1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 // Copyright(c) 2015-17 Intel Corporation. 3 4 #include <linux/acpi.h> 5 #include <linux/delay.h> 6 #include <linux/mod_devicetable.h> 7 #include <linux/pm_runtime.h> 8 #include <linux/soundwire/sdw_registers.h> 9 #include <linux/soundwire/sdw.h> 10 #include "bus.h" 11 #include "sysfs_local.h" 12 13 static DEFINE_IDA(sdw_ida); 14 15 static int sdw_get_id(struct sdw_bus *bus) 16 { 17 int rc = ida_alloc(&sdw_ida, GFP_KERNEL); 18 19 if (rc < 0) 20 return rc; 21 22 bus->id = rc; 23 return 0; 24 } 25 26 /** 27 * sdw_bus_master_add() - add a bus Master instance 28 * @bus: bus instance 29 * @parent: parent device 30 * @fwnode: firmware node handle 31 * 32 * Initializes the bus instance, read properties and create child 33 * devices. 34 */ 35 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent, 36 struct fwnode_handle *fwnode) 37 { 38 struct sdw_master_prop *prop = NULL; 39 int ret; 40 41 if (!parent) { 42 pr_err("SoundWire parent device is not set\n"); 43 return -ENODEV; 44 } 45 46 ret = sdw_get_id(bus); 47 if (ret) { 48 dev_err(parent, "Failed to get bus id\n"); 49 return ret; 50 } 51 52 ret = sdw_master_device_add(bus, parent, fwnode); 53 if (ret) { 54 dev_err(parent, "Failed to add master device at link %d\n", 55 bus->link_id); 56 return ret; 57 } 58 59 if (!bus->ops) { 60 dev_err(bus->dev, "SoundWire Bus ops are not set\n"); 61 return -EINVAL; 62 } 63 64 if (!bus->compute_params) { 65 dev_err(bus->dev, 66 "Bandwidth allocation not configured, compute_params no set\n"); 67 return -EINVAL; 68 } 69 70 mutex_init(&bus->msg_lock); 71 mutex_init(&bus->bus_lock); 72 INIT_LIST_HEAD(&bus->slaves); 73 INIT_LIST_HEAD(&bus->m_rt_list); 74 75 /* 76 * Initialize multi_link flag 77 * TODO: populate this flag by reading property from FW node 78 */ 79 bus->multi_link = false; 80 if (bus->ops->read_prop) { 81 ret = bus->ops->read_prop(bus); 82 if (ret < 0) { 83 dev_err(bus->dev, 84 "Bus read properties failed:%d\n", ret); 85 return ret; 86 } 87 } 88 89 sdw_bus_debugfs_init(bus); 90 91 /* 92 * Device numbers in SoundWire are 0 through 15. Enumeration device 93 * number (0), Broadcast device number (15), Group numbers (12 and 94 * 13) and Master device number (14) are not used for assignment so 95 * mask these and other higher bits. 96 */ 97 98 /* Set higher order bits */ 99 *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM); 100 101 /* Set enumuration device number and broadcast device number */ 102 set_bit(SDW_ENUM_DEV_NUM, bus->assigned); 103 set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned); 104 105 /* Set group device numbers and master device number */ 106 set_bit(SDW_GROUP12_DEV_NUM, bus->assigned); 107 set_bit(SDW_GROUP13_DEV_NUM, bus->assigned); 108 set_bit(SDW_MASTER_DEV_NUM, bus->assigned); 109 110 /* 111 * SDW is an enumerable bus, but devices can be powered off. So, 112 * they won't be able to report as present. 113 * 114 * Create Slave devices based on Slaves described in 115 * the respective firmware (ACPI/DT) 116 */ 117 if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev)) 118 ret = sdw_acpi_find_slaves(bus); 119 else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node) 120 ret = sdw_of_find_slaves(bus); 121 else 122 ret = -ENOTSUPP; /* No ACPI/DT so error out */ 123 124 if (ret) { 125 dev_err(bus->dev, "Finding slaves failed:%d\n", ret); 126 return ret; 127 } 128 129 /* 130 * Initialize clock values based on Master properties. The max 131 * frequency is read from max_clk_freq property. Current assumption 132 * is that the bus will start at highest clock frequency when 133 * powered on. 134 * 135 * Default active bank will be 0 as out of reset the Slaves have 136 * to start with bank 0 (Table 40 of Spec) 137 */ 138 prop = &bus->prop; 139 bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR; 140 bus->params.curr_dr_freq = bus->params.max_dr_freq; 141 bus->params.curr_bank = SDW_BANK0; 142 bus->params.next_bank = SDW_BANK1; 143 144 return 0; 145 } 146 EXPORT_SYMBOL(sdw_bus_master_add); 147 148 static int sdw_delete_slave(struct device *dev, void *data) 149 { 150 struct sdw_slave *slave = dev_to_sdw_dev(dev); 151 struct sdw_bus *bus = slave->bus; 152 153 pm_runtime_disable(dev); 154 155 sdw_slave_debugfs_exit(slave); 156 157 mutex_lock(&bus->bus_lock); 158 159 if (slave->dev_num) /* clear dev_num if assigned */ 160 clear_bit(slave->dev_num, bus->assigned); 161 162 list_del_init(&slave->node); 163 mutex_unlock(&bus->bus_lock); 164 165 device_unregister(dev); 166 return 0; 167 } 168 169 /** 170 * sdw_bus_master_delete() - delete the bus master instance 171 * @bus: bus to be deleted 172 * 173 * Remove the instance, delete the child devices. 174 */ 175 void sdw_bus_master_delete(struct sdw_bus *bus) 176 { 177 device_for_each_child(bus->dev, NULL, sdw_delete_slave); 178 sdw_master_device_del(bus); 179 180 sdw_bus_debugfs_exit(bus); 181 ida_free(&sdw_ida, bus->id); 182 } 183 EXPORT_SYMBOL(sdw_bus_master_delete); 184 185 /* 186 * SDW IO Calls 187 */ 188 189 static inline int find_response_code(enum sdw_command_response resp) 190 { 191 switch (resp) { 192 case SDW_CMD_OK: 193 return 0; 194 195 case SDW_CMD_IGNORED: 196 return -ENODATA; 197 198 case SDW_CMD_TIMEOUT: 199 return -ETIMEDOUT; 200 201 default: 202 return -EIO; 203 } 204 } 205 206 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg) 207 { 208 int retry = bus->prop.err_threshold; 209 enum sdw_command_response resp; 210 int ret = 0, i; 211 212 for (i = 0; i <= retry; i++) { 213 resp = bus->ops->xfer_msg(bus, msg); 214 ret = find_response_code(resp); 215 216 /* if cmd is ok or ignored return */ 217 if (ret == 0 || ret == -ENODATA) 218 return ret; 219 } 220 221 return ret; 222 } 223 224 static inline int do_transfer_defer(struct sdw_bus *bus, 225 struct sdw_msg *msg, 226 struct sdw_defer *defer) 227 { 228 int retry = bus->prop.err_threshold; 229 enum sdw_command_response resp; 230 int ret = 0, i; 231 232 