xref: /openbmc/linux/drivers/soc/ti/knav_qmss_queue.c (revision ef2b56df)
1 /*
2  * Keystone Queue Manager subsystem driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5  * Authors:	Sandeep Nair <sandeep_n@ti.com>
6  *		Cyril Chemparathy <cyril@ti.com>
7  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18 
19 #include <linux/debugfs.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/firmware.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/module.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_irq.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/soc/ti/knav_qmss.h>
31 
32 #include "knav_qmss.h"
33 
34 static struct knav_device *kdev;
35 static DEFINE_MUTEX(knav_dev_lock);
36 
37 /* Queue manager register indices in DTS */
38 #define KNAV_QUEUE_PEEK_REG_INDEX	0
39 #define KNAV_QUEUE_STATUS_REG_INDEX	1
40 #define KNAV_QUEUE_CONFIG_REG_INDEX	2
41 #define KNAV_QUEUE_REGION_REG_INDEX	3
42 #define KNAV_QUEUE_PUSH_REG_INDEX	4
43 #define KNAV_QUEUE_POP_REG_INDEX	5
44 
45 /* PDSP register indices in DTS */
46 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
47 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
48 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
49 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
50 
51 #define knav_queue_idx_to_inst(kdev, idx)			\
52 	(kdev->instances + (idx << kdev->inst_shift))
53 
54 #define for_each_handle_rcu(qh, inst)			\
55 	list_for_each_entry_rcu(qh, &inst->handles, list)
56 
57 #define for_each_instance(idx, inst, kdev)		\
58 	for (idx = 0, inst = kdev->instances;		\
59 	     idx < (kdev)->num_queues_in_use;			\
60 	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
61 
62 /* All firmware file names end up here. List the firmware file names below.
63  * Newest followed by older ones. Search is done from start of the array
64  * until a firmware file is found.
65  */
66 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
67 
68 /**
69  * knav_queue_notify: qmss queue notfier call
70  *
71  * @inst:		qmss queue instance like accumulator
72  */
73 void knav_queue_notify(struct knav_queue_inst *inst)
74 {
75 	struct knav_queue *qh;
76 
77 	if (!inst)
78 		return;
79 
80 	rcu_read_lock();
81 	for_each_handle_rcu(qh, inst) {
82 		if (atomic_read(&qh->notifier_enabled) <= 0)
83 			continue;
84 		if (WARN_ON(!qh->notifier_fn))
85 			continue;
86 		atomic_inc(&qh->stats.notifies);
87 		qh->notifier_fn(qh->notifier_fn_arg);
88 	}
89 	rcu_read_unlock();
90 }
91 EXPORT_SYMBOL_GPL(knav_queue_notify);
92 
93 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
94 {
95 	struct knav_queue_inst *inst = _instdata;
96 
97 	knav_queue_notify(inst);
98 	return IRQ_HANDLED;
99 }
100 
101 static int knav_queue_setup_irq(struct knav_range_info *range,
102 			  struct knav_queue_inst *inst)
103 {
104 	unsigned queue = inst->id - range->queue_base;
105 	unsigned long cpu_map;
106 	int ret = 0, irq;
107 
108 	if (range->flags & RANGE_HAS_IRQ) {
109 		irq = range->irqs[queue].irq;
110 		cpu_map = range->irqs[queue].cpu_map;
111 		ret = request_irq(irq, knav_queue_int_handler, 0,
112 					inst->irq_name, inst);
113 		if (ret)
114 			return ret;
115 		disable_irq(irq);
116 		if (cpu_map) {
117 			ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
118 			if (ret) {
119 				dev_warn(range->kdev->dev,
120 					 "Failed to set IRQ affinity\n");
121 				return ret;
122 			}
123 		}
124 	}
125 	return ret;
126 }
127 
128 static void knav_queue_free_irq(struct knav_queue_inst *inst)
129 {
130 	struct knav_range_info *range = inst->range;
131 	unsigned queue = inst->id - inst->range->queue_base;
132 	int irq;
133 
134 	if (range->flags & RANGE_HAS_IRQ) {
135 		irq = range->irqs[queue].irq;
136 		irq_set_affinity_hint(irq, NULL);
137 		free_irq(irq, inst);
138 	}
139 }
140 
141 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
142 {
143 	return !list_empty(&inst->handles);
144 }
145 
146 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
147 {
148 	return inst->range->flags & RANGE_RESERVED;
149 }
150 
151 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
152 {
153 	struct knav_queue *tmp;
154 
155 	rcu_read_lock();
156 	for_each_handle_rcu(tmp, inst) {
157 		if (tmp->flags & KNAV_QUEUE_SHARED) {
158 			rcu_read_unlock();
159 			return true;
160 		}
161 	}
162 	rcu_read_unlock();
163 	return false;
164 }
165 
166 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
167 						unsigned type)
168 {
169 	if ((type == KNAV_QUEUE_QPEND) &&
170 	    (inst->range->flags & RANGE_HAS_IRQ)) {
171 		return true;
172 	} else if ((type == KNAV_QUEUE_ACC) &&
173 		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
174 		return true;
175 	} else if ((type == KNAV_QUEUE_GP) &&
176 		!(inst->range->flags &
177 			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
178 		return true;
179 	}
180 	return false;
181 }
182 
183 static inline struct knav_queue_inst *
184 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
185 {
186 	struct knav_queue_inst *inst;
187 	int idx;
188 
189 	for_each_instance(idx, inst, kdev) {
190 		if (inst->id == id)
191 			return inst;
192 	}
193 	return NULL;
194 }
195 
196 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
197 {
198 	if (kdev->base_id <= id &&
199 	    kdev->base_id + kdev->num_queues > id) {
200 		id -= kdev->base_id;
201 		return knav_queue_match_id_to_inst(kdev, id);
202 	}
203 	return NULL;
204 }
205 
206 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
207 				      const char *name, unsigned flags)
208 {
209 	struct knav_queue *qh;
210 	unsigned id;
211 	int ret = 0;
212 
213 	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
214 	if (!qh)
215 		return ERR_PTR(-ENOMEM);
216 
217 	qh->flags = flags;
218 	qh->inst = inst;
219 	id = inst->id - inst->qmgr->start_queue;
220 	qh->reg_push = &inst->qmgr->reg_push[id];
221 	qh->reg_pop = &inst->qmgr->reg_pop[id];
222 	qh->reg_peek = &inst->qmgr->reg_peek[id];
223 
224 	/* first opener? */
225 	if (!knav_queue_is_busy(inst)) {
226 		struct knav_range_info *range = inst->range;
227 
228 		inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
229 		if (range->ops && range->ops->open_queue)
230 			ret = range->ops->open_queue(range, inst, flags);
231 
232 		if (ret) {
233 			devm_kfree(inst->kdev->dev, qh);
234 			return ERR_PTR(ret);
235 		}
236 	}
237 	list_add_tail_rcu(&qh->list, &inst->handles);
238 	return qh;
239 }
240 
241 static struct knav_queue *
242 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
243 {
244 	struct knav_queue_inst *inst;
245 	struct knav_queue *qh;
246 
247 	mutex_lock(&knav_dev_lock);
248 
249 	qh = ERR_PTR(-ENODEV);
250 	inst = knav_queue_find_by_id(id);
251 	if (!inst)
252 		goto unlock_ret;
253 
