xref: /openbmc/linux/drivers/soundwire/bus.c (revision 4b33b5ff)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3 
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include "bus.h"
11 #include "sysfs_local.h"
12 
13 static DEFINE_IDA(sdw_ida);
14 
15 static int sdw_get_id(struct sdw_bus *bus)
16 {
17 	int rc = ida_alloc(&sdw_ida, GFP_KERNEL);
18 
19 	if (rc < 0)
20 		return rc;
21 
22 	bus->id = rc;
23 	return 0;
24 }
25 
26 /**
27  * sdw_bus_master_add() - add a bus Master instance
28  * @bus: bus instance
29  * @parent: parent device
30  * @fwnode: firmware node handle
31  *
32  * Initializes the bus instance, read properties and create child
33  * devices.
34  */
35 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
36 		       struct fwnode_handle *fwnode)
37 {
38 	struct sdw_master_prop *prop = NULL;
39 	int ret;
40 
41 	if (!parent) {
42 		pr_err("SoundWire parent device is not set\n");
43 		return -ENODEV;
44 	}
45 
46 	ret = sdw_get_id(bus);
47 	if (ret < 0) {
48 		dev_err(parent, "Failed to get bus id\n");
49 		return ret;
50 	}
51 
52 	ret = sdw_master_device_add(bus, parent, fwnode);
53 	if (ret < 0) {
54 		dev_err(parent, "Failed to add master device at link %d\n",
55 			bus->link_id);
56 		return ret;
57 	}
58 
59 	if (!bus->ops) {
60 		dev_err(bus->dev, "SoundWire Bus ops are not set\n");
61 		return -EINVAL;
62 	}
63 
64 	if (!bus->compute_params) {
65 		dev_err(bus->dev,
66 			"Bandwidth allocation not configured, compute_params no set\n");
67 		return -EINVAL;
68 	}
69 
70 	mutex_init(&bus->msg_lock);
71 	mutex_init(&bus->bus_lock);
72 	INIT_LIST_HEAD(&bus->slaves);
73 	INIT_LIST_HEAD(&bus->m_rt_list);
74 
75 	/*
76 	 * Initialize multi_link flag
77 	 * TODO: populate this flag by reading property from FW node
78 	 */
79 	bus->multi_link = false;
80 	if (bus->ops->read_prop) {
81 		ret = bus->ops->read_prop(bus);
82 		if (ret < 0) {
83 			dev_err(bus->dev,
84 				"Bus read properties failed:%d\n", ret);
85 			return ret;
86 		}
87 	}
88 
89 	sdw_bus_debugfs_init(bus);
90 
91 	/*
92 	 * Device numbers in SoundWire are 0 through 15. Enumeration device
93 	 * number (0), Broadcast device number (15), Group numbers (12 and
94 	 * 13) and Master device number (14) are not used for assignment so
95 	 * mask these and other higher bits.
96 	 */
97 
98 	/* Set higher order bits */
99 	*bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
100 
101 	/* Set enumuration device number and broadcast device number */
102 	set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
103 	set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
104 
105 	/* Set group device numbers and master device number */
106 	set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
107 	set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
108 	set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
109 
110 	/*
111 	 * SDW is an enumerable bus, but devices can be powered off. So,
112 	 * they won't be able to report as present.
113 	 *
114 	 * Create Slave devices based on Slaves described in
115 	 * the respective firmware (ACPI/DT)
116 	 */
117 	if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
118 		ret = sdw_acpi_find_slaves(bus);
119 	else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
120 		ret = sdw_of_find_slaves(bus);
121 	else
122 		ret = -ENOTSUPP; /* No ACPI/DT so error out */
123 
124 	if (ret < 0) {
125 		dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
126 		return ret;
127 	}
128 
129 	/*
130 	 * Initialize clock values based on Master properties. The max
131 	 * frequency is read from max_clk_freq property. Current assumption
132 	 * is that the bus will start at highest clock frequency when
133 	 * powered on.
134 	 *
135 	 * Default active bank will be 0 as out of reset the Slaves have
136 	 * to start with bank 0 (Table 40 of Spec)
137 	 */
138 	prop = &bus->prop;
139 	bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
140 	bus->params.curr_dr_freq = bus->params.max_dr_freq;
141 	bus->params.curr_bank = SDW_BANK0;
142 	bus->params.next_bank = SDW_BANK1;
143 
144 	return 0;
145 }
146 EXPORT_SYMBOL(sdw_bus_master_add);
147 
148 static int sdw_delete_slave(struct device *dev, void *data)
149 {
150 	struct sdw_slave *slave = dev_to_sdw_dev(dev);
151 	struct sdw_bus *bus = slave->bus;
152 
153 	pm_runtime_disable(dev);
154 
155 	sdw_slave_debugfs_exit(slave);
156 
157 	mutex_lock(&bus->bus_lock);
158 
159 	if (slave->dev_num) /* clear dev_num if assigned */
160 		clear_bit(slave->dev_num, bus->assigned);
161 
162 	list_del_init(&slave->node);
163 	mutex_unlock(&bus->bus_lock);
164 
165 	device_unregister(dev);
166 	return 0;
167 }
168 
169 /**
170  * sdw_bus_master_delete() - delete the bus master instance
171  * @bus: bus to be deleted
172  *
173  * Remove the instance, delete the child devices.
