1 /* 2 * Keystone Queue Manager subsystem driver 3 * 4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com 5 * Authors: Sandeep Nair <sandeep_n@ti.com> 6 * Cyril Chemparathy <cyril@ti.com> 7 * Santosh Shilimkar <santosh.shilimkar@ti.com> 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * version 2 as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 */ 18 19 #include <linux/debugfs.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/firmware.h> 22 #include <linux/interrupt.h> 23 #include <linux/io.h> 24 #include <linux/module.h> 25 #include <linux/of_address.h> 26 #include <linux/of_device.h> 27 #include <linux/of_irq.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/slab.h> 30 #include <linux/soc/ti/knav_qmss.h> 31 32 #include "knav_qmss.h" 33 34 static struct knav_device *kdev; 35 static DEFINE_MUTEX(knav_dev_lock); 36 37 /* Queue manager register indices in DTS */ 38 #define KNAV_QUEUE_PEEK_REG_INDEX 0 39 #define KNAV_QUEUE_STATUS_REG_INDEX 1 40 #define KNAV_QUEUE_CONFIG_REG_INDEX 2 41 #define KNAV_QUEUE_REGION_REG_INDEX 3 42 #define KNAV_QUEUE_PUSH_REG_INDEX 4 43 #define KNAV_QUEUE_POP_REG_INDEX 5 44 45 /* PDSP register indices in DTS */ 46 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0 47 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1 48 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2 49 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3 50 51 #define knav_queue_idx_to_inst(kdev, idx) \ 52 (kdev->instances + (idx << kdev->inst_shift)) 53 54 #define for_each_handle_rcu(qh, inst) \ 55 list_for_each_entry_rcu(qh, &inst->handles, list) 56 57 #define for_each_instance(idx, inst, kdev) \ 58 for (idx = 0, inst = kdev->instances; \ 59 idx < (kdev)->num_queues_in_use; \ 60 idx++, inst = knav_queue_idx_to_inst(kdev, idx)) 61 62 /* All firmware file names end up here. List the firmware file names below. 63 * Newest followed by older ones. Search is done from start of the array 64 * until a firmware file is found. 65 */ 66 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"}; 67 68 /** 69 * knav_queue_notify: qmss queue notfier call 70 * 71 * @inst: qmss queue instance like accumulator 72 */ 73 void knav_queue_notify(struct knav_queue_inst *inst) 74 { 75 struct knav_queue *qh; 76 77 if (!inst) 78 return; 79 80 rcu_read_lock(); 81 for_each_handle_rcu(qh, inst) { 82 if (atomic_read(&qh->notifier_enabled) <= 0) 83 continue; 84 if (WARN_ON(!qh->notifier_fn)) 85 continue; 86 atomic_inc(&qh->stats.notifies); 87 qh->notifier_fn(qh->notifier_fn_arg); 88 } 89 rcu_read_unlock(); 90 } 91 EXPORT_SYMBOL_GPL(knav_queue_notify); 92 93 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata) 94 { 95 struct knav_queue_inst *inst = _instdata; 96 97 knav_queue_notify(inst); 98 return IRQ_HANDLED; 99 } 100 101 static int knav_queue_setup_irq(struct knav_range_info *range, 102 struct knav_queue_inst *inst) 103 { 104 unsigned queue = inst->id - range->queue_base; 105 unsigned long cpu_map; 106 int ret = 0, irq; 107 108 if (range->flags & RANGE_HAS_IRQ) { 109 irq = range->irqs[queue].irq; 110 cpu_map = range->irqs[queue].cpu_map; 111 ret = request_irq(irq, knav_queue_int_handler, 0, 112 inst->irq_name, inst); 113 if (ret) 114 return ret; 115 disable_irq(irq); 116 if (cpu_map) { 117 ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map)); 118 if (ret) { 119 dev_warn(range->kdev->dev, 120 "Failed to set IRQ affinity\n"); 121 return ret; 122 } 123 } 124 } 125 return ret; 126 } 127 128 static void knav_queue_free_irq(struct knav_queue_inst *inst) 129 { 130 struct knav_range_info *range = inst->range; 131 unsigned queue = inst->id - inst->range->queue_base; 132 int irq; 133 134 if (range->flags & RANGE_HAS_IRQ) { 135 irq = range->irqs[queue].irq; 136 irq_set_affinity_hint(irq, NULL); 137 free_irq(irq, inst); 138 } 139 } 140 141 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst) 142 { 143 return !list_empty(&inst->handles); 144 } 145 146 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst) 147 { 148 return inst->range->flags & RANGE_RESERVED; 149 } 150 151 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst) 152 { 153 struct knav_queue *tmp; 154 155 rcu_read_lock(); 156 for_each_handle_rcu(tmp, inst) { 157 if (tmp->flags & KNAV_QUEUE_SHARED) { 158 rcu_read_unlock(); 159 return true; 160 } 161 } 162 rcu_read_unlock(); 163 return false; 164 } 165 166 static inline bool knav_queue_match_type(struct knav_queue_inst *inst, 167 unsigned type) 168 { 169 if ((type == KNAV_QUEUE_QPEND) && 170 (inst->range->flags & RANGE_HAS_IRQ)) { 171 return true; 172 } else if ((type == KNAV_QUEUE_ACC) && 173 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) { 174 return true; 175 } else if ((type == KNAV_QUEUE_GP) && 176 !(inst->range->flags & 177 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) { 178 return true; 179 } 180 return false; 181 } 182 183 static inline struct knav_queue_inst * 184 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id) 185 { 186 struct knav_queue_inst *inst; 187 int idx; 188 189 for_each_instance(idx, inst, kdev) { 190 if (inst->id == id) 191 return inst; 192 } 193 return NULL; 194 } 195 196 static inline struct knav_queue_inst *knav_queue_find_by_id(int id) 197 { 198 if (kdev->base_id <= id && 199 kdev->base_id + kdev->num_queues > id) { 200 id -= kdev->base_id; 201 return knav_queue_match_id_to_inst(kdev, id); 202 } 203 return NULL; 204 } 205 206 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst, 207 const char *name, unsigned flags) 208 { 209 struct knav_queue *qh; 210 unsigned id; 211 int ret = 0; 212 213 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL); 214 if (!qh) 215 return ERR_PTR(-ENOMEM); 216 217 qh->flags = flags; 218 qh->inst = inst; 219 id = inst->id - inst->qmgr->start_queue; 220 qh->reg_push = &inst->qmgr->reg_push[id]; 221 qh->reg_pop = &inst->qmgr->reg_pop[id]; 222 qh->reg_peek = &inst->qmgr->reg_peek[id]; 223 224 /* first opener? */ 225 if (!knav_queue_is_busy(inst)) { 226 struct knav_range_info *range = inst->range; 227 228 inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL); 229 if (range->ops && range->ops->open_queue) 230 ret = range->ops->open_queue(range, inst, flags); 231 232 if (ret) { 233 devm_kfree(inst->kdev->dev, qh); 234 return ERR_PTR(ret); 235 } 236 } 237 list_add_tail_rcu(&qh->list, &inst->handles); 238 return qh; 239 } 240 241 static struct knav_queue * 242 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags) 243 { 244 struct knav_queue_inst *inst; 245 struct knav_queue *qh; 246 247 mutex_lock(&knav_dev_lock); 248 249 qh = ERR_PTR(-ENODEV); 250 inst = knav_queue_find_by_id(id); 251 if (!inst) 252 goto unlock_ret; 253 254 qh = ERR_PTR(-EEXIST); 255 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst)) 256 goto unlock_ret; 257 258 qh = ERR_PTR(-EBUSY); 259 if ((flags & KNAV_QUEUE_SHARED) && 260 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst))) 261 goto unlock_ret; 262 263 qh = __knav_queue_open(inst, name, flags); 264 265 unlock_ret: 266 mutex_unlock(&knav_dev_lock); 267 268 return qh; 269 } 270 271 static struct knav_queue *knav_queue_open_by_type(const char *name, 272 unsigned