xref: /openbmc/linux/drivers/soc/ti/pm33xx.c (revision 835fd614)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * AM33XX Power Management Routines
4  *
5  * Copyright (C) 2012-2018 Texas Instruments Incorporated - http://www.ti.com/
6  *	Vaibhav Bedia, Dave Gerlach
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/genalloc.h>
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/nvmem-consumer.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/platform_data/pm33xx.h>
21 #include <linux/platform_device.h>
22 #include <linux/rtc.h>
23 #include <linux/rtc/rtc-omap.h>
24 #include <linux/sizes.h>
25 #include <linux/sram.h>
26 #include <linux/suspend.h>
27 #include <linux/ti-emif-sram.h>
28 #include <linux/wkup_m3_ipc.h>
29 
30 #include <asm/proc-fns.h>
31 #include <asm/suspend.h>
32 #include <asm/system_misc.h>
33 
34 #define AMX3_PM_SRAM_SYMBOL_OFFSET(sym) ((unsigned long)(sym) - \
35 					 (unsigned long)pm_sram->do_wfi)
36 
37 #define RTC_SCRATCH_RESUME_REG	0
38 #define RTC_SCRATCH_MAGIC_REG	1
39 #define RTC_REG_BOOT_MAGIC	0x8cd0 /* RTC */
40 #define GIC_INT_SET_PENDING_BASE 0x200
41 #define AM43XX_GIC_DIST_BASE	0x48241000
42 
43 static void __iomem *rtc_base_virt;
44 static struct clk *rtc_fck;
45 static u32 rtc_magic_val;
46 
47 static int (*am33xx_do_wfi_sram)(unsigned long unused);
48 static phys_addr_t am33xx_do_wfi_sram_phys;
49 
50 static struct gen_pool *sram_pool, *sram_pool_data;
51 static unsigned long ocmcram_location, ocmcram_location_data;
52 
53 static struct rtc_device *omap_rtc;
54 static void __iomem *gic_dist_base;
55 
56 static struct am33xx_pm_platform_data *pm_ops;
57 static struct am33xx_pm_sram_addr *pm_sram;
58 
59 static struct device *pm33xx_dev;
60 static struct wkup_m3_ipc *m3_ipc;
61 
62 #ifdef CONFIG_SUSPEND
63 static int rtc_only_idle;
64 static int retrigger_irq;
65 static unsigned long suspend_wfi_flags;
66 
67 static struct wkup_m3_wakeup_src wakeup_src = {.irq_nr = 0,
68 	.src = "Unknown",
69 };
70 
71 static struct wkup_m3_wakeup_src rtc_alarm_wakeup = {
72 	.irq_nr = 108, .src = "RTC Alarm",
73 };
74 
75 static struct wkup_m3_wakeup_src rtc_ext_wakeup = {
76 	.irq_nr = 0, .src = "Ext wakeup",
77 };
78 #endif
79 
80 static u32 sram_suspend_address(unsigned long addr)
81 {
82 	return ((unsigned long)am33xx_do_wfi_sram +
83 		AMX3_PM_SRAM_SYMBOL_OFFSET(addr));
84 }
85 
86 static int am33xx_push_sram_idle(void)
87 {
88 	struct am33xx_pm_ro_sram_data ro_sram_data;
89 	int ret;
90 	u32 table_addr, ro_data_addr;
91 	void *copy_addr;
92 
93 	ro_sram_data.amx3_pm_sram_data_virt = ocmcram_location_data;
94 	ro_sram_data.amx3_pm_sram_data_phys =
95 		gen_pool_virt_to_phys(sram_pool_data, ocmcram_location_data);
96 	ro_sram_data.rtc_base_virt = rtc_base_virt;
97 
98 	/* Save physical address to calculate resume offset during pm init */
99 	am33xx_do_wfi_sram_phys = gen_pool_virt_to_phys(sram_pool,
100 							ocmcram_location);
101 
102 	am33xx_do_wfi_sram = sram_exec_copy(sram_pool, (void *)ocmcram_location,
103 					    pm_sram->do_wfi,
104 					    *pm_sram->do_wfi_sz);
105 	if (!am33xx_do_wfi_sram) {
106 		dev_err(pm33xx_dev,
107 			"PM: %s: am33xx_do_wfi copy to sram failed\n",
108 			__func__);
109 		return -ENODEV;
110 	}
111 
112 	table_addr =