174  */
175 void sdw_bus_master_delete(struct sdw_bus *bus)
176 {
177 	device_for_each_child(bus->dev, NULL, sdw_delete_slave);
178 	sdw_master_device_del(bus);
179 
180 	sdw_bus_debugfs_exit(bus);
181 	ida_free(&sdw_ida, bus->id);
182 }
183 EXPORT_SYMBOL(sdw_bus_master_delete);
184 
185 /*
186  * SDW IO Calls
187  */
188 
189 static inline int find_response_code(enum sdw_command_response resp)
190 {
191 	switch (resp) {
192 	case SDW_CMD_OK:
193 		return 0;
194 
195 	case SDW_CMD_IGNORED:
196 		return -ENODATA;
197 
198 	case SDW_CMD_TIMEOUT:
199 		return -ETIMEDOUT;
200 
201 	default:
202 		return -EIO;
203 	}
204 }
205 
206 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
207 {
208 	int retry = bus->prop.err_threshold;
209 	enum sdw_command_response resp;
210 	int ret = 0, i;
211 
212 	for (i = 0; i <= retry; i++) {
213 		resp = bus->ops->xfer_msg(bus, msg);
214 		ret = find_response_code(resp);
215 
216 		/* if cmd is ok or ignored return */
217 		if (ret == 0 || ret == -ENODATA)
218 			return ret;
219 	}
220 
221 	return ret;
222 }
223 
224 static inline int do_transfer_defer(struct sdw_bus *bus,
225 				    struct sdw_msg *msg,
226 				    struct sdw_defer *defer)
227 {
228 	int retry = bus->prop.err_threshold;
229 	enum sdw_command_response resp;
230 	int ret = 0, i;
231 
232 	defer->msg = msg;
233 	defer->length = msg->len;
234 	init_completion(&defer->complete);
235 
236 	for (i = 0; i <= retry; i++) {
237 		resp = bus->ops->xfer_msg_defer(bus, msg, defer);
238 		ret = find_response_code(resp);
239 		/* if cmd is ok or ignored return */
240 		if (ret == 0 || ret == -ENODATA)
241 			return ret;
242 	}
243 
244 	return ret;
245 }
246 
247 static int sdw_reset_page(struct sdw_bus *bus, u16 dev_num)
248 {
249 	int retry = bus->prop.err_threshold;
250 	enum sdw_command_response resp;
251 	int ret = 0, i;
252 
253 	for (i = 0; i <= retry; i++) {
254 		resp = bus->ops->reset_page_addr(bus, dev_num);
255 		ret = find_response_code(resp);
256 		/* if cmd is ok or ignored return */
257 		if (ret == 0 || ret == -ENODATA)
258 			return ret;
259 	}
260 
261 	return ret;
262 }
263 
264 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
265 {
266 	int ret;
267 
268 	ret = do_transfer(bus, msg);
269 	if (ret != 0 && ret != -ENODATA)
270 		dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
271 			msg->dev_num, ret,
272 			(msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
273 			msg->addr, msg->len);
274 
275 	if (msg->page)
276 		sdw_reset_page(bus, msg->dev_num);
277 
278 	return ret;
279 }
280 
281 /**
282  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
283  * @bus: SDW bus
284  * @msg: SDW message to be xfered
285  */
286 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
287 {
288 	int ret;
289 
290 	mutex_lock(&bus->msg_lock);
291 
292 	ret = sdw_transfer_unlocked(bus, msg);
293 
294 	mutex_unlock(&bus->msg_lock);
295 
296 	return ret;
297 }
298 
299 /**
300  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
301  * @bus: SDW bus
302  * @msg: SDW message to be xfered
303  * @defer: Defer block for signal completion
304  *
305  * Caller needs to hold the msg_lock lock while calling this
306  */
307 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg,
308 		       struct sdw_defer *defer)
309 {
310 	int ret;
311 
312 	if (!bus->ops->xfer_msg_defer)
313 		return -ENOTSUPP;
314 
315 	ret = do_transfer_defer(bus, msg, defer);
316 	if (ret != 0 && ret != -ENODATA)
317 		dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
318 			msg->dev_num, ret);
319 
320 	if (msg->page)
321 		sdw_reset_page(bus, msg->dev_num);
322 
323 	return ret;
324 }
325 
326 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
327 		 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
328 {
329 	memset(msg, 0, sizeof(*msg));
330 	msg->addr = addr; /* addr is 16 bit and truncated here */
331 	msg->len = count;
332 	msg->dev_num = dev_num;
333 	msg->flags = flags;
334 	msg->buf = buf;
335 
336 	if (addr < SDW_REG_NO_PAGE) /* no paging area */
337 		return 0;
338 
339 	if (addr >= SDW_REG_MAX) { /* illegal addr */
340 		pr_err("SDW: Invalid address %x passed\n", addr);
341 		return -EINVAL;
342 	}
343 
344 	if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
345 		if (slave && !slave->prop.paging_support)
346 			return 0;
347 		/* no need for else as that will fall-through to paging */
348 	}
349 
350 	/* paging mandatory */
351 	if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
352 		pr_err("SDW: Invalid device for paging :%d\n", dev_num);
353 		return -EINVAL;
354 	}
355 
356 	if (!slave) {
357 		pr_err("SDW: No slave for paging addr\n");
358 		return -EINVAL;
359 	}
360 
361 	if (!slave->prop.paging_support) {
362 		dev_err(&slave->dev,
363 			"address %x needs paging but no support\n", addr);
364 		return -EINVAL;
365 	}
366 
367 	msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
368 	msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
369 	msg->addr |= BIT(15);
370 	msg->page = true;
371 
372 	return 0;
373 }
374 
375 /*
376  * Read/Write IO functions.
377  * no_pm versions can only be called by the bus, e.g. while enumerating or
378  * handling suspend-resume sequences.
379  * all clients need to use the pm versions
380  */
381 
382 static int
383 sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
384 {
385 	struct sdw_msg msg;
386 	int ret;
387 
388 	ret = sdw_fill_msg(&msg, slave, addr, count,
389 			   slave->dev_num, SDW_MSG_FLAG_READ, val);
390 	if (ret < 0)
391 		return ret;
392 
393 	ret = sdw_transfer(slave->bus, &msg);
394 	if (slave->is_mockup_device)
395 		ret = 0;
396 	return ret;
397 }
398 
399 static int
400 sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
401 {
402 	struct sdw_msg msg;
403 	int ret;
404 
405 	ret = sdw_fill_msg(&msg, slave, addr, count,
406 			   slave->dev_num, SDW_MSG_FLAG_WRITE, (u8 *)val);
407 	if (ret < 0)
408 		return ret;
409 
410 	ret = sdw_transfer(slave->bus, &msg);
411 	if (slave->is_mockup_device)
412 		ret = 0;
413 	return ret;
414 }
415 
416 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
417 {
418 	return sdw_nwrite_no_pm(slave, addr, 1, &value);
419 }
420 EXPORT_SYMBOL(sdw_write_no_pm);
421 
422 static int
423 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
424 {
425 	struct sdw_msg msg;
426 	u8 buf;
427 	int ret;
428 
429 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
430 			   SDW_MSG_FLAG_READ, &buf);
431 	if (ret < 0)
432 		return ret;
433 
434 	ret = sdw_transfer(bus, &msg);
435 	if (ret < 0)
436 		return ret;
437 
438 	return buf;
439 }
440 
441 static int
442 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
443 {
444 	struct sdw_msg msg;
445 	int ret;
446 
447 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
448 			   SDW_MSG_FLAG_WRITE, &value);
449 	if (ret < 0)
450 		return ret;
451 
452 	return sdw_transfer(bus, &msg);
453 }
454 
455 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
456 {
457 	struct sdw_msg msg;
458 	u8 buf;
459 	int ret;
460 
461 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
462 			   SDW_MSG_FLAG_READ, &buf);
463 	if (ret < 0)
464 		return ret;
465 
466 	ret = sdw_transfer_unlocked(bus, &msg);
467 	if (ret < 0)
468 		return ret;
469 