254 	qh = ERR_PTR(-EEXIST);
255 	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
256 		goto unlock_ret;
257 
258 	qh = ERR_PTR(-EBUSY);
259 	if ((flags & KNAV_QUEUE_SHARED) &&
260 	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
261 		goto unlock_ret;
262 
263 	qh = __knav_queue_open(inst, name, flags);
264 
265 unlock_ret:
266 	mutex_unlock(&knav_dev_lock);
267 
268 	return qh;
269 }
270 
271 static struct knav_queue *knav_queue_open_by_type(const char *name,
272 						unsigned type, unsigned flags)
273 {
274 	struct knav_queue_inst *inst;
275 	struct knav_queue *qh = ERR_PTR(-EINVAL);
276 	int idx;
277 
278 	mutex_lock(&knav_dev_lock);
279 
280 	for_each_instance(idx, inst, kdev) {
281 		if (knav_queue_is_reserved(inst))
282 			continue;
283 		if (!knav_queue_match_type(inst, type))
284 			continue;
285 		if (knav_queue_is_busy(inst))
286 			continue;
287 		qh = __knav_queue_open(inst, name, flags);
288 		goto unlock_ret;
289 	}
290 
291 unlock_ret:
292 	mutex_unlock(&knav_dev_lock);
293 	return qh;
294 }
295 
296 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
297 {
298 	struct knav_range_info *range = inst->range;
299 
300 	if (range->ops && range->ops->set_notify)
301 		range->ops->set_notify(range, inst, enabled);
302 }
303 
304 static int knav_queue_enable_notifier(struct knav_queue *qh)
305 {
306 	struct knav_queue_inst *inst = qh->inst;
307 	bool first;
308 
309 	if (WARN_ON(!qh->notifier_fn))
310 		return -EINVAL;
311 
312 	/* Adjust the per handle notifier count */
313 	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
314 	if (!first)
315 		return 0; /* nothing to do */
316 
317 	/* Now adjust the per instance notifier count */
318 	first = (atomic_inc_return(&inst->num_notifiers) == 1);
319 	if (first)
320 		knav_queue_set_notify(inst, true);
321 
322 	return 0;
323 }
324 
325 static int knav_queue_disable_notifier(struct knav_queue *qh)
326 {
327 	struct knav_queue_inst *inst = qh->inst;
328 	bool last;
329 
330 	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
331 	if (!last)
332 		return 0; /* nothing to do */
333 
334 	last = (atomic_dec_return(&inst->num_notifiers) == 0);
335 	if (last)
336 		knav_queue_set_notify(inst, false);
337 
338 	return 0;
339 }
340 
341 static int knav_queue_set_notifier(struct knav_queue *qh,
342 				struct knav_queue_notify_config *cfg)
343 {
344 	knav_queue_notify_fn old_fn = qh->notifier_fn;
345 
346 	if (!cfg)
347 		return -EINVAL;
348 
349 	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
350 		return -ENOTSUPP;
351 
352 	if (!cfg->fn && old_fn)
353 		knav_queue_disable_notifier(qh);
354 
355 	qh->notifier_fn = cfg->fn;
356 	qh->notifier_fn_arg = cfg->fn_arg;
357 
358 	if (cfg->fn && !old_fn)
359 		knav_queue_enable_notifier(qh);
360 
361 	return 0;
362 }
363 
364 static int knav_gp_set_notify(struct knav_range_info *range,
365 			       struct knav_queue_inst *inst,
366 			       bool enabled)
367 {
368 	unsigned queue;
369 
370 	if (range->flags & RANGE_HAS_IRQ) {
371 		queue = inst->id - range->queue_base;
372 		if (enabled)
373 			enable_irq(range->irqs[queue].irq);
374 		else
375 			disable_irq_nosync(range->irqs[queue].irq);
376 	}
377 	return 0;
378 }
379 
380 static int knav_gp_open_queue(struct knav_range_info *range,
381 				struct knav_queue_inst *inst, unsigned flags)
382 {
383 	return knav_queue_setup_irq(range, inst);
384 }
385 
386 static int knav_gp_close_queue(struct knav_range_info *range,
387 				struct knav_queue_inst *inst)
388 {
389 	knav_queue_free_irq(inst);
390 	return 0;
391 }
392 
393 struct knav_range_ops knav_gp_range_ops = {
394 	.set_notify	= knav_gp_set_notify,
395 	.open_queue	= knav_gp_open_queue,
396 	.close_queue	= knav_gp_close_queue,
397 };
398 
399 
400 static int knav_queue_get_count(void *qhandle)
401 {
402 	struct knav_queue *qh = qhandle;
403 	struct knav_queue_inst *inst = qh->inst;
404 
405 	return readl_relaxed(&qh->reg_peek[0].entry_count) +
406 		atomic_read(&inst->desc_count);
407 }
408 
409 static void knav_queue_debug_show_instance(struct seq_file *s,
410 					struct knav_queue_inst *inst)
411 {
412 	struct knav_device *kdev = inst->kdev;
413 	struct knav_queue *qh;
414 
415 	if (!knav_queue_is_busy(inst))
416 		return;
417 
418 	seq_printf(s, "\tqueue id %d (%s)\n",
419 		   kdev->base_id + inst->id, inst->name);
420 	for_each_handle_rcu(qh, inst) {
421 		seq_printf(s, "\t\thandle %p: ", qh);
422 		seq_printf(s, "pushes %8d, ",
423 			   atomic_read(&qh->stats.pushes));
424 		seq_printf(s, "pops %8d, ",
425 			   atomic_read(&qh->stats.pops));
426 		seq_printf(s, "count %8d, ",
427 			   knav_queue_get_count(qh));
428 		seq_printf(s, "notifies %8d, ",
429 			   atomic_read(&qh->stats.notifies));
430 		seq_printf(s, "push errors %8d, ",
431 			   atomic_read(&qh->stats.push_errors));
432 		seq_printf(s, "pop errors %8d\n",
433 			   atomic_read(&qh->stats.pop_errors));
434 	}
435 }
436 
437 static int knav_queue_debug_show(struct seq_file *s, void *v)
438 {
439 	struct knav_queue_inst *inst;
440 	int idx;
441 
442 	mutex_lock(&knav_dev_lock);
443 	seq_printf(s, "%s: %u-%u\n",
444 		   dev_name(kdev->dev), kdev->base_id,
445 		   kdev->base_id + kdev->num_queues - 1);
446 	for_each_instance(idx, inst, kdev)
447 		knav_queue_debug_show_instance(s, inst);
448 	mutex_unlock(&knav_dev_lock);
449 
450 	return 0;
451 }
452 
453 static int knav_queue_debug_open(struct inode *inode, struct file *file)
454 {
455 	return single_open(file, knav_queue_debug_show, NULL);
456 }
457 
458 static const struct file_operations knav_queue_debug_ops = {
459 	.open		= knav_queue_debug_open,
460 	.read		= seq_read,
461 	.llseek		= seq_lseek,
462 	.release	= single_release,
463 };
464 
465 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
466 					u32 flags)
467 {
468 	unsigned long end;
469 	u32 val = 0;
470 
471 	end = jiffies + msecs_to_jiffies(timeout);
472 	while (time_after(end, jiffies)) {
473 		val = readl_relaxed(addr);
474 		if (flags)
475 			val &= flags;
476 		if (!val)
477 			break;
478 		cpu_relax();
479 	}
480 	return val ? -ETIMEDOUT : 0;
481 }
482 
483 
484 static int knav_queue_flush(struct knav_queue *qh)
485 {
486 	struct knav_queue_inst *inst = qh->inst;
487 	unsigned id = inst->id - inst->qmgr->start_queue;
488 
489 	atomic_set(&inst->desc_count, 0);
490 	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
491 	return 0;
492 }
493 
494 /**
495  * knav_queue_open()	- open a hardware queue
496  * @name		- name to give the queue handle
497  * @id			- desired queue number if any or specifes the type
498  *			  of queue
499  * @flags		- the following flags are applicable to queues:
500  *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
501  *			     exclusive by default.
