sdw_initialize_slave(struct sdw_slave *slave)
1382 {
1383 	struct sdw_slave_prop *prop = &slave->prop;
1384 	int status;
1385 	int ret;
1386 	u8 val;
1387 
1388 	ret = sdw_slave_set_frequency(slave);
1389 	if (ret < 0)
1390 		return ret;
1391 
1392 	if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1393 		/* Clear bus clash interrupt before enabling interrupt mask */
1394 		status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1395 		if (status < 0) {
1396 			dev_err(&slave->dev,
1397 				"SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1398 			return status;
1399 		}
1400 		if (status & SDW_SCP_INT1_BUS_CLASH) {
1401 			dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1402 			ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1403 			if (ret < 0) {
1404 				dev_err(&slave->dev,
1405 					"SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1406 				return ret;
1407 			}
1408 		}
1409 	}
1410 	if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1411 	    !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1412 		/* Clear parity interrupt before enabling interrupt mask */
1413 		status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1414 		if (status < 0) {
1415 			dev_err(&slave->dev,
1416 				"SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1417 			return status;
1418 		}
1419 		if (status & SDW_SCP_INT1_PARITY) {
1420 			dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1421 			ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1422 			if (ret < 0) {
1423 				dev_err(&slave->dev,
1424 					"SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1425 				return ret;
1426 			}
1427 		}
1428 	}
1429 
1430 	/*
1431 	 * Set SCP_INT1_MASK register, typically bus clash and
1432 	 * implementation-defined interrupt mask. The Parity detection
1433 	 * may not always be correct on startup so its use is
1434 	 * device-dependent, it might e.g. only be enabled in
1435 	 * steady-state after a couple of frames.
1436 	 */
1437 	val = slave->prop.scp_int1_mask;
1438 
1439 	/* Enable SCP interrupts */
1440 	ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1441 	if (ret < 0) {
1442 		dev_err(&slave->dev,
1443 			"SDW_SCP_INTMASK1 write failed:%d\n", ret);
1444 		return ret;
1445 	}
1446 
1447 	/* No need to continue if DP0 is not present */
1448 	if (!slave->prop.dp0_prop)
1449 		return 0;
1450 
1451 	/* Enable DP0 interrupts */
1452 	val = prop->dp0_prop->imp_def_interrupts;
1453 	val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1454 
1455 	ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1456 	if (ret < 0)
1457 		dev_err(&slave->dev,
1458 			"SDW_DP0_INTMASK read failed:%d\n", ret);
1459 	return ret;
1460 }
1461 
1462 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1463 {
1464 	u8 clear, impl_int_mask;
1465 	int status, status2, ret, count = 0;
1466 
1467 	status = sdw_read_no_pm(slave, SDW_DP0_INT);
1468 	if (status < 0) {
1469 		dev_err(&slave->dev,
1470 			"SDW_DP0_INT read failed:%d\n", status);
1471 		return status;
1472 	}
1473 
1474 	do {
1475 		clear = status & ~SDW_DP0_INTERRUPTS;
1476 
1477 		if (status & SDW_DP0_INT_TEST_FAIL) {
1478 			dev_err(&slave->dev, "Test fail for port 0\n");
1479 			clear |= SDW_DP0_INT_TEST_FAIL;
1480 		}
1481 
1482 		/*
1483 		 * Assumption: PORT_READY interrupt will be received only for
1484 		 * ports implementing Channel Prepare state machine (CP_SM)
1485 		 */
1486 
1487 		if (status & SDW_DP0_INT_PORT_READY) {
1488 			complete(&slave->port_ready[0]);
1489 			clear |= SDW_DP0_INT_PORT_READY;
1490 		}
1491 
1492 		if (status & SDW_DP0_INT_BRA_FAILURE) {
1493 			dev_err(&slave->dev, "BRA failed\n");
1494 			clear |= SDW_DP0_INT_BRA_FAILURE;
1495 		}
1496 
1497 		impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1498 			SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1499 
1500 		if (status & impl_int_mask) {
1501 			clear |= impl_int_mask;
1502 			*slave_status = clear;
1503 		}
1504 
1505 		/* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1506 		ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1507 		if (ret < 0) {