470 	return buf;
471 }
472 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
473 
474 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
475 {
476 	struct sdw_msg msg;
477 	int ret;
478 
479 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
480 			   SDW_MSG_FLAG_WRITE, &value);
481 	if (ret < 0)
482 		return ret;
483 
484 	return sdw_transfer_unlocked(bus, &msg);
485 }
486 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
487 
488 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
489 {
490 	u8 buf;
491 	int ret;
492 
493 	ret = sdw_nread_no_pm(slave, addr, 1, &buf);
494 	if (ret < 0)
495 		return ret;
496 	else
497 		return buf;
498 }
499 EXPORT_SYMBOL(sdw_read_no_pm);
500 
501 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
502 {
503 	int tmp;
504 
505 	tmp = sdw_read_no_pm(slave, addr);
506 	if (tmp < 0)
507 		return tmp;
508 
509 	tmp = (tmp & ~mask) | val;
510 	return sdw_write_no_pm(slave, addr, tmp);
511 }
512 EXPORT_SYMBOL(sdw_update_no_pm);
513 
514 /* Read-Modify-Write Slave register */
515 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
516 {
517 	int tmp;
518 
519 	tmp = sdw_read(slave, addr);
520 	if (tmp < 0)
521 		return tmp;
522 
523 	tmp = (tmp & ~mask) | val;
524 	return sdw_write(slave, addr, tmp);
525 }
526 EXPORT_SYMBOL(sdw_update);
527 
528 /**
529  * sdw_nread() - Read "n" contiguous SDW Slave registers
530  * @slave: SDW Slave
531  * @addr: Register address
532  * @count: length
533  * @val: Buffer for values to be read
534  */
535 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
536 {
537 	int ret;
538 
539 	ret = pm_runtime_get_sync(&slave->dev);
540 	if (ret < 0 && ret != -EACCES) {
541 		pm_runtime_put_noidle(&slave->dev);
542 		return ret;
543 	}
544 
545 	ret = sdw_nread_no_pm(slave, addr, count, val);
546 
547 	pm_runtime_mark_last_busy(&slave->dev);
548 	pm_runtime_put(&slave->dev);
549 
550 	return ret;
551 }
552 EXPORT_SYMBOL(sdw_nread);
553 
554 /**
555  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
556  * @slave: SDW Slave
557  * @addr: Register address
558  * @count: length
559  * @val: Buffer for values to be written
560  */
561 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
562 {
563 	int ret;
564 
565 	ret = pm_runtime_get_sync(&slave->dev);
566 	if (ret < 0 && ret != -EACCES) {
567 		pm_runtime_put_noidle(&slave->dev);
568 		return ret;
569 	}
570 
571 	ret = sdw_nwrite_no_pm(slave, addr, count, val);
572 
573 	pm_runtime_mark_last_busy(&slave->dev);
574 	pm_runtime_put(&slave->dev);
575 
576 	return ret;
577 }
578 EXPORT_SYMBOL(sdw_nwrite);
579 
580 /**
581  * sdw_read() - Read a SDW Slave register
582  * @slave: SDW Slave
583  * @addr: Register address
584  */
585 int sdw_read(struct sdw_slave *slave, u32 addr)
586 {
587 	u8 buf;
588 	int ret;
589 
590 	ret = sdw_nread(slave, addr, 1, &buf);
591 	if (ret < 0)
592 		return ret;
593 
594 	return buf;
595 }
596 EXPORT_SYMBOL(sdw_read);
597 
598 /**
599  * sdw_write() - Write a SDW Slave register
600  * @slave: SDW Slave
601  * @addr: Register address
602  * @value: Register value
603  */
604 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
605 {
606 	return sdw_nwrite(slave, addr, 1, &value);
607 }
608 EXPORT_SYMBOL(sdw_write);
609 
610 /*
611  * SDW alert handling
612  */
613 
614 /* called with bus_lock held */
615 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
616 {
617 	struct sdw_slave *slave;
618 
619 	list_for_each_entry(slave, &bus->slaves, node) {
620 		if (slave->dev_num == i)
621 			return slave;
622 	}
623 
624 	return NULL;
625 }
626 
627 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
628 {
629 	if (slave->id.mfg_id != id.mfg_id ||
630 	    slave->id.part_id != id.part_id ||
631 	    slave->id.class_id != id.class_id ||
632 	    (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
633 	     slave->id.unique_id != id.unique_id))
634 		return -ENODEV;
635 
636 	return 0;
637 }
638 EXPORT_SYMBOL(sdw_compare_devid);
639 
640 /* called with bus_lock held */
641 static int sdw_get_device_num(struct sdw_slave *slave)
642 {
643 	int bit;
644 
645 	bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
646 	if (bit == SDW_MAX_DEVICES) {
647 		bit = -ENODEV;
648 		goto err;
649 	}
650 
651 	/*
652 	 * Do not update dev_num in Slave data structure here,
653 	 * Update once program dev_num is successful
654 	 */
655 	set_bit(bit, slave->bus->assigned);
656 
657 err:
658 	return bit;
659 }
660 
661 static int sdw_assign_device_num(struct sdw_slave *slave)
662 {
663 	struct sdw_bus *bus = slave->bus;
664 	int ret, dev_num;
665 	bool new_device = false;
666 
667 	/* check first if device number is assigned, if so reuse that */
668 	if (!slave->dev_num) {
669 		if (!slave->dev_num_sticky) {
670 			mutex_lock(&slave->bus->bus_lock);
671 			dev_num = sdw_get_device_num(slave);
672 			mutex_unlock(&slave->bus->bus_lock);
673 			if (dev_num < 0) {
674 				dev_err(bus->dev, "Get dev_num failed: %d\n",
675 					dev_num);
676 				return dev_num;
677 			}
678 			slave->dev_num = dev_num;
679 			slave->dev_num_sticky = dev_num;
680 			new_device = true;
681 		} else {
682 			slave->dev_num = slave->dev_num_sticky;
683 		}
684 	}
685 
686 	if (!new_device)
687 		dev_dbg(bus->dev,
688 			"Slave already registered, reusing dev_num:%d\n",
689 			slave->dev_num);
690 
691 	/* Clear the slave->dev_num to transfer message on device 0 */
692 	dev_num = slave->dev_num;
693 	slave->dev_num = 0;
694 
695 	ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
696 	if (ret < 0) {
697 		dev_err(bus->dev, "Program device_num %d failed: %d\n",
698 			dev_num, ret);
699 		return ret;
700 	}
701 
702 	/* After xfer of msg, restore dev_num */
703 	slave->dev_num = slave->dev_num_sticky;
704 
705 	return 0;
706 }
707 
708 void sdw_extract_slave_id(struct sdw_bus *bus,
709 			  u64 addr, struct sdw_slave_id *id)
710 {
711 	dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
712 
713 	id->sdw_version = SDW_VERSION(addr);
714 	id->unique_id = SDW_UNIQUE_ID(addr);
715 	id->mfg_id = SDW_MFG_ID(addr);
716 	id->part_id = SDW_PART_ID(addr);
717 	id->class_id = SDW_CLASS_ID(addr);
718 
719 	dev_dbg(bus->dev,
720 		"SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
721 		id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
722 }
723 EXPORT_SYMBOL(sdw_extract_slave_id);
724 
725 static int sdw_program_device_num(struct sdw_bus *bus)
726 {
727 	u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
728 	struct sdw_slave *slave, *_s;
729 	struct sdw_slave_id id;
730 	struct sdw_msg msg;
731 	bool found;
732 	int count = 0, ret;
733 	u64 addr;
734 
735 	/* No Slave, so use raw xfer api */
736 	ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
737 			   SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
738 	if (ret < 0)
739 		return ret;
740 
741 	do {
742 		ret = sdw_transfer(bus, &msg);
743 		if (ret == -ENODATA) { /* end of device id reads */
744 			dev_dbg(bus->dev, "No more devices to enumerate\n");
745 			ret = 0;
746 			break;
747 		}
748 		if (ret < 0) {
749 			dev_err(bus->dev, "DEVID read fail:%d\n", ret);
750 			break;
751 		}
752 
753 		/*
754 		 * Construct the addr and extract. Cast the higher shift
755 		 * bits to avoid truncation due to size limit.