113 		sram_suspend_address((unsigned long)pm_sram->emif_sram_table);
114 	ret = ti_emif_copy_pm_function_table(sram_pool, (void *)table_addr);
115 	if (ret) {
116 		dev_dbg(pm33xx_dev,
117 			"PM: %s: EMIF function copy failed\n", __func__);
118 		return -EPROBE_DEFER;
119 	}
120 
121 	ro_data_addr =
122 		sram_suspend_address((unsigned long)pm_sram->ro_sram_data);
123 	copy_addr = sram_exec_copy(sram_pool, (void *)ro_data_addr,
124 				   &ro_sram_data,
125 				   sizeof(ro_sram_data));
126 	if (!copy_addr) {
127 		dev_err(pm33xx_dev,
128 			"PM: %s: ro_sram_data copy to sram failed\n",
129 			__func__);
130 		return -ENODEV;
131 	}
132 
133 	return 0;
134 }
135 
136 static int am33xx_do_sram_idle(u32 wfi_flags)
137 {
138 	int ret = 0;
139 
140 	if (!m3_ipc || !pm_ops)
141 		return 0;
142 
143 	if (wfi_flags & WFI_FLAG_WAKE_M3)
144 		ret = m3_ipc->ops->prepare_low_power(m3_ipc, WKUP_M3_IDLE);
145 
146 	return pm_ops->cpu_suspend(am33xx_do_wfi_sram, wfi_flags);
147 }
148 
149 static int __init am43xx_map_gic(void)
150 {
151 	gic_dist_base = ioremap(AM43XX_GIC_DIST_BASE, SZ_4K);
152 
153 	if (!gic_dist_base)
154 		return -ENOMEM;
155 
156 	return 0;
157 }
158 
159 #ifdef CONFIG_SUSPEND
160 static struct wkup_m3_wakeup_src rtc_wake_src(void)
161 {
162 	u32 i;
163 
164 	i = __raw_readl(rtc_base_virt + 0x44) & 0x40;
165 
166 	if (i) {
167 		retrigger_irq = rtc_alarm_wakeup.irq_nr;
168 		return rtc_alarm_wakeup;
169 	}
170 
171 	retrigger_irq = rtc_ext_wakeup.irq_nr;
172 
173 	return rtc_ext_wakeup;
174 }
175 
176 static int am33xx_rtc_only_idle(unsigned long wfi_flags)
177 {
178 	omap_rtc_power_off_program(&omap_rtc->dev);
179 	am33xx_do_wfi_sram(wfi_flags);
180 	return 0;
181 }
182 
183 /*
184  * Note that the RTC module clock must be re-enabled only for rtc+ddr suspend.
185  * And looks like the module can stay in SYSC_IDLE_SMART_WKUP mode configured
186  * by the interconnect code just fine for both rtc+ddr suspend and retention
187  * suspend.
188  */
189 static int am33xx_pm_suspend(suspend_state_t suspend_state)
190 {
191 	int i, ret = 0;
192 
193 	if (suspend_state == PM_SUSPEND_MEM &&
194 	    pm_ops->check_off_mode_enable()) {
195 		ret = clk_prepare_enable(rtc_fck);
196 		if (ret) {
197 			dev_err(pm33xx_dev, "Failed to enable clock: %i\n", ret);
198 			return ret;
199 		}
200 
201 		pm_ops->save_context();
202 		suspend_wfi_flags |= WFI_FLAG_RTC_ONLY;
203 		clk_save_context();
204 		ret = pm_ops->soc_suspend(suspend_state, am33xx_rtc_only_idle,
205 					  suspend_wfi_flags);
206 
207 		suspend_wfi_flags &= ~WFI_FLAG_RTC_ONLY;
208 		dev_info(pm33xx_dev, "Entering RTC Only mode with DDR in self-refresh\n");
209 
210 		if (!ret) {
211 			clk_restore_context();
212 			pm_ops->restore_context();
213 			m3_ipc->ops->set_rtc_only(m3_ipc);
214 			am33xx_push_sram_idle();
215 		}
216 	} else {
217 		ret = pm_ops->soc_suspend(suspend_state, am33xx_do_wfi_sram,
218 					  suspend_wfi_flags);
219 	}
220 
221 	if (ret) {
222 		dev_err(pm33xx_dev, "PM: Kernel suspend failure\n");
223 	} else {
224 		i = m3_ipc->ops->request_pm_status(m3_ipc);
225 
226 		switch (i) {
227 		case 0:
228 			dev_info(pm33xx_dev,
229 				 "PM: Successfully put all powerdomains to target state\n");
230 			break;
