1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 // Copyright(c) 2015-17 Intel Corporation. 3 4 #include <linux/acpi.h> 5 #include <linux/mod_devicetable.h> 6 #include <linux/pm_runtime.h> 7 #include <linux/soundwire/sdw_registers.h> 8 #include <linux/soundwire/sdw.h> 9 #include "bus.h" 10 11 /** 12 * sdw_add_bus_master() - add a bus Master instance 13 * @bus: bus instance 14 * 15 * Initializes the bus instance, read properties and create child 16 * devices. 17 */ 18 int sdw_add_bus_master(struct sdw_bus *bus) 19 { 20 struct sdw_master_prop *prop = NULL; 21 int ret; 22 23 if (!bus->dev) { 24 pr_err("SoundWire bus has no device\n"); 25 return -ENODEV; 26 } 27 28 if (!bus->ops) { 29 dev_err(bus->dev, "SoundWire Bus ops are not set\n"); 30 return -EINVAL; 31 } 32 33 mutex_init(&bus->msg_lock); 34 mutex_init(&bus->bus_lock); 35 INIT_LIST_HEAD(&bus->slaves); 36 INIT_LIST_HEAD(&bus->m_rt_list); 37 38 /* 39 * Initialize multi_link flag 40 * TODO: populate this flag by reading property from FW node 41 */ 42 bus->multi_link = false; 43 if (bus->ops->read_prop) { 44 ret = bus->ops->read_prop(bus); 45 if (ret < 0) { 46 dev_err(bus->dev, 47 "Bus read properties failed:%d\n", ret); 48 return ret; 49 } 50 } 51 52 sdw_bus_debugfs_init(bus); 53 54 /* 55 * Device numbers in SoundWire are 0 through 15. Enumeration device 56 * number (0), Broadcast device number (15), Group numbers (12 and 57 * 13) and Master device number (14) are not used for assignment so 58 * mask these and other higher bits. 59 */ 60 61 /* Set higher order bits */ 62 *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM); 63 64 /* Set enumuration device number and broadcast device number */ 65 set_bit(SDW_ENUM_DEV_NUM, bus->assigned); 66 set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned); 67 68 /* Set group device numbers and master device number */ 69 set_bit(SDW_GROUP12_DEV_NUM, bus->assigned); 70 set_bit(SDW_GROUP13_DEV_NUM, bus->assigned); 71 set_bit(SDW_MASTER_DEV_NUM, bus->assigned); 72 73 /* 74 * SDW is an enumerable bus, but devices can be powered off. So, 75 * they won't be able to report as present. 76 * 77 * Create Slave devices based on Slaves described in 78 * the respective firmware (ACPI/DT) 79 */ 80 if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev)) 81 ret = sdw_acpi_find_slaves(bus); 82 else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node) 83 ret = sdw_of_find_slaves(bus); 84 else 85 ret = -ENOTSUPP; /* No ACPI/DT so error out */ 86 87 if (ret) { 88 dev_err(bus->dev, "Finding slaves failed:%d\n", ret); 89 return ret; 90 } 91 92 /* 93 * Initialize clock values based on Master properties. The max 94 * frequency is read from max_clk_freq property. Current assumption 95 * is that the bus will start at highest clock frequency when 96 * powered on. 97 * 98 * Default active bank will be 0 as out of reset the Slaves have 99 * to start with bank 0 (Table 40 of Spec) 100 */ 101 prop = &bus->prop; 102 bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR; 103 bus->params.curr_dr_freq = bus->params.max_dr_freq; 104 bus->params.curr_bank = SDW_BANK0; 105 bus->params.next_bank = SDW_BANK1; 106 107 return 0; 108 } 109 EXPORT_SYMBOL(sdw_add_bus_master); 110 111 static int sdw_delete_slave(struct device *dev, void *data) 112 { 113 struct sdw_slave *slave = dev_to_sdw_dev(dev); 114 struct sdw_bus *bus = slave->bus; 115 116 sdw_slave_debugfs_exit(slave); 117 118 mutex_lock(&bus->bus_lock); 119 120 if (slave->dev_num) /* clear dev_num if assigned */ 121 clear_bit(slave->dev_num, bus->assigned); 122 123 list_del_init(&slave->node); 124 mutex_unlock(&bus->bus_lock); 125 126 device_unregister(dev); 127 return 0; 128 } 129 130 /** 131 * sdw_delete_bus_master() - delete the bus master instance 132 * @bus: bus to be deleted 133 * 134 * Remove the instance, delete the child devices. 