defer->msg = msg; 233 defer->length = msg->len; 234 init_completion(&defer->complete); 235 236 for (i = 0; i <= retry; i++) { 237 resp = bus->ops->xfer_msg_defer(bus, msg, defer); 238 ret = find_response_code(resp); 239 /* if cmd is ok or ignored return */ 240 if (ret == 0 || ret == -ENODATA) 241 return ret; 242 } 243 244 return ret; 245 } 246 247 static int sdw_reset_page(struct sdw_bus *bus, u16 dev_num) 248 { 249 int retry = bus->prop.err_threshold; 250 enum sdw_command_response resp; 251 int ret = 0, i; 252 253 for (i = 0; i <= retry; i++) { 254 resp = bus->ops->reset_page_addr(bus, dev_num); 255 ret = find_response_code(resp); 256 /* if cmd is ok or ignored return */ 257 if (ret == 0 || ret == -ENODATA) 258 return ret; 259 } 260 261 return ret; 262 } 263 264 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg) 265 { 266 int ret; 267 268 ret = do_transfer(bus, msg); 269 if (ret != 0 && ret != -ENODATA) 270 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n", 271 msg->dev_num, ret, 272 (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read", 273 msg->addr, msg->len); 274 275 if (msg->page) 276 sdw_reset_page(bus, msg->dev_num); 277 278 return ret; 279 } 280 281 /** 282 * sdw_transfer() - Synchronous transfer message to a SDW Slave device 283 * @bus: SDW bus 284 * @msg: SDW message to be xfered 285 */ 286 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg) 287 { 288 int ret; 289 290 mutex_lock(&bus->msg_lock); 291 292 ret = sdw_transfer_unlocked(bus, msg); 293 294 mutex_unlock(&bus->msg_lock); 295 296 return ret; 297 } 298 299 /** 300 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device 301 * @bus: SDW bus 302 * @msg: SDW message to be xfered 303 * @defer: Defer block for signal completion 304 * 305 * Caller needs to hold the msg_lock lock while calling this 306 */ 307 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg, 308 struct sdw_defer *defer) 309 { 310 int ret; 311 312 if (!bus->ops->xfer_msg_defer) 313 return -ENOTSUPP; 314 315 ret = do_transfer_defer(bus, msg, defer); 316 if (ret != 0 && ret != -ENODATA) 317 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n", 318 msg->dev_num, ret); 319 320 if (msg->page) 321 sdw_reset_page(bus, msg->dev_num); 322 323 return ret; 324 } 325 326 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave, 327 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf) 328 { 329 memset(msg, 0, sizeof(*msg)); 330 msg->addr = addr; /* addr is 16 bit and truncated here */ 331 msg->len = count; 332 msg->dev_num = dev_num; 333 msg->flags = flags; 334 msg->buf = buf; 335 336 if (addr < SDW_REG_NO_PAGE) /* no paging area */ 337 return 0; 338 339 if (addr >= SDW_REG_MAX) { /* illegal addr */ 340 pr_err("SDW: Invalid address %x passed\n", addr); 341 return -EINVAL; 342 } 343 344 if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */ 345 if (slave && !slave->prop.paging_support) 346 return 0; 347 /* no need for else as that will fall-through to paging */ 348 } 349 350 /* paging mandatory */ 351 if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) { 352 pr_err("SDW: Invalid device for paging :%d\n", dev_num); 353 return -EINVAL; 354 } 355 356 if (!slave) { 357 pr_err("SDW: No slave for paging addr\n"); 358 return -EINVAL; 359 } 360 361 if (!slave->prop.paging_support) { 362 dev_err(&slave->dev, 363 "address %x needs paging but no support\n", addr); 364 return -EINVAL; 365 } 366 367 msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr); 368 msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr); 369 msg->addr |= BIT(15); 370 msg->page = true; 371 372 return 0; 373 } 374 375 /* 376 * Read/Write IO functions. 377 * no_pm versions can only be called by the bus, e.g. while enumerating or 378 * handling suspend-resume sequences. 379 * all clients need to use the pm versions 380 */ 381 382 static int 383 sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) 384 { 385 struct sdw_msg msg; 386 int ret; 387 388 ret = sdw_fill_msg(&msg, slave, addr, count, 389 slave->dev_num, SDW_MSG_FLAG_READ, val); 390 if (ret < 0) 391 return ret; 392 393 return sdw_transfer(slave->bus, &msg); 394 } 395 396 static int 397 sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) 398 { 399 struct sdw_msg msg; 400 int ret; 401 402 ret = sdw_fill_msg(&msg, slave, addr, count, 403 slave->dev_num, SDW_MSG_FLAG_WRITE, val); 404 if (ret < 0) 405 return ret; 406 407 return sdw_transfer(slave->bus, &msg); 408 } 409 410 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value) 411 { 412 return sdw_nwrite_no_pm(slave, addr, 1, &value); 413 } 414 EXPORT_SYMBOL(sdw_write_no_pm); 415 416 static int 417 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr) 418 { 419 struct sdw_msg msg; 420 u8 buf; 421 int ret; 422 423 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 424 SDW_MSG_FLAG_READ, &buf); 425 if (ret) 426 return ret; 427 428 ret = sdw_transfer(bus, &msg); 429 if (ret < 0) 430 return ret; 431 432 return buf; 433 } 434 435 static int 436 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value) 437 { 438 struct sdw_msg msg; 439 int ret; 440 441 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 442 SDW_MSG_FLAG_WRITE, &value); 443 if (ret) 444 return ret; 445 446 return sdw_transfer(bus, &msg); 447 } 448 449 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr) 450 { 451 struct sdw_msg msg; 452 u8 buf; 453 int ret; 454 455 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 456 SDW_MSG_FLAG_READ, &buf); 457 if (ret) 458 return ret; 459 460 ret = sdw_transfer_unlocked(bus, &msg); 461 if (ret < 0) 462 return ret; 463 464 return buf; 465 } 466 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked); 467 468 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value) 469 { 470 struct sdw_msg msg; 471 int ret; 472 473 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 474 SDW_MSG_FLAG_WRITE, &value); 475 if (ret) 476 return ret; 477 478 return sdw_transfer_unlocked(bus, &msg); 479 } 