231 		case 1:
232 			dev_err(pm33xx_dev,
233 				"PM: Could not transition all powerdomains to target state\n");
234 			ret = -1;
235 			break;
236 		default:
237 			dev_err(pm33xx_dev,
238 				"PM: CM3 returned unknown result = %d\n", i);
239 			ret = -1;
240 		}
241 
242 		/* print the wakeup reason */
243 		if (rtc_only_idle) {
244 			wakeup_src = rtc_wake_src();
245 			pr_info("PM: Wakeup source %s\n", wakeup_src.src);
246 		} else {
247 			pr_info("PM: Wakeup source %s\n",
248 				m3_ipc->ops->request_wake_src(m3_ipc));
249 		}
250 	}
251 
252 	if (suspend_state == PM_SUSPEND_MEM && pm_ops->check_off_mode_enable())
253 		clk_disable_unprepare(rtc_fck);
254 
255 	return ret;
256 }
257 
258 static int am33xx_pm_enter(suspend_state_t suspend_state)
259 {
260 	int ret = 0;
261 
262 	switch (suspend_state) {
263 	case PM_SUSPEND_MEM:
264 	case PM_SUSPEND_STANDBY:
265 		ret = am33xx_pm_suspend(suspend_state);
266 		break;
267 	default:
268 		ret = -EINVAL;
269 	}
270 
271 	return ret;
272 }
273 
274 static int am33xx_pm_begin(suspend_state_t state)
275 {
276 	int ret = -EINVAL;
277 	struct nvmem_device *nvmem;
278 
279 	if (state == PM_SUSPEND_MEM && pm_ops->check_off_mode_enable()) {
280 		nvmem = devm_nvmem_device_get(&omap_rtc->dev,
281 					      "omap_rtc_scratch0");
282 		if (!IS_ERR(nvmem))
283 			nvmem_device_write(nvmem, RTC_SCRATCH_MAGIC_REG * 4, 4,
284 					   (void *)&rtc_magic_val);
285 		rtc_only_idle = 1;
286 	} else {
287 		rtc_only_idle = 0;
288 	}
289 
290 	pm_ops->begin_suspend();
291 
292 	switch (state) {
293 	case PM_SUSPEND_MEM:
294 		ret = m3_ipc->ops->prepare_low_power(m3_ipc, WKUP_M3_DEEPSLEEP);
295 		break;
296 	case PM_SUSPEND_STANDBY:
297 		ret = m3_ipc->ops->prepare_low_power(m3_ipc, WKUP_M3_STANDBY);
298 		break;
299 	}
300 
301 	return ret;
302 }
303 
304 static void am33xx_pm_end(void)
305 {
306 	u32 val = 0;
307 	struct nvmem_device *nvmem;
308 
309 	nvmem = devm_nvmem_device_get(&omap_rtc->dev, "omap_rtc_scratch0");
310 	if (IS_ERR(nvmem))
311 		return;
312 
313 	m3_ipc->ops->finish_low_power(m3_ipc);
314 	if (rtc_only_idle) {
315 		if (retrigger_irq) {
316 			/*
317 			 * 32 bits of Interrupt Set-Pending correspond to 32
318 			 * 32 interrupts. Compute the bit offset of the
319 			 * Interrupt and set that particular bit
320 			 * Compute the register offset by dividing interrupt
321 			 * number by 32 and mutiplying by 4
322 			 */
323 			writel_relaxed(1 << (retrigger_irq & 31),
324 				       gic_dist_base + GIC_INT_SET_PENDING_BASE
325 				       + retrigger_irq / 32 * 4);
326 		}
327 
328 		nvmem_device_write(nvmem, RTC_SCRATCH_MAGIC_REG * 4, 4,
329 				   (void *)&val);
330 	}
331 
332 	rtc_only_idle = 0;
333 
334 	pm_ops->finish_suspend();
335 }
336 
337 static int am33xx_pm_valid(suspend_state_t state)
338 {
339 	switch (state) {
340 	case PM_SUSPEND_STANDBY:
341 	case PM_SUSPEND_MEM:
342 		return 1;
343 	default:
344 		return 0;
345 	}
346 }
347 
348 static const struct platform_suspend_ops am33xx_pm_ops = {
349 	.begin		= am33xx_pm_begin,
350 	.end		= am33xx_pm_end,
351 	.enter		= am33xx_pm_enter,
352 	.valid		= am33xx_pm_valid,
353 };
354 #endif /* CONFIG_SUSPEND */
355 
356 static void am33xx_pm_set_ipc_ops(void)
357 {
358 	u32 resume_address;