135 */ 136 void sdw_delete_bus_master(struct sdw_bus *bus) 137 { 138 device_for_each_child(bus->dev, NULL, sdw_delete_slave); 139 140 sdw_bus_debugfs_exit(bus); 141 } 142 EXPORT_SYMBOL(sdw_delete_bus_master); 143 144 /* 145 * SDW IO Calls 146 */ 147 148 static inline int find_response_code(enum sdw_command_response resp) 149 { 150 switch (resp) { 151 case SDW_CMD_OK: 152 return 0; 153 154 case SDW_CMD_IGNORED: 155 return -ENODATA; 156 157 case SDW_CMD_TIMEOUT: 158 return -ETIMEDOUT; 159 160 default: 161 return -EIO; 162 } 163 } 164 165 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg) 166 { 167 int retry = bus->prop.err_threshold; 168 enum sdw_command_response resp; 169 int ret = 0, i; 170 171 for (i = 0; i <= retry; i++) { 172 resp = bus->ops->xfer_msg(bus, msg); 173 ret = find_response_code(resp); 174 175 /* if cmd is ok or ignored return */ 176 if (ret == 0 || ret == -ENODATA) 177 return ret; 178 } 179 180 return ret; 181 } 182 183 static inline int do_transfer_defer(struct sdw_bus *bus, 184 struct sdw_msg *msg, 185 struct sdw_defer *defer) 186 { 187 int retry = bus->prop.err_threshold; 188 enum sdw_command_response resp; 189 int ret = 0, i; 190 191 defer->msg = msg; 192 defer->length = msg->len; 193 init_completion(&defer->complete); 194 195 for (i = 0; i <= retry; i++) { 196 resp = bus->ops->xfer_msg_defer(bus, msg, defer); 197 ret = find_response_code(resp); 198 /* if cmd is ok or ignored return */ 199 if (ret == 0 || ret == -ENODATA) 200 return ret; 201 } 202 203 return ret; 204 } 205 206 static int sdw_reset_page(struct sdw_bus *bus, u16 dev_num) 207 { 208 int retry = bus->prop.err_threshold; 209 enum sdw_command_response resp; 210 int ret = 0, i; 211 212 for (i = 0; i <= retry; i++) { 213 resp = bus->ops->reset_page_addr(bus, dev_num); 214 ret = find_response_code(resp); 215 /* if cmd is ok or ignored return */ 216 if (ret == 0 || ret == -ENODATA) 217 return ret; 218 } 219 220 return ret; 221 } 222 223 /** 224 * sdw_transfer() - Synchronous transfer message to a SDW Slave device 225 * @bus: SDW bus 226 * @msg: SDW message to be xfered 227 */ 228 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg) 229 { 230 int ret; 231 232 mutex_lock(&bus->msg_lock); 233 234 ret = do_transfer(bus, msg); 235 if (ret != 0 && ret != -ENODATA) 236 dev_err(bus->dev, "trf on Slave %d failed:%d\n", 237 msg->dev_num, ret); 238 239 if (msg->page) 240 sdw_reset_page(bus, msg->dev_num); 241 242 mutex_unlock(&bus->msg_lock); 243 244 return ret; 245 } 246 247 /** 248 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device 249 * @bus: SDW bus 250 * @msg: SDW message to be xfered 251 * @defer: Defer block for signal completion 252 * 253 * Caller needs to hold the msg_lock lock while calling this 254 */ 255 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg, 256 struct sdw_defer *defer) 257 { 258 int ret; 259 260 if (!bus->ops->xfer_msg_defer) 261 return -ENOTSUPP; 262 263 ret = do_transfer_defer(bus, msg, defer); 264 if (ret != 0 && ret != -ENODATA) 265 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n", 266 msg->dev_num, ret); 267 268 if (msg->page) 269 sdw_reset_page(bus, msg->dev_num); 270 271 return ret; 