type, unsigned flags) 273 { 274 struct knav_queue_inst *inst; 275 struct knav_queue *qh = ERR_PTR(-EINVAL); 276 int idx; 277 278 mutex_lock(&knav_dev_lock); 279 280 for_each_instance(idx, inst, kdev) { 281 if (knav_queue_is_reserved(inst)) 282 continue; 283 if (!knav_queue_match_type(inst, type)) 284 continue; 285 if (knav_queue_is_busy(inst)) 286 continue; 287 qh = __knav_queue_open(inst, name, flags); 288 goto unlock_ret; 289 } 290 291 unlock_ret: 292 mutex_unlock(&knav_dev_lock); 293 return qh; 294 } 295 296 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled) 297 { 298 struct knav_range_info *range = inst->range; 299 300 if (range->ops && range->ops->set_notify) 301 range->ops->set_notify(range, inst, enabled); 302 } 303 304 static int knav_queue_enable_notifier(struct knav_queue *qh) 305 { 306 struct knav_queue_inst *inst = qh->inst; 307 bool first; 308 309 if (WARN_ON(!qh->notifier_fn)) 310 return -EINVAL; 311 312 /* Adjust the per handle notifier count */ 313 first = (atomic_inc_return(&qh->notifier_enabled) == 1); 314 if (!first) 315 return 0; /* nothing to do */ 316 317 /* Now adjust the per instance notifier count */ 318 first = (atomic_inc_return(&inst->num_notifiers) == 1); 319 if (first) 320 knav_queue_set_notify(inst, true); 321 322 return 0; 323 } 324 325 static int knav_queue_disable_notifier(struct knav_queue *qh) 326 { 327 struct knav_queue_inst *inst = qh->inst; 328 bool last; 329 330 last = (atomic_dec_return(&qh->notifier_enabled) == 0); 331 if (!last) 332 return 0; /* nothing to do */ 333 334 last = (atomic_dec_return(&inst->num_notifiers) == 0); 335 if (last) 336 knav_queue_set_notify(inst, false); 337 338 return 0; 339 } 340 341 static int knav_queue_set_notifier(struct knav_queue *qh, 342 struct knav_queue_notify_config *cfg) 343 { 344 knav_queue_notify_fn old_fn = qh->notifier_fn; 345 346 if (!cfg) 347 return -EINVAL; 348 349 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) 350 return -ENOTSUPP; 351 352 if (!cfg->fn && old_fn) 353 knav_queue_disable_notifier(qh); 354 355 qh->notifier_fn = cfg->fn; 356 qh->notifier_fn_arg = cfg->fn_arg; 357 358 if (cfg->fn && !old_fn) 359 knav_queue_enable_notifier(qh); 360 361 return 0; 362 } 363 364 static int knav_gp_set_notify(struct knav_range_info *range, 365 struct knav_queue_inst *inst, 366 bool enabled) 367 { 368 unsigned queue; 369 370 if (range->flags & RANGE_HAS_IRQ) { 371 queue = inst->id - range->queue_base; 372 if (enabled) 373 enable_irq(range->irqs[queue].irq); 374 else 375 disable_irq_nosync(range->irqs[queue].irq); 376 } 377 return 0; 378 } 379 380 static int knav_gp_open_queue(struct knav_range_info *range, 381 struct knav_queue_inst *inst, unsigned flags) 382 { 383 return knav_queue_setup_irq(range, inst); 384 } 385 386 static int knav_gp_close_queue(struct knav_range_info *range, 387 struct knav_queue_inst *inst) 388 { 389 knav_queue_free_irq(inst); 390 return 0; 391 } 392 393 struct knav_range_ops knav_gp_range_ops = { 394 .set_notify = knav_gp_set_notify, 395 .open_queue = knav_gp_open_queue, 396 .close_queue = knav_gp_close_queue, 397 }; 398 399 400 static int knav_queue_get_count(void *qhandle) 401 { 402 struct knav_queue *qh = qhandle; 403 struct knav_queue_inst *inst = qh->inst; 404 405 return readl_relaxed(&qh->reg_peek[0].entry_count) + 406 atomic_read(&inst->desc_count); 407 } 408 409 static void knav_queue_debug_show_instance(struct seq_file *s, 410 struct knav_queue_inst *inst) 411 { 412 struct knav_device *kdev = inst->kdev; 413 struct knav_queue *qh; 414 415 if (!knav_queue_is_busy(inst)) 416 return; 