1508 			dev_err(&slave->dev,
1509 				"SDW_DP0_INT write failed:%d\n", ret);
1510 			return ret;
1511 		}
1512 
1513 		/* Read DP0 interrupt again */
1514 		status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1515 		if (status2 < 0) {
1516 			dev_err(&slave->dev,
1517 				"SDW_DP0_INT read failed:%d\n", status2);
1518 			return status2;
1519 		}
1520 		/* filter to limit loop to interrupts identified in the first status read */
1521 		status &= status2;
1522 
1523 		count++;
1524 
1525 		/* we can get alerts while processing so keep retrying */
1526 	} while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1527 
1528 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1529 		dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1530 
1531 	return ret;
1532 }
1533 
1534 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1535 				     int port, u8 *slave_status)
1536 {
1537 	u8 clear, impl_int_mask;
1538 	int status, status2, ret, count = 0;
1539 	u32 addr;
1540 
1541 	if (port == 0)
1542 		return sdw_handle_dp0_interrupt(slave, slave_status);
1543 
1544 	addr = SDW_DPN_INT(port);
1545 	status = sdw_read_no_pm(slave, addr);
1546 	if (status < 0) {
1547 		dev_err(&slave->dev,
1548 			"SDW_DPN_INT read failed:%d\n", status);
1549 
1550 		return status;
1551 	}
1552 
1553 	do {
1554 		clear = status & ~SDW_DPN_INTERRUPTS;
1555 
1556 		if (status & SDW_DPN_INT_TEST_FAIL) {
1557 			dev_err(&slave->dev, "Test fail for port:%d\n", port);
1558 			clear |= SDW_DPN_INT_TEST_FAIL;
1559 		}
1560 
1561 		/*
1562 		 * Assumption: PORT_READY interrupt will be received only
1563 		 * for ports implementing CP_SM.
1564 		 */
1565 		if (status & SDW_DPN_INT_PORT_READY) {
1566 			complete(&slave->port_ready[port]);
1567 			clear |= SDW_DPN_INT_PORT_READY;
1568 		}
1569 
1570 		impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1571 			SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1572 
1573 		if (status & impl_int_mask) {
1574 			clear |= impl_int_mask;
1575 			*slave_status = clear;
1576 		}
1577 
1578 		/* clear the interrupt but don't touch reserved fields */
1579 		ret = sdw_write_no_pm(slave, addr, clear);
1580 		if (ret < 0) {
1581 			dev_err(&slave->dev,
1582 				"SDW_DPN_INT write failed:%d\n", ret);
1583 			return ret;
1584 		}
1585 
1586 		/* Read DPN interrupt again */
1587 		status2 = sdw_read_no_pm(slave, addr);
1588 		if (status2 < 0) {
1589 			dev_err(&slave->dev,
1590 				"SDW_DPN_INT read failed:%d\n", status2);
1591 			return status2;
1592 		}
1593 		/* filter to limit loop to interrupts identified in the first status read */
1594 		status &= status2;
1595 
1596 		count++;
1597 
1598 		/* we can get alerts while processing so keep retrying */
1599 	} while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1600 
1601 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1602 		dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1603 
1604 	return ret;
1605 }
1606 
1607 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1608 {
1609 	struct sdw_slave_intr_status slave_intr;
1610 	u8 clear = 0, bit, port_status[15] = {0};
1611 	int port_num, stat, ret, count = 0;
1612 	unsigned long port;
1613 	bool slave_notify;
1614 	u8 sdca_cascade = 0;
1615 	u8 buf, buf2[2];
1616 	bool parity_check;
1617 	bool parity_quirk;
1618 
1619 	sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1620 
1621 	ret = pm_runtime_get_sync(&slave->dev);
1622 	if (ret < 0 && ret != -EACCES) {
1623 		dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1624 		pm_runtime_put_noidle(&slave->dev);
1625 		return ret;
1626 	}
1627 
1628 	/* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1629 	ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1630 	if (ret < 0) {
1631 		dev_err(&slave->dev,
1632 			"SDW_SCP_INT1 read failed:%d\n", ret);
1633 		goto io_err;
1634 	}
1635 	buf = ret;
1636 
1637 	ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1638 	if (ret < 0) {
1639 		dev_err(&slave->dev,
1640 			"SDW_SCP_INT2/3 read failed:%d\n", ret);
1641 		goto io_err;
1642 	}