272 } 273 274 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave, 275 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf) 276 { 277 memset(msg, 0, sizeof(*msg)); 278 msg->addr = addr; /* addr is 16 bit and truncated here */ 279 msg->len = count; 280 msg->dev_num = dev_num; 281 msg->flags = flags; 282 msg->buf = buf; 283 284 if (addr < SDW_REG_NO_PAGE) { /* no paging area */ 285 return 0; 286 } else if (addr >= SDW_REG_MAX) { /* illegal addr */ 287 pr_err("SDW: Invalid address %x passed\n", addr); 288 return -EINVAL; 289 } 290 291 if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */ 292 if (slave && !slave->prop.paging_support) 293 return 0; 294 /* no need for else as that will fall-through to paging */ 295 } 296 297 /* paging mandatory */ 298 if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) { 299 pr_err("SDW: Invalid device for paging :%d\n", dev_num); 300 return -EINVAL; 301 } 302 303 if (!slave) { 304 pr_err("SDW: No slave for paging addr\n"); 305 return -EINVAL; 306 } else if (!slave->prop.paging_support) { 307 dev_err(&slave->dev, 308 "address %x needs paging but no support\n", addr); 309 return -EINVAL; 310 } 311 312 msg->addr_page1 = (addr >> SDW_REG_SHIFT(SDW_SCP_ADDRPAGE1_MASK)); 313 msg->addr_page2 = (addr >> SDW_REG_SHIFT(SDW_SCP_ADDRPAGE2_MASK)); 314 msg->addr |= BIT(15); 315 msg->page = true; 316 317 return 0; 318 } 319 320 /** 321 * sdw_nread() - Read "n" contiguous SDW Slave registers 322 * @slave: SDW Slave 323 * @addr: Register address 324 * @count: length 325 * @val: Buffer for values to be read 326 */ 327 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) 328 { 329 struct sdw_msg msg; 330 int ret; 331 332 ret = sdw_fill_msg(&msg, slave, addr, count, 333 slave->dev_num, SDW_MSG_FLAG_READ, val); 334 if (ret < 0) 335 return ret; 336 337 ret = pm_runtime_get_sync(slave->bus->dev); 338 if (ret < 0) 339 return ret; 340 341 ret = sdw_transfer(slave->bus, &msg); 342 pm_runtime_put(slave->bus->dev); 343 344 return ret; 345 } 346 EXPORT_SYMBOL(sdw_nread); 347 348 /** 349 * sdw_nwrite() - Write "n" contiguous SDW Slave registers 350 * @slave: SDW Slave 351 * @addr: Register address 352 * @count: length 353 * @val: Buffer for values to be read 354 */ 355 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) 356 { 357 struct sdw_msg msg; 358 int ret; 359 360 ret = sdw_fill_msg(&msg, slave, addr, count, 361 slave->dev_num, SDW_MSG_FLAG_WRITE, val); 362 if (ret < 0) 363 return ret; 364 365 ret = pm_runtime_get_sync(slave->bus->dev); 366 if (ret < 0) 367 return ret; 368 369 ret = sdw_transfer(slave->bus, &msg); 370 pm_runtime_put(slave->bus->dev); 371 372 return ret; 373 } 374 EXPORT_SYMBOL(sdw_nwrite); 375 376 /** 377 * sdw_read() - Read a SDW Slave register 378 * @slave: SDW Slave 379 * @addr: Register address 380 */ 381 int sdw_read(struct sdw_slave *slave, u32 addr) 382 { 383 u8 buf; 384 int ret; 385 386 ret = sdw_nread(slave, addr, 1, &buf); 387 if (ret < 0) 388 return ret; 389 else 390 return buf; 391 } 392 EXPORT_SYMBOL(sdw_read); 393 394 /** 395 * sdw_write() - Write a SDW Slave register 396 * @slave: SDW Slave 397 * @addr: Register address 398 * @value: Register value 399 */ 400 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value) 401 { 402 return sdw_nwrite(slave, addr, 1, &value); 403 } 404 EXPORT_SYMBOL(sdw_write); 405 406 /* 407 * SDW alert handling 408 */ 409 410 /* called with bus_lock held */ 411 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i) 412 { 413 struct sdw_slave *slave = NULL; 414 415 list_for_each_entry(slave, &bus->slaves, node) { 416 if (slave->dev_num == i) 417 return slave; 418 } 419 420 return NULL; 421 } 422 423 static int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id) 424 { 425 if (slave->id.mfg_id != id.mfg_id || 426 slave->id.part_id != id.part_id || 427 slave->id.class_id != id.class_id || 428 (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID && 429 slave->id.unique_id != id.unique_id)) 430 return -ENODEV; 431 432 return 0; 433 } 434 435 /* called with bus_lock held */ 436 static int sdw_get_device_num(struct sdw_slave *slave) 437 { 438 int bit; 439 440 bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES); 441 if (bit == SDW_MAX_DEVICES) { 442 bit = -ENODEV; 443 goto err; 444 } 445 446 /* 447 * Do not update dev_num in Slave data structure here, 448 * Update once program dev_num is successful 449 */ 450 set_bit(bit, slave->bus->assigned); 451 452 err: 453 return bit; 454 } 455 456 static int sdw_assign_device_num(struct sdw_slave *slave) 457 { 458 int ret, dev_num; 459 bool new_device = false; 460 461 /* check first if device number is assigned, if so reuse that */ 462 if (!slave->dev_num) { 463 if (!slave->dev_num_sticky) { 464 mutex_lock(&slave->bus->bus_lock); 465 dev_num = sdw_get_device_num(slave); 466 mutex_unlock(&slave->bus->bus_lock); 467 if (dev_num < 0) { 468 dev_err(slave->bus->dev, "Get dev_num failed: %d\n", 469 dev_num); 470 return dev_num; 471 } 472 slave->dev_num = dev_num; 473 slave->dev_num_sticky = dev_num; 474 new_device = true; 475 } else { 476 slave->dev_num = slave->dev_num_sticky; 477 } 478 } 479 480 if (!new_device) 481 dev_info(slave->bus->dev, 482 "Slave already registered, reusing dev_num:%d\n", 483 slave->dev_num); 484 485 /* Clear the slave->dev_num to transfer message on device 0 */ 486 dev_num = slave->dev_num; 487 slave->dev_num = 0; 488 489 ret = sdw_write(slave, SDW_SCP_DEVNUMBER, dev_num); 490 if (ret < 0) { 491 dev_err(&slave->dev, "Program device_num %d failed: %d\n", 492 dev_num, ret); 493 return ret; 494 } 495 496 /* After xfer of msg, restore dev_num */ 497 slave->dev_num = slave->dev_num_sticky; 498 499 return 0; 500 } 501 502 void sdw_extract_slave_id(struct sdw_bus *bus, 503 u64 addr, struct sdw_slave_id *id) 504 { 505 dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr); 506 507 /* 508 * Spec definition 509 * Register Bit Contents 510 * DevId_0 [7:4] 47:44 sdw_version 511 * DevId_0 [3:0] 43:40 unique_id 512 * DevId_1 39:32 mfg_id [15:8] 513 * DevId_2 31:24 mfg_id [7:0] 514 * DevId_3 23:16 part_id [15:8] 515 * DevId_4 15:08 part_id [7:0] 516 * DevId_5 07:00 class_id 517 */ 518 id->sdw_version = (addr >> 44) & GENMASK(3, 0); 519 id->unique_id = (addr >> 40) & GENMASK(3, 0); 520 id->mfg_id = (addr >> 24) & GENMASK(15, 0); 521 id->part_id = (addr >> 8) & GENMASK(15, 0); 522 id->class_id = addr & GENMASK(7, 0); 523 524 dev_dbg(bus->dev, 525 "SDW Slave class_id %x, part_id %x, mfg_id %x, unique_id %x, version %x\n", 526 id->class_id, id->part_id, id->mfg_id, 527 id->unique_id, id->sdw_version); 528 } 529 530 static int sdw_program_device_num(struct sdw_bus *bus) 531 { 532 u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0}; 533 struct sdw_slave *slave, *_s; 534 struct sdw_slave_id id; 535 struct sdw_msg msg; 536 bool found = false; 537 int count = 0, ret; 538 u64 addr; 539 540 /* No Slave, so use raw xfer api */ 541 ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0, 542 SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf); 543 if (ret < 0) 544 return ret; 545 546 do { 547 ret = sdw_transfer(bus, &msg); 548 if (ret == -ENODATA) { /* end of device id reads */ 549 dev_dbg(bus->dev, "No more devices to enumerate\n"); 550 ret = 0; 551 break; 552 } 553 if (ret < 0) { 554 dev_err(bus->dev, "DEVID read fail:%d\n", ret); 555 break; 556 } 557 558 /* 559 * Construct the addr and extract. Cast the higher shift 560 * bits to avoid truncation due to size limit. 