756 		 */
757 		addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
758 			((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
759 			((u64)buf[0] << 40);
760 
761 		sdw_extract_slave_id(bus, addr, &id);
762 
763 		found = false;
764 		/* Now compare with entries */
765 		list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
766 			if (sdw_compare_devid(slave, id) == 0) {
767 				found = true;
768 
769 				/*
770 				 * Assign a new dev_num to this Slave and
771 				 * not mark it present. It will be marked
772 				 * present after it reports ATTACHED on new
773 				 * dev_num
774 				 */
775 				ret = sdw_assign_device_num(slave);
776 				if (ret < 0) {
777 					dev_err(bus->dev,
778 						"Assign dev_num failed:%d\n",
779 						ret);
780 					return ret;
781 				}
782 
783 				break;
784 			}
785 		}
786 
787 		if (!found) {
788 			/* TODO: Park this device in Group 13 */
789 
790 			/*
791 			 * add Slave device even if there is no platform
792 			 * firmware description. There will be no driver probe
793 			 * but the user/integration will be able to see the
794 			 * device, enumeration status and device number in sysfs
795 			 */
796 			sdw_slave_add(bus, &id, NULL);
797 
798 			dev_err(bus->dev, "Slave Entry not found\n");
799 		}
800 
801 		count++;
802 
803 		/*
804 		 * Check till error out or retry (count) exhausts.
805 		 * Device can drop off and rejoin during enumeration
806 		 * so count till twice the bound.
807 		 */
808 
809 	} while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
810 
811 	return ret;
812 }
813 
814 static void sdw_modify_slave_status(struct sdw_slave *slave,
815 				    enum sdw_slave_status status)
816 {
817 	struct sdw_bus *bus = slave->bus;
818 
819 	mutex_lock(&bus->bus_lock);
820 
821 	dev_vdbg(bus->dev,
822 		 "%s: changing status slave %d status %d new status %d\n",
823 		 __func__, slave->dev_num, slave->status, status);
824 
825 	if (status == SDW_SLAVE_UNATTACHED) {
826 		dev_dbg(&slave->dev,
827 			"%s: initializing enumeration and init completion for Slave %d\n",
828 			__func__, slave->dev_num);
829 
830 		init_completion(&slave->enumeration_complete);
831 		init_completion(&slave->initialization_complete);
832 
833 	} else if ((status == SDW_SLAVE_ATTACHED) &&
834 		   (slave->status == SDW_SLAVE_UNATTACHED)) {
835 		dev_dbg(&slave->dev,
836 			"%s: signaling enumeration completion for Slave %d\n",
837 			__func__, slave->dev_num);
838 
839 		complete(&slave->enumeration_complete);
840 	}
841 	slave->status = status;
842 	mutex_unlock(&bus->bus_lock);
843 }
844 
845 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
846 				       enum sdw_clk_stop_mode mode,
847 				       enum sdw_clk_stop_type type)
848 {
849 	int ret;
850 
851 	if (slave->ops && slave->ops->clk_stop) {
852 		ret = slave->ops->clk_stop(slave, mode, type);
853 		if (ret < 0)
854 			return ret;
855 	}
856 
857 	return 0;
858 }
859 
860 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
861 				      enum sdw_clk_stop_mode mode,
862 				      bool prepare)
863 {
864 	bool wake_en;
865 	u32 val = 0;
866 	int ret;
867 
868 	wake_en = slave->prop.wake_capable;
869 
870 	if (prepare) {
871 		val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
872 
873 		if (mode == SDW_CLK_STOP_MODE1)
874 			val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
875 
876 		if (wake_en)
877 			val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
878 	} else {
879 		ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
880 		if (ret < 0) {
881 			if (ret != -ENODATA)
882 				dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
883 			return ret;
884 		}
885 		val = ret;
886 		val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
887 	}
888 
889 	ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
890 
891 	if (ret < 0 && ret != -ENODATA)
892 		dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
893 
894 	return ret;
895 }
896 
897 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
898 {
899 	int retry = bus->clk_stop_timeout;
900 	int val;
901 
902 	do {
903 		val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
904 		if (val < 0) {
905 			if (val != -ENODATA)
906 				dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
907 			return val;
908 		}
909 		val &= SDW_SCP_STAT_CLK_STP_NF;
910 		if (!val) {
911 			dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
912 				dev_num);
913 			return 0;
914 		}
915 
916 		usleep_range(1000, 1500);
917 		retry--;
918 	} while (retry);
919 
920 	dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
921 		dev_num);
922 
923 	return -ETIMEDOUT;
924 }
925 
926 /**
927  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
928  *
929  * @bus: SDW bus instance
930  *
931  * Query Slave for clock stop mode and prepare for that mode.
932  */
933 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
934 {
935 	bool simple_clk_stop = true;
936 	struct sdw_slave *slave;
937 	bool is_slave = false;
938 	int ret = 0;
939 
940 	/*
941 	 * In order to save on transition time, prepare
942 	 * each Slave and then wait for all Slave(s) to be
943 	 * prepared for clock stop.
944 	 * If one of the Slave devices has lost sync and
945 	 * replies with Command Ignored/-ENODATA, we continue
946 	 * the loop
947 	 */
948 	list_for_each_entry(slave, &bus->slaves, node) {
949 		if (!slave->dev_num)
950 			continue;
951 
952 		if (slave->status != SDW_SLAVE_ATTACHED &&
953 		    slave->status != SDW_SLAVE_ALERT)
954 			continue;
955 
956 		/* Identify if Slave(s) are available on Bus */
957 		is_slave = true;
958 
959 		ret = sdw_slave_clk_stop_callback(slave,
960 						  SDW_CLK_STOP_MODE0,
961 						  SDW_CLK_PRE_PREPARE);
962 		if (ret < 0 && ret != -ENODATA) {
963 			dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
964 			return ret;
965 		}
966 
967 		/* Only prepare a Slave device if needed */
968 		if (!slave->prop.simple_clk_stop_capable) {
969 			simple_clk_stop = false;
970 
971 			ret = sdw_slave_clk_stop_prepare(slave,
972 							 SDW_CLK_STOP_MODE0,
973 							 true);
974 			if (ret < 0 && ret != -ENODATA) {
975 				dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
976 				return ret;
977 			}
978 		}
979 	}
980 
981 	/* Skip remaining clock stop preparation if no Slave is attached */
982 	if (!is_slave)
983 		return 0;
984 
985 	/*
986 	 * Don't wait for all Slaves to be ready if they follow the simple
987 	 * state machine
988 	 */
989 	if (!simple_clk_stop) {
990 		ret = sdw_bus_wait_for_clk_prep_deprep(bus,
991 						       SDW_BROADCAST_DEV_NUM);
992 		/*
993 		 * if there are no Slave devices present and the reply is
994 		 * Command_Ignored/-ENODATA, we don't need to continue with the
995 		 * flow and can just return here. The error code is not modified
996 		 * and its handling left as an exercise for the caller.