502  *			     Subsequent attempts to open a shared queue should
503  *			     also have this flag.
504  *
505  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
506  * to check the returned value for error codes.
507  */
508 void *knav_queue_open(const char *name, unsigned id,
509 					unsigned flags)
510 {
511 	struct knav_queue *qh = ERR_PTR(-EINVAL);
512 
513 	switch (id) {
514 	case KNAV_QUEUE_QPEND:
515 	case KNAV_QUEUE_ACC:
516 	case KNAV_QUEUE_GP:
517 		qh = knav_queue_open_by_type(name, id, flags);
518 		break;
519 
520 	default:
521 		qh = knav_queue_open_by_id(name, id, flags);
522 		break;
523 	}
524 	return qh;
525 }
526 EXPORT_SYMBOL_GPL(knav_queue_open);
527 
528 /**
529  * knav_queue_close()	- close a hardware queue handle
530  * @qh			- handle to close
531  */
532 void knav_queue_close(void *qhandle)
533 {
534 	struct knav_queue *qh = qhandle;
535 	struct knav_queue_inst *inst = qh->inst;
536 
537 	while (atomic_read(&qh->notifier_enabled) > 0)
538 		knav_queue_disable_notifier(qh);
539 
540 	mutex_lock(&knav_dev_lock);
541 	list_del_rcu(&qh->list);
542 	mutex_unlock(&knav_dev_lock);
543 	synchronize_rcu();
544 	if (!knav_queue_is_busy(inst)) {
545 		struct knav_range_info *range = inst->range;
546 
547 		if (range->ops && range->ops->close_queue)
548 			range->ops->close_queue(range, inst);
549 	}
550 	devm_kfree(inst->kdev->dev, qh);
551 }
552 EXPORT_SYMBOL_GPL(knav_queue_close);
553 
554 /**
555  * knav_queue_device_control()	- Perform control operations on a queue
556  * @qh				- queue handle
557  * @cmd				- control commands
558  * @arg				- command argument
559  *
560  * Returns 0 on success, errno otherwise.
561  */
562 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
563 				unsigned long arg)
564 {
565 	struct knav_queue *qh = qhandle;
566 	struct knav_queue_notify_config *cfg;
567 	int ret;
568 
569 	switch ((int)cmd) {
570 	case KNAV_QUEUE_GET_ID:
571 		ret = qh->inst->kdev->base_id + qh->inst->id;
572 		break;
573 
574 	case KNAV_QUEUE_FLUSH:
575 		ret = knav_queue_flush(qh);
576 		break;
577 
578 	case KNAV_QUEUE_SET_NOTIFIER:
579 		cfg = (void *)arg;
580 		ret = knav_queue_set_notifier(qh, cfg);
581 		break;
582 
583 	case KNAV_QUEUE_ENABLE_NOTIFY:
584 		ret = knav_queue_enable_notifier(qh);
585 		break;
586 
587 	case KNAV_QUEUE_DISABLE_NOTIFY:
588 		ret = knav_queue_disable_notifier(qh);
589 		break;
590 
591 	case KNAV_QUEUE_GET_COUNT:
592 		ret = knav_queue_get_count(qh);
593 		break;
594 
595 	default:
596 		ret = -ENOTSUPP;
597 		break;
598 	}
599 	return ret;
600 }
601 EXPORT_SYMBOL_GPL(knav_queue_device_control);
602 
603 
604 
605 /**
606  * knav_queue_push()	- push data (or descriptor) to the tail of a queue
607  * @qh			- hardware queue handle
608  * @data		- data to push
609  * @size		- size of data to push
610  * @flags		- can be used to pass additional information
611  *
612  * Returns 0 on success, errno otherwise.
613  */
614 int knav_queue_push(void *qhandle, dma_addr_t dma,
615 					unsigned size, unsigned flags)
616 {
617 	struct knav_queue *qh = qhandle;
618 	u32 val;
619 
620 	val = (u32)dma | ((size / 16) - 1);
621 	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
622 
623 	atomic_inc(&qh->stats.pushes);
624 	return 0;
625 }
626 EXPORT_SYMBOL_GPL(knav_queue_push);
627 
628 /**
629  * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
630  * @qh			- hardware queue handle
631  * @size		- (optional) size of the data pop'ed.
632  *
633  * Returns a DMA address on success, 0 on failure.
634  */
635 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
636 {
637 	struct knav_queue *qh = qhandle;
638 	struct knav_queue_inst *inst = qh->inst;
639 	dma_addr_t dma;
640 	u32 val, idx;
641 
642 	/* are we accumulated? */
643 	if (inst->descs) {
644 		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
645 			atomic_inc(&inst->desc_count);
646 			return 0;
647 		}
648 		idx  = atomic_inc_return(&inst->desc_head);
649 		idx &= ACC_DESCS_MASK;
650 		val = inst->descs[idx];
651 	} else {
652 		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
653 		if (unlikely(!val))
654 			return 0;
655 	}
656 
657 	dma = val & DESC_PTR_MASK;
658 	if (size)
659 		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
660 
661 	atomic_inc(&qh->stats.pops);
662 	return dma;
663 }
664 EXPORT_SYMBOL_GPL(knav_queue_pop);
665 
666 /* carve out descriptors and push into queue */
667 static void kdesc_fill_pool(struct knav_pool *pool)
668 {
669 	struct knav_region *region;
670 	int i;
671 
672 	region = pool->region;
673 	pool->desc_size = region->desc_size;
674 	for (i = 0; i < pool->num_desc; i++) {
675 		int index = pool->region_offset + i;
676 		dma_addr_t dma_addr;
677 		unsigned dma_size;
678 		dma_addr = region->dma_start + (region->desc_size * index);
679 		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
680 		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
681 					   DMA_TO_DEVICE);
682 		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
683 	}
684 }
685 
686 /* pop out descriptors and close the queue */
687 static void kdesc_empty_pool(struct knav_pool *pool)
688 {
689 	dma_addr_t dma;
690 	unsigned size;
691 	void *desc;
692 	int i;
693 
694 	if (!pool->queue)
695 		return;
696 
697 	for (i = 0;; i++) {
698 		dma = knav_queue_pop(pool->queue, &size);
699 		if (!dma)
700 			break;
701 		desc = knav_pool_desc_dma_to_virt(pool, dma);
702 		if (!desc) {
703 			dev_dbg(pool->kdev->dev,
704 				"couldn't unmap desc, continuing\n");
705 			continue;
706 		}
707 	}
708 	WARN_ON(i != pool->num_desc);
709 	knav_queue_close(pool->queue);
710 }
711 
712 
713 /* Get the DMA address of a descriptor */
714 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
715 {
716 	struct knav_pool *pool = ph;
717 	return pool->region->dma_start + (virt - pool->region->virt_start);
718 }
719 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
720 
721 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
722 {
723 	struct knav_pool *pool = ph;
724 	return pool->region->virt_start + (dma - pool->region->dma_start);
725 }
726 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
727 
728 /**
729  * knav_pool_create()	- Create a pool of descriptors
730  * @name		- name to give the pool handle
731  * @num_desc		- numbers of descriptors in the pool
732  * @region_id		- QMSS region id from which the descriptors are to be
733  *			  allocated.