480 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked); 481 482 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr) 483 { 484 u8 buf; 485 int ret; 486 487 ret = sdw_nread_no_pm(slave, addr, 1, &buf); 488 if (ret < 0) 489 return ret; 490 else 491 return buf; 492 } 493 EXPORT_SYMBOL(sdw_read_no_pm); 494 495 static int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val) 496 { 497 int tmp; 498 499 tmp = sdw_read_no_pm(slave, addr); 500 if (tmp < 0) 501 return tmp; 502 503 tmp = (tmp & ~mask) | val; 504 return sdw_write_no_pm(slave, addr, tmp); 505 } 506 507 /** 508 * sdw_nread() - Read "n" contiguous SDW Slave registers 509 * @slave: SDW Slave 510 * @addr: Register address 511 * @count: length 512 * @val: Buffer for values to be read 513 */ 514 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) 515 { 516 int ret; 517 518 ret = pm_runtime_get_sync(&slave->dev); 519 if (ret < 0 && ret != -EACCES) { 520 pm_runtime_put_noidle(&slave->dev); 521 return ret; 522 } 523 524 ret = sdw_nread_no_pm(slave, addr, count, val); 525 526 pm_runtime_mark_last_busy(&slave->dev); 527 pm_runtime_put(&slave->dev); 528 529 return ret; 530 } 531 EXPORT_SYMBOL(sdw_nread); 532 533 /** 534 * sdw_nwrite() - Write "n" contiguous SDW Slave registers 535 * @slave: SDW Slave 536 * @addr: Register address 537 * @count: length 538 * @val: Buffer for values to be read 539 */ 540 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) 541 { 542 int ret; 543 544 ret = pm_runtime_get_sync(&slave->dev); 545 if (ret < 0 && ret != -EACCES) { 546 pm_runtime_put_noidle(&slave->dev); 547 return ret; 548 } 549 550 ret = sdw_nwrite_no_pm(slave, addr, count, val); 551 552 pm_runtime_mark_last_busy(&slave->dev); 553 pm_runtime_put(&slave->dev); 554 555 return ret; 556 } 557 EXPORT_SYMBOL(sdw_nwrite); 558 559 /** 560 * sdw_read() - Read a SDW Slave register 561 * @slave: SDW Slave 562 * @addr: Register address 563 */ 564 int sdw_read(struct sdw_slave *slave, u32 addr) 565 { 566 u8 buf; 567 int ret; 568 569 ret = sdw_nread(slave, addr, 1, &buf); 570 if (ret < 0) 571 return ret; 572 573 return buf; 574 } 575 EXPORT_SYMBOL(sdw_read); 576 577 /** 578 * sdw_write() - Write a SDW Slave register 579 * @slave: SDW Slave 580 * @addr: Register address 581 * @value: Register value 582 */ 583 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value) 584 { 585 return sdw_nwrite(slave, addr, 1, &value); 586 } 587 EXPORT_SYMBOL(sdw_write); 588 589 /* 590 * SDW alert handling 591 */ 592 593 /* called with bus_lock held */ 594 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i) 595 { 596 struct sdw_slave *slave = NULL; 597 598 list_for_each_entry(slave, &bus->slaves, node) { 599 if (slave->dev_num == i) 600 return slave; 601 } 602 603 return NULL; 604 } 605 606 static int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id) 607 { 608 if (slave->id.mfg_id != id.mfg_id || 609 slave->id.part_id != id.part_id || 610 slave->id.class_id != id.class_id || 611 (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID && 612 slave->id.unique_id != id.unique_id)) 613 return -ENODEV; 614 615 return 0; 616 } 617 618 /* called with bus_lock held */ 619 static int sdw_get_device_num(struct sdw_slave *slave) 620 { 621 int bit; 622 623 bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES); 624 if (bit == SDW_MAX_DEVICES) { 625 bit = -ENODEV; 626 goto err; 627 } 628 629 /* 630 * Do not update dev_num in Slave data structure here, 631 * Update once program dev_num is successful 632 */ 633 set_bit(bit, slave->bus->assigned); 634 635 err: 636 return bit; 637 } 638 639 static int sdw_assign_device_num(struct sdw_slave *slave) 640 { 641 struct sdw_bus *bus = slave->bus; 642 int ret, dev_num; 643 bool new_device = false; 644 645 /* check first if device number is assigned, if so reuse that */ 646 if (!slave->dev_num) { 647 if (!slave->dev_num_sticky) { 648 mutex_lock(&slave->bus->bus_lock); 649 dev_num = sdw_get_device_num(slave); 650 mutex_unlock(&slave->bus->bus_lock); 651 if (dev_num < 0) { 652 dev_err(bus->dev, "Get dev_num failed: %d\n", 653 dev_num); 654 return dev_num; 655 } 656 slave->dev_num = dev_num; 657 slave->dev_num_sticky = dev_num; 658 new_device = true; 659 } else { 660 slave->dev_num = slave->dev_num_sticky; 661 } 662 } 663 664 if (!new_device) 665 dev_dbg(bus->dev, 666 "Slave already registered, reusing dev_num:%d\n", 667 slave->dev_num); 668 669 /* Clear the slave->dev_num to transfer message on device 0 */ 670 dev_num = slave->dev_num; 671 slave->dev_num = 0; 672 673 ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num); 674 if (ret < 0) { 675 dev_err(bus->dev, "Program device_num %d failed: %d\n", 676 dev_num, ret); 677 return ret; 678 } 679 680 /* After xfer of msg, restore dev_num */ 681 slave->dev_num = slave->dev_num_sticky; 682 683 return 0; 684 } 685 686 void sdw_extract_slave_id(struct sdw_bus *bus, 687 u64 addr, struct sdw_slave_id *id) 688 { 689 dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr); 690 691 id->sdw_version = SDW_VERSION(addr); 692 id->unique_id = SDW_UNIQUE_ID(addr); 693 id->mfg_id = SDW_MFG_ID(addr); 694 id->part_id = SDW_PART_ID(addr); 695 id->class_id = SDW_CLASS_ID(addr); 696 697 dev_dbg(bus->dev, 698 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n", 699 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version); 700 } 701 702 static int sdw_program_device_num(struct sdw_bus *bus) 703 { 704 u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0}; 705 struct sdw_slave *slave, *_s; 706 struct sdw_slave_id id; 707 struct sdw_msg msg; 708 bool found = false; 709 int count = 0, ret; 710 u64 addr; 711 712 /* No Slave, so use raw xfer api */ 713 ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0, 714 SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf); 715 if (ret < 0) 716 return ret; 717 718 do { 719 ret = sdw_transfer(bus, &msg); 720 if (ret == -ENODATA) { /* end of device id reads */ 721 dev_dbg(bus->dev, "No more devices to enumerate\n"); 722 ret = 0; 723 break; 724 } 725 if (ret < 0) { 726 dev_err(bus->dev, "DEVID read fail:%d\n", ret); 727 break; 728 } 729 730 /* 731 * Construct the addr and extract. Cast the higher shift 732 * bits to avoid truncation due to size limit. 