1643 
1644 	if (slave->id.class_id) {
1645 		ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1646 		if (ret < 0) {
1647 			dev_err(&slave->dev,
1648 				"SDW_DP0_INT read failed:%d\n", ret);
1649 			goto io_err;
1650 		}
1651 		sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1652 	}
1653 
1654 	do {
1655 		slave_notify = false;
1656 
1657 		/*
1658 		 * Check parity, bus clash and Slave (impl defined)
1659 		 * interrupt
1660 		 */
1661 		if (buf & SDW_SCP_INT1_PARITY) {
1662 			parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1663 			parity_quirk = !slave->first_interrupt_done &&
1664 				(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1665 
1666 			if (parity_check && !parity_quirk)
1667 				dev_err(&slave->dev, "Parity error detected\n");
1668 			clear |= SDW_SCP_INT1_PARITY;
1669 		}
1670 
1671 		if (buf & SDW_SCP_INT1_BUS_CLASH) {
1672 			if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1673 				dev_err(&slave->dev, "Bus clash detected\n");
1674 			clear |= SDW_SCP_INT1_BUS_CLASH;
1675 		}
1676 
1677 		/*
1678 		 * When bus clash or parity errors are detected, such errors
1679 		 * are unlikely to be recoverable errors.
1680 		 * TODO: In such scenario, reset bus. Make this configurable
1681 		 * via sysfs property with bus reset being the default.
1682 		 */
1683 
1684 		if (buf & SDW_SCP_INT1_IMPL_DEF) {
1685 			if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1686 				dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1687 				slave_notify = true;
1688 			}
1689 			clear |= SDW_SCP_INT1_IMPL_DEF;
1690 		}
1691 
1692 		/* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1693 		if (sdca_cascade)
1694 			slave_notify = true;
1695 
1696 		/* Check port 0 - 3 interrupts */
1697 		port = buf & SDW_SCP_INT1_PORT0_3;
1698 
1699 		/* To get port number corresponding to bits, shift it */
1700 		port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1701 		for_each_set_bit(bit, &port, 8) {
1702 			sdw_handle_port_interrupt(slave, bit,
1703 						  &port_status[bit]);
1704 		}
1705 
1706 		/* Check if cascade 2 interrupt is present */
1707 		if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1708 			port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1709 			for_each_set_bit(bit, &port, 8) {
1710 				/* scp2 ports start from 4 */
1711 				port_num = bit + 4;
1712 				sdw_handle_port_interrupt(slave,
1713 						port_num,
1714 						&port_status[port_num]);
1715 			}
1716 		}
1717 
1718 		/* now check last cascade */
1719 		if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1720 			port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1721 			for_each_set_bit(bit, &port, 8) {
1722 				/* scp3 ports start from 11 */
1723 				port_num = bit + 11;
1724 				sdw_handle_port_interrupt(slave,
1725 						port_num,
1726 						&port_status[port_num]);
1727 			}
1728 		}
1729 
1730 		/* Update the Slave driver */
1731 		if (slave_notify) {
1732 			mutex_lock(&slave->sdw_dev_lock);
1733 
1734 			if (slave->probed) {
1735 				struct device *dev = &slave->dev;
1736 				struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1737 
1738 				if (slave->prop.use_domain_irq && slave->irq)
1739 					handle_nested_irq(slave->irq);
1740 
1741 				if (drv->ops && drv->ops->interrupt_callback) {
1742 					slave_intr.sdca_cascade = sdca_cascade;
1743 					slave_intr.control_port = clear;
1744 					memcpy(slave_intr.port, &port_status,
1745 					       sizeof(slave_intr.port));
1746 
1747 					drv->ops->interrupt_callback(slave, &slave_intr);
1748 				}
1749 			}
1750 
1751 			mutex_unlock(&slave->sdw_dev_lock);
1752 		}
1753 
1754 		/* Ack interrupt */
1755 		ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1756 		if (ret < 0) {
1757 			dev_err(&slave->dev,
1758 				"SDW_SCP_INT1 write failed:%d\n", ret);
1759 			goto io_err;
1760 		}
1761 
1762 		/* at this point all initial interrupt sources were handled */
1763 		slave->first_interrupt_done = true;
1764 
1765 		/*
1766 		 * Read status again to ensure no new interrupts arrived
1767 		 * while servicing interrupts.