734  *
735  * Returns a pool handle on success.
736  * Use IS_ERR_OR_NULL() to identify error values on return.
737  */
738 void *knav_pool_create(const char *name,
739 					int num_desc, int region_id)
740 {
741 	struct knav_region *reg_itr, *region = NULL;
742 	struct knav_pool *pool, *pi;
743 	struct list_head *node;
744 	unsigned last_offset;
745 	bool slot_found;
746 	int ret;
747 
748 	if (!kdev)
749 		return ERR_PTR(-EPROBE_DEFER);
750 
751 	if (!kdev->dev)
752 		return ERR_PTR(-ENODEV);
753 
754 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
755 	if (!pool) {
756 		dev_err(kdev->dev, "out of memory allocating pool\n");
757 		return ERR_PTR(-ENOMEM);
758 	}
759 
760 	for_each_region(kdev, reg_itr) {
761 		if (reg_itr->id != region_id)
762 			continue;
763 		region = reg_itr;
764 		break;
765 	}
766 
767 	if (!region) {
768 		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
769 		ret = -EINVAL;
770 		goto err;
771 	}
772 
773 	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
774 	if (IS_ERR_OR_NULL(pool->queue)) {
775 		dev_err(kdev->dev,
776 			"failed to open queue for pool(%s), error %ld\n",
777 			name, PTR_ERR(pool->queue));
778 		ret = PTR_ERR(pool->queue);
779 		goto err;
780 	}
781 
782 	pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
783 	pool->kdev = kdev;
784 	pool->dev = kdev->dev;
785 
786 	mutex_lock(&knav_dev_lock);
787 
788 	if (num_desc > (region->num_desc - region->used_desc)) {
789 		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
790 			region_id, name);
791 		ret = -ENOMEM;
792 		goto err_unlock;
793 	}
794 
795 	/* Region maintains a sorted (by region offset) list of pools
796 	 * use the first free slot which is large enough to accomodate
797 	 * the request
798 	 */
799 	last_offset = 0;
800 	slot_found = false;
801 	node = &region->pools;
802 	list_for_each_entry(pi, &region->pools, region_inst) {
803 		if ((pi->region_offset - last_offset) >= num_desc) {
804 			slot_found = true;
805 			break;
806 		}
807 		last_offset = pi->region_offset + pi->num_desc;
808 	}
809 	node = &pi->region_inst;
810 
811 	if (slot_found) {
812 		pool->region = region;
813 		pool->num_desc = num_desc;
814 		pool->region_offset = last_offset;
815 		region->used_desc += num_desc;
816 		list_add_tail(&pool->list, &kdev->pools);
817 		list_add_tail(&pool->region_inst, node);
818 	} else {
819 		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
820 			name, region_id);
821 		ret = -ENOMEM;
822 		goto err_unlock;
823 	}
824 
825 	mutex_unlock(&knav_dev_lock);
826 	kdesc_fill_pool(pool);
827 	return pool;
828 
829 err_unlock:
830 	mutex_unlock(&knav_dev_lock);
831 err:
832 	kfree(pool->name);
833 	devm_kfree(kdev->dev, pool);
834 	return ERR_PTR(ret);
835 }
836 EXPORT_SYMBOL_GPL(knav_pool_create);
837 
838 /**
839  * knav_pool_destroy()	- Free a pool of descriptors
840  * @pool		- pool handle
841  */
842 void knav_pool_destroy(void *ph)
843 {
844 	struct knav_pool *pool = ph;
845 
846 	if (!pool)
847 		return;
848 
849 	if (!pool->region)
850 		return;
851 
852 	kdesc_empty_pool(pool);
853 	mutex_lock(&knav_dev_lock);
854 
855 	pool->region->used_desc -= pool->num_desc;
856 	list_del(&pool->region_inst);
857 	list_del(&pool->list);
858 
859 	mutex_unlock(&knav_dev_lock);
860 	kfree(pool->name);
861 	devm_kfree(kdev->dev, pool);
862 }
863 EXPORT_SYMBOL_GPL(knav_pool_destroy);
864 
865 
866 /**
867  * knav_pool_desc_get()	- Get a descriptor from the pool
868  * @pool			- pool handle
869  *
870  * Returns descriptor from the pool.
871  */
872 void *knav_pool_desc_get(void *ph)
873 {
874 	struct knav_pool *pool = ph;
875 	dma_addr_t dma;
876 	unsigned size;
877 	void *data;
878 
879 	dma = knav_queue_pop(pool->queue, &size);
880 	if (unlikely(!dma))
881 		return ERR_PTR(-ENOMEM);
882 	data = knav_pool_desc_dma_to_virt(pool, dma);
883 	return data;
884 }
885 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
886 
887 /**
888  * knav_pool_desc_put()	- return a descriptor to the pool
889  * @pool			- pool handle
890  */
891 void knav_pool_desc_put(void *ph, void *desc)
892 {
893 	struct knav_pool *pool = ph;
894 	dma_addr_t dma;
895 	dma = knav_pool_desc_virt_to_dma(pool, desc);
896 	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
897 }
898 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
899 
900 /**
901  * knav_pool_desc_map()	- Map descriptor for DMA transfer
902  * @pool			- pool handle
903  * @desc			- address of descriptor to map
904  * @size			- size of descriptor to map
905  * @dma				- DMA address return pointer
906  * @dma_sz			- adjusted return pointer
907  *
908  * Returns 0 on success, errno otherwise.
909  */
910 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
911 					dma_addr_t *dma, unsigned *dma_sz)
912 {
913 	struct knav_pool *pool = ph;
914 	*dma = knav_pool_desc_virt_to_dma(pool, desc);
915 	size = min(size, pool->region->desc_size);
916 	size = ALIGN(size, SMP_CACHE_BYTES);
917 	*dma_sz = size;
918 	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
919 
920 	/* Ensure the descriptor reaches to the memory */
921 	__iowmb();
922 
923 	return 0;
924 }
925 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
926 
927 /**
928  * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
929  * @pool			- pool handle
930  * @dma				- DMA address of descriptor to unmap
931  * @dma_sz			- size of descriptor to unmap
932  *
933  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
934  * error values on return.
935  */
936 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
937 {
938 	struct knav_pool *pool = ph;
939 	unsigned desc_sz;
940 	void *desc;
941 
942 	desc_sz = min(dma_sz, pool->region->desc_size);
943 	desc = knav_pool_desc_dma_to_virt(pool, dma);
944 	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
945 	prefetch(desc);
946 	return desc;
947 }
948 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
949 
950 /**
951  * knav_pool_count()	- Get the number of descriptors in pool.
952  * @pool		- pool handle
953  * Returns number of elements in the pool.