997 		 */
998 		if (ret < 0)
999 			return ret;
1000 	}
1001 
1002 	/* Inform slaves that prep is done */
1003 	list_for_each_entry(slave, &bus->slaves, node) {
1004 		if (!slave->dev_num)
1005 			continue;
1006 
1007 		if (slave->status != SDW_SLAVE_ATTACHED &&
1008 		    slave->status != SDW_SLAVE_ALERT)
1009 			continue;
1010 
1011 		ret = sdw_slave_clk_stop_callback(slave,
1012 						  SDW_CLK_STOP_MODE0,
1013 						  SDW_CLK_POST_PREPARE);
1014 
1015 		if (ret < 0 && ret != -ENODATA) {
1016 			dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1017 			return ret;
1018 		}
1019 	}
1020 
1021 	return 0;
1022 }
1023 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1024 
1025 /**
1026  * sdw_bus_clk_stop: stop bus clock
1027  *
1028  * @bus: SDW bus instance
1029  *
1030  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1031  * write to SCP_CTRL register.
1032  */
1033 int sdw_bus_clk_stop(struct sdw_bus *bus)
1034 {
1035 	int ret;
1036 
1037 	/*
1038 	 * broadcast clock stop now, attached Slaves will ACK this,
1039 	 * unattached will ignore
1040 	 */
1041 	ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1042 			       SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1043 	if (ret < 0) {
1044 		if (ret != -ENODATA)
1045 			dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1046 		return ret;
1047 	}
1048 
1049 	return 0;
1050 }
1051 EXPORT_SYMBOL(sdw_bus_clk_stop);
1052 
1053 /**
1054  * sdw_bus_exit_clk_stop: Exit clock stop mode
1055  *
1056  * @bus: SDW bus instance
1057  *
1058  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1059  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1060  * back.
1061  */
1062 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1063 {
1064 	bool simple_clk_stop = true;
1065 	struct sdw_slave *slave;
1066 	bool is_slave = false;
1067 	int ret;
1068 
1069 	/*
1070 	 * In order to save on transition time, de-prepare
1071 	 * each Slave and then wait for all Slave(s) to be
1072 	 * de-prepared after clock resume.
1073 	 */
1074 	list_for_each_entry(slave, &bus->slaves, node) {
1075 		if (!slave->dev_num)
1076 			continue;
1077 
1078 		if (slave->status != SDW_SLAVE_ATTACHED &&
1079 		    slave->status != SDW_SLAVE_ALERT)
1080 			continue;
1081 
1082 		/* Identify if Slave(s) are available on Bus */
1083 		is_slave = true;
1084 
1085 		ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1086 						  SDW_CLK_PRE_DEPREPARE);
1087 		if (ret < 0)
1088 			dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1089 
1090 		/* Only de-prepare a Slave device if needed */
1091 		if (!slave->prop.simple_clk_stop_capable) {
1092 			simple_clk_stop = false;
1093 
1094 			ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1095 							 false);
1096 
1097 			if (ret < 0)
1098 				dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1099 		}
1100 	}
1101 
1102 	/* Skip remaining clock stop de-preparation if no Slave is attached */
1103 	if (!is_slave)
1104 		return 0;
1105 
1106 	/*
1107 	 * Don't wait for all Slaves to be ready if they follow the simple
1108 	 * state machine
1109 	 */
1110 	if (!simple_clk_stop) {
1111 		ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1112 		if (ret < 0)
1113 			dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1114 	}
1115 
1116 	list_for_each_entry(slave, &bus->slaves, node) {
1117 		if (!slave->dev_num)
1118 			continue;
1119 
1120 		if (slave->status != SDW_SLAVE_ATTACHED &&
1121 		    slave->status != SDW_SLAVE_ALERT)
1122 			continue;
1123 
1124 		ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1125 						  SDW_CLK_POST_DEPREPARE);
1126 		if (ret < 0)
1127 			dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1128 	}
1129 
1130 	return 0;
1131 }
1132 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1133 
1134 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1135 			   int port, bool enable, int mask)
1136 {
1137 	u32 addr;
1138 	int ret;
1139 	u8 val = 0;
1140 
1141 	if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1142 		dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1143 			enable ? "on" : "off");
1144 		mask |= SDW_DPN_INT_TEST_FAIL;
1145 	}
1146 
1147 	addr = SDW_DPN_INTMASK(port);
1148 
1149 	/* Set/Clear port ready interrupt mask */
1150 	if (enable) {
1151 		val |= mask;
1152 		val |= SDW_DPN_INT_PORT_READY;
1153 	} else {
1154 		val &= ~(mask);
1155 		val &= ~SDW_DPN_INT_PORT_READY;
1156 	}
1157 
1158 	ret = sdw_update(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1159 	if (ret < 0)
1160 		dev_err(&slave->dev,
1161 			"SDW_DPN_INTMASK write failed:%d\n", val);
1162 
1163 	return ret;
1164 }
1165 
1166 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1167 {
1168 	u32 mclk_freq = slave->bus->prop.mclk_freq;
1169 	u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1170 	unsigned int scale;
1171 	u8 scale_index;
1172 	u8 base;
1173 	int ret;
1174 
1175 	/*
1176 	 * frequency base and scale registers are required for SDCA
1177 	 * devices. They may also be used for 1.2+/non-SDCA devices,
1178 	 * but we will need a DisCo property to cover this case
1179 	 */
1180 	if (!slave->id.class_id)
1181 		return 0;
1182 
1183 	if (!mclk_freq) {
1184 		dev_err(&slave->dev,
1185 			"no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1186 		return -EINVAL;
1187 	}
1188 
1189 	/*
1190 	 * map base frequency using Table 89 of SoundWire 1.2 spec.
1191 	 * The order of the tests just follows the specification, this
1192 	 * is not a selection between possible values or a search for
1193 	 * the best value but just a mapping.  Only one case per platform
1194 	 * is relevant.
1195 	 * Some BIOS have inconsistent values for mclk_freq but a
1196 	 * correct root so we force the mclk_freq to avoid variations.