733 */ 734 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) | 735 ((u64)buf[2] << 24) | ((u64)buf[1] << 32) | 736 ((u64)buf[0] << 40); 737 738 sdw_extract_slave_id(bus, addr, &id); 739 740 /* Now compare with entries */ 741 list_for_each_entry_safe(slave, _s, &bus->slaves, node) { 742 if (sdw_compare_devid(slave, id) == 0) { 743 found = true; 744 745 /* 746 * Assign a new dev_num to this Slave and 747 * not mark it present. It will be marked 748 * present after it reports ATTACHED on new 749 * dev_num 750 */ 751 ret = sdw_assign_device_num(slave); 752 if (ret) { 753 dev_err(bus->dev, 754 "Assign dev_num failed:%d\n", 755 ret); 756 return ret; 757 } 758 759 break; 760 } 761 } 762 763 if (!found) { 764 /* TODO: Park this device in Group 13 */ 765 766 /* 767 * add Slave device even if there is no platform 768 * firmware description. There will be no driver probe 769 * but the user/integration will be able to see the 770 * device, enumeration status and device number in sysfs 771 */ 772 sdw_slave_add(bus, &id, NULL); 773 774 dev_err(bus->dev, "Slave Entry not found\n"); 775 } 776 777 count++; 778 779 /* 780 * Check till error out or retry (count) exhausts. 781 * Device can drop off and rejoin during enumeration 782 * so count till twice the bound. 783 */ 784 785 } while (ret == 0 && count < (SDW_MAX_DEVICES * 2)); 786 787 return ret; 788 } 789 790 static void sdw_modify_slave_status(struct sdw_slave *slave, 791 enum sdw_slave_status status) 792 { 793 struct sdw_bus *bus = slave->bus; 794 795 mutex_lock(&bus->bus_lock); 796 797 dev_vdbg(bus->dev, 798 "%s: changing status slave %d status %d new status %d\n", 799 __func__, slave->dev_num, slave->status, status); 800 801 if (status == SDW_SLAVE_UNATTACHED) { 802 dev_dbg(&slave->dev, 803 "%s: initializing enumeration and init completion for Slave %d\n", 804 __func__, slave->dev_num); 805 806 init_completion(&slave->enumeration_complete); 807 init_completion(&slave->initialization_complete); 808 809 } else if ((status == SDW_SLAVE_ATTACHED) && 810 (slave->status == SDW_SLAVE_UNATTACHED)) { 811 dev_dbg(&slave->dev, 812 "%s: signaling enumeration completion for Slave %d\n", 813 __func__, slave->dev_num); 814 815 complete(&slave->enumeration_complete); 816 } 817 slave->status = status; 818 mutex_unlock(&bus->bus_lock); 819 } 820 821 static enum sdw_clk_stop_mode sdw_get_clk_stop_mode(struct sdw_slave *slave) 822 { 823 enum sdw_clk_stop_mode mode; 824 825 /* 826 * Query for clock stop mode if Slave implements 827 * ops->get_clk_stop_mode, else read from property. 828 */ 829 if (slave->ops && slave->ops->get_clk_stop_mode) { 830 mode = slave->ops->get_clk_stop_mode(slave); 831 } else { 832 if (slave->prop.clk_stop_mode1) 833 mode = SDW_CLK_STOP_MODE1; 834 else 835 mode = SDW_CLK_STOP_MODE0; 836 } 837 838 return mode; 839 } 840 841 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave, 842 enum sdw_clk_stop_mode mode, 843 enum sdw_clk_stop_type type) 844 { 845 int ret; 846 847 if (slave->ops && slave->ops->clk_stop) { 848 ret = slave->ops->clk_stop(slave, mode, type); 849 if (ret < 0) { 850 dev_err(&slave->dev, 851 "Clk Stop type =%d failed: %d\n", type, ret); 852 return ret; 853 } 854 } 855 856 return 0; 857 } 858 859 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave, 860 enum sdw_clk_stop_mode mode, 861 bool prepare) 862 { 863 bool wake_en; 864 u32 val = 0; 865 int ret; 866 867 wake_en = slave->prop.wake_capable; 868 869 if (prepare) { 870 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP; 871 872 if (mode == SDW_CLK_STOP_MODE1) 873 val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1; 874 875 if (wake_en) 876 val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN; 877 } else { 878 val = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL); 879 880 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP); 881 } 882 883 ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val); 884 885 if (ret != 0) 886 dev_err(&slave->dev, 887 "Clock Stop prepare failed for slave: %d", ret); 888 889 return ret; 890 } 891 892 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num) 893 { 894 int retry = bus->clk_stop_timeout; 895 int val; 896 897 do { 898 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT) & 899 SDW_SCP_STAT_CLK_STP_NF; 900 if (!val) { 901 dev_info(bus->dev, "clock stop prep/de-prep done slave:%d", 902 dev_num); 903 return 0; 904 } 905 906 usleep_range(1000, 1500); 907 retry--; 908 } while (retry); 909 910 dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d", 911 dev_num); 912 913 return -ETIMEDOUT; 914 } 915 916 /** 917 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop 918 * 919 * @bus: SDW bus instance 920 * 921 * Query Slave for clock stop mode and prepare for that mode. 922 */ 923 int sdw_bus_prep_clk_stop(struct sdw_bus *bus) 924 { 925 enum sdw_clk_stop_mode slave_mode; 926 bool simple_clk_stop = true; 927 struct sdw_slave *slave; 928 bool is_slave = false; 929 int ret = 0; 930 931 /* 932 * In order to save on transition time, prepare 933 * each Slave and then wait for all Slave(s) to be 934 * prepared for clock stop. 935 */ 936 list_for_each_entry(slave, &bus->slaves, node) { 937 if (!slave->dev_num) 938 continue; 939 940 if (slave->status != SDW_SLAVE_ATTACHED && 941 slave->status != SDW_SLAVE_ALERT) 942 continue; 943 944 /* Identify if Slave(s) are available on Bus */ 945 is_slave = true; 946 947 slave_mode = sdw_get_clk_stop_mode(slave); 948 slave->curr_clk_stop_mode = slave_mode; 949 950 ret = sdw_slave_clk_stop_callback(slave, slave_mode, 951 SDW_CLK_PRE_PREPARE); 952 if (ret < 0) { 953 dev_err(&slave->dev, 954 "pre-prepare failed:%d", ret); 955 return ret; 956 } 957 958 ret = sdw_slave_clk_stop_prepare(slave, 959 slave_mode, true); 960 if (ret < 0) { 961 dev_err(&slave->dev, 962 "pre-prepare failed:%d", ret); 963 return ret; 964 } 965 966 if (slave_mode == SDW_CLK_STOP_MODE1) 967 simple_clk_stop = false; 968 } 969 970 /* Skip remaining clock stop preparation if no Slave is attached */ 971 if (!is_slave) 972 return ret; 973 974 if (!simple_clk_stop) { 975 ret = sdw_bus_wait_for_clk_prep_deprep(bus, 976 SDW_BROADCAST_DEV_NUM); 977 if (ret < 0) 978 return ret; 979 } 980 981 /* Inform slaves that prep is done */ 982 list_for_each_entry(slave, &bus->slaves, node) { 983 if (!slave->dev_num) 984 continue; 985 986 if (slave->status != SDW_SLAVE_ATTACHED && 987 slave->status != SDW_SLAVE_ALERT) 988 continue; 989 990 slave_mode = slave->curr_clk_stop_mode; 991 992 if (slave_mode == SDW_CLK_STOP_MODE1) { 993 ret = sdw_slave_clk_stop_callback(slave, 994 slave_mode, 995 SDW_CLK_POST_PREPARE); 996 997 if (ret < 0) { 998 dev_err(&slave->dev, 999 "post-prepare failed:%d", ret); 1000 } 1001 } 1002 } 1003 1004 return ret; 1005 } 1006 EXPORT_SYMBOL(sdw_bus_prep_clk_stop); 1007 1008 /** 1009 * sdw_bus_clk_stop: stop bus clock 1010 * 1011 * @bus: SDW bus instance 1012 * 1013 * After preparing the Slaves for clock stop, stop the clock by broadcasting 1014 * write to SCP_CTRL register. 1015 */ 1016 int sdw_bus_clk_stop(struct sdw_bus *bus) 1017 { 1018 int ret; 1019 1020 /* 1021 * broadcast clock stop now, attached Slaves will ACK this, 1022 * unattached will ignore 1023 */ 1024 ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM, 1025 SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW); 1026 if (ret < 0) { 1027 if (ret == -ENODATA) 1028 dev_dbg(bus->dev, 1029 "ClockStopNow Broadcast msg ignored %d", ret); 1030 else 1031 dev_err(bus->dev, 1032 "ClockStopNow Broadcast msg failed %d", ret); 1033 return ret; 1034 } 1035 1036 return 0; 1037 } 1038 EXPORT_SYMBOL(sdw_bus_clk_stop); 1039 1040 /** 1041 * sdw_bus_exit_clk_stop: Exit clock stop mode 1042 * 1043 * @bus: SDW bus instance 1044 * 1045 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves 1046 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate 1047 * back. 1048 */ 1049 int sdw_bus_exit_clk_stop(struct sdw_bus *bus) 1050 { 1051 enum sdw_clk_stop_mode mode; 1052 bool simple_clk_stop = true; 1053 struct sdw_slave *slave; 1054 bool is_slave = false; 1055 int ret; 1056 1057 /* 1058 * In order to save on transition time, de-prepare 1059 * each Slave and then wait for all Slave(s) to be 1060 * de-prepared after clock resume. 1061 */ 1062 list_for_each_entry(slave, &bus->slaves, node) { 1063 if (!slave->dev_num) 1064 continue; 1065 1066 if (slave->status != SDW_SLAVE_ATTACHED && 1067 slave->status != SDW_SLAVE_ALERT) 1068 continue; 1069 1070 /* Identify if Slave(s) are available on Bus */ 1071 is_slave = true; 1072 1073 mode = slave->curr_clk_stop_mode; 1074 1075 if (mode == SDW_CLK_STOP_MODE1) { 1076 simple_clk_stop = false; 1077 continue; 1078 } 1079 1080 ret = sdw_slave_clk_stop_callback(slave, mode, 1081 SDW_CLK_PRE_DEPREPARE); 1082 if (ret < 0) 1083 dev_warn(&slave->dev, 1084 "clk stop deprep failed:%d", ret); 1085 1086 ret = sdw_slave_clk_stop_prepare(slave, mode, 1087 false); 1088 1089 if (ret < 0) 1090 dev_warn(&slave->dev, 1091 "clk stop deprep failed:%d", ret); 1092 } 1093 1094 /* Skip remaining clock stop de-preparation if no Slave is attached */ 1095 if (!is_slave) 1096 return 0; 1097 1098 if (!simple_clk_stop) 1099 sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM); 1100 1101 list_for_each_entry(slave, &bus->slaves, node) { 1102 if (!slave->dev_num) 1103 continue; 1104 1105 if (slave->status != SDW_SLAVE_ATTACHED && 1106 slave->status != SDW_SLAVE_ALERT) 1107 continue; 1108 1109 mode = slave->curr_clk_stop_mode; 1110 sdw_slave_clk_stop_callback(slave, mode, 1111 SDW_CLK_POST_DEPREPARE); 1112 } 1113 1114 return 0; 1115 } 1116 EXPORT_SYMBOL(sdw_bus_exit_clk_stop); 1117 1118 int sdw_configure_dpn_intr(struct sdw_slave *slave, 1119 int port, bool enable, int mask) 1120 { 1121 u32 addr; 1122 int ret; 1123 u8 val = 0; 1124 1125 if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) { 1126 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n", 1127 enable ? "on" : "off"); 1128 mask |= SDW_DPN_INT_TEST_FAIL; 1129 } 1130 1131 addr = SDW_DPN_INTMASK(port); 1132 1133 /* Set/Clear port ready interrupt mask */ 1134 if (enable) { 1135 val |= mask; 1136 val |= SDW_DPN_INT_PORT_READY; 1137 } else { 1138 val &= ~(mask); 1139 val &= ~SDW_DPN_INT_PORT_READY; 1140 } 1141 1142 ret = sdw_update(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val); 1143 if (ret < 0) 1144 dev_err(&slave->dev, 1145 "SDW_DPN_INTMASK write failed:%d\n", val); 1146 1147 return ret; 1148 } 1149 1150 static int sdw_slave_set_frequency(struct sdw_slave *slave) 1151 { 1152 u32 mclk_freq = slave->bus->prop.mclk_freq; 1153 u32 curr_freq = slave->bus->params.curr_dr_freq >> 1; 1154 unsigned int scale; 1155 u8 scale_index; 1156 u8 base; 1157 int ret; 1158 1159 /* 1160 * frequency base and scale registers are required for SDCA 1161 * devices. They may also be used for 1.2+/non-SDCA devices, 1162 * but we will need a DisCo property to cover this case 1163 */ 1164 if (!slave->id.class_id) 1165 return 0; 1166 1167 if (!mclk_freq) { 1168 dev_err(&slave->dev, 1169 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n"); 1170 return -EINVAL; 1171 } 1172 1173 /* 1174 * map base frequency using Table 89 of SoundWire 1.2 spec. 1175 * The order of the tests just follows the specification, this 1176 * is not a selection between possible values or a search for 1177 * the best value but just a mapping. Only one case per platform 1178 * is relevant. 1179 * Some BIOS have inconsistent values for mclk_freq but a 1180 * correct root so we force the mclk_freq to avoid variations. 1181 */ 1182 if (!(19200000 % mclk_freq)) { 1183 mclk_freq = 19200000; 1184 base = SDW_SCP_BASE_CLOCK_19200000_HZ; 1185 } else if (!