954  */
955 int knav_pool_count(void *ph)
956 {
957 	struct knav_pool *pool = ph;
958 	return knav_queue_get_count(pool->queue);
959 }
960 EXPORT_SYMBOL_GPL(knav_pool_count);
961 
962 static void knav_queue_setup_region(struct knav_device *kdev,
963 					struct knav_region *region)
964 {
965 	unsigned hw_num_desc, hw_desc_size, size;
966 	struct knav_reg_region __iomem  *regs;
967 	struct knav_qmgr_info *qmgr;
968 	struct knav_pool *pool;
969 	int id = region->id;
970 	struct page *page;
971 
972 	/* unused region? */
973 	if (!region->num_desc) {
974 		dev_warn(kdev->dev, "unused region %s\n", region->name);
975 		return;
976 	}
977 
978 	/* get hardware descriptor value */
979 	hw_num_desc = ilog2(region->num_desc - 1) + 1;
980 
981 	/* did we force fit ourselves into nothingness? */
982 	if (region->num_desc < 32) {
983 		region->num_desc = 0;
984 		dev_warn(kdev->dev, "too few descriptors in region %s\n",
985 			 region->name);
986 		return;
987 	}
988 
989 	size = region->num_desc * region->desc_size;
990 	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
991 						GFP_DMA32);
992 	if (!region->virt_start) {
993 		region->num_desc = 0;
994 		dev_err(kdev->dev, "memory alloc failed for region %s\n",
995 			region->name);
996 		return;
997 	}
998 	region->virt_end = region->virt_start + size;
999 	page = virt_to_page(region->virt_start);
1000 
1001 	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1002 					 DMA_BIDIRECTIONAL);
1003 	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1004 		dev_err(kdev->dev, "dma map failed for region %s\n",
1005 			region->name);
1006 		goto fail;
1007 	}
1008 	region->dma_end = region->dma_start + size;
1009 
1010 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1011 	if (!pool) {
1012 		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1013 		goto fail;
1014 	}
1015 	pool->num_desc = 0;
1016 	pool->region_offset = region->num_desc;
1017 	list_add(&pool->region_inst, &region->pools);
1018 
1019 	dev_dbg(kdev->dev,
1020 		"region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1021 		region->name, id, region->desc_size, region->num_desc,
1022 		region->link_index, &region->dma_start, &region->dma_end,
1023 		region->virt_start, region->virt_end);
1024 
1025 	hw_desc_size = (region->desc_size / 16) - 1;
1026 	hw_num_desc -= 5;
1027 
1028 	for_each_qmgr(kdev, qmgr) {
1029 		regs = qmgr->reg_region + id;
1030 		writel_relaxed((u32)region->dma_start, &regs->base);
1031 		writel_relaxed(region->link_index, &regs->start_index);
1032 		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1033 			       &regs->size_count);
1034 	}
1035 	return;
1036 
1037 fail:
1038 	if (region->dma_start)
1039 		dma_unmap_page(kdev->dev, region->dma_start, size,
1040 				DMA_BIDIRECTIONAL);
1041 	if (region->virt_start)
1042 		free_pages_exact(region->virt_start, size);
1043 	region->num_desc = 0;
1044 	return;
1045 }
1046 
1047 static const char *knav_queue_find_name(struct device_node *node)
1048 {
1049 	const char *name;
1050 
1051 	if (of_property_read_string(node, "label", &name) < 0)
1052 		name = node->name;
1053 	if (!name)
1054 		name = "unknown";
1055 	return name;
1056 }
1057 
1058 static int knav_queue_setup_regions(struct knav_device *kdev,
1059 					struct device_node *regions)
1060 {
1061 	struct device *dev = kdev->dev;
1062 	struct knav_region *region;
1063 	struct device_node *child;
1064 	u32 temp[2];
1065 	int ret;
1066 
1067 	for_each_child_of_node(regions, child) {
1068 		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1069 		if (!region) {
1070 			dev_err(dev, "out of memory allocating region\n");
1071 			return -ENOMEM;
1072 		}
1073 
1074 		region->name = knav_queue_find_name(child);
1075 		of_property_read_u32(child, "id", &region->id);
1076 		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1077 		if (!ret) {
1078 			region->num_desc  = temp[0];
1079 			region->desc_size = temp[1];
1080 		} else {
1081 			dev_err(dev, "invalid region info %s\n", region->name);
1082 			devm_kfree(dev, region);
1083 			continue;
1084 		}
1085 
1086 		if (!of_get_property(child, "link-index", NULL)) {
1087 			dev_err(dev, "No link info for %s\n", region->name);
1088 			devm_kfree(dev, region);
1089 			continue;
1090 		}
1091 		ret = of_property_read_u32(child, "link-index",
1092 					   &region->link_index);
1093 		if (ret) {
1094 			dev_err(dev, "link index not found for %s\n",
1095 				region->name);
1096 			devm_kfree(dev, region);
1097 			continue;
1098 		}
1099 
1100 		INIT_LIST_HEAD(&region->pools);
1101 		list_add_tail(&region->list, &kdev->regions);
1102 	}
1103 	if (list_empty(&kdev->regions)) {
1104 		dev_err(dev, "no valid region information found\n");
1105 		return -ENODEV;
1106 	}
1107 
1108 	/* Next, we run through the regions and set things up */
1109 	for_each_region(kdev, region)
1110 		knav_queue_setup_region(kdev, region);
1111 
1112 	return 0;
1113 }
1114 
1115 static int knav_get_link_ram(struct knav_device *kdev,
1116 				       const char *name,
1117 				       struct knav_link_ram_block *block)
1118 {
1119 	struct platform_device *pdev = to_platform_device(kdev->dev);
1120 	struct device_node *node = pdev->dev.of_node;
1121 	u32 temp[2];
1122 
1123 	/*
1124 	 * Note: link ram resources are specified in "entry" sized units. In
1125 	 * reality, although entries are ~40bits in hardware, we treat them as
1126 	 * 64-bit entities here.
1127 	 *
1128 	 * For example, to specify the internal link ram for Keystone-I class
1129 	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1130 	 *
1131 	 * This gets a bit weird when other link rams are used.  For example,
1132 	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1133 	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1134 	 * which accounts for 64-bits per entry, for 16K entries.
