xref: /openbmc/linux/drivers/soundwire/bus.c (revision 56ea353ea49ad21dd4c14e7baa235493ec27e766)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3 
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
11 #include "bus.h"
12 #include "sysfs_local.h"
13 
14 static DEFINE_IDA(sdw_bus_ida);
15 static DEFINE_IDA(sdw_peripheral_ida);
16 
17 static int sdw_get_id(struct sdw_bus *bus)
18 {
19 	int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
20 
21 	if (rc < 0)
22 		return rc;
23 
24 	bus->id = rc;
25 	return 0;
26 }
27 
28 /**
29  * sdw_bus_master_add() - add a bus Master instance
30  * @bus: bus instance
31  * @parent: parent device
32  * @fwnode: firmware node handle
33  *
34  * Initializes the bus instance, read properties and create child
35  * devices.
36  */
37 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
38 		       struct fwnode_handle *fwnode)
39 {
40 	struct sdw_master_prop *prop = NULL;
41 	int ret;
42 
43 	if (!parent) {
44 		pr_err("SoundWire parent device is not set\n");
45 		return -ENODEV;
46 	}
47 
48 	ret = sdw_get_id(bus);
49 	if (ret < 0) {
50 		dev_err(parent, "Failed to get bus id\n");
51 		return ret;
52 	}
53 
54 	ret = sdw_master_device_add(bus, parent, fwnode);
55 	if (ret < 0) {
56 		dev_err(parent, "Failed to add master device at link %d\n",
57 			bus->link_id);
58 		return ret;
59 	}
60 
61 	if (!bus->ops) {
62 		dev_err(bus->dev, "SoundWire Bus ops are not set\n");
63 		return -EINVAL;
64 	}
65 
66 	if (!bus->compute_params) {
67 		dev_err(bus->dev,
68 			"Bandwidth allocation not configured, compute_params no set\n");
69 		return -EINVAL;
70 	}
71 
72 	mutex_init(&bus->msg_lock);
73 	mutex_init(&bus->bus_lock);
74 	INIT_LIST_HEAD(&bus->slaves);
75 	INIT_LIST_HEAD(&bus->m_rt_list);
76 
77 	/*
78 	 * Initialize multi_link flag
79 	 */
80 	bus->multi_link = false;
81 	if (bus->ops->read_prop) {
82 		ret = bus->ops->read_prop(bus);
83 		if (ret < 0) {
84 			dev_err(bus->dev,
85 				"Bus read properties failed:%d\n", ret);
86 			return ret;
87 		}
88 	}
89 
90 	sdw_bus_debugfs_init(bus);
91 
92 	/*
93 	 * Device numbers in SoundWire are 0 through 15. Enumeration device
94 	 * number (0), Broadcast device number (15), Group numbers (12 and
95 	 * 13) and Master device number (14) are not used for assignment so
96 	 * mask these and other higher bits.
97 	 */
98 
99 	/* Set higher order bits */
100 	*bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
101 
102 	/* Set enumuration device number and broadcast device number */
103 	set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
104 	set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
105 
106 	/* Set group device numbers and master device number */
107 	set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
108 	set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
109 	set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
110 
111 	/*
112 	 * SDW is an enumerable bus, but devices can be powered off. So,
113 	 * they won't be able to report as present.
114 	 *
115 	 * Create Slave devices based on Slaves described in
116 	 * the respective firmware (ACPI/DT)
117 	 */
118 	if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
119 		ret = sdw_acpi_find_slaves(bus);
120 	else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
121 		ret = sdw_of_find_slaves(bus);
122 	else
123 		ret = -ENOTSUPP; /* No ACPI/DT so error out */
124 
125 	if (ret < 0) {
126 		dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
127 		return ret;
128 	}
129 
130 	/*
131 	 * Initialize clock values based on Master properties. The max
132 	 * frequency is read from max_clk_freq property. Current assumption
133 	 * is that the bus will start at highest clock frequency when
134 	 * powered on.
135 	 *
136 	 * Default active bank will be 0 as out of reset the Slaves have
137 	 * to start with bank 0 (Table 40 of Spec)
138 	 */
139 	prop = &bus->prop;
140 	bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
141 	bus->params.curr_dr_freq = bus->params.max_dr_freq;
142 	bus->params.curr_bank = SDW_BANK0;
143 	bus->params.next_bank = SDW_BANK1;
144 
145 	return 0;
146 }
147 EXPORT_SYMBOL(sdw_bus_master_add);
148 
149 static int sdw_delete_slave(struct device *dev, void *data)
150 {
151 	struct sdw_slave *slave = dev_to_sdw_dev(dev);
152 	struct sdw_bus *bus = slave->bus;
153 
154 	pm_runtime_disable(dev);
155 
156 	sdw_slave_debugfs_exit(slave);
157 
158 	mutex_lock(&bus->bus_lock);
159 
160 	if (slave->dev_num) { /* clear dev_num if assigned */
161 		clear_bit(slave->dev_num, bus->assigned);
162 		if (bus->dev_num_ida_min)
163 			ida_free(&sdw_peripheral_ida, slave->dev_num);
164 	}
165 	list_del_init(&slave->node);
166 	mutex_unlock(&bus->bus_lock);
167 
168 	device_unregister(dev);
169 	return 0;
170 }
171 
172 /**
173  * sdw_bus_master_delete() - delete the bus master instance
174  * @bus: bus to be deleted
175  *
176  * Remove the instance, delete the child devices.
177  */
178 void sdw_bus_master_delete(struct sdw_bus *bus)
179 {
180 	device_for_each_child(bus->dev, NULL, sdw_delete_slave);
181 	sdw_master_device_del(bus);
182 
183 	sdw_bus_debugfs_exit(bus);
184 	ida_free(&sdw_bus_ida, bus->id);
185 }
186 EXPORT_SYMBOL(sdw_bus_master_delete);
187 
188 /*
189  * SDW IO Calls
190  */
191 
192 static inline int find_response_code(enum sdw_command_response resp)
193 {
194 	switch (resp) {
195 	case SDW_CMD_OK:
196 		return 0;
197 
198 	case SDW_CMD_IGNORED:
199 		return -ENODATA;
200 
201 	case SDW_CMD_TIMEOUT:
202 		return -ETIMEDOUT;
203 
204 	default:
205 		return -EIO;
206 	}
207 }
208 
209 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
210 {
211 	int retry = bus->prop.err_threshold;
212 	enum sdw_command_response resp;
213 	int ret = 0, i;
214 
215 	for (i = 0; i <= retry; i++) {
216 		resp = bus->ops->xfer_msg(bus, msg);
217 		ret = find_response_code(resp);
218 
219 		/* if cmd is ok or ignored return */
220 		if (ret == 0 || ret == -ENODATA)
221 			return ret;
222 	}
223 
224 	return ret;
225 }
226 
227 static inline int do_transfer_defer(struct sdw_bus *bus,
228 				    struct sdw_msg *msg,
229 				    struct sdw_defer *defer)
230 {
231 	int retry = bus->prop.err_threshold;
232 	enum sdw_command_response resp;
233 	int ret = 0, i;
234 
235 	defer->msg = msg;
236 	defer->length = msg->len;
237 	init_completion(&defer->complete);
238 
239 	for (i = 0; i <= retry; i++) {
240 		resp = bus->ops->xfer_msg_defer(bus, msg, defer);
241 		ret = find_response_code(resp);
242 		/* if cmd is ok or ignored return */
243 		if (ret == 0 || ret == -ENODATA)
244 			return ret;
245 	}
246 
247 	return ret;
248 }
249 
250 static int sdw_reset_page(struct sdw_bus *bus, u16 dev_num)
251 {
252 	int retry = bus->prop.err_threshold;
253 	enum sdw_command_response resp;
254 	int ret = 0, i;
255 
256 	for (i = 0; i <= retry; i++) {
257 		resp = bus->ops->reset_page_addr(bus, dev_num);
258 		ret = find_response_code(resp);
259 		/* if cmd is ok or ignored return */
260 		if (ret == 0 || ret == -ENODATA)
261 			return ret;
262 	}
263 
264 	return ret;
265 }
266 
267 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
268 {
269 	int ret;
270 
271 	ret = do_transfer(bus, msg);
272 	if (ret != 0 && ret != -ENODATA)
273 		dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
274 			msg->dev_num, ret,
275 			(msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
276 			msg->addr, msg->len);
277 
278 	if (msg->page)
279 		sdw_reset_page(bus, msg->dev_num);
280 
281 	return ret;
282 }
283 
284 /**
285  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
286  * @bus: SDW bus
287  * @msg: SDW message to be xfered
288  */
289 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
290 {
291 	int ret;
292 
293 	mutex_lock(&bus->msg_lock);
294 
295 	ret = sdw_transfer_unlocked(bus, msg);
296 
297 	mutex_unlock(&bus->msg_lock);
298 
299 	return ret;
300 }
301 
302 /**
303  * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
304  * @bus: SDW bus
305  * @sync_delay: Delay before reading status
306  */
307 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
308 {
309 	u32 status;
310 
311 	if (!bus->ops->read_ping_status)
312 		return;
313 
314 	/*
315 	 * wait for peripheral to sync if desired. 10-15ms should be more than
316 	 * enough in most cases.