1197 	 */
1198 	if (!(19200000 % mclk_freq)) {
1199 		mclk_freq = 19200000;
1200 		base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1201 	} else if (!(24000000 % mclk_freq)) {
1202 		mclk_freq = 24000000;
1203 		base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1204 	} else if (!(24576000 % mclk_freq)) {
1205 		mclk_freq = 24576000;
1206 		base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1207 	} else if (!(22579200 % mclk_freq)) {
1208 		mclk_freq = 22579200;
1209 		base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1210 	} else if (!(32000000 % mclk_freq)) {
1211 		mclk_freq = 32000000;
1212 		base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1213 	} else {
1214 		dev_err(&slave->dev,
1215 			"Unsupported clock base, mclk %d\n",
1216 			mclk_freq);
1217 		return -EINVAL;
1218 	}
1219 
1220 	if (mclk_freq % curr_freq) {
1221 		dev_err(&slave->dev,
1222 			"mclk %d is not multiple of bus curr_freq %d\n",
1223 			mclk_freq, curr_freq);
1224 		return -EINVAL;
1225 	}
1226 
1227 	scale = mclk_freq / curr_freq;
1228 
1229 	/*
1230 	 * map scale to Table 90 of SoundWire 1.2 spec - and check
1231 	 * that the scale is a power of two and maximum 64
1232 	 */
1233 	scale_index = ilog2(scale);
1234 
1235 	if (BIT(scale_index) != scale || scale_index > 6) {
1236 		dev_err(&slave->dev,
1237 			"No match found for scale %d, bus mclk %d curr_freq %d\n",
1238 			scale, mclk_freq, curr_freq);
1239 		return -EINVAL;
1240 	}
1241 	scale_index++;
1242 
1243 	ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1244 	if (ret < 0) {
1245 		dev_err(&slave->dev,
1246 			"SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1247 		return ret;
1248 	}
1249 
1250 	/* initialize scale for both banks */
1251 	ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1252 	if (ret < 0) {
1253 		dev_err(&slave->dev,
1254 			"SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1255 		return ret;
1256 	}
1257 	ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1258 	if (ret < 0)
1259 		dev_err(&slave->dev,
1260 			"SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1261 
1262 	dev_dbg(&slave->dev,
1263 		"Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1264 		base, scale_index, mclk_freq, curr_freq);
1265 
1266 	return ret;
1267 }
1268 
1269 static int sdw_initialize_slave(struct sdw_slave *slave)
1270 {
1271 	struct sdw_slave_prop *prop = &slave->prop;
1272 	int status;
1273 	int ret;
1274 	u8 val;
1275 
1276 	ret = sdw_slave_set_frequency(slave);
1277 	if (ret < 0)
1278 		return ret;
1279 
1280 	if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1281 		/* Clear bus clash interrupt before enabling interrupt mask */
1282 		status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1283 		if (status < 0) {
1284 			dev_err(&slave->dev,
1285 				"SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1286 			return status;
1287 		}
1288 		if (status & SDW_SCP_INT1_BUS_CLASH) {
1289 			dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1290 			ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1291 			if (ret < 0) {
1292 				dev_err(&slave->dev,
1293 					"SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1294 				return ret;
1295 			}
1296 		}
1297 	}
1298 	if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1299 	    !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1300 		/* Clear parity interrupt before enabling interrupt mask */
1301 		status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1302 		if (status < 0) {
1303 			dev_err(&slave->dev,
1304 				"SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1305 			return status;
1306 		}
1307 		if (status & SDW_SCP_INT1_PARITY) {
1308 			dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1309 			ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1310 			if (ret < 0) {
1311 				dev_err(&slave->dev,
1312 					"SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1313 				return ret;
1314 			}
1315 		}
1316 	}
1317 
1318 	/*
1319 	 * Set SCP_INT1_MASK register, typically bus clash and
1320 	 * implementation-defined interrupt mask. The Parity detection
1321 	 * may not always be correct on startup so its use is
1322 	 * device-dependent, it might e.g. only be enabled in
1323 	 * steady-state after a couple of frames.
1324 	 */
1325 	val = slave->prop.scp_int1_mask;
1326 
1327 	/* Enable SCP interrupts */
1328 	ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1329 	if (ret < 0) {
1330 		dev_err(&slave->dev,
1331 			"SDW_SCP_INTMASK1 write failed:%d\n", ret);
1332 		return ret;
1333 	}
1334 
1335 	/* No need to continue if DP0 is not present */
1336 	if (!slave->prop.dp0_prop)
1337 		return 0;
1338 
1339 	/* Enable DP0 interrupts */
1340 	val = prop->dp0_prop->imp_def_interrupts;
1341 	val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1342 
1343 	ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1344 	if (ret < 0)
1345 		dev_err(&slave->dev,
1346 			"SDW_DP0_INTMASK read failed:%d\n", ret);
1347 	return ret;
1348 }
1349 
1350 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1351 {
1352 	u8 clear, impl_int_mask;
1353 	int status, status2, ret, count = 0;
1354 
1355 	status = sdw_read_no_pm(slave, SDW_DP0_INT);
1356 	if (status < 0) {
1357 		dev_err(&slave->dev,
1358 			"SDW_DP0_INT read failed:%d\n", status);
1359 		return status;
1360 	}
1361 
1362 	do {
1363 		clear = status & ~SDW_DP0_INTERRUPTS;
1364 
1365 		if (status & SDW_DP0_INT_TEST_FAIL) {
1366 			dev_err(&slave->dev, "Test fail for port 0\n");
1367 			clear |= SDW_DP0_INT_TEST_FAIL;
1368 		}
1369 
1370 		/*
1371 		 * Assumption: PORT_READY interrupt will be received only for
1372 		 * ports implementing Channel Prepare state machine (CP_SM)
1373 		 */
1374 
1375 		if (status & SDW_DP0_INT_PORT_READY) {
1376 			complete(&slave->port_ready[0]);
1377 			clear |= SDW_DP0_INT_PORT_READY;
1378 		}
1379 
1380 		if (status & SDW_DP0_INT_BRA_FAILURE) {
1381 			dev_err(&slave->dev, "BRA failed\n");
1382 			clear |= SDW_DP0_INT_BRA_FAILURE;
1383 		}
1384 
1385 		impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1386 			SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1387 
1388 		if (status & impl_int_mask) {
1389 			clear |= impl_int_mask;
1390 			*slave_status = clear;
1391 		}
1392 
1393 		/* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1394 		ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1395 		if (ret < 0) {
1396 			dev_err(&slave->dev,
1397 				"SDW_DP0_INT write failed:%d\n", ret);
1398 			return ret;
1399 		}
1400 
1401 		/* Read DP0 interrupt again */
1402 		status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1403 		if (status2 < 0) {
1404 			dev_err(&slave->dev,
1405 				"SDW_DP0_INT read failed:%d\n", status2);
1406 			return status2;
1407 		}
1408 		/* filter to limit loop to interrupts identified in the first status read */
1409 		status &= status2;
1410 
1411 		count++;
1412 
1413 		/* we can get alerts while processing so keep retrying */
1414 	} while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1415 
1416 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1417 		dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1418 
1419 	return ret;
1420 }
1421 
1422 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1423 				     int port, u8 *slave_status)
1424 {
1425 	u8 clear, impl_int_mask;
1426 	int status, status2, ret, count = 0;
1427 	u32 addr;
1428 
1429 	if (port == 0)
1430 		return sdw_handle_dp0_interrupt(slave, slave_status);
1431 
1432 	addr = SDW_DPN_INT(port);
1433 	status = sdw_read_no_pm(slave, addr);
1434 	if (status < 0) {
1435 		dev_err(&slave->dev,
1436 			"SDW_DPN_INT read failed:%d\n", status);
1437 
1438 		return status;
1439 	}
1440 
1441 	do {
1442 		clear = status & ~SDW_DPN_INTERRUPTS;
1443 
1444 		if (status & SDW_DPN_INT_TEST_FAIL) {
1445 			dev_err(&slave->dev, "Test fail for port:%d\n", port);
1446 			clear |= SDW_DPN_INT_TEST_FAIL;
1447 		}
1448 
1449 		/*
1450 		 * Assumption: PORT_READY interrupt will be received only
1451 		 * for ports implementing CP_SM.