1135 	 */
1136 	if (!of_property_read_u32_array(node, name , temp, 2)) {
1137 		if (temp[0]) {
1138 			/*
1139 			 * queue_base specified => using internal or onchip
1140 			 * link ram WARNING - we do not "reserve" this block
1141 			 */
1142 			block->dma = (dma_addr_t)temp[0];
1143 			block->virt = NULL;
1144 			block->size = temp[1];
1145 		} else {
1146 			block->size = temp[1];
1147 			/* queue_base not specific => allocate requested size */
1148 			block->virt = dmam_alloc_coherent(kdev->dev,
1149 						  8 * block->size, &block->dma,
1150 						  GFP_KERNEL);
1151 			if (!block->virt) {
1152 				dev_err(kdev->dev, "failed to alloc linkram\n");
1153 				return -ENOMEM;
1154 			}
1155 		}
1156 	} else {
1157 		return -ENODEV;
1158 	}
1159 	return 0;
1160 }
1161 
1162 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1163 {
1164 	struct knav_link_ram_block *block;
1165 	struct knav_qmgr_info *qmgr;
1166 
1167 	for_each_qmgr(kdev, qmgr) {
1168 		block = &kdev->link_rams[0];
1169 		dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1170 			&block->dma, block->virt, block->size);
1171 		writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1172 		writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1173 
1174 		block++;
1175 		if (!block->size)
1176 			continue;
1177 
1178 		dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1179 			&block->dma, block->virt, block->size);
1180 		writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1181 	}
1182 
1183 	return 0;
1184 }
1185 
1186 static int knav_setup_queue_range(struct knav_device *kdev,
1187 					struct device_node *node)
1188 {
1189 	struct device *dev = kdev->dev;
1190 	struct knav_range_info *range;
1191 	struct knav_qmgr_info *qmgr;
1192 	u32 temp[2], start, end, id, index;
1193 	int ret, i;
1194 
1195 	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1196 	if (!range) {
1197 		dev_err(dev, "out of memory allocating range\n");
1198 		return -ENOMEM;
1199 	}
1200 
1201 	range->kdev = kdev;
1202 	range->name = knav_queue_find_name(node);
1203 	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1204 	if (!ret) {
1205 		range->queue_base = temp[0] - kdev->base_id;
1206 		range->num_queues = temp[1];
1207 	} else {
1208 		dev_err(dev, "invalid queue range %s\n", range->name);
1209 		devm_kfree(dev, range);
1210 		return -EINVAL;
1211 	}
1212 
1213 	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1214 		struct of_phandle_args oirq;
1215 
1216 		if (of_irq_parse_one(node, i, &oirq))
1217 			break;
1218 
1219 		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1220 		if (range->irqs[i].irq == IRQ_NONE)
1221 			break;
1222 
1223 		range->num_irqs++;
1224 
1225 		if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3)
1226 			range->irqs[i].cpu_map =
1227 				(oirq.args[2] & 0x0000ff00) >> 8;
1228 	}
1229 
1230 	range->num_irqs = min(range->num_irqs, range->num_queues);
1231 	if (range->num_irqs)
1232 		range->flags |= RANGE_HAS_IRQ;
1233 
1234 	if (of_get_property(node, "qalloc-by-id", NULL))
1235 		range->flags |= RANGE_RESERVED;
1236 
1237 	if (of_get_property(node, "accumulator", NULL)) {
1238 		ret = knav_init_acc_range(kdev, node, range);
1239 		if (ret < 0) {
1240 			devm_kfree(dev, range);
1241 			return ret;
1242 		}
1243 	} else {
1244 		range->ops = &knav_gp_range_ops;
1245 	}
1246 
1247 	/* set threshold to 1, and flush out the queues */
1248 	for_each_qmgr(kdev, qmgr) {
1249 		start = max(qmgr->start_queue, range->queue_base);
1250 		end   = min(qmgr->start_queue + qmgr->num_queues,
1251 			    range->queue_base + range->num_queues);
1252 		for (id = start; id < end; id++) {
1253 			index = id - qmgr->start_queue;
1254 			writel_relaxed(THRESH_GTE | 1,
1255 				       &qmgr->reg_peek[index].ptr_size_thresh);
1256 			writel_relaxed(0,
1257 				       &qmgr->reg_push[index].ptr_size_thresh);
1258 		}
1259 	}
1260 
1261 	list_add_tail(&range->list, &kdev->queue_ranges);
1262 	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1263 		range->name, range->queue_base,
1264 		range->queue_base + range->num_queues - 1,
1265 		range->num_irqs,
1266 		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1267 		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1268 		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1269 	kdev->num_queues_in_use += range->num_queues;
1270 	return 0;
1271 }
1272 
1273 static int knav_setup_queue_pools(struct knav_device *kdev,
1274 				   struct device_node *queue_pools)
1275 {
1276 	struct device_node *type, *range;
1277 	int ret;
1278 
1279 	for_each_child_of_node(queue_pools, type) {
1280 		for_each_child_of_node(type, range) {
1281 			ret = knav_setup_queue_range(kdev, range);
1282 			/* return value ignored, we init the rest... */
1283 		}
1284 	}
1285 
1286 	/* ... and barf if they all failed! */
1287 	if (list_empty(&kdev->queue_ranges)) {
1288 		dev_err(kdev->dev, "no valid queue range found\n");
1289 		return -ENODEV;
1290 	}
1291 	return 0;
1292 }
1293 
1294 static void knav_free_queue_range(struct knav_device *kdev,
1295 				  struct knav_range_info *range)
1296 {
1297 	if (range->ops && range->ops->free_range)
1298 		range->ops->free_range(range);
1299 	list_del(&range->list);
1300 	devm_kfree(kdev->dev, range);
1301 }
1302 
1303 static void knav_free_queue_ranges(struct knav_device *kdev)
1304 {
1305 	struct knav_range_info *range;
1306 
1307 	for (;;) {
1308 		range = first_queue_range(kdev);
1309 		if (!range)
1310 			break;
1311 		knav_free_queue_range(kdev, range);
1312 	}
1313 }
1314 
1315 static void knav_queue_free_regions(struct knav_device *kdev)
1316 {
1317 	struct knav_region *region;
1318 	struct knav_pool *pool, *tmp;
1319 	unsigned size;
1320 
1321 	for (;;) {
1322 		region = first_region(kdev);
1323 		if (!region)
1324 			break;
1325 		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1326 			knav_pool_destroy(pool);
1327 
1328 		size = region->virt_end - region->virt_start;
1329 		if (size)
1330 			free_pages_exact(region->virt_start, size);
1331 		list_del(&region->list);
1332 		devm_kfree(kdev->dev, region);
1333 	}
1334 }
1335 
1336 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1337 					struct device_node *node, int index)
1338 {
1339 	struct resource res;
1340 	void __iomem *regs;
1341 	int ret;
1342 
1343 	ret = of_address_to_resource(node, index, &res);
1344 	if (ret) {
1345 		dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1346 			node->name, index);
1347 		return ERR_PTR(ret);
1348 	}
1349 
1350 	regs = devm_ioremap_resource(kdev->dev, &res);
1351 	if (IS_ERR(regs))
1352 		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1353 			index, node->name);
1354 	return regs;
1355 }
1356 
1357 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1358 					struct device_node *qmgrs)
1359 {
1360 	struct device *dev = kdev->dev;
1361 	struct knav_qmgr_info *qmgr;
1362 	struct device_node *child;
1363 	u32 temp[2];
1364 	int ret;
1365 
1366 	for_each_child_of_node(qmgrs, child) {
1367 		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1368 		if (!qmgr) {
1369 			dev_err(dev, "out of memory allocating qmgr\n");
1370 			return -ENOMEM;
1371 		}
1372 
1373 		ret = of_property_read_u32_array(child, "managed-queues",