317 	 */
318 	if (sync_delay)
319 		usleep_range(10000, 15000);
320 
321 	mutex_lock(&bus->msg_lock);
322 
323 	status = bus->ops->read_ping_status(bus);
324 
325 	mutex_unlock(&bus->msg_lock);
326 
327 	if (!status)
328 		dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
329 	else
330 		dev_dbg(bus->dev, "PING status: %#x\n", status);
331 }
332 EXPORT_SYMBOL(sdw_show_ping_status);
333 
334 /**
335  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
336  * @bus: SDW bus
337  * @msg: SDW message to be xfered
338  * @defer: Defer block for signal completion
339  *
340  * Caller needs to hold the msg_lock lock while calling this
341  */
342 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg,
343 		       struct sdw_defer *defer)
344 {
345 	int ret;
346 
347 	if (!bus->ops->xfer_msg_defer)
348 		return -ENOTSUPP;
349 
350 	ret = do_transfer_defer(bus, msg, defer);
351 	if (ret != 0 && ret != -ENODATA)
352 		dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
353 			msg->dev_num, ret);
354 
355 	if (msg->page)
356 		sdw_reset_page(bus, msg->dev_num);
357 
358 	return ret;
359 }
360 
361 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
362 		 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
363 {
364 	memset(msg, 0, sizeof(*msg));
365 	msg->addr = addr; /* addr is 16 bit and truncated here */
366 	msg->len = count;
367 	msg->dev_num = dev_num;
368 	msg->flags = flags;
369 	msg->buf = buf;
370 
371 	if (addr < SDW_REG_NO_PAGE) /* no paging area */
372 		return 0;
373 
374 	if (addr >= SDW_REG_MAX) { /* illegal addr */
375 		pr_err("SDW: Invalid address %x passed\n", addr);
376 		return -EINVAL;
377 	}
378 
379 	if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
380 		if (slave && !slave->prop.paging_support)
381 			return 0;
382 		/* no need for else as that will fall-through to paging */
383 	}
384 
385 	/* paging mandatory */
386 	if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
387 		pr_err("SDW: Invalid device for paging :%d\n", dev_num);
388 		return -EINVAL;
389 	}
390 
391 	if (!slave) {
392 		pr_err("SDW: No slave for paging addr\n");
393 		return -EINVAL;
394 	}
395 
396 	if (!slave->prop.paging_support) {
397 		dev_err(&slave->dev,
398 			"address %x needs paging but no support\n", addr);
399 		return -EINVAL;
400 	}
401 
402 	msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
403 	msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
404 	msg->addr |= BIT(15);
405 	msg->page = true;
406 
407 	return 0;
408 }
409 
410 /*
411  * Read/Write IO functions.
412  * no_pm versions can only be called by the bus, e.g. while enumerating or
413  * handling suspend-resume sequences.
414  * all clients need to use the pm versions
415  */
416 
417 static int
418 sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
419 {
420 	struct sdw_msg msg;
421 	int ret;
422 
423 	ret = sdw_fill_msg(&msg, slave, addr, count,
424 			   slave->dev_num, SDW_MSG_FLAG_READ, val);
425 	if (ret < 0)
426 		return ret;
427 
428 	ret = sdw_transfer(slave->bus, &msg);
429 	if (slave->is_mockup_device)
430 		ret = 0;
431 	return ret;
432 }
433 
434 static int
435 sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
436 {
437 	struct sdw_msg msg;
438 	int ret;
439 
440 	ret = sdw_fill_msg(&msg, slave, addr, count,
441 			   slave->dev_num, SDW_MSG_FLAG_WRITE, (u8 *)val);
442 	if (ret < 0)
443 		return ret;
444 
445 	ret = sdw_transfer(slave->bus, &msg);
446 	if (slave->is_mockup_device)
447 		ret = 0;
448 	return ret;
449 }
450 
451 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
452 {
453 	return sdw_nwrite_no_pm(slave, addr, 1, &value);
454 }
455 EXPORT_SYMBOL(sdw_write_no_pm);
456 
457 static int
458 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
459 {
460 	struct sdw_msg msg;
461 	u8 buf;
462 	int ret;
463 
464 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
465 			   SDW_MSG_FLAG_READ, &buf);
466 	if (ret < 0)
467 		return ret;
468 
469 	ret = sdw_transfer(bus, &msg);
470 	if (ret < 0)
471 		return ret;
472 
473 	return buf;
474 }
475 
476 static int
477 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
478 {
479 	struct sdw_msg msg;
480 	int ret;
481 
482 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
483 			   SDW_MSG_FLAG_WRITE, &value);
484 	if (ret < 0)
485 		return ret;
486 
487 	return sdw_transfer(bus, &msg);
488 }
489 
490 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
491 {
492 	struct sdw_msg msg;
493 	u8 buf;
494 	int ret;
495 
496 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
497 			   SDW_MSG_FLAG_READ, &buf);
498 	if (ret < 0)
499 		return ret;
500 
501 	ret = sdw_transfer_unlocked(bus, &msg);
502 	if (ret < 0)
503 		return ret;
504 
505 	return buf;
506 }
507 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
508 
509 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
510 {
511 	struct sdw_msg msg;
512 	int ret;
513 
514 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
515 			   SDW_MSG_FLAG_WRITE, &value);
516 	if (ret < 0)
517 		return ret;
518 
519 	return sdw_transfer_unlocked(bus, &msg);
520 }
521 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
522 
523 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
524 {
525 	u8 buf;
526 	int ret;
527 
528 	ret = sdw_nread_no_pm(slave, addr, 1, &buf);
529 	if (ret < 0)
530 		return ret;
531 	else
532 		return buf;
533 }
534 EXPORT_SYMBOL(sdw_read_no_pm);
535 
536 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
537 {
538 	int tmp;
539 
540 	tmp = sdw_read_no_pm(slave, addr);
541 	if (tmp < 0)
542 		return tmp;
543 
544 	tmp = (tmp & ~mask) | val;
545 	return sdw_write_no_pm(slave, addr, tmp);
546 }
547 EXPORT_SYMBOL(sdw_update_no_pm);
548 
549 /* Read-Modify-Write Slave register */
550 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
551 {
552 	int tmp;
553 
554 	tmp = sdw_read(slave, addr);
555 	if (tmp < 0)
556 		return tmp;
557 
558 	tmp = (tmp & ~mask) | val;
559 	return sdw_write(slave, addr, tmp);
560 }
561 EXPORT_SYMBOL(sdw_update);
562 
563 /**
564  * sdw_nread() - Read "n" contiguous SDW Slave registers