561 */ 562 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) | 563 ((u64)buf[2] << 24) | ((u64)buf[1] << 32) | 564 ((u64)buf[0] << 40); 565 566 sdw_extract_slave_id(bus, addr, &id); 567 568 /* Now compare with entries */ 569 list_for_each_entry_safe(slave, _s, &bus->slaves, node) { 570 if (sdw_compare_devid(slave, id) == 0) { 571 found = true; 572 573 /* 574 * Assign a new dev_num to this Slave and 575 * not mark it present. It will be marked 576 * present after it reports ATTACHED on new 577 * dev_num 578 */ 579 ret = sdw_assign_device_num(slave); 580 if (ret) { 581 dev_err(slave->bus->dev, 582 "Assign dev_num failed:%d\n", 583 ret); 584 return ret; 585 } 586 587 break; 588 } 589 } 590 591 if (!found) { 592 /* TODO: Park this device in Group 13 */ 593 dev_err(bus->dev, "Slave Entry not found\n"); 594 } 595 596 count++; 597 598 /* 599 * Check till error out or retry (count) exhausts. 600 * Device can drop off and rejoin during enumeration 601 * so count till twice the bound. 602 */ 603 604 } while (ret == 0 && count < (SDW_MAX_DEVICES * 2)); 605 606 return ret; 607 } 608 609 static void sdw_modify_slave_status(struct sdw_slave *slave, 610 enum sdw_slave_status status) 611 { 612 mutex_lock(&slave->bus->bus_lock); 613 slave->status = status; 614 mutex_unlock(&slave->bus->bus_lock); 615 } 616 617 int sdw_configure_dpn_intr(struct sdw_slave *slave, 618 int port, bool enable, int mask) 619 { 620 u32 addr; 621 int ret; 622 u8 val = 0; 623 624 addr = SDW_DPN_INTMASK(port); 625 626 /* Set/Clear port ready interrupt mask */ 627 if (enable) { 628 val |= mask; 629 val |= SDW_DPN_INT_PORT_READY; 630 } else { 631 val &= ~(mask); 632 val &= ~SDW_DPN_INT_PORT_READY; 633 } 634 635 ret = sdw_update(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val); 636 if (ret < 0) 637 dev_err(slave->bus->dev, 638 "SDW_DPN_INTMASK write failed:%d\n", val); 639 640 return ret; 641 } 642 643 static int sdw_initialize_slave(struct sdw_slave *slave) 644 { 645 struct sdw_slave_prop *prop = &slave->prop; 646 int ret; 647 u8 val; 648 649 /* 650 * Set bus clash, parity and SCP implementation 651 * defined interrupt mask 652 * TODO: Read implementation defined interrupt mask 653 * from Slave property 654 */ 655 val = SDW_SCP_INT1_IMPL_DEF | SDW_SCP_INT1_BUS_CLASH | 656 SDW_SCP_INT1_PARITY; 657 658 /* Enable SCP interrupts */ 659 ret = sdw_update(slave, SDW_SCP_INTMASK1, val, val); 660 if (ret < 0) { 661 dev_err(slave->bus->dev, 662 "SDW_SCP_INTMASK1 write failed:%d\n", ret); 663 return ret; 664 } 665 666 /* No need to continue if DP0 is not present */ 667 if (!slave->prop.dp0_prop) 668 return 0; 669 670 /* Enable DP0 interrupts */ 671 val = prop->dp0_prop->imp_def_interrupts; 672 val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE; 673 674 ret = sdw_update(slave, SDW_DP0_INTMASK, val, val); 675 if (ret < 0) { 676 dev_err(slave->bus->dev, 677 "SDW_DP0_INTMASK read failed:%d\n", ret); 678 return val; 679 } 680 681 return 0; 682 } 683 684 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status) 685 { 686 u8 clear = 