1374 						 temp, 2);
1375 		if (!ret) {
1376 			qmgr->start_queue = temp[0];
1377 			qmgr->num_queues = temp[1];
1378 		} else {
1379 			dev_err(dev, "invalid qmgr queue range\n");
1380 			devm_kfree(dev, qmgr);
1381 			continue;
1382 		}
1383 
1384 		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1385 			 qmgr->start_queue, qmgr->num_queues);
1386 
1387 		qmgr->reg_peek =
1388 			knav_queue_map_reg(kdev, child,
1389 					   KNAV_QUEUE_PEEK_REG_INDEX);
1390 		qmgr->reg_status =
1391 			knav_queue_map_reg(kdev, child,
1392 					   KNAV_QUEUE_STATUS_REG_INDEX);
1393 		qmgr->reg_config =
1394 			knav_queue_map_reg(kdev, child,
1395 					   KNAV_QUEUE_CONFIG_REG_INDEX);
1396 		qmgr->reg_region =
1397 			knav_queue_map_reg(kdev, child,
1398 					   KNAV_QUEUE_REGION_REG_INDEX);
1399 		qmgr->reg_push =
1400 			knav_queue_map_reg(kdev, child,
1401 					   KNAV_QUEUE_PUSH_REG_INDEX);
1402 		qmgr->reg_pop =
1403 			knav_queue_map_reg(kdev, child,
1404 					   KNAV_QUEUE_POP_REG_INDEX);
1405 
1406 		if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1407 		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1408 		    IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1409 			dev_err(dev, "failed to map qmgr regs\n");
1410 			if (!IS_ERR(qmgr->reg_peek))
1411 				devm_iounmap(dev, qmgr->reg_peek);
1412 			if (!IS_ERR(qmgr->reg_status))
1413 				devm_iounmap(dev, qmgr->reg_status);
1414 			if (!IS_ERR(qmgr->reg_config))
1415 				devm_iounmap(dev, qmgr->reg_config);
1416 			if (!IS_ERR(qmgr->reg_region))
1417 				devm_iounmap(dev, qmgr->reg_region);
1418 			if (!IS_ERR(qmgr->reg_push))
1419 				devm_iounmap(dev, qmgr->reg_push);
1420 			if (!IS_ERR(qmgr->reg_pop))
1421 				devm_iounmap(dev, qmgr->reg_pop);
1422 			devm_kfree(dev, qmgr);
1423 			continue;
1424 		}
1425 
1426 		list_add_tail(&qmgr->list, &kdev->qmgrs);
1427 		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1428 			 qmgr->start_queue, qmgr->num_queues,
1429 			 qmgr->reg_peek, qmgr->reg_status,
1430 			 qmgr->reg_config, qmgr->reg_region,
1431 			 qmgr->reg_push, qmgr->reg_pop);
1432 	}
1433 	return 0;
1434 }
1435 
1436 static int knav_queue_init_pdsps(struct knav_device *kdev,
1437 					struct device_node *pdsps)
1438 {
1439 	struct device *dev = kdev->dev;
1440 	struct knav_pdsp_info *pdsp;
1441 	struct device_node *child;
1442 
1443 	for_each_child_of_node(pdsps, child) {
1444 		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1445 		if (!pdsp) {
1446 			dev_err(dev, "out of memory allocating pdsp\n");
1447 			return -ENOMEM;
1448 		}
1449 		pdsp->name = knav_queue_find_name(child);
1450 		pdsp->iram =
1451 			knav_queue_map_reg(kdev, child,
1452 					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1453 		pdsp->regs =
1454 			knav_queue_map_reg(kdev, child,
1455 					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1456 		pdsp->intd =
1457 			knav_queue_map_reg(kdev, child,
1458 					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1459 		pdsp->command =
1460 			knav_queue_map_reg(kdev, child,
1461 					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1462 
1463 		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1464 		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1465 			dev_err(dev, "failed to map pdsp %s regs\n",
1466 				pdsp->name);
1467 			if (!IS_ERR(pdsp->command))
1468 				devm_iounmap(dev, pdsp->command);
1469 			if (!IS_ERR(pdsp->iram))
1470 				devm_iounmap(dev, pdsp->iram);
1471 			if (!IS_ERR(pdsp->regs))
1472 				devm_iounmap(dev, pdsp->regs);
1473 			if (!IS_ERR(pdsp->intd))
1474 				devm_iounmap(dev, pdsp->intd);
1475 			devm_kfree(dev, pdsp);
1476 			continue;
1477 		}
1478 		of_property_read_u32(child, "id", &pdsp->id);
1479 		list_add_tail(&pdsp->list, &kdev->pdsps);
1480 		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1481 			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1482 			pdsp->intd);
1483 	}
1484 	return 0;
1485 }
1486 
1487 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1488 			  struct knav_pdsp_info *pdsp)
1489 {
1490 	u32 val, timeout = 1000;
1491 	int ret;
1492 
1493 	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1494 	writel_relaxed(val, &pdsp->regs->control);
1495 	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1496 					PDSP_CTRL_RUNNING);
1497 	if (ret < 0) {
1498 		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1499 		return ret;
1500 	}
1501 	pdsp->loaded = false;
1502 	pdsp->started = false;
1503 	return 0;
1504 }
1505 
1506 static int knav_queue_load_pdsp(struct knav_device *kdev,
1507 			  struct knav_pdsp_info *pdsp)
1508 {
1509 	int i, ret, fwlen;
1510 	const struct firmware *fw;
1511 	bool found = false;
1512 	u32 *fwdata;
1513 
1514 	for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1515 		if (knav_acc_firmwares[i]) {
1516 			ret = request_firmware_direct(&fw,
1517 						      knav_acc_firmwares[i],
1518 						      kdev->dev);
1519 			if (!ret) {
1520 				found = true;
1521 				break;
1522 			}
1523 		}
1524 	}
1525 
1526 	if (!found) {
1527 		dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1528 		return -ENODEV;
1529 	}
1530 
1531 	dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1532 		 knav_acc_firmwares[i]);
1533 
1534 	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1535 	/* download the firmware */
1536 	fwdata = (u32 *)fw->data;
1537 	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1538 	for (i = 0; i < fwlen; i++)
1539 		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1540 
1541 	release_firmware(fw);
1542 	return 0;
1543 }
1544 
1545 static int knav_queue_start_pdsp(struct knav_device *kdev,
1546 			   struct knav_pdsp_info *pdsp)
1547 {
1548 	u32 val, timeout = 1000;
1549 	int ret;
1550 
1551 	/* write a command for sync */
1552 	writel_relaxed(0xffffffff, pdsp->command);
1553 	while (readl_relaxed(pdsp->command) != 0xffffffff)
1554 		cpu_relax();
1555 
1556 	/* soft reset the PDSP */
1557 	val  = readl_relaxed(&pdsp->regs->control);
1558 	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1559 	writel_relaxed(val, &pdsp->regs->control);
1560 
1561 	/* enable pdsp */
1562 	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1563 	writel_relaxed(val, &pdsp->regs->control);
1564 
1565 	/* wait for command register to clear */
1566 	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1567 	if (ret < 0) {
1568 		dev_err(kdev->dev,
1569 			"timed out on pdsp %s command register wait\n",
1570 			pdsp->name);
1571 		return ret;
1572 	}
1573 	return 0;
1574 }
1575 
1576 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1577 {
1578 	struct knav_pdsp_info *pdsp;
1579 
1580 	/* disable all pdsps */
1581 	for_each_pdsp(kdev, pdsp)
1582 		knav_queue_stop_pdsp(kdev, pdsp);
1583 }
1584 
1585 static int knav_queue_start_pdsps(struct knav_device *kdev)
1586 {
1587 	struct knav_pdsp_info *pdsp;
1588 	int ret;
1589 
1590 	knav_queue_stop_pdsps(kdev);
1591 	/* now load them all. We return success even if pdsp
1592 	 * is not loaded as acc channels are optional on having
1593 	 * firmware availability in the system. We set the loaded
1594 	 * and stated flag and when initialize the acc range, check
1595 	 * it and init the range only if pdsp is started.