565  * @slave: SDW Slave
566  * @addr: Register address
567  * @count: length
568  * @val: Buffer for values to be read
569  */
570 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
571 {
572 	int ret;
573 
574 	ret = pm_runtime_resume_and_get(&slave->dev);
575 	if (ret < 0 && ret != -EACCES)
576 		return ret;
577 
578 	ret = sdw_nread_no_pm(slave, addr, count, val);
579 
580 	pm_runtime_mark_last_busy(&slave->dev);
581 	pm_runtime_put(&slave->dev);
582 
583 	return ret;
584 }
585 EXPORT_SYMBOL(sdw_nread);
586 
587 /**
588  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
589  * @slave: SDW Slave
590  * @addr: Register address
591  * @count: length
592  * @val: Buffer for values to be written
593  */
594 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
595 {
596 	int ret;
597 
598 	ret = pm_runtime_resume_and_get(&slave->dev);
599 	if (ret < 0 && ret != -EACCES)
600 		return ret;
601 
602 	ret = sdw_nwrite_no_pm(slave, addr, count, val);
603 
604 	pm_runtime_mark_last_busy(&slave->dev);
605 	pm_runtime_put(&slave->dev);
606 
607 	return ret;
608 }
609 EXPORT_SYMBOL(sdw_nwrite);
610 
611 /**
612  * sdw_read() - Read a SDW Slave register
613  * @slave: SDW Slave
614  * @addr: Register address
615  */
616 int sdw_read(struct sdw_slave *slave, u32 addr)
617 {
618 	u8 buf;
619 	int ret;
620 
621 	ret = sdw_nread(slave, addr, 1, &buf);
622 	if (ret < 0)
623 		return ret;
624 
625 	return buf;
626 }
627 EXPORT_SYMBOL(sdw_read);
628 
629 /**
630  * sdw_write() - Write a SDW Slave register
631  * @slave: SDW Slave
632  * @addr: Register address
633  * @value: Register value
634  */
635 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
636 {
637 	return sdw_nwrite(slave, addr, 1, &value);
638 }
639 EXPORT_SYMBOL(sdw_write);
640 
641 /*
642  * SDW alert handling
643  */
644 
645 /* called with bus_lock held */
646 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
647 {
648 	struct sdw_slave *slave;
649 
650 	list_for_each_entry(slave, &bus->slaves, node) {
651 		if (slave->dev_num == i)
652 			return slave;
653 	}
654 
655 	return NULL;
656 }
657 
658 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
659 {
660 	if (slave->id.mfg_id != id.mfg_id ||
661 	    slave->id.part_id != id.part_id ||
662 	    slave->id.class_id != id.class_id ||
663 	    (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
664 	     slave->id.unique_id != id.unique_id))
665 		return -ENODEV;
666 
667 	return 0;
668 }
669 EXPORT_SYMBOL(sdw_compare_devid);
670 
671 /* called with bus_lock held */
672 static int sdw_get_device_num(struct sdw_slave *slave)
673 {
674 	int bit;
675 
676 	if (slave->bus->dev_num_ida_min) {
677 		bit = ida_alloc_range(&sdw_peripheral_ida,
678 				      slave->bus->dev_num_ida_min, SDW_MAX_DEVICES,
679 				      GFP_KERNEL);
680 		if (bit < 0)
681 			goto err;
682 	} else {
683 		bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
684 		if (bit == SDW_MAX_DEVICES) {
685 			bit = -ENODEV;
686 			goto err;
687 		}
688 	}
689 
690 	/*
691 	 * Do not update dev_num in Slave data structure here,
692 	 * Update once program dev_num is successful
693 	 */
694 	set_bit(bit, slave->bus->assigned);
695 
696 err:
697 	return bit;
698 }
699 
700 static int sdw_assign_device_num(struct sdw_slave *slave)
701 {
702 	struct sdw_bus *bus = slave->bus;
703 	int ret, dev_num;
704 	bool new_device = false;
705 
706 	/* check first if device number is assigned, if so reuse that */
707 	if (!slave->dev_num) {
708 		if (!slave->dev_num_sticky) {
709 			mutex_lock(&slave->bus->bus_lock);
710 			dev_num = sdw_get_device_num(slave);
711 			mutex_unlock(&slave->bus->bus_lock);
712 			if (dev_num < 0) {
713 				dev_err(bus->dev, "Get dev_num failed: %d\n",
714 					dev_num);
715 				return dev_num;
716 			}
717 			slave->dev_num = dev_num;
718 			slave->dev_num_sticky = dev_num;
719 			new_device = true;
720 		} else {
721 			slave->dev_num = slave->dev_num_sticky;
722 		}
723 	}
724 
725 	if (!new_device)
726 		dev_dbg(bus->dev,
727 			"Slave already registered, reusing dev_num:%d\n",
728 			slave->dev_num);
729 
730 	/* Clear the slave->dev_num to transfer message on device 0 */
731 	dev_num = slave->dev_num;
732 	slave->dev_num = 0;
733 
734 	ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
735 	if (ret < 0) {
736 		dev_err(bus->dev, "Program device_num %d failed: %d\n",
737 			dev_num, ret);
738 		return ret;
739 	}
740 
741 	/* After xfer of msg, restore dev_num */
742 	slave->dev_num = slave->dev_num_sticky;
743 
744 	return 0;
745 }
746 
747 void sdw_extract_slave_id(struct sdw_bus *bus,
748 			  u64 addr, struct sdw_slave_id *id)
749 {
750 	dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
751 
752 	id->sdw_version = SDW_VERSION(addr);
753 	id->unique_id = SDW_UNIQUE_ID(addr);
754 	id->mfg_id = SDW_MFG_ID(addr);
755 	id->part_id = SDW_PART_ID(addr);
756 	id->class_id = SDW_CLASS_ID(addr);
757 
758 	dev_dbg(bus->dev,
759 		"SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
760 		id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
761 }
762 EXPORT_SYMBOL(sdw_extract_slave_id);
763 
764 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
765 {
766 	u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
767 	struct sdw_slave *slave, *_s;
768 	struct sdw_slave_id id;
769 	struct sdw_msg msg;
770 	bool found;
771 	int count = 0, ret;
772 	u64 addr;
773 
774 	*programmed = false;
775 
776 	/* No Slave, so use raw xfer api */
777 	ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
778 			   SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
779 	if (ret < 0)
780 		return ret;
781 
782 	do {
783 		ret = sdw_transfer(bus, &msg);
784 		if (ret == -ENODATA) { /* end of device id reads */
785 			dev_dbg(bus->dev, "No more devices to enumerate\n");
786 			ret = 0;
787 			break;
788 		}
789 		if (ret < 0) {
790 			dev_err(bus->dev, "DEVID read fail:%d\n", ret);
791 			break;
792 		}
793 
794 		/*
795 		 * Construct the addr and extract. Cast the higher shift
796 		 * bits to avoid truncation due to size limit.