1452 		 */
1453 		if (status & SDW_DPN_INT_PORT_READY) {
1454 			complete(&slave->port_ready[port]);
1455 			clear |= SDW_DPN_INT_PORT_READY;
1456 		}
1457 
1458 		impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1459 			SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1460 
1461 		if (status & impl_int_mask) {
1462 			clear |= impl_int_mask;
1463 			*slave_status = clear;
1464 		}
1465 
1466 		/* clear the interrupt but don't touch reserved fields */
1467 		ret = sdw_write_no_pm(slave, addr, clear);
1468 		if (ret < 0) {
1469 			dev_err(&slave->dev,
1470 				"SDW_DPN_INT write failed:%d\n", ret);
1471 			return ret;
1472 		}
1473 
1474 		/* Read DPN interrupt again */
1475 		status2 = sdw_read_no_pm(slave, addr);
1476 		if (status2 < 0) {
1477 			dev_err(&slave->dev,
1478 				"SDW_DPN_INT read failed:%d\n", status2);
1479 			return status2;
1480 		}
1481 		/* filter to limit loop to interrupts identified in the first status read */
1482 		status &= status2;
1483 
1484 		count++;
1485 
1486 		/* we can get alerts while processing so keep retrying */
1487 	} while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1488 
1489 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1490 		dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1491 
1492 	return ret;
1493 }
1494 
1495 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1496 {
1497 	struct sdw_slave_intr_status slave_intr;
1498 	u8 clear = 0, bit, port_status[15] = {0};
1499 	int port_num, stat, ret, count = 0;
1500 	unsigned long port;
1501 	bool slave_notify;
1502 	u8 sdca_cascade = 0;
1503 	u8 buf, buf2[2], _buf, _buf2[2];
1504 	bool parity_check;
1505 	bool parity_quirk;
1506 
1507 	sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1508 
1509 	ret = pm_runtime_get_sync(&slave->dev);
1510 	if (ret < 0 && ret != -EACCES) {
1511 		dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1512 		pm_runtime_put_noidle(&slave->dev);
1513 		return ret;
1514 	}
1515 
1516 	/* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1517 	ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1518 	if (ret < 0) {
1519 		dev_err(&slave->dev,
1520 			"SDW_SCP_INT1 read failed:%d\n", ret);
1521 		goto io_err;
1522 	}
1523 	buf = ret;
1524 
1525 	ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1526 	if (ret < 0) {
1527 		dev_err(&slave->dev,
1528 			"SDW_SCP_INT2/3 read failed:%d\n", ret);
1529 		goto io_err;
1530 	}
1531 
1532 	if (slave->prop.is_sdca) {
1533 		ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1534 		if (ret < 0) {
1535 			dev_err(&slave->dev,
1536 				"SDW_DP0_INT read failed:%d\n", ret);
1537 			goto io_err;
1538 		}
1539 		sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1540 	}
1541 
1542 	do {
1543 		slave_notify = false;
1544 
1545 		/*
1546 		 * Check parity, bus clash and Slave (impl defined)
1547 		 * interrupt
1548 		 */
1549 		if (buf & SDW_SCP_INT1_PARITY) {
1550 			parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1551 			parity_quirk = !slave->first_interrupt_done &&
1552 				(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1553 
1554 			if (parity_check && !parity_quirk)
1555 				dev_err(&slave->dev, "Parity error detected\n");
1556 			clear |= SDW_SCP_INT1_PARITY;
1557 		}
1558 
1559 		if (buf & SDW_SCP_INT1_BUS_CLASH) {
1560 			if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1561 				dev_err(&slave->dev, "Bus clash detected\n");
1562 			clear |= SDW_SCP_INT1_BUS_CLASH;
1563 		}
1564 
1565 		/*
1566 		 * When bus clash or parity errors are detected, such errors
1567 		 * are unlikely to be recoverable errors.
1568 		 * TODO: In such scenario, reset bus. Make this configurable
1569 		 * via sysfs property with bus reset being the default.
1570 		 */
1571 
1572 		if (buf & SDW_SCP_INT1_IMPL_DEF) {
1573 			if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1574 				dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1575 				slave_notify = true;
1576 			}
1577 			clear |= SDW_SCP_INT1_IMPL_DEF;
1578 		}
1579 
1580 		/* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1581 		if (sdca_cascade)
1582 			slave_notify = true;
1583 
1584 		/* Check port 0 - 3 interrupts */
1585 		port = buf & SDW_SCP_INT1_PORT0_3;
1586 
1587 		/* To get port number corresponding to bits, shift it */
1588 		port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1589 		for_each_set_bit(bit, &port, 8) {
1590 			sdw_handle_port_interrupt(slave, bit,
1591 						  &port_status[bit]);
1592 		}
1593 
1594 		/* Check if cascade 2 interrupt is present */
1595 		if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1596 			port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1597 			for_each_set_bit(bit, &port, 8) {
1598 				/* scp2 ports start from 4 */
1599 				port_num = bit + 3;
1600 				sdw_handle_port_interrupt(slave,
1601 						port_num,
1602 						&port_status[port_num]);
1603 			}
1604 		}
1605 
1606 		/* now check last cascade */
1607 		if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1608 			port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1609 			for_each_set_bit(bit, &port, 8) {
1610 				/* scp3 ports start from 11 */
1611 				port_num = bit + 10;
1612 				sdw_handle_port_interrupt(slave,
1613 						port_num,
1614 						&port_status[port_num]);
1615 			}
1616 		}
1617 
1618 		/* Update the Slave driver */
1619 		if (slave_notify && slave->ops &&
1620 		    slave->ops->interrupt_callback) {
1621 			slave_intr.sdca_cascade = sdca_cascade;
1622 			slave_intr.control_port = clear;
1623 			memcpy(slave_intr.port, &port_status,
1624 			       sizeof(slave_intr.port));
1625 
1626 			slave->ops->interrupt_callback(slave, &slave_intr);
1627 		}
1628 
1629 		/* Ack interrupt */
1630 		ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1631 		if (ret < 0) {
1632 			dev_err(&slave->dev,
1633 				"SDW_SCP_INT1 write failed:%d\n", ret);
1634 			goto io_err;
1635 		}
1636 
1637 		/* at this point all initial interrupt sources were handled */
1638 		slave->first_interrupt_done = true;
1639 
1640 		/*
1641 		 * Read status again to ensure no new interrupts arrived
1642 		 * while servicing interrupts.