1768 		 */
1769 		ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1770 		if (ret < 0) {
1771 			dev_err(&slave->dev,
1772 				"SDW_SCP_INT1 recheck read failed:%d\n", ret);
1773 			goto io_err;
1774 		}
1775 		buf = ret;
1776 
1777 		ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1778 		if (ret < 0) {
1779 			dev_err(&slave->dev,
1780 				"SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1781 			goto io_err;
1782 		}
1783 
1784 		if (slave->id.class_id) {
1785 			ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1786 			if (ret < 0) {
1787 				dev_err(&slave->dev,
1788 					"SDW_DP0_INT recheck read failed:%d\n", ret);
1789 				goto io_err;
1790 			}
1791 			sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1792 		}
1793 
1794 		/*
1795 		 * Make sure no interrupts are pending
1796 		 */
1797 		stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1798 
1799 		/*
1800 		 * Exit loop if Slave is continuously in ALERT state even
1801 		 * after servicing the interrupt multiple times.
1802 		 */
1803 		count++;
1804 
1805 		/* we can get alerts while processing so keep retrying */
1806 	} while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1807 
1808 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1809 		dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1810 
1811 io_err:
1812 	pm_runtime_mark_last_busy(&slave->dev);
1813 	pm_runtime_put_autosuspend(&slave->dev);
1814 
1815 	return ret;
1816 }
1817 
1818 static int sdw_update_slave_status(struct sdw_slave *slave,
1819 				   enum sdw_slave_status status)
1820 {
1821 	int ret = 0;
1822 
1823 	mutex_lock(&slave->sdw_dev_lock);
1824 
1825 	if (slave->probed) {
1826 		struct device *dev = &slave->dev;
1827 		struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1828 
1829 		if (drv->ops && drv->ops->update_status)
1830 			ret = drv->ops->update_status(slave, status);
1831 	}
1832 
1833 	mutex_unlock(&slave->sdw_dev_lock);
1834 
1835 	return ret;
1836 }
1837 
1838 /**
1839  * sdw_handle_slave_status() - Handle Slave status
1840  * @bus: SDW bus instance
1841  * @status: Status for all Slave(s)
1842  */
1843 int sdw_handle_slave_status(struct sdw_bus *bus,
1844 			    enum sdw_slave_status status[])
1845 {
1846 	enum sdw_slave_status prev_status;
1847 	struct sdw_slave *slave;
1848 	bool attached_initializing, id_programmed;
1849 	int i, ret = 0;
1850 
1851 	/* first check if any Slaves fell off the bus */
1852 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1853 		mutex_lock(&bus->bus_lock);
1854 		if (test_bit(i, bus->assigned) == false) {
1855 			mutex_unlock(&bus->bus_lock);
1856 			continue;
1857 		}
1858 		mutex_unlock(&bus->bus_lock);
1859 
1860 		slave = sdw_get_slave(bus, i);
1861 		if (!slave)
1862 			continue;
1863 
1864 		if (status[i] == SDW_SLAVE_UNATTACHED &&
1865 		    slave->status != SDW_SLAVE_UNATTACHED) {
1866 			dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1867 				 i, slave->status);
1868 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1869 
1870 			/* Ensure driver knows that peripheral unattached */
1871 			ret = sdw_update_slave_status(slave, status[i]);
1872 			if (ret < 0)
1873 				dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1874 		}
1875 	}
1876 
1877 	if (status[0] == SDW_SLAVE_ATTACHED) {
1878 		dev_dbg(bus->dev, "Slave attached, programming device number\n");
1879 
1880 		/*
1881 		 * Programming a device number will have side effects,
1882 		 * so we deal with other devices at a later time.
1883 		 * This relies on those devices reporting ATTACHED, which will
1884 		 * trigger another call to this function. This will only
1885 		 * happen if at least one device ID was programmed.
1886 		 * Error returns from sdw_program_device_num() are currently
1887 		 * ignored because there's no useful recovery that can be done.