797 		 */
798 		addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
799 			((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
800 			((u64)buf[0] << 40);
801 
802 		sdw_extract_slave_id(bus, addr, &id);
803 
804 		found = false;
805 		/* Now compare with entries */
806 		list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
807 			if (sdw_compare_devid(slave, id) == 0) {
808 				found = true;
809 
810 				/*
811 				 * To prevent skipping state-machine stages don't
812 				 * program a device until we've seen it UNATTACH.
813 				 * Must return here because no other device on #0
814 				 * can be detected until this one has been
815 				 * assigned a device ID.
816 				 */
817 				if (slave->status != SDW_SLAVE_UNATTACHED)
818 					return 0;
819 
820 				/*
821 				 * Assign a new dev_num to this Slave and
822 				 * not mark it present. It will be marked
823 				 * present after it reports ATTACHED on new
824 				 * dev_num
825 				 */
826 				ret = sdw_assign_device_num(slave);
827 				if (ret < 0) {
828 					dev_err(bus->dev,
829 						"Assign dev_num failed:%d\n",
830 						ret);
831 					return ret;
832 				}
833 
834 				*programmed = true;
835 
836 				break;
837 			}
838 		}
839 
840 		if (!found) {
841 			/* TODO: Park this device in Group 13 */
842 
843 			/*
844 			 * add Slave device even if there is no platform
845 			 * firmware description. There will be no driver probe
846 			 * but the user/integration will be able to see the
847 			 * device, enumeration status and device number in sysfs
848 			 */
849 			sdw_slave_add(bus, &id, NULL);
850 
851 			dev_err(bus->dev, "Slave Entry not found\n");
852 		}
853 
854 		count++;
855 
856 		/*
857 		 * Check till error out or retry (count) exhausts.
858 		 * Device can drop off and rejoin during enumeration
859 		 * so count till twice the bound.
860 		 */
861 
862 	} while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
863 
864 	return ret;
865 }
866 
867 static void sdw_modify_slave_status(struct sdw_slave *slave,
868 				    enum sdw_slave_status status)
869 {
870 	struct sdw_bus *bus = slave->bus;
871 
872 	mutex_lock(&bus->bus_lock);
873 
874 	dev_vdbg(bus->dev,
875 		 "changing status slave %d status %d new status %d\n",
876 		 slave->dev_num, slave->status, status);
877 
878 	if (status == SDW_SLAVE_UNATTACHED) {
879 		dev_dbg(&slave->dev,
880 			"initializing enumeration and init completion for Slave %d\n",
881 			slave->dev_num);
882 
883 		init_completion(&slave->enumeration_complete);
884 		init_completion(&slave->initialization_complete);
885 
886 	} else if ((status == SDW_SLAVE_ATTACHED) &&
887 		   (slave->status == SDW_SLAVE_UNATTACHED)) {
888 		dev_dbg(&slave->dev,
889 			"signaling enumeration completion for Slave %d\n",
890 			slave->dev_num);
891 
892 		complete(&slave->enumeration_complete);
893 	}
894 	slave->status = status;
895 	mutex_unlock(&bus->bus_lock);
896 }
897 
898 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
899 				       enum sdw_clk_stop_mode mode,
900 				       enum sdw_clk_stop_type type)
901 {
902 	int ret = 0;
903 
904 	mutex_lock(&slave->sdw_dev_lock);
905 
906 	if (slave->probed)  {
907 		struct device *dev = &slave->dev;
908 		struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
909 
910 		if (drv->ops && drv->ops->clk_stop)
911 			ret = drv->ops->clk_stop(slave, mode, type);
912 	}
913 
914 	mutex_unlock(&slave->sdw_dev_lock);
915 
916 	return ret;
917 }
918 
919 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
920 				      enum sdw_clk_stop_mode mode,
921 				      bool prepare)
922 {
923 	bool wake_en;
924 	u32 val = 0;
925 	int ret;
926 
927 	wake_en = slave->prop.wake_capable;
928 
929 	if (prepare) {
930 		val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
931 
932 		if (mode == SDW_CLK_STOP_MODE1)
933 			val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
934 
935 		if (wake_en)
936 			val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
937 	} else {
938 		ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
939 		if (ret < 0) {
940 			if (ret != -ENODATA)
941 				dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
942 			return ret;
943 		}
944 		val = ret;
945 		val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
946 	}
947 
948 	ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
949 
950 	if (ret < 0 && ret != -ENODATA)
951 		dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
952 
953 	return ret;
954 }
955 
956 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
957 {
958 	int retry = bus->clk_stop_timeout;
959 	int val;
960 
961 	do {
962 		val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
963 		if (val < 0) {
964 			if (val != -ENODATA)
965 				dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
966 			return val;
967 		}
968 		val &= SDW_SCP_STAT_CLK_STP_NF;
969 		if (!val) {
970 			dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
971 				dev_num);
972 			return 0;
973 		}
974 
975 		usleep_range(1000, 1500);
976 		retry--;
977 	} while (retry);
978 
979 	dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
980 		dev_num);
981 
982 	return -ETIMEDOUT;
983 }
984 
985 /**
986  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
987  *
988  * @bus: SDW bus instance
989  *
990  * Query Slave for clock stop mode and prepare for that mode.
991  */
992 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
993 {
994 	bool simple_clk_stop = true;
995 	struct sdw_slave *slave;
996 	bool is_slave = false;
997 	int ret = 0;
998 
999 	/*
1000 	 * In order to save on transition time, prepare
1001 	 * each Slave and then wait for all Slave(s) to be
1002 	 * prepared for clock stop.
1003 	 * If one of the Slave devices has lost sync and
1004 	 * replies with Command Ignored/-ENODATA, we continue
1005 	 * the loop
1006 	 */
1007 	list_for_each_entry(slave, &bus->slaves, node) {
1008 		if (!slave->dev_num)
1009 			continue;
1010 
1011 		if (slave->status != SDW_SLAVE_ATTACHED &&
1012 		    slave->status != SDW_SLAVE_ALERT)
1013 			continue;
1014 
1015 		/* Identify if Slave(s) are available on Bus */
1016 		is_slave = true;
1017 
1018 		ret = sdw_slave_clk_stop_callback(slave,
1019 						  SDW_CLK_STOP_MODE0,
1020 						  SDW_CLK_PRE_PREPARE);
1021 		if (ret < 0 && ret != -ENODATA) {
1022 			dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1023 			return ret;
1024 		}
1025 
1026 		/* Only prepare a Slave device if needed */
1027 		if (!slave->prop.simple_clk_stop_capable) {
1028 			simple_clk_stop = false;
1029 
1030 			ret = sdw_slave_clk_stop_prepare(slave,
1031 							 SDW_CLK_STOP_MODE0,
1032 							 true);
1033 			if (ret < 0 && ret != -ENODATA) {
1034 				dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1035 				return ret;
1036 			}
1037 		}
1038 	}
1039 
1040 	/* Skip remaining clock stop preparation if no Slave is attached */
1041 	if (!is_slave)
1042 		return 0;
1043 
1044 	/*
1045 	 * Don't wait for all Slaves to be ready if they follow the simple
1046 	 * state machine
1047 	 */
1048 	if (!simple_clk_stop) {
1049 		ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1050 						       SDW_BROADCAST_DEV_NUM);
1051 		/*
1052 		 * if there are no Slave devices present and the reply is
1053 		 * Command_Ignored/-ENODATA, we don't need to continue with the
1054 		 * flow and can just return here. The error code is not modified
1055 		 * and its handling left as an exercise for the caller.