0, impl_int_mask; 687 int status, status2, ret, count = 0; 688 689 status = sdw_read(slave, SDW_DP0_INT); 690 if (status < 0) { 691 dev_err(slave->bus->dev, 692 "SDW_DP0_INT read failed:%d\n", status); 693 return status; 694 } 695 696 do { 697 if (status & SDW_DP0_INT_TEST_FAIL) { 698 dev_err(&slave->dev, "Test fail for port 0\n"); 699 clear |= SDW_DP0_INT_TEST_FAIL; 700 } 701 702 /* 703 * Assumption: PORT_READY interrupt will be received only for 704 * ports implementing Channel Prepare state machine (CP_SM) 705 */ 706 707 if (status & SDW_DP0_INT_PORT_READY) { 708 complete(&slave->port_ready[0]); 709 clear |= SDW_DP0_INT_PORT_READY; 710 } 711 712 if (status & SDW_DP0_INT_BRA_FAILURE) { 713 dev_err(&slave->dev, "BRA failed\n"); 714 clear |= SDW_DP0_INT_BRA_FAILURE; 715 } 716 717 impl_int_mask = SDW_DP0_INT_IMPDEF1 | 718 SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3; 719 720 if (status & impl_int_mask) { 721 clear |= impl_int_mask; 722 *slave_status = clear; 723 } 724 725 /* clear the interrupt */ 726 ret = sdw_write(slave, SDW_DP0_INT, clear); 727 if (ret < 0) { 728 dev_err(slave->bus->dev, 729 "SDW_DP0_INT write failed:%d\n", ret); 730 return ret; 731 } 732 733 /* Read DP0 interrupt again */ 734 status2 = sdw_read(slave, SDW_DP0_INT); 735 if (status2 < 0) { 736 dev_err(slave->bus->dev, 737 "SDW_DP0_INT read failed:%d\n", status2); 738 return status2; 739 } 740 status &= status2; 741 742 count++; 743 744 /* we can get alerts while processing so keep retrying */ 745 } while (status != 0 && count < SDW_READ_INTR_CLEAR_RETRY); 746 747 if (count == SDW_READ_INTR_CLEAR_RETRY) 748 dev_warn(slave->bus->dev, "Reached MAX_RETRY on DP0 read\n"); 749 750 return ret; 751 } 752 753 static int sdw_handle_port_interrupt(struct sdw_slave *slave, 754 int port, u8 *slave_status) 755 { 756 u8 clear = 0, impl_int_mask; 757 int status, status2, ret, count = 0; 758 u32 addr; 759 760 if (port == 0) 761 return sdw_handle_dp0_interrupt(slave, slave_status); 762 763 addr = SDW_DPN_INT(port); 764 status = sdw_read(slave, addr); 765 if (status < 0) { 766 dev_err(slave->bus->dev, 767 "SDW_DPN_INT read failed:%d\n", status); 768 769 return status; 770 } 771 772 do { 773 if (status & SDW_DPN_INT_TEST_FAIL) { 774 dev_err(&slave->dev, "Test fail for port:%d\n", port); 775 clear |= SDW_DPN_INT_TEST_FAIL; 776 } 777 778 /* 779 * Assumption: PORT_READY interrupt will be received only 780 * for ports implementing CP_SM. 781 */ 782 if (status & SDW_DPN_INT_PORT_READY) { 783 complete(&slave->port_ready[port]); 784 clear |= SDW_DPN_INT_PORT_READY; 785 } 786 787 impl_int_mask = SDW_DPN_INT_IMPDEF1 | 788 SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3; 789 790 if (status & impl_int_mask) { 791 clear |= impl_int_mask; 792 *slave_status = clear; 793 } 794 795 /* clear the interrupt */ 796 ret = sdw_write(slave, addr, clear); 797 if (ret < 0) { 798 dev_err(slave->bus->dev, 799 "SDW_DPN_INT write failed:%d\n", ret); 800 return ret; 801 } 802 803 /* Read DPN interrupt again */ 804 status2 = sdw_read(slave, addr); 805 if (status2 < 0) { 806 dev_err(slave->bus->dev, 807 "SDW_DPN_INT read failed:%d\n", status2); 808 return status2; 809 } 810 status &= status2; 811 812 count++; 813 814 /* we can get alerts while processing so keep retrying */ 815 } while (status != 0 && count < SDW_READ_INTR_CLEAR_RETRY); 816 817 if (count == SDW_READ_INTR_CLEAR_RETRY) 818 dev_warn(slave->bus->dev, "Reached MAX_RETRY on port read"); 819 820 return ret; 821 } 822 823 static int