1596 	 */
1597 	for_each_pdsp(kdev, pdsp) {
1598 		ret = knav_queue_load_pdsp(kdev, pdsp);
1599 		if (!ret)
1600 			pdsp->loaded = true;
1601 	}
1602 
1603 	for_each_pdsp(kdev, pdsp) {
1604 		if (pdsp->loaded) {
1605 			ret = knav_queue_start_pdsp(kdev, pdsp);
1606 			if (!ret)
1607 				pdsp->started = true;
1608 		}
1609 	}
1610 	return 0;
1611 }
1612 
1613 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1614 {
1615 	struct knav_qmgr_info *qmgr;
1616 
1617 	for_each_qmgr(kdev, qmgr) {
1618 		if ((id >= qmgr->start_queue) &&
1619 		    (id < qmgr->start_queue + qmgr->num_queues))
1620 			return qmgr;
1621 	}
1622 	return NULL;
1623 }
1624 
1625 static int knav_queue_init_queue(struct knav_device *kdev,
1626 					struct knav_range_info *range,
1627 					struct knav_queue_inst *inst,
1628 					unsigned id)
1629 {
1630 	char irq_name[KNAV_NAME_SIZE];
1631 	inst->qmgr = knav_find_qmgr(id);
1632 	if (!inst->qmgr)
1633 		return -1;
1634 
1635 	INIT_LIST_HEAD(&inst->handles);
1636 	inst->kdev = kdev;
1637 	inst->range = range;
1638 	inst->irq_num = -1;
1639 	inst->id = id;
1640 	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1641 	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1642 
1643 	if (range->ops && range->ops->init_queue)
1644 		return range->ops->init_queue(range, inst);
1645 	else
1646 		return 0;
1647 }
1648 
1649 static int knav_queue_init_queues(struct knav_device *kdev)
1650 {
1651 	struct knav_range_info *range;
1652 	int size, id, base_idx;
1653 	int idx = 0, ret = 0;
1654 
1655 	/* how much do we need for instance data? */
1656 	size = sizeof(struct knav_queue_inst);
1657 
1658 	/* round this up to a power of 2, keep the index to instance
1659 	 * arithmetic fast.
1660 	 * */
1661 	kdev->inst_shift = order_base_2(size);
1662 	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1663 	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1664 	if (!kdev->instances)
1665 		return -ENOMEM;
1666 
1667 	for_each_queue_range(kdev, range) {
1668 		if (range->ops && range->ops->init_range)
1669 			range->ops->init_range(range);
1670 		base_idx = idx;
1671 		for (id = range->queue_base;
1672 		     id < range->queue_base + range->num_queues; id++, idx++) {
1673 			ret = knav_queue_init_queue(kdev, range,
1674 					knav_queue_idx_to_inst(kdev, idx), id);
1675 			if (ret < 0)
1676 				return ret;
1677 		}
1678 		range->queue_base_inst =
1679 			knav_queue_idx_to_inst(kdev, base_idx);
1680 	}
1681 	return 0;
1682 }
1683 
1684 static int knav_queue_probe(struct platform_device *pdev)
1685 {
1686 	struct device_node *node = pdev->dev.of_node;
1687 	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1688 	struct device *dev = &pdev->dev;
1689 	u32 temp[2];
1690 	int ret;
1691 
1692 	if (!node) {
1693 		dev_err(dev, "device tree info unavailable\n");
1694 		return -ENODEV;
1695 	}
1696 
1697 	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1698 	if (!kdev) {
1699 		dev_err(dev, "memory allocation failed\n");
1700 		return -ENOMEM;
1701 	}
1702 
1703 	platform_set_drvdata(pdev, kdev);
1704 	kdev->dev = dev;
1705 	INIT_LIST_HEAD(&kdev->queue_ranges);
1706 	INIT_LIST_HEAD(&kdev->qmgrs);
1707 	INIT_LIST_HEAD(&kdev->pools);
1708 	INIT_LIST_HEAD(&kdev->regions);
1709 	INIT_LIST_HEAD(&kdev->pdsps);
1710 
1711 	pm_runtime_enable(&pdev->dev);
1712 	ret = pm_runtime_get_sync(&pdev->dev);
1713 	if (ret < 0) {
1714 		dev_err(dev, "Failed to enable QMSS\n");
1715 		return ret;
1716 	}
1717 
1718 	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1719 		dev_err(dev, "queue-range not specified\n");
1720 		ret = -ENODEV;
1721 		goto err;
1722 	}
1723 	kdev->base_id    = temp[0];
1724 	kdev->num_queues = temp[1];
1725 
1726 	/* Initialize queue managers using device tree configuration */
1727 	qmgrs =  of_get_child_by_name(node, "qmgrs");
1728 	if (!qmgrs) {
1729 		dev_err(dev, "queue manager info not specified\n");
1730 		ret = -ENODEV;
1731 		goto err;
1732 	}
1733 	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1734 	of_node_put(qmgrs);
1735 	if (ret)
1736 		goto err;
1737 
1738 	/* get pdsp configuration values from device tree */
1739 	pdsps =  of_get_child_by_name(node, "pdsps");
1740 	if (pdsps) {
1741 		ret = knav_queue_init_pdsps(kdev, pdsps);
1742 		if (ret)
1743 			goto err;
1744 
1745 		ret = knav_queue_start_pdsps(kdev);
1746 		if (ret)
1747 			goto err;
1748 	}
1749 	of_node_put(pdsps);
1750 
1751 	/* get usable queue range values from device tree */
1752 	queue_pools = of_get_child_by_name(node, "queue-pools");
1753 	if (!queue_pools) {
1754 		dev_err(dev, "queue-pools not specified\n");
1755 		ret = -ENODEV;
1756 		goto err;
1757 	}
1758 	ret = knav_setup_queue_pools(kdev, queue_pools);
1759 	of_node_put(queue_pools);
1760 	if (ret)
1761 		goto err;
1762 
1763 	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1764 	if (ret) {
1765 		dev_err(kdev->dev, "could not setup linking ram\n");
1766 		goto err;
1767 	}
1768 
1769 	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1770 	if (ret) {
1771 		/*
1772 		 * nothing really, we have one linking ram already, so we just
1773 		 * live within our means
1774 		 */
1775 	}
1776 
1777 	ret = knav_queue_setup_link_ram(kdev);
1778 	if (ret)
1779 		goto err;
1780 
1781 	regions =  of_get_child_by_name(node, "descriptor-regions");
1782 	if (!regions) {
1783 		dev_err(dev, "descriptor-regions not specified\n");
1784 		goto err;
1785 	}
1786 	ret = knav_queue_setup_regions(kdev, regions);
1787 	of_node_put(regions);
1788 	if (ret)
1789 		goto err;
1790 
1791 	ret = knav_queue_init_queues(kdev);
1792 	if (ret < 0) {
1793 		dev_err(dev, "hwqueue initialization failed\n");
1794 		goto err;
1795 	}
1796 
1797 	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1798 			    &knav_queue_debug_ops);
1799 	return 0;
1800 
1801 err:
1802 	knav_queue_stop_pdsps(kdev);
1803 	knav_queue_free_regions(kdev);
1804 	knav_free_queue_ranges(kdev);
1805 	pm_runtime_put_sync(&pdev->dev);
1806 	pm_runtime_disable(&pdev->dev);
1807 	return ret;
1808 }
1809 
1810 static int knav_queue_remove(struct platform_device *pdev)
1811 {
1812 	/* TODO: Free resources */
1813 	pm_runtime_put_sync(&pdev->dev);
1814 	pm_runtime_disable(&pdev->dev);
1815 	return 0;
1816 }
1817 
1818 /* Match table for of_platform binding */
1819 static struct of_device_id keystone_qmss_of_match[] = {
1820 	{ .compatible = "ti,keystone-navigator-qmss", },
1821 	{},
1822 };
1823 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1824 
1825 static struct platform_driver keystone_qmss_driver = {
1826 	.probe		= knav_queue_probe,
1827 	.remove		= knav_queue_remove,
1828 	.driver		= {
1829 		.name	= "keystone-navigator-qmss",
1830 		.of_match_table = keystone_qmss_of_match,
1831 	},
1832 };
1833 module_platform_driver(keystone_qmss_driver);
1834 
1835 MODULE_LICENSE("GPL v2");
1836 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1837 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1838 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1839