359 	int temp;
360 
361 	temp = ti_emif_get_mem_type();
362 	if (temp < 0) {
363 		dev_err(pm33xx_dev, "PM: Cannot determine memory type, no PM available\n");
364 		return;
365 	}
366 	m3_ipc->ops->set_mem_type(m3_ipc, temp);
367 
368 	/* Physical resume address to be used by ROM code */
369 	resume_address = am33xx_do_wfi_sram_phys +
370 			 *pm_sram->resume_offset + 0x4;
371 
372 	m3_ipc->ops->set_resume_address(m3_ipc, (void *)resume_address);
373 }
374 
375 static void am33xx_pm_free_sram(void)
376 {
377 	gen_pool_free(sram_pool, ocmcram_location, *pm_sram->do_wfi_sz);
378 	gen_pool_free(sram_pool_data, ocmcram_location_data,
379 		      sizeof(struct am33xx_pm_ro_sram_data));
380 }
381 
382 /*
383  * Push the minimal suspend-resume code to SRAM
384  */
385 static int am33xx_pm_alloc_sram(void)
386 {
387 	struct device_node *np;
388 	int ret = 0;
389 
390 	np = of_find_compatible_node(NULL, NULL, "ti,omap3-mpu");
391 	if (!np) {
392 		np = of_find_compatible_node(NULL, NULL, "ti,omap4-mpu");
393 		if (!np) {
394 			dev_err(pm33xx_dev, "PM: %s: Unable to find device node for mpu\n",
395 				__func__);
396 			return -ENODEV;
397 		}
398 	}
399 
400 	sram_pool = of_gen_pool_get(np, "pm-sram", 0);
401 	if (!sram_pool) {
402 		dev_err(pm33xx_dev, "PM: %s: Unable to get sram pool for ocmcram\n",
403 			__func__);
404 		ret = -ENODEV;
405 		goto mpu_put_node;
406 	}
407 
408 	sram_pool_data = of_gen_pool_get(np, "pm-sram", 1);
409 	if (!sram_pool_data) {
410 		dev_err(pm33xx_dev, "PM: %s: Unable to get sram data pool for ocmcram\n",
411 			__func__);
412 		ret = -ENODEV;
413 		goto mpu_put_node;
414 	}
415 
416 	ocmcram_location = gen_pool_alloc(sram_pool, *pm_sram->do_wfi_sz);
417 	if (!ocmcram_location) {
418 		dev_err(pm33xx_dev, "PM: %s: Unable to allocate memory from ocmcram\n",
419 			__func__);
420 		ret = -ENOMEM;
421 		goto mpu_put_node;
422 	}
423 
424 	ocmcram_location_data = gen_pool_alloc(sram_pool_data,
425 					       sizeof(struct emif_regs_amx3));
426 	if (!ocmcram_location_data) {
427 		dev_err(pm33xx_dev, "PM: Unable to allocate memory from ocmcram\n");
428 		gen_pool_free(sram_pool, ocmcram_location, *pm_sram->do_wfi_sz);
429 		ret = -ENOMEM;
430 	}
431 
432 mpu_put_node:
433 	of_node_put(np);
434 	return ret;
435 }
436 
437 static int am33xx_pm_rtc_setup(void)
438 {
439 	struct device_node *np;
440 	unsigned long val = 0;
441 	struct nvmem_device *nvmem;
442 	int error;
443 
444 	np = of_find_node_by_name(NULL, "rtc");
445 
446 	if (of_device_is_available(np)) {
447 		/* RTC interconnect target module clock */
448 		rtc_fck = of_clk_get_by_name(np->parent, "fck");
449 		if (IS_ERR(rtc_fck))
450 			return PTR_ERR(rtc_fck);
451 
452 		rtc_base_virt = of_iomap(np, 0);
453 		if (!rtc_base_virt) {
454 			pr_warn("PM: could not iomap rtc");
455 			error = -ENODEV;
456 			goto err_clk_put;
457 		}
458 
459 		omap_rtc = rtc_class_open("rtc0");
460 		if (!omap_rtc) {
461 			pr_warn("PM: rtc0 not available");
462 			error = -EPROBE_DEFER;
463 			goto err_iounmap;
464 		}
465 
466 		nvmem = devm_nvmem_device_get(&omap_rtc->dev,
467 					      "omap_rtc_scratch0");
468 		if (!IS_ERR(nvmem)) {
469 			nvmem_device_read(nvmem, RTC_SCRATCH_MAGIC_REG * 4,