sdw_handle_slave_alerts(struct sdw_slave *slave) 824 { 825 struct sdw_slave_intr_status slave_intr; 826 u8 clear = 0, bit, port_status[15] = {0}; 827 int port_num, stat, ret, count = 0; 828 unsigned long port; 829 bool slave_notify = false; 830 u8 buf, buf2[2], _buf, _buf2[2]; 831 832 sdw_modify_slave_status(slave, SDW_SLAVE_ALERT); 833 834 /* Read Instat 1, Instat 2 and Instat 3 registers */ 835 ret = sdw_read(slave, SDW_SCP_INT1); 836 if (ret < 0) { 837 dev_err(slave->bus->dev, 838 "SDW_SCP_INT1 read failed:%d\n", ret); 839 return ret; 840 } 841 buf = ret; 842 843 ret = sdw_nread(slave, SDW_SCP_INTSTAT2, 2, buf2); 844 if (ret < 0) { 845 dev_err(slave->bus->dev, 846 "SDW_SCP_INT2/3 read failed:%d\n", ret); 847 return ret; 848 } 849 850 do { 851 /* 852 * Check parity, bus clash and Slave (impl defined) 853 * interrupt 854 */ 855 if (buf & SDW_SCP_INT1_PARITY) { 856 dev_err(&slave->dev, "Parity error detected\n"); 857 clear |= SDW_SCP_INT1_PARITY; 858 } 859 860 if (buf & SDW_SCP_INT1_BUS_CLASH) { 861 dev_err(&slave->dev, "Bus clash error detected\n"); 862 clear |= SDW_SCP_INT1_BUS_CLASH; 863 } 864 865 /* 866 * When bus clash or parity errors are detected, such errors 867 * are unlikely to be recoverable errors. 868 * TODO: In such scenario, reset bus. Make this configurable 869 * via sysfs property with bus reset being the default. 870 */ 871 872 if (buf & SDW_SCP_INT1_IMPL_DEF) { 873 dev_dbg(&slave->dev, "Slave impl defined interrupt\n"); 874 clear |= SDW_SCP_INT1_IMPL_DEF; 875 slave_notify = true; 876 } 877 878 /* Check port 0 - 3 interrupts */ 879 port = buf & SDW_SCP_INT1_PORT0_3; 880 881 /* To get port number corresponding to bits, shift it */ 882 port = port >> SDW_REG_SHIFT(SDW_SCP_INT1_PORT0_3); 883 for_each_set_bit(bit, &port, 8) { 884 sdw_handle_port_interrupt(slave, bit, 885 &port_status[bit]); 886 } 887 888 /* Check if cascade 2 interrupt is present */ 889 if (buf & SDW_SCP_INT1_SCP2_CASCADE) { 890 port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10; 891 for_each_set_bit(bit, &port, 8) { 892 /* scp2 ports start from 4 */ 893 port_num = bit + 3; 894 sdw_handle_port_interrupt(slave, 895 port_num, 896 &port_status[port_num]); 897 } 898 } 899 900 /* now check last cascade */ 901 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) { 902 port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14; 903 for_each_set_bit(bit, &port, 8) { 904 /* scp3 ports start from 11 */ 905 port_num = bit + 10; 906 sdw_handle_port_interrupt(slave, 907 port_num, 908 &port_status[port_num]); 909 } 910 } 911 912 /* Update the Slave driver */ 913 if (slave_notify && slave->ops && 914 slave->ops->interrupt_callback) { 915 slave_intr.control_port = clear; 916 memcpy(slave_intr.port, &port_status, 917 sizeof(slave_intr.port)); 918 919 slave->ops->interrupt_callback(slave, &slave_intr); 920 } 921 922 /* Ack interrupt */ 923 ret = sdw_write(slave, SDW_SCP_INT1, clear); 924 if (ret < 0) { 925 dev_err(slave->bus->dev, 926 "SDW_SCP_INT1 write failed:%d\n", ret); 927 return ret; 928 } 929 930 /* 931 * Read status again to ensure no new interrupts arrived 932 * while servicing interrupts. 933 */ 934 ret = sdw_read(slave, SDW_SCP_INT1); 935 if (ret < 0) { 936 dev_err(slave->bus->dev, 937 "SDW_SCP_INT1 read failed:%d\n", ret); 938 return ret; 939 } 940 _buf = ret; 941 942 ret = sdw_nread(slave, SDW_SCP_INTSTAT2, 2, _buf2); 943 if (ret < 0) { 944 dev_err(slave->bus->dev, 945 "SDW_SCP_INT2/3 read failed:%d\n", ret); 946 return ret; 947 } 948 949 /* Make sure no interrupts are pending */ 950 buf &= _buf; 951 buf2[0] &= _buf2[0]; 952 buf2[1] &= _buf2[1]; 953 stat = buf || buf2[0] || buf2[1]; 954 955 /* 956 * Exit loop if Slave is continuously in ALERT state even 957 * after servicing the interrupt multiple times. 