1643 		 */
1644 		ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1645 		if (ret < 0) {
1646 			dev_err(&slave->dev,
1647 				"SDW_SCP_INT1 recheck read failed:%d\n", ret);
1648 			goto io_err;
1649 		}
1650 		_buf = ret;
1651 
1652 		ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2);
1653 		if (ret < 0) {
1654 			dev_err(&slave->dev,
1655 				"SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1656 			goto io_err;
1657 		}
1658 
1659 		if (slave->prop.is_sdca) {
1660 			ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1661 			if (ret < 0) {
1662 				dev_err(&slave->dev,
1663 					"SDW_DP0_INT recheck read failed:%d\n", ret);
1664 				goto io_err;
1665 			}
1666 			sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1667 		}
1668 
1669 		/*
1670 		 * Make sure no interrupts are pending, but filter to limit loop
1671 		 * to interrupts identified in the first status read
1672 		 */
1673 		buf &= _buf;
1674 		buf2[0] &= _buf2[0];
1675 		buf2[1] &= _buf2[1];
1676 		stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1677 
1678 		/*
1679 		 * Exit loop if Slave is continuously in ALERT state even
1680 		 * after servicing the interrupt multiple times.
1681 		 */
1682 		count++;
1683 
1684 		/* we can get alerts while processing so keep retrying */
1685 	} while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1686 
1687 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1688 		dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1689 
1690 io_err:
1691 	pm_runtime_mark_last_busy(&slave->dev);
1692 	pm_runtime_put_autosuspend(&slave->dev);
1693 
1694 	return ret;
1695 }
1696 
1697 static int sdw_update_slave_status(struct sdw_slave *slave,
1698 				   enum sdw_slave_status status)
1699 {
1700 	unsigned long time;
1701 
1702 	if (!slave->probed) {
1703 		/*
1704 		 * the slave status update is typically handled in an
1705 		 * interrupt thread, which can race with the driver
1706 		 * probe, e.g. when a module needs to be loaded.
1707 		 *
1708 		 * make sure the probe is complete before updating
1709 		 * status.
1710 		 */
1711 		time = wait_for_completion_timeout(&slave->probe_complete,
1712 				msecs_to_jiffies(DEFAULT_PROBE_TIMEOUT));
1713 		if (!time) {
1714 			dev_err(&slave->dev, "Probe not complete, timed out\n");
1715 			return -ETIMEDOUT;
1716 		}
1717 	}
1718 
1719 	if (!slave->ops || !slave->ops->update_status)
1720 		return 0;
1721 
1722 	return slave->ops->update_status(slave, status);
1723 }
1724 
1725 /**
1726  * sdw_handle_slave_status() - Handle Slave status
1727  * @bus: SDW bus instance
1728  * @status: Status for all Slave(s)
1729  */
1730 int sdw_handle_slave_status(struct sdw_bus *bus,
1731 			    enum sdw_slave_status status[])
1732 {
1733 	enum sdw_slave_status prev_status;
1734 	struct sdw_slave *slave;
1735 	bool attached_initializing;
1736 	int i, ret = 0;
1737 
1738 	/* first check if any Slaves fell off the bus */
1739 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1740 		mutex_lock(&bus->bus_lock);
1741 		if (test_bit(i, bus->assigned) == false) {
1742 			mutex_unlock(&bus->bus_lock);
1743 			continue;
1744 		}
1745 		mutex_unlock(&bus->bus_lock);
1746 
1747 		slave = sdw_get_slave(bus, i);
1748 		if (!slave)
1749 			continue;
1750 
1751 		if (status[i] == SDW_SLAVE_UNATTACHED &&
1752 		    slave->status != SDW_SLAVE_UNATTACHED) {
1753 			dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1754 				 i, slave->status);
1755 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1756 		}
1757 	}
1758 
1759 	if (status[0] == SDW_SLAVE_ATTACHED) {
1760 		dev_dbg(bus->dev, "Slave attached, programming device number\n");
1761 		ret = sdw_program_device_num(bus);
1762 		if (ret < 0)
1763 			dev_err(bus->dev, "Slave attach failed: %d\n", ret);
1764 		/*
1765 		 * programming a device number will have side effects,
1766 		 * so we deal with other devices at a later time
1767 		 */
1768 		return ret;
1769 	}
1770 
1771 	/* Continue to check other slave statuses */
1772 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1773 		mutex_lock(&bus->bus_lock);
1774 		if (test_bit(i, bus->assigned) == false) {
1775 			mutex_unlock(&bus->bus_lock);
1776 			continue;
1777 		}
1778 		mutex_unlock(&bus->bus_lock);
1779 
1780 		slave = sdw_get_slave(bus, i);
1781 		if (!slave)
1782 			continue;
1783 
1784 		attached_initializing = false;
1785 
1786 		switch (status[i]) {
1787 		case SDW_SLAVE_UNATTACHED:
1788 			if (slave->status == SDW_SLAVE_UNATTACHED)
1789 				break;
1790 
1791 			dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1792 				 i, slave->status);
1793 
1794 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1795 			break;
1796 
1797 		case SDW_SLAVE_ALERT:
1798 			ret = sdw_handle_slave_alerts(slave);
1799 			if (ret < 0)
1800 				dev_err(&slave->dev,
1801 					"Slave %d alert handling failed: %d\n",
1802 					i, ret);
1803 			break;
1804 
1805 		case SDW_SLAVE_ATTACHED:
1806 			if (slave->status == SDW_SLAVE_ATTACHED)
1807 				break;
1808 
1809 			prev_status = slave->status;
1810 			sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1811 
1812 			if (prev_status == SDW_SLAVE_ALERT)
1813 				break;
1814 
1815 			attached_initializing = true;
1816 
1817 			ret = sdw_initialize_slave(slave);
1818 			if (ret < 0)
1819 				dev_err(&slave->dev,
1820 					"Slave %d initialization failed: %d\n",
1821 					i, ret);
1822 
1823 			break;
1824 
1825 		default:
1826 			dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1827 				i, status[i]);
1828 			break;
1829 		}
1830 
1831 		ret = sdw_update_slave_status(slave, status[i]);
1832 		if (ret < 0)
1833 			dev_err(&slave->dev,
1834 				"Update Slave status failed:%d\n", ret);
1835 		if (attached_initializing) {
1836 			dev_dbg(&slave->dev,
1837 				"%s: signaling initialization completion for Slave %d\n",
1838 				__func__, slave->dev_num);
1839 
1840 			complete(&slave->initialization_complete);
1841 		}
1842 	}
1843 
1844 	return ret;
1845 }
1846 EXPORT_SYMBOL(sdw_handle_slave_status);
1847 
1848 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1849 {
1850 	struct sdw_slave *slave;
1851 	int i;
1852 
1853 	/* Check all non-zero devices */
1854 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1855 		mutex_lock(&bus->bus_lock);
1856 		if (test_bit(i, bus->assigned) == false) {
1857 			mutex_unlock(&bus->bus_lock);
1858 			continue;
1859 		}
1860 		mutex_unlock(&bus->bus_lock);
1861 
1862 		slave = sdw_get_slave(bus, i);
1863 		if (!slave)
1864 			continue;
1865 
1866 		if (slave->status != SDW_SLAVE_UNATTACHED) {
1867 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1868 			slave->first_interrupt_done = false;
1869 			sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
1870 		}
1871 
1872 		/* keep track of request, used in pm_runtime resume */
1873 		slave->unattach_request = request;
1874 	}
1875 }
1876 EXPORT_SYMBOL(sdw_clear_slave_status);
1877