470 					  4, (void *)&rtc_magic_val);
471 			if ((rtc_magic_val & 0xffff) != RTC_REG_BOOT_MAGIC)
472 				pr_warn("PM: bootloader does not support rtc-only!\n");
473 
474 			nvmem_device_write(nvmem, RTC_SCRATCH_MAGIC_REG * 4,
475 					   4, (void *)&val);
476 			val = pm_sram->resume_address;
477 			nvmem_device_write(nvmem, RTC_SCRATCH_RESUME_REG * 4,
478 					   4, (void *)&val);
479 		}
480 	} else {
481 		pr_warn("PM: no-rtc available, rtc-only mode disabled.\n");
482 	}
483 
484 	return 0;
485 
486 err_iounmap:
487 	iounmap(rtc_base_virt);
488 err_clk_put:
489 	clk_put(rtc_fck);
490 
491 	return error;
492 }
493 
494 static int am33xx_pm_probe(struct platform_device *pdev)
495 {
496 	struct device *dev = &pdev->dev;
497 	int ret;
498 
499 	if (!of_machine_is_compatible("ti,am33xx") &&
500 	    !of_machine_is_compatible("ti,am43"))
501 		return -ENODEV;
502 
503 	pm_ops = dev->platform_data;
504 	if (!pm_ops) {
505 		dev_err(dev, "PM: Cannot get core PM ops!\n");
506 		return -ENODEV;
507 	}
508 
509 	ret = am43xx_map_gic();
510 	if (ret) {
511 		pr_err("PM: Could not ioremap GIC base\n");
512 		return ret;
513 	}
514 
515 	pm_sram = pm_ops->get_sram_addrs();
516 	if (!pm_sram) {
517 		dev_err(dev, "PM: Cannot get PM asm function addresses!!\n");
518 		return -ENODEV;
519 	}
520 
521 	m3_ipc = wkup_m3_ipc_get();
522 	if (!m3_ipc) {
523 		pr_err("PM: Cannot get wkup_m3_ipc handle\n");
524 		return -EPROBE_DEFER;
525 	}
526 
527 	pm33xx_dev = dev;
528 
529 	ret = am33xx_pm_alloc_sram();
530 	if (ret)
531 		return ret;
532 
533 	ret = am33xx_pm_rtc_setup();
534 	if (ret)
535 		goto err_free_sram;
536 
537 	ret = am33xx_push_sram_idle();
538 	if (ret)
539 		goto err_free_sram;
540 
541 	am33xx_pm_set_ipc_ops();
542 
543 #ifdef CONFIG_SUSPEND
544 	suspend_set_ops(&am33xx_pm_ops);
545 
546 	/*
547 	 * For a system suspend we must flush the caches, we want
548 	 * the DDR in self-refresh, we want to save the context
549 	 * of the EMIF, and we want the wkup_m3 to handle low-power
550 	 * transition.
551 	 */
552 	suspend_wfi_flags |= WFI_FLAG_FLUSH_CACHE;
553 	suspend_wfi_flags |= WFI_FLAG_SELF_REFRESH;
554 	suspend_wfi_flags |= WFI_FLAG_SAVE_EMIF;
555 	suspend_wfi_flags |= WFI_FLAG_WAKE_M3;
556 #endif /* CONFIG_SUSPEND */
557 
558 	ret = pm_ops->init(am33xx_do_sram_idle);
559 	if (ret) {
560 		dev_err(dev, "Unable to call core pm init!\n");
561 		ret = -ENODEV;
562 		goto err_put_wkup_m3_ipc;
563 	}
564 
565 	return 0;
566 
567 err_put_wkup_m3_ipc:
568 	wkup_m3_ipc_put(m3_ipc);
569 err_free_sram:
570 	am33xx_pm_free_sram();
571 	pm33xx_dev = NULL;
572 	return ret;
573 }
574 
575 static int am33xx_pm_remove(struct platform_device *pdev)
576 {
577 	if (pm_ops->deinit)
578 		pm_ops->deinit();
579 	suspend_set_ops(NULL);
580 	wkup_m3_ipc_put(m3_ipc);
581 	am33xx_pm_free_sram();
582 	iounmap(rtc_base_virt);
583 	clk_put(rtc_fck);
584 	return 0;
585 }
586 
587 static struct platform_driver am33xx_pm_driver = {
588 	.driver = {
589 		.name   = "pm33xx",
590 	},
591 	.probe = am33xx_pm_probe,
592 	.remove = am33xx_pm_remove,
593 };
594 module_platform_driver(am33xx_pm_driver);
595 
596 MODULE_ALIAS("platform:pm33xx");
597 MODULE_LICENSE("GPL v2");
598 MODULE_DESCRIPTION("am33xx power management driver");
599