958 */ 959 count++; 960 961 /* we can get alerts while processing so keep retrying */ 962 } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY); 963 964 if (count == SDW_READ_INTR_CLEAR_RETRY) 965 dev_warn(slave->bus->dev, "Reached MAX_RETRY on alert read\n"); 966 967 return ret; 968 } 969 970 static int sdw_update_slave_status(struct sdw_slave *slave, 971 enum sdw_slave_status status) 972 { 973 if (slave->ops && slave->ops->update_status) 974 return slave->ops->update_status(slave, status); 975 976 return 0; 977 } 978 979 /** 980 * sdw_handle_slave_status() - Handle Slave status 981 * @bus: SDW bus instance 982 * @status: Status for all Slave(s) 983 */ 984 int sdw_handle_slave_status(struct sdw_bus *bus, 985 enum sdw_slave_status status[]) 986 { 987 enum sdw_slave_status prev_status; 988 struct sdw_slave *slave; 989 int i, ret = 0; 990 991 /* first check if any Slaves fell off the bus */ 992 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 993 mutex_lock(&bus->bus_lock); 994 if (test_bit(i, bus->assigned) == false) { 995 mutex_unlock(&bus->bus_lock); 996 continue; 997 } 998 mutex_unlock(&bus->bus_lock); 999 1000 slave = sdw_get_slave(bus, i); 1001 if (!slave) 1002 continue; 1003 1004 if (status[i] == SDW_SLAVE_UNATTACHED && 1005 slave->status != SDW_SLAVE_UNATTACHED) 1006 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1007 } 1008 1009 if (status[0] == SDW_SLAVE_ATTACHED) { 1010 dev_dbg(bus->dev, "Slave attached, programming device number\n"); 1011 ret = sdw_program_device_num(bus); 1012 if (ret) 1013 dev_err(bus->dev, "Slave attach failed: %d\n", ret); 1014 /* 1015 * programming a device number will have side effects, 1016 * so we deal with other devices at a later time 1017 */ 1018 return ret; 1019 } 1020 1021 /* Continue to check other slave statuses */ 1022 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 1023 mutex_lock(&bus->bus_lock); 1024 if (test_bit(i, bus->assigned) == false) { 1025 mutex_unlock(&bus->bus_lock); 1026 continue; 1027 } 1028 mutex_unlock(&bus->bus_lock); 1029 1030 slave = sdw_get_slave(bus, i); 1031 if (!slave) 1032 continue; 1033 1034 switch (status[i]) { 1035 case SDW_SLAVE_UNATTACHED: 1036 if (slave->status == SDW_SLAVE_UNATTACHED) 1037 break; 1038 1039 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1040 break; 1041 1042 case SDW_SLAVE_ALERT: 1043 ret = sdw_handle_slave_alerts(slave); 1044 if (ret) 1045 dev_err(bus->dev, 1046 "Slave %d alert handling failed: %d\n", 1047 i, ret); 1048 break; 1049 1050 case SDW_SLAVE_ATTACHED: 1051 if (slave->status == SDW_SLAVE_ATTACHED) 1052 break; 1053 1054 prev_status = slave->status; 1055 sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED); 1056 1057 if (prev_status == SDW_SLAVE_ALERT) 1058 break; 1059 1060 ret = sdw_initialize_slave(slave); 1061 if (ret) 1062 dev_err(bus->dev, 1063 "Slave %d initialization failed: %d\n", 1064 i, ret); 1065 1066 break; 1067 1068 default: 1069 dev_err(bus->dev, "Invalid slave %d status:%d\n", 1070 i, status[i]); 1071 break; 1072 } 1073 1074 ret = sdw_update_slave_status(slave, status[i]); 1075 if (ret) 1076 dev_err(slave->bus->dev, 1077 "Update Slave status failed:%d\n", ret); 1078 } 1079 1080 return ret; 1081 } 1082 EXPORT_SYMBOL(sdw_handle_slave_status); 1083