1056 		 */
1057 		if (ret < 0)
1058 			return ret;
1059 	}
1060 
1061 	/* Inform slaves that prep is done */
1062 	list_for_each_entry(slave, &bus->slaves, node) {
1063 		if (!slave->dev_num)
1064 			continue;
1065 
1066 		if (slave->status != SDW_SLAVE_ATTACHED &&
1067 		    slave->status != SDW_SLAVE_ALERT)
1068 			continue;
1069 
1070 		ret = sdw_slave_clk_stop_callback(slave,
1071 						  SDW_CLK_STOP_MODE0,
1072 						  SDW_CLK_POST_PREPARE);
1073 
1074 		if (ret < 0 && ret != -ENODATA) {
1075 			dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1076 			return ret;
1077 		}
1078 	}
1079 
1080 	return 0;
1081 }
1082 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1083 
1084 /**
1085  * sdw_bus_clk_stop: stop bus clock
1086  *
1087  * @bus: SDW bus instance
1088  *
1089  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1090  * write to SCP_CTRL register.
1091  */
1092 int sdw_bus_clk_stop(struct sdw_bus *bus)
1093 {
1094 	int ret;
1095 
1096 	/*
1097 	 * broadcast clock stop now, attached Slaves will ACK this,
1098 	 * unattached will ignore
1099 	 */
1100 	ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1101 			       SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1102 	if (ret < 0) {
1103 		if (ret != -ENODATA)
1104 			dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1105 		return ret;
1106 	}
1107 
1108 	return 0;
1109 }
1110 EXPORT_SYMBOL(sdw_bus_clk_stop);
1111 
1112 /**
1113  * sdw_bus_exit_clk_stop: Exit clock stop mode
1114  *
1115  * @bus: SDW bus instance
1116  *
1117  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1118  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1119  * back.
1120  */
1121 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1122 {
1123 	bool simple_clk_stop = true;
1124 	struct sdw_slave *slave;
1125 	bool is_slave = false;
1126 	int ret;
1127 
1128 	/*
1129 	 * In order to save on transition time, de-prepare
1130 	 * each Slave and then wait for all Slave(s) to be
1131 	 * de-prepared after clock resume.
1132 	 */
1133 	list_for_each_entry(slave, &bus->slaves, node) {
1134 		if (!slave->dev_num)
1135 			continue;
1136 
1137 		if (slave->status != SDW_SLAVE_ATTACHED &&
1138 		    slave->status != SDW_SLAVE_ALERT)
1139 			continue;
1140 
1141 		/* Identify if Slave(s) are available on Bus */
1142 		is_slave = true;
1143 
1144 		ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1145 						  SDW_CLK_PRE_DEPREPARE);
1146 		if (ret < 0)
1147 			dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1148 
1149 		/* Only de-prepare a Slave device if needed */
1150 		if (!slave->prop.simple_clk_stop_capable) {
1151 			simple_clk_stop = false;
1152 
1153 			ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1154 							 false);
1155 
1156 			if (ret < 0)
1157 				dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1158 		}
1159 	}
1160 
1161 	/* Skip remaining clock stop de-preparation if no Slave is attached */
1162 	if (!is_slave)
1163 		return 0;
1164 
1165 	/*
1166 	 * Don't wait for all Slaves to be ready if they follow the simple
1167 	 * state machine
1168 	 */
1169 	if (!simple_clk_stop) {
1170 		ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1171 		if (ret < 0)
1172 			dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1173 	}
1174 
1175 	list_for_each_entry(slave, &bus->slaves, node) {
1176 		if (!slave->dev_num)
1177 			continue;
1178 
1179 		if (slave->status != SDW_SLAVE_ATTACHED &&
1180 		    slave->status != SDW_SLAVE_ALERT)
1181 			continue;
1182 
1183 		ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1184 						  SDW_CLK_POST_DEPREPARE);
1185 		if (ret < 0)
1186 			dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1187 	}
1188 
1189 	return 0;
1190 }
1191 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1192 
1193 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1194 			   int port, bool enable, int mask)
1195 {
1196 	u32 addr;
1197 	int ret;
1198 	u8 val = 0;
1199 
1200 	if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1201 		dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1202 			enable ? "on" : "off");
1203 		mask |= SDW_DPN_INT_TEST_FAIL;
1204 	}
1205 
1206 	addr = SDW_DPN_INTMASK(port);
1207 
1208 	/* Set/Clear port ready interrupt mask */
1209 	if (enable) {
1210 		val |= mask;
1211 		val |= SDW_DPN_INT_PORT_READY;
1212 	} else {
1213 		val &= ~(mask);
1214 		val &= ~SDW_DPN_INT_PORT_READY;
1215 	}
1216 
1217 	ret = sdw_update(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1218 	if (ret < 0)
1219 		dev_err(&slave->dev,
1220 			"SDW_DPN_INTMASK write failed:%d\n", val);
1221 
1222 	return ret;
1223 }
1224 
1225 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1226 {
1227 	u32 mclk_freq = slave->bus->prop.mclk_freq;
1228 	u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1229 	unsigned int scale;
1230 	u8 scale_index;
1231 	u8 base;
1232 	int ret;
1233 
1234 	/*
1235 	 * frequency base and scale registers are required for SDCA
1236 	 * devices. They may also be used for 1.2+/non-SDCA devices,
1237 	 * but we will need a DisCo property to cover this case
1238 	 */
1239 	if (!slave->id.class_id)
1240 		return 0;
1241 
1242 	if (!mclk_freq) {
1243 		dev_err(&slave->dev,
1244 			"no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1245 		return -EINVAL;
1246 	}
1247 
1248 	/*
1249 	 * map base frequency using Table 89 of SoundWire 1.2 spec.
1250 	 * The order of the tests just follows the specification, this
1251 	 * is not a selection between possible values or a search for
1252 	 * the best value but just a mapping.  Only one case per platform
1253 	 * is relevant.
1254 	 * Some BIOS have inconsistent values for mclk_freq but a
1255 	 * correct root so we force the mclk_freq to avoid variations.