(24000000 % mclk_freq)) { 1186 mclk_freq = 24000000; 1187 base = SDW_SCP_BASE_CLOCK_24000000_HZ; 1188 } else if (!(24576000 % mclk_freq)) { 1189 mclk_freq = 24576000; 1190 base = SDW_SCP_BASE_CLOCK_24576000_HZ; 1191 } else if (!(22579200 % mclk_freq)) { 1192 mclk_freq = 22579200; 1193 base = SDW_SCP_BASE_CLOCK_22579200_HZ; 1194 } else if (!(32000000 % mclk_freq)) { 1195 mclk_freq = 32000000; 1196 base = SDW_SCP_BASE_CLOCK_32000000_HZ; 1197 } else { 1198 dev_err(&slave->dev, 1199 "Unsupported clock base, mclk %d\n", 1200 mclk_freq); 1201 return -EINVAL; 1202 } 1203 1204 if (mclk_freq % curr_freq) { 1205 dev_err(&slave->dev, 1206 "mclk %d is not multiple of bus curr_freq %d\n", 1207 mclk_freq, curr_freq); 1208 return -EINVAL; 1209 } 1210 1211 scale = mclk_freq / curr_freq; 1212 1213 /* 1214 * map scale to Table 90 of SoundWire 1.2 spec - and check 1215 * that the scale is a power of two and maximum 64 1216 */ 1217 scale_index = ilog2(scale); 1218 1219 if (BIT(scale_index) != scale || scale_index > 6) { 1220 dev_err(&slave->dev, 1221 "No match found for scale %d, bus mclk %d curr_freq %d\n", 1222 scale, mclk_freq, curr_freq); 1223 return -EINVAL; 1224 } 1225 scale_index++; 1226 1227 ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base); 1228 if (ret < 0) { 1229 dev_err(&slave->dev, 1230 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret); 1231 return ret; 1232 } 1233 1234 /* initialize scale for both banks */ 1235 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index); 1236 if (ret < 0) { 1237 dev_err(&slave->dev, 1238 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret); 1239 return ret; 1240 } 1241 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index); 1242 if (ret < 0) 1243 dev_err(&slave->dev, 1244 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret); 1245 1246 dev_dbg(&slave->dev, 1247 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n", 1248 base, scale_index, mclk_freq, curr_freq); 1249 1250 return ret; 1251 } 1252 1253 static int sdw_initialize_slave(struct sdw_slave *slave) 1254 { 1255 struct sdw_slave_prop *prop = &slave->prop; 1256 int ret; 1257 u8 val; 1258 1259 ret = sdw_slave_set_frequency(slave); 1260 if (ret < 0) 1261 return ret; 1262 1263 /* 1264 * Set SCP_INT1_MASK register, typically bus clash and 1265 * implementation-defined interrupt mask. The Parity detection 1266 * may not always be correct on startup so its use is 1267 * device-dependent, it might e.g. only be enabled in 1268 * steady-state after a couple of frames. 1269 */ 1270 val = slave->prop.scp_int1_mask; 1271 1272 /* Enable SCP interrupts */ 1273 ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val); 1274 if (ret < 0) { 1275 dev_err(&slave->dev, 1276 "SDW_SCP_INTMASK1 write failed:%d\n", ret); 1277 return ret; 1278 } 1279 1280 /* No need to continue if DP0 is not present */ 1281 if (!slave->prop.dp0_prop) 1282 return 0; 1283 1284 /* Enable DP0 interrupts */ 1285 val = prop->dp0_prop->imp_def_interrupts; 1286 val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE; 1287 1288 ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val); 1289 if (ret < 0) 1290 dev_err(&slave->dev, 1291 "SDW_DP0_INTMASK read failed:%d\n", ret); 1292 return ret; 1293 } 1294 1295 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status) 1296 { 1297 u8 clear, impl_int_mask; 1298 int status, status2, ret, count = 0; 1299 1300 status = sdw_read_no_pm(slave, SDW_DP0_INT); 1301 if (status < 0) { 1302 dev_err(&slave->dev, 1303 "SDW_DP0_INT read failed:%d\n", status); 1304 return status; 1305 } 1306 1307 do { 1308 clear = status & ~SDW_DP0_INTERRUPTS; 1309 1310 if (status & SDW_DP0_INT_TEST_FAIL) { 1311 dev_err(&slave->dev, "Test fail for port 0\n"); 1312 clear |= SDW_DP0_INT_TEST_FAIL; 1313 } 1314 1315 /* 1316 * Assumption: PORT_READY interrupt will be received only for 1317 * ports implementing Channel Prepare state machine (CP_SM) 1318 */ 1319 1320 if (status & SDW_DP0_INT_PORT_READY) { 1321 complete(&slave->port_ready[0]); 1322 clear |= SDW_DP0_INT_PORT_READY; 1323 } 1324 1325 if (status & SDW_DP0_INT_BRA_FAILURE) { 1326 dev_err(&slave->dev, "BRA failed\n"); 1327 clear |= SDW_DP0_INT_BRA_FAILURE; 1328 } 1329 1330 impl_int_mask = SDW_DP0_INT_IMPDEF1 | 1331 SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3; 1332 1333 if (status & impl_int_mask) { 1334 clear |= impl_int_mask; 1335 *slave_status = clear; 1336 } 1337 1338 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */ 1339 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear); 1340 if (ret < 0) { 1341 dev_err(&slave->dev, 1342 "SDW_DP0_INT write failed:%d\n", ret); 1343 return ret; 1344 } 1345 1346 /* Read DP0 interrupt again */ 1347 status2 = sdw_read_no_pm(slave, SDW_DP0_INT); 1348 if (status2 < 0) { 1349 dev_err(&slave->dev, 1350 "SDW_DP0_INT read failed:%d\n", status2); 1351 return status2; 1352 } 1353 /* filter to limit loop to interrupts identified in the first status read */ 1354 status &= status2; 1355 1356 count++; 1357 1358 /* we can get alerts while processing so keep retrying */ 1359 } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY)); 1360 1361 if (count == SDW_READ_INTR_CLEAR_RETRY) 1362 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n"); 1363 1364 return ret; 1365 } 1366 1367 static int sdw_handle_port_interrupt(struct sdw_slave *slave, 1368 int port, u8 *slave_status) 1369 { 1370 u8 clear, impl_int_mask; 1371 int status, status2, ret, count = 0; 1372 u32 addr; 1373 1374 if (port == 0) 1375 return sdw_handle_dp0_interrupt(slave, slave_status); 1376 1377 addr = SDW_DPN_INT(port); 1378 status = sdw_read_no_pm(slave, addr); 1379 if (status < 0) { 1380 dev_err(&slave->dev, 1381 "SDW_DPN_INT read failed:%d\n", status); 1382 1383 return status; 1384 } 1385 1386 do { 1387 clear = status & ~SDW_DPN_INTERRUPTS; 1388 1389 if (status & SDW_DPN_INT_TEST_FAIL) { 1390 dev_err(&slave->dev, "Test fail for port:%d\n", port); 1391 clear |= SDW_DPN_INT_TEST_FAIL; 1392 } 1393 1394 /* 