1888 		 * Returning the error here could result in the current status
1889 		 * of other devices not being handled, because if no device IDs
1890 		 * were programmed there's nothing to guarantee a status change
1891 		 * to trigger another call to this function.
1892 		 */
1893 		sdw_program_device_num(bus, &id_programmed);
1894 		if (id_programmed)
1895 			return 0;
1896 	}
1897 
1898 	/* Continue to check other slave statuses */
1899 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1900 		mutex_lock(&bus->bus_lock);
1901 		if (test_bit(i, bus->assigned) == false) {
1902 			mutex_unlock(&bus->bus_lock);
1903 			continue;
1904 		}
1905 		mutex_unlock(&bus->bus_lock);
1906 
1907 		slave = sdw_get_slave(bus, i);
1908 		if (!slave)
1909 			continue;
1910 
1911 		attached_initializing = false;
1912 
1913 		switch (status[i]) {
1914 		case SDW_SLAVE_UNATTACHED:
1915 			if (slave->status == SDW_SLAVE_UNATTACHED)
1916 				break;
1917 
1918 			dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1919 				 i, slave->status);
1920 
1921 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1922 			break;
1923 
1924 		case SDW_SLAVE_ALERT:
1925 			ret = sdw_handle_slave_alerts(slave);
1926 			if (ret < 0)
1927 				dev_err(&slave->dev,
1928 					"Slave %d alert handling failed: %d\n",
1929 					i, ret);
1930 			break;
1931 
1932 		case SDW_SLAVE_ATTACHED:
1933 			if (slave->status == SDW_SLAVE_ATTACHED)
1934 				break;
1935 
1936 			prev_status = slave->status;
1937 			sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1938 
1939 			if (prev_status == SDW_SLAVE_ALERT)
1940 				break;
1941 
1942 			attached_initializing = true;
1943 
1944 			ret = sdw_initialize_slave(slave);
1945 			if (ret < 0)
1946 				dev_err(&slave->dev,
1947 					"Slave %d initialization failed: %d\n",
1948 					i, ret);
1949 
1950 			break;
1951 
1952 		default:
1953 			dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1954 				i, status[i]);
1955 			break;
1956 		}
1957 
1958 		ret = sdw_update_slave_status(slave, status[i]);
1959 		if (ret < 0)
1960 			dev_err(&slave->dev,
1961 				"Update Slave status failed:%d\n", ret);
1962 		if (attached_initializing) {
1963 			dev_dbg(&slave->dev,
1964 				"signaling initialization completion for Slave %d\n",
1965 				slave->dev_num);
1966 
1967 			complete_all(&slave->initialization_complete);
1968 
1969 			/*
1970 			 * If the manager became pm_runtime active, the peripherals will be
1971 			 * restarted and attach, but their pm_runtime status may remain
1972 			 * suspended. If the 'update_slave_status' callback initiates
1973 			 * any sort of deferred processing, this processing would not be
1974 			 * cancelled on pm_runtime suspend.
1975 			 * To avoid such zombie states, we queue a request to resume.
1976 			 * This would be a no-op in case the peripheral was being resumed
1977 			 * by e.g. the ALSA/ASoC framework.
1978 			 */
1979 			pm_request_resume(&slave->dev);
1980 		}
1981 	}
1982 
1983 	return ret;
1984 }
1985 EXPORT_SYMBOL(sdw_handle_slave_status);
1986 
1987 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1988 {
1989 	struct sdw_slave *slave;
1990 	int i;
1991 
1992 	/* Check all non-zero devices */
1993 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1994 		mutex_lock(&bus->bus_lock);
1995 		if (test_bit(i, bus->assigned) == false) {
1996 			mutex_unlock(&bus->bus_lock);
1997 			continue;
1998 		}
1999 		mutex_unlock(&bus->bus_lock);
2000 
2001 		slave = sdw_get_slave(bus, i);
2002 		if (!slave)
2003 			continue;
2004 
2005 		if (slave->status != SDW_SLAVE_UNATTACHED) {
2006 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
2007 			slave->first_interrupt_done = false;
2008 			sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
2009 		}
2010 
2011 		/* keep track of request, used in pm_runtime resume */
2012 		slave->unattach_request = request;
2013 	}
2014 }
2015 EXPORT_SYMBOL(sdw_clear_slave_status);
2016