1256 	 */
1257 	if (!(19200000 % mclk_freq)) {
1258 		mclk_freq = 19200000;
1259 		base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1260 	} else if (!(24000000 % mclk_freq)) {
1261 		mclk_freq = 24000000;
1262 		base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1263 	} else if (!(24576000 % mclk_freq)) {
1264 		mclk_freq = 24576000;
1265 		base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1266 	} else if (!(22579200 % mclk_freq)) {
1267 		mclk_freq = 22579200;
1268 		base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1269 	} else if (!(32000000 % mclk_freq)) {
1270 		mclk_freq = 32000000;
1271 		base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1272 	} else {
1273 		dev_err(&slave->dev,
1274 			"Unsupported clock base, mclk %d\n",
1275 			mclk_freq);
1276 		return -EINVAL;
1277 	}
1278 
1279 	if (mclk_freq % curr_freq) {
1280 		dev_err(&slave->dev,
1281 			"mclk %d is not multiple of bus curr_freq %d\n",
1282 			mclk_freq, curr_freq);
1283 		return -EINVAL;
1284 	}
1285 
1286 	scale = mclk_freq / curr_freq;
1287 
1288 	/*
1289 	 * map scale to Table 90 of SoundWire 1.2 spec - and check
1290 	 * that the scale is a power of two and maximum 64
1291 	 */
1292 	scale_index = ilog2(scale);
1293 
1294 	if (BIT(scale_index) != scale || scale_index > 6) {
1295 		dev_err(&slave->dev,
1296 			"No match found for scale %d, bus mclk %d curr_freq %d\n",
1297 			scale, mclk_freq, curr_freq);
1298 		return -EINVAL;
1299 	}
1300 	scale_index++;
1301 
1302 	ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1303 	if (ret < 0) {
1304 		dev_err(&slave->dev,
1305 			"SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1306 		return ret;
1307 	}
1308 
1309 	/* initialize scale for both banks */
1310 	ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1311 	if (ret < 0) {
1312 		dev_err(&slave->dev,
1313 			"SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1314 		return ret;
1315 	}
1316 	ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1317 	if (ret < 0)
1318 		dev_err(&slave->dev,
1319 			"SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1320 
1321 	dev_dbg(&slave->dev,
1322 		"Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1323 		base, scale_index, mclk_freq, curr_freq);
1324 
1325 	return ret;
1326 }
1327 
1328 static int sdw_initialize_slave(struct sdw_slave *slave)
1329 {
1330 	struct sdw_slave_prop *prop = &slave->prop;
1331 	int status;
1332 	int ret;
1333 	u8 val;
1334 
1335 	ret = sdw_slave_set_frequency(slave);
1336 	if (ret < 0)
1337 		return ret;
1338 
1339 	if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1340 		/* Clear bus clash interrupt before enabling interrupt mask */
1341 		status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1342 		if (status < 0) {
1343 			dev_err(&slave->dev,
1344 				"SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1345 			return status;
1346 		}
1347 		if (status & SDW_SCP_INT1_BUS_CLASH) {
1348 			dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1349 			ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1350 			if (ret < 0) {
1351 				dev_err(&slave->dev,
1352 					"SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1353 				return ret;
1354 			}
1355 		}
1356 	}
1357 	if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1358 	    !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1359 		/* Clear parity interrupt before enabling interrupt mask */
1360 		status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1361 		if (status < 0) {
1362 			dev_err(&slave->dev,
1363 				"SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1364 			return status;
1365 		}
1366 		if (status & SDW_SCP_INT1_PARITY) {
1367 			dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1368 			ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1369 			if (ret < 0) {
1370 				dev_err(&slave->dev,
1371 					"SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1372 				return ret;
1373 			}
1374 		}
1375 	}
1376 
1377 	/*
1378 	 * Set SCP_INT1_MASK register, typically bus clash and
1379 	 * implementation-defined interrupt mask. The Parity detection
1380 	 * may not always be correct on startup so its use is
1381 	 * device-dependent, it might e.g. only be enabled in
1382 	 * steady-state after a couple of frames.
1383 	 */
1384 	val = slave->prop.scp_int1_mask;
1385 
1386 	/* Enable SCP interrupts */
1387 	ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1388 	if (ret < 0) {
1389 		dev_err(&slave->dev,
1390 			"SDW_SCP_INTMASK1 write failed:%d\n", ret);
1391 		return ret;
1392 	}
1393 
1394 	/* No need to continue if DP0 is not present */
1395 	if (!slave->prop.dp0_prop)
1396 		return 0;
1397 
1398 	/* Enable DP0 interrupts */
1399 	val = prop->dp0_prop->imp_def_interrupts;
1400 	val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1401 
1402 	ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1403 	if (ret < 0)
1404 		dev_err(&slave->dev,
1405 			"SDW_DP0_INTMASK read failed:%d\n", ret);
1406 	return ret;
1407 }
1408 
1409 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1410 {
1411 	u8 clear, impl_int_mask;
1412 	int status, status2, ret, count = 0;
1413 
1414 	status = sdw_read_no_pm(slave, SDW_DP0_INT);
1415 	if (status < 0) {
1416 		dev_err(&slave->dev,
1417 			"SDW_DP0_INT read failed:%d\n", status);
1418 		return status;
1419 	}
1420 
1421 	do {
1422 		clear = status & ~SDW_DP0_INTERRUPTS;
1423 
1424 		if (status & SDW_DP0_INT_TEST_FAIL) {
1425 			dev_err(&slave->dev, "Test fail for port 0\n");
1426 			clear |= SDW_DP0_INT_TEST_FAIL;
1427 		}
1428 
1429 		/*
1430 		 * Assumption: PORT_READY interrupt will be received only for
1431 		 * ports implementing Channel Prepare state machine (CP_SM)
1432 		 */
1433 
1434 		if (status & SDW_DP0_INT_PORT_READY) {
1435 			complete(&slave->port_ready[0]);
1436 			clear |= SDW_DP0_INT_PORT_READY;
1437 		}
1438 
1439 		if (status & SDW_DP0_INT_BRA_FAILURE) {
1440 			dev_err(&slave->dev, "BRA failed\n");
1441 			clear |= SDW_DP0_INT_BRA_FAILURE;
1442 		}
1443 
1444 		impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1445 			SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1446 
1447 		if (status & impl_int_mask) {
1448 			clear |= impl_int_mask;
1449 			*slave_status = clear;
1450 		}
1451 
1452 		/* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1453 		ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1454 		if (ret < 0) {
1455 			dev_err(&slave->dev,
1456 				"SDW_DP0_INT write failed:%d\n", ret);
1457 			return ret;
1458 		}
1459 
1460 		/* Read DP0 interrupt again */
1461 		status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1462 		if (status2 < 0) {
1463 			dev_err(&slave->dev,
1464 				"SDW_DP0_INT read failed:%d\n", status2);
1465 			return status2;
1466 		}
1467 		/* filter to limit loop to interrupts identified in the first status read */
1468 		status &= status2;
1469 
1470 		count++;
1471 
1472 		/* we can get alerts while processing so keep retrying */
1473 	} while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1474 
1475 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1476 		dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1477 
1478 	return ret;
1479 }
1480 
1481 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1482 				     int port, u8 *slave_status)
1483 {
1484 	u8 clear, impl_int_mask;
1485 	int status, status2, ret, count = 0;
1486 	u32 addr;
1487 
1488 	if (port == 0)
1489 		return sdw_handle_dp0_interrupt(slave, slave_status);
1490 
1491 	addr = SDW_DPN_INT(port);
1492 	status = sdw_read_no_pm(slave, addr);
1493 	if (status < 0) {
1494 		dev_err(&slave->dev,
1495 			"SDW_DPN_INT read failed:%d\n", status);
1496 
1497 		return status;
1498 	}
1499 
1500 	do {
1501 		clear = status & ~SDW_DPN_INTERRUPTS;
1502 
1503 		if (status & SDW_DPN_INT_TEST_FAIL) {
1504 			dev_err(&slave->dev, "Test fail for port:%d\n", port);
1505 			clear |= SDW_DPN_INT_TEST_FAIL;
1506 		}
1507 
1508 		/*
1509 		 * Assumption: PORT_READY interrupt will be received only
1510 		 * for ports implementing CP_SM.