1395 * Assumption: PORT_READY interrupt will be received only 1396 * for ports implementing CP_SM. 1397 */ 1398 if (status & SDW_DPN_INT_PORT_READY) { 1399 complete(&slave->port_ready[port]); 1400 clear |= SDW_DPN_INT_PORT_READY; 1401 } 1402 1403 impl_int_mask = SDW_DPN_INT_IMPDEF1 | 1404 SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3; 1405 1406 if (status & impl_int_mask) { 1407 clear |= impl_int_mask; 1408 *slave_status = clear; 1409 } 1410 1411 /* clear the interrupt but don't touch reserved fields */ 1412 ret = sdw_write_no_pm(slave, addr, clear); 1413 if (ret < 0) { 1414 dev_err(&slave->dev, 1415 "SDW_DPN_INT write failed:%d\n", ret); 1416 return ret; 1417 } 1418 1419 /* Read DPN interrupt again */ 1420 status2 = sdw_read_no_pm(slave, addr); 1421 if (status2 < 0) { 1422 dev_err(&slave->dev, 1423 "SDW_DPN_INT read failed:%d\n", status2); 1424 return status2; 1425 } 1426 /* filter to limit loop to interrupts identified in the first status read */ 1427 status &= status2; 1428 1429 count++; 1430 1431 /* we can get alerts while processing so keep retrying */ 1432 } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY)); 1433 1434 if (count == SDW_READ_INTR_CLEAR_RETRY) 1435 dev_warn(&slave->dev, "Reached MAX_RETRY on port read"); 1436 1437 return ret; 1438 } 1439 1440 static int sdw_handle_slave_alerts(struct sdw_slave *slave) 1441 { 1442 struct sdw_slave_intr_status slave_intr; 1443 u8 clear = 0, bit, port_status[15] = {0}; 1444 int port_num, stat, ret, count = 0; 1445 unsigned long port; 1446 bool slave_notify; 1447 u8 sdca_cascade = 0; 1448 u8 buf, buf2[2], _buf, _buf2[2]; 1449 bool parity_check; 1450 bool parity_quirk; 1451 1452 sdw_modify_slave_status(slave, SDW_SLAVE_ALERT); 1453 1454 ret = pm_runtime_get_sync(&slave->dev); 1455 if (ret < 0 && ret != -EACCES) { 1456 dev_err(&slave->dev, "Failed to resume device: %d\n", ret); 1457 pm_runtime_put_noidle(&slave->dev); 1458 return ret; 1459 } 1460 1461 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */ 1462 ret = sdw_read_no_pm(slave, SDW_SCP_INT1); 1463 if (ret < 0) { 1464 dev_err(&slave->dev, 1465 "SDW_SCP_INT1 read failed:%d\n", ret); 1466 goto io_err; 1467 } 1468 buf = ret; 1469 1470 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2); 1471 if (ret < 0) { 1472 dev_err(&slave->dev, 1473 "SDW_SCP_INT2/3 read failed:%d\n", ret); 1474 goto io_err; 1475 } 1476 1477 if (slave->prop.is_sdca) { 1478 ret = sdw_read_no_pm(slave, SDW_DP0_INT); 1479 if (ret < 0) { 1480 dev_err(&slave->dev, 1481 "SDW_DP0_INT read failed:%d\n", ret); 1482 goto io_err; 1483 } 1484 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE; 1485 } 1486 1487 do { 1488 slave_notify = false; 1489 1490 /* 1491 * Check parity, bus clash and Slave (impl defined) 1492 * interrupt 1493 */ 1494 if (buf & SDW_SCP_INT1_PARITY) { 1495 parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY; 1496 parity_quirk = !slave->first_interrupt_done && 1497 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY); 1498 1499 if (parity_check && !parity_quirk) 1500 dev_err(&slave->dev, "Parity error detected\n"); 1501 clear |= SDW_SCP_INT1_PARITY; 1502 } 1503 1504 if (buf & SDW_SCP_INT1_BUS_CLASH) { 1505 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH) 1506 dev_err(&slave->dev, "Bus clash detected\n"); 1507 clear |= SDW_SCP_INT1_BUS_CLASH; 1508 } 1509 1510 /* 1511 * When bus clash or parity errors are detected, such errors 1512 * are unlikely to be recoverable errors. 1513 * TODO: In such scenario, reset bus. Make this configurable 1514 * via sysfs property with bus reset being the default. 1515 */ 1516 1517 if (buf & SDW_SCP_INT1_IMPL_DEF) { 1518 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) { 1519 dev_dbg(&slave->dev, "Slave impl defined interrupt\n"); 1520 slave_notify = true; 1521 } 1522 clear |= SDW_SCP_INT1_IMPL_DEF; 1523 } 1524 1525 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */ 1526 if (sdca_cascade) 1527 slave_notify = true; 1528 1529 /* Check port 0 - 3 interrupts */ 1530 port = buf & SDW_SCP_INT1_PORT0_3; 1531 1532 /* To get port number corresponding to bits, shift it */ 1533 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port); 1534 for_each_set_bit(bit, &port, 8) { 1535 sdw_handle_port_interrupt(slave, bit, 1536 &port_status[bit]); 1537 } 1538 1539 /* Check if cascade 2 interrupt is present */ 1540 if (buf & SDW_SCP_INT1_SCP2_CASCADE) { 1541 port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10; 1542 for_each_set_bit(bit, &port, 8) { 1543 /* scp2 ports start from 4 */ 1544 port_num = bit + 3; 1545 sdw_handle_port_interrupt(slave, 1546 port_num, 1547 &port_status[port_num]); 1548 } 1549 } 1550 1551 /* now check last cascade */ 1552 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) { 1553 port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14; 1554 for_each_set_bit(bit, &port, 8) { 1555 /* scp3 ports start from 11 */ 1556 port_num = bit + 10; 1557 sdw_handle_port_interrupt(slave, 1558 port_num, 1559 &port_status[port_num]); 1560 } 1561 } 1562 1563 /* Update the Slave driver */ 1564 if (slave_notify && slave->ops && 1565 slave->ops->interrupt_callback) { 1566 slave_intr.sdca_cascade = sdca_cascade; 1567 slave_intr.control_port = clear; 1568 memcpy(slave_intr.port, &port_status, 1569 sizeof(slave_intr.port)); 1570 1571 slave->ops->interrupt_callback(slave, &slave_intr); 1572 } 1573 1574 /* Ack interrupt */ 1575 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear); 1576 if (ret < 0) { 1577 dev_err(&slave->dev, 1578 "SDW_SCP_INT1 write failed:%d\n", ret); 1579 goto io_err; 1580 } 1581 1582 /* at this point all initial interrupt sources were handled */ 1583 slave->first_interrupt_done = true; 1584 1585 /* 1586 * Read status again to ensure no new interrupts arrived 1587 * while servicing interrupts. 