1511 		 */
1512 		if (status & SDW_DPN_INT_PORT_READY) {
1513 			complete(&slave->port_ready[port]);
1514 			clear |= SDW_DPN_INT_PORT_READY;
1515 		}
1516 
1517 		impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1518 			SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1519 
1520 		if (status & impl_int_mask) {
1521 			clear |= impl_int_mask;
1522 			*slave_status = clear;
1523 		}
1524 
1525 		/* clear the interrupt but don't touch reserved fields */
1526 		ret = sdw_write_no_pm(slave, addr, clear);
1527 		if (ret < 0) {
1528 			dev_err(&slave->dev,
1529 				"SDW_DPN_INT write failed:%d\n", ret);
1530 			return ret;
1531 		}
1532 
1533 		/* Read DPN interrupt again */
1534 		status2 = sdw_read_no_pm(slave, addr);
1535 		if (status2 < 0) {
1536 			dev_err(&slave->dev,
1537 				"SDW_DPN_INT read failed:%d\n", status2);
1538 			return status2;
1539 		}
1540 		/* filter to limit loop to interrupts identified in the first status read */
1541 		status &= status2;
1542 
1543 		count++;
1544 
1545 		/* we can get alerts while processing so keep retrying */
1546 	} while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1547 
1548 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1549 		dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1550 
1551 	return ret;
1552 }
1553 
1554 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1555 {
1556 	struct sdw_slave_intr_status slave_intr;
1557 	u8 clear = 0, bit, port_status[15] = {0};
1558 	int port_num, stat, ret, count = 0;
1559 	unsigned long port;
1560 	bool slave_notify;
1561 	u8 sdca_cascade = 0;
1562 	u8 buf, buf2[2], _buf, _buf2[2];
1563 	bool parity_check;
1564 	bool parity_quirk;
1565 
1566 	sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1567 
1568 	ret = pm_runtime_resume_and_get(&slave->dev);
1569 	if (ret < 0 && ret != -EACCES) {
1570 		dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1571 		return ret;
1572 	}
1573 
1574 	/* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1575 	ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1576 	if (ret < 0) {
1577 		dev_err(&slave->dev,
1578 			"SDW_SCP_INT1 read failed:%d\n", ret);
1579 		goto io_err;
1580 	}
1581 	buf = ret;
1582 
1583 	ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1584 	if (ret < 0) {
1585 		dev_err(&slave->dev,
1586 			"SDW_SCP_INT2/3 read failed:%d\n", ret);
1587 		goto io_err;
1588 	}
1589 
1590 	if (slave->prop.is_sdca) {
1591 		ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1592 		if (ret < 0) {
1593 			dev_err(&slave->dev,
1594 				"SDW_DP0_INT read failed:%d\n", ret);
1595 			goto io_err;
1596 		}
1597 		sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1598 	}
1599 
1600 	do {
1601 		slave_notify = false;
1602 
1603 		/*
1604 		 * Check parity, bus clash and Slave (impl defined)
1605 		 * interrupt
1606 		 */
1607 		if (buf & SDW_SCP_INT1_PARITY) {
1608 			parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1609 			parity_quirk = !slave->first_interrupt_done &&
1610 				(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1611 
1612 			if (parity_check && !parity_quirk)
1613 				dev_err(&slave->dev, "Parity error detected\n");
1614 			clear |= SDW_SCP_INT1_PARITY;
1615 		}
1616 
1617 		if (buf & SDW_SCP_INT1_BUS_CLASH) {
1618 			if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1619 				dev_err(&slave->dev, "Bus clash detected\n");
1620 			clear |= SDW_SCP_INT1_BUS_CLASH;
1621 		}
1622 
1623 		/*
1624 		 * When bus clash or parity errors are detected, such errors
1625 		 * are unlikely to be recoverable errors.
1626 		 * TODO: In such scenario, reset bus. Make this configurable
1627 		 * via sysfs property with bus reset being the default.
1628 		 */
1629 
1630 		if (buf & SDW_SCP_INT1_IMPL_DEF) {
1631 			if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1632 				dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1633 				slave_notify = true;
1634 			}
1635 			clear |= SDW_SCP_INT1_IMPL_DEF;
1636 		}
1637 
1638 		/* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1639 		if (sdca_cascade)
1640 			slave_notify = true;
1641 
1642 		/* Check port 0 - 3 interrupts */
1643 		port = buf & SDW_SCP_INT1_PORT0_3;
1644 
1645 		/* To get port number corresponding to bits, shift it */
1646 		port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1647 		for_each_set_bit(bit, &port, 8) {
1648 			sdw_handle_port_interrupt(slave, bit,
1649 						  &port_status[bit]);
1650 		}
1651 
1652 		/* Check if cascade 2 interrupt is present */
1653 		if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1654 			port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1655 			for_each_set_bit(bit, &port, 8) {
1656 				/* scp2 ports start from 4 */
1657 				port_num = bit + 4;
1658 				sdw_handle_port_interrupt(slave,
1659 						port_num,
1660 						&port_status[port_num]);
1661 			}
1662 		}
1663 
1664 		/* now check last cascade */
1665 		if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1666 			port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1667 			for_each_set_bit(bit, &port, 8) {
1668 				/* scp3 ports start from 11 */
1669 				port_num = bit + 11;
1670 				sdw_handle_port_interrupt(slave,
1671 						port_num,
1672 						&port_status[port_num]);
1673 			}
1674 		}
1675 
1676 		/* Update the Slave driver */
1677 		if (slave_notify) {
1678 			mutex_lock(&slave->sdw_dev_lock);
1679 
1680 			if (slave->probed) {
1681 				struct device *dev = &slave->dev;
1682 				struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1683 
1684 				if (drv->ops && drv->ops->interrupt_callback) {
1685 					slave_intr.sdca_cascade = sdca_cascade;
1686 					slave_intr.control_port = clear;
1687 					memcpy(slave_intr.port, &port_status,
1688 					       sizeof(slave_intr.port));
1689 
1690 					drv->ops->interrupt_callback(slave, &slave_intr);
1691 				}
1692 			}
1693 
1694 			mutex_unlock(&slave->sdw_dev_lock);
1695 		}
1696 
1697 		/* Ack interrupt */
1698 		ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1699 		if (ret < 0) {
1700 			dev_err(&slave->dev,
1701 				"SDW_SCP_INT1 write failed:%d\n", ret);
1702 			goto io_err;
1703 		}
1704 
1705 		/* at this point all initial interrupt sources were handled */
1706 		slave->first_interrupt_done = true;
1707 
1708 		/*
1709 		 * Read status again to ensure no new interrupts arrived
1710 		 * while servicing interrupts.
1711 		 */
1712 		ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1713 		if (ret < 0) {
1714 			dev_err(&slave->dev,
1715 				"SDW_SCP_INT1 recheck read failed:%d\n", ret);
1716 			goto io_err;
1717 		}
1718 		_buf = ret;
1719 
1720 		ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2);
1721 		if (ret < 0) {
1722 			dev_err(&slave->dev,
1723 				"SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1724 			goto io_err;
1725 		}
1726 
1727 		if (slave->prop.is_sdca) {
1728 			ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1729 			if (ret < 0) {
1730 				dev_err(&slave->dev,
1731 					"SDW_DP0_INT recheck read failed:%d\n", ret);
1732 				goto io_err;
1733 			}
1734 			sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1735 		}
1736 
1737 		/*
1738 		 * Make sure no interrupts are pending, but filter to limit loop
1739 		 * to interrupts identified in the first status read
1740 		 */
1741 		buf &= _buf;
1742 		buf2[0] &= _buf2[0];
1743 		buf2[1] &= _buf2[1];
1744 		stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1745 
1746 		/*
1747 		 * Exit loop if Slave is continuously in ALERT state even
1748 		 * after servicing the interrupt multiple times.
1749 		 */
1750 		count++;
1751 
1752 		/* we can get alerts while processing so keep retrying */
1753 	} while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1754 
1755 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1756 		dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1757 
1758 io_err:
1759 	pm_runtime_mark_last_busy(&slave->dev);
1760 	pm_runtime_put_autosuspend(&slave->dev);
1761 
1762 	return ret;
1763 }
1764 
1765 static int sdw_update_slave_status(struct sdw_slave *slave,
1766 				   enum sdw_slave_status status)
1767 {
1768 	int ret = 0;
1769 
1770 	mutex_lock(&slave->sdw_dev_lock);
1771 
1772 	if (slave->probed) {
1773 		struct device *dev = &slave->dev;
1774 		struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1775 
1776 		if (drv->ops && drv->ops->update_status)
1777 			ret = drv->ops->update_status(slave, status);
1778 	}
1779 
1780 	mutex_unlock(&slave->sdw_dev_lock);
1781 
1782 	return ret;
1783 }
1784 
1785 /**
1786  * sdw_handle_slave_status() - Handle Slave status
1787  * @bus: SDW bus instance
1788  * @status: Status for all Slave(s)
1789  */
1790 int sdw_handle_slave_status(struct sdw_bus *bus,
1791 			    enum sdw_slave_status status[])
1792 {
1793 	enum sdw_slave_status prev_status;
1794 	struct sdw_slave *slave;
1795 	bool attached_initializing, id_programmed;
1796 	int i, ret = 0;
1797 
1798 	/* first check if any Slaves fell off the bus */
1799 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1800 		mutex_lock(&bus->bus_lock);
1801 		if (test_bit(i, bus->assigned) == false) {
1802 			mutex_unlock(&bus->bus_lock);
1803 			continue;
1804 		}
1805 		mutex_unlock(&bus->bus_lock);
1806 
1807 		slave = sdw_get_slave(bus, i);
1808 		if (!slave)
1809 			continue;
1810 
1811 		if (status[i] == SDW_SLAVE_UNATTACHED &&
1812 		    slave->status != SDW_SLAVE_UNATTACHED) {
1813 			dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1814 				 i, slave->status);
1815 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1816 
1817 			/* Ensure driver knows that peripheral unattached */
1818 			ret = sdw_update_slave_status(slave, status[i]);
1819 			if (ret < 0)
1820 				dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1821 		}
1822 	}
1823 
1824 	if (status[0] == SDW_SLAVE_ATTACHED) {
1825 		dev_dbg(bus->dev, "Slave attached, programming device number\n");
1826 
1827 		/*
1828 		 * Programming a device number will have side effects,
1829 		 * so we deal with other devices at a later time.
1830 		 * This relies on those devices reporting ATTACHED, which will
1831 		 * trigger another call to this function. This will only
1832 		 * happen if at least one device ID was programmed.
1833 		 * Error returns from sdw_program_device_num() are currently
1834 		 * ignored because there's no useful recovery that can be done.
1835 		 * Returning the error here could result in the current status
1836 		 * of other devices not being handled, because if no device IDs
1837 		 * were programmed there's nothing to guarantee a status change
1838 		 * to trigger another call to this function.
1839 		 */
1840 		sdw_program_device_num(bus, &id_programmed);
1841 		if (id_programmed)
1842 			return 0;
1843 	}
1844 
1845 	/* Continue to check other slave statuses */
1846 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1847 		mutex_lock(&bus->bus_lock);
1848 		if (test_bit(i, bus->assigned) == false) {
1849 			mutex_unlock(&bus->bus_lock);
1850 			continue;
1851 		}
1852 		mutex_unlock(&bus->bus_lock);
1853 
1854 		slave = sdw_get_slave(bus, i);
1855 		if (!slave)
1856 			continue;
1857 
1858 		attached_initializing = false;
1859 
1860 		switch (status[i]) {
1861 		case SDW_SLAVE_UNATTACHED:
1862 			if (slave->status == SDW_SLAVE_UNATTACHED)
1863 				break;
1864 
1865 			dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1866 				 i, slave->status);
1867 
1868 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1869 			break;
1870 
1871 		case SDW_SLAVE_ALERT:
1872 			ret = sdw_handle_slave_alerts(slave);
1873 			if (ret < 0)
1874 				dev_err(&slave->dev,
1875 					"Slave %d alert handling failed: %d\n",
1876 					i, ret);
1877 			break;
1878 
1879 		case SDW_SLAVE_ATTACHED:
1880 			if (slave->status == SDW_SLAVE_ATTACHED)
1881 				break;
1882 
1883 			prev_status = slave->status;
1884 			sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1885 
1886 			if (prev_status == SDW_SLAVE_ALERT)
1887 				break;
1888 
1889 			attached_initializing = true;
1890 
1891 			ret = sdw_initialize_slave(slave);
1892 			if (ret < 0)
1893 				dev_err(&slave->dev,
1894 					"Slave %d initialization failed: %d\n",
1895 					i, ret);
1896 
1897 			break;
1898 
1899 		default:
1900 			dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1901 				i, status[i]);
1902 			break;
1903 		}
1904 
1905 		ret = sdw_update_slave_status(slave, status[i]);
1906 		if (ret < 0)
1907 			dev_err(&slave->dev,
1908 				"Update Slave status failed:%d\n", ret);
1909 		if (attached_initializing) {
1910 			dev_dbg(&slave->dev,
1911 				"signaling initialization completion for Slave %d\n",
1912 				slave->dev_num);
1913 
1914 			complete(&slave->initialization_complete);
1915 
1916 			/*
1917 			 * If the manager became pm_runtime active, the peripherals will be
1918 			 * restarted and attach, but their pm_runtime status may remain
1919 			 * suspended. If the 'update_slave_status' callback initiates
1920 			 * any sort of deferred processing, this processing would not be
1921 			 * cancelled on pm_runtime suspend.
1922 			 * To avoid such zombie states, we queue a request to resume.
1923 			 * This would be a no-op in case the peripheral was being resumed
1924 			 * by e.g. the ALSA/ASoC framework.
1925 			 */
1926 			pm_request_resume(&slave->dev);
1927 		}
1928 	}
1929 
1930 	return ret;
1931 }
1932 EXPORT_SYMBOL(sdw_handle_slave_status);
1933 
1934 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1935 {
1936 	struct sdw_slave *slave;
1937 	int i;
1938 
1939 	/* Check all non-zero devices */
1940 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1941 		mutex_lock(&bus->bus_lock);
1942 		if (test_bit(i, bus->assigned) == false) {
1943 			mutex_unlock(&bus->bus_lock);
1944 			continue;
1945 		}
1946 		mutex_unlock(&bus->bus_lock);
1947 
1948 		slave = sdw_get_slave(bus, i);
1949 		if (!slave)
1950 			continue;
1951 
1952 		if (slave->status != SDW_SLAVE_UNATTACHED) {
1953 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1954 			slave->first_interrupt_done = false;
1955 			sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
1956 		}
1957 
1958 		/* keep track of request, used in pm_runtime resume */
1959 		slave->unattach_request = request;
1960 	}
1961 }
1962 EXPORT_SYMBOL(sdw_clear_slave_status);
1963