1588 */ 1589 ret = sdw_read_no_pm(slave, SDW_SCP_INT1); 1590 if (ret < 0) { 1591 dev_err(&slave->dev, 1592 "SDW_SCP_INT1 read failed:%d\n", ret); 1593 goto io_err; 1594 } 1595 _buf = ret; 1596 1597 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2); 1598 if (ret < 0) { 1599 dev_err(&slave->dev, 1600 "SDW_SCP_INT2/3 read failed:%d\n", ret); 1601 goto io_err; 1602 } 1603 1604 if (slave->prop.is_sdca) { 1605 ret = sdw_read_no_pm(slave, SDW_DP0_INT); 1606 if (ret < 0) { 1607 dev_err(&slave->dev, 1608 "SDW_DP0_INT read failed:%d\n", ret); 1609 goto io_err; 1610 } 1611 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE; 1612 } 1613 1614 /* 1615 * Make sure no interrupts are pending, but filter to limit loop 1616 * to interrupts identified in the first status read 1617 */ 1618 buf &= _buf; 1619 buf2[0] &= _buf2[0]; 1620 buf2[1] &= _buf2[1]; 1621 stat = buf || buf2[0] || buf2[1] || sdca_cascade; 1622 1623 /* 1624 * Exit loop if Slave is continuously in ALERT state even 1625 * after servicing the interrupt multiple times. 1626 */ 1627 count++; 1628 1629 /* we can get alerts while processing so keep retrying */ 1630 } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY); 1631 1632 if (count == SDW_READ_INTR_CLEAR_RETRY) 1633 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n"); 1634 1635 io_err: 1636 pm_runtime_mark_last_busy(&slave->dev); 1637 pm_runtime_put_autosuspend(&slave->dev); 1638 1639 return ret; 1640 } 1641 1642 static int sdw_update_slave_status(struct sdw_slave *slave, 1643 enum sdw_slave_status status) 1644 { 1645 unsigned long time; 1646 1647 if (!slave->probed) { 1648 /* 1649 * the slave status update is typically handled in an 1650 * interrupt thread, which can race with the driver 1651 * probe, e.g. when a module needs to be loaded. 1652 * 1653 * make sure the probe is complete before updating 1654 * status. 1655 */ 1656 time = wait_for_completion_timeout(&slave->probe_complete, 1657 msecs_to_jiffies(DEFAULT_PROBE_TIMEOUT)); 1658 if (!time) { 1659 dev_err(&slave->dev, "Probe not complete, timed out\n"); 1660 return -ETIMEDOUT; 1661 } 1662 } 1663 1664 if (!slave->ops || !slave->ops->update_status) 1665 return 0; 1666 1667 return slave->ops->update_status(slave, status); 1668 } 1669 1670 /** 1671 * sdw_handle_slave_status() - Handle Slave status 1672 * @bus: SDW bus instance 1673 * @status: Status for all Slave(s) 1674 */ 1675 int sdw_handle_slave_status(struct sdw_bus *bus, 1676 enum sdw_slave_status status[]) 1677 { 1678 enum sdw_slave_status prev_status; 1679 struct sdw_slave *slave; 1680 bool attached_initializing; 1681 int i, ret = 0; 1682 1683 /* first check if any Slaves fell off the bus */ 1684 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 1685 mutex_lock(&bus->bus_lock); 1686 if (test_bit(i, bus->assigned) == false) { 1687 mutex_unlock(&bus->bus_lock); 1688 continue; 1689 } 1690 mutex_unlock(&bus->bus_lock); 1691 1692 slave = sdw_get_slave(bus, i); 1693 if (!slave) 1694 continue; 1695 1696 if (status[i] == SDW_SLAVE_UNATTACHED && 1697 slave->status != SDW_SLAVE_UNATTACHED) 1698 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1699 } 1700 1701 if (status[0] == SDW_SLAVE_ATTACHED) { 1702 dev_dbg(bus->dev, "Slave attached, programming device number\n"); 1703 ret = sdw_program_device_num(bus); 1704 if (ret) 1705 dev_err(bus->dev, "Slave attach failed: %d\n", ret); 1706 /* 1707 * programming a device number will have side effects, 1708 * so we deal with other devices at a later time 1709 */ 1710 return ret; 1711 } 1712 1713 /* Continue to check other slave statuses */ 1714 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 1715 mutex_lock(&bus->bus_lock); 1716 if (test_bit(i, bus->assigned) == false) { 1717 mutex_unlock(&bus->bus_lock); 1718 continue; 1719 } 1720 mutex_unlock(&bus->bus_lock); 1721 1722 slave = sdw_get_slave(bus, i); 1723 if (!slave) 1724 continue; 1725 1726 attached_initializing = false; 1727 1728 switch (status[i]) { 1729 case SDW_SLAVE_UNATTACHED: 1730 if (slave->status == SDW_SLAVE_UNATTACHED) 1731 break; 1732 1733 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1734 break; 1735 1736 case SDW_SLAVE_ALERT: 1737 ret = sdw_handle_slave_alerts(slave); 1738 if (ret) 1739 dev_err(&slave->dev, 1740 "Slave %d alert handling failed: %d\n", 1741 i, ret); 1742 break; 1743 1744 case SDW_SLAVE_ATTACHED: 1745 if (slave->status == SDW_SLAVE_ATTACHED) 1746 break; 1747 1748 prev_status = slave->status; 1749 sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED); 1750 1751 if (prev_status == SDW_SLAVE_ALERT) 1752 break; 1753 1754 attached_initializing = true; 1755 1756 ret = sdw_initialize_slave(slave); 1757 if (ret) 1758 dev_err(&slave->dev, 1759 "Slave %d initialization failed: %d\n", 1760 i, ret); 1761 1762 break; 1763 1764 default: 1765 dev_err(&slave->dev, "Invalid slave %d status:%d\n", 1766 i, status[i]); 1767 break; 1768 } 1769 1770 ret = sdw_update_slave_status(slave, status[i]); 1771 if (ret) 1772 dev_err(&slave->dev, 1773 "Update Slave status failed:%d\n", ret); 1774 if (attached_initializing) { 1775 dev_dbg(&slave->dev, 1776 "%s: signaling initialization completion for Slave %d\n", 1777 __func__, slave->dev_num); 1778 1779 complete(&slave->initialization_complete); 1780 } 1781 } 1782 1783 return ret; 1784 } 1785 EXPORT_SYMBOL(sdw_handle_slave_status); 1786 1787 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request) 1788 { 1789 struct sdw_slave *slave; 1790 int i; 1791 1792 /* Check all non-zero devices */ 1793 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 1794 mutex_lock(&bus->bus_lock); 1795 if (test_bit(i, bus->assigned) == false) { 1796 mutex_unlock(&bus->bus_lock); 1797 continue; 1798 } 1799 mutex_unlock(&bus->bus_lock); 1800 1801 slave = sdw_get_slave(bus, i); 1802 if (!slave) 1803 continue; 1804 1805 if (slave->status != SDW_SLAVE_UNATTACHED) { 1806 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1807 slave->first_interrupt_done = false; 1808 } 1809 1810 /* keep track of request, used in pm_runtime resume */ 1811 slave->unattach_request = request; 1812 } 1813 } 1814 EXPORT_SYMBOL(sdw_clear_slave_status); 1815