417 418 seq_printf(s, "\tqueue id %d (%s)\n", 419 kdev->base_id + inst->id, inst->name); 420 for_each_handle_rcu(qh, inst) { 421 seq_printf(s, "\t\thandle %p: ", qh); 422 seq_printf(s, "pushes %8d, ", 423 atomic_read(&qh->stats.pushes)); 424 seq_printf(s, "pops %8d, ", 425 atomic_read(&qh->stats.pops)); 426 seq_printf(s, "count %8d, ", 427 knav_queue_get_count(qh)); 428 seq_printf(s, "notifies %8d, ", 429 atomic_read(&qh->stats.notifies)); 430 seq_printf(s, "push errors %8d, ", 431 atomic_read(&qh->stats.push_errors)); 432 seq_printf(s, "pop errors %8d\n", 433 atomic_read(&qh->stats.pop_errors)); 434 } 435 } 436 437 static int knav_queue_debug_show(struct seq_file *s, void *v) 438 { 439 struct knav_queue_inst *inst; 440 int idx; 441 442 mutex_lock(&knav_dev_lock); 443 seq_printf(s, "%s: %u-%u\n", 444 dev_name(kdev->dev), kdev->base_id, 445 kdev->base_id + kdev->num_queues - 1); 446 for_each_instance(idx, inst, kdev) 447 knav_queue_debug_show_instance(s, inst); 448 mutex_unlock(&knav_dev_lock); 449 450 return 0; 451 } 452 453 static int knav_queue_debug_open(struct inode *inode, struct file *file) 454 { 455 return single_open(file, knav_queue_debug_show, NULL); 456 } 457 458 static const struct file_operations knav_queue_debug_ops = { 459 .open = knav_queue_debug_open, 460 .read = seq_read, 461 .llseek = seq_lseek, 462 .release = single_release, 463 }; 464 465 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout, 466 u32 flags) 467 { 468 unsigned long end; 469 u32 val = 0; 470 471 end = jiffies + msecs_to_jiffies(timeout); 472 while (time_after(end, jiffies)) { 473 val = readl_relaxed(addr); 474 if (flags) 475 val &= flags; 476 if (!val) 477 break; 478 cpu_relax(); 479 } 480 return val ? -ETIMEDOUT : 0; 481 } 482 483 484 static int knav_queue_flush(struct knav_queue *qh) 485 { 486 struct knav_queue_inst *inst = qh->inst; 487 unsigned id = inst->id - inst->qmgr->start_queue; 488 489 atomic_set(&inst->desc_count, 0); 490 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh); 491 return 0; 492 } 493 494 /** 495 * knav_queue_open() - open a hardware queue 496 * @name - name to give the queue handle 497 * @id - desired queue number if any or specifes the type 498 * of queue 499 * @flags - the following flags are applicable to queues: 500 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are 501 * exclusive by default. 502 * Subsequent attempts to open a shared queue should 503 * also have this flag. 504 * 505 * Returns a handle to the open hardware queue if successful. Use IS_ERR() 506 * to check the returned value for error codes. 507 */ 508 void *knav_queue_open(const char *name, unsigned id, 509 unsigned flags) 510 { 511 struct knav_queue *qh = ERR_PTR(-EINVAL); 512 513 switch (id) { 514 case KNAV_QUEUE_QPEND: 515 case KNAV_QUEUE_ACC: 516 case KNAV_QUEUE_GP: 517 qh = knav_queue_open_by_type(name, id, flags); 518 break; 519 520 default: 521 qh = knav_queue_open_by_id(name, id, flags); 522 break; 523 } 524 return qh; 525 } 526 EXPORT_SYMBOL_GPL(knav_queue_open); 527 528 /** 529 * knav_queue_close() - close a hardware queue handle 530 * @qh - handle to close 531 */ 532 void knav_queue_close(void *qhandle) 533 { 534 struct knav_queue *qh = qhandle; 535 struct knav_queue_inst *inst = qh->inst; 536 537 while (atomic_read(&qh->notifier_enabled) > 0) 538 knav_queue_disable_notifier(qh); 539 540 mutex_lock(&knav_dev_lock); 541 list_del_rcu(&qh->list); 542 mutex_unlock(&knav_dev_lock); 543 synchronize_rcu(); 544 if (!knav_queue_is_busy(inst)) { 545 struct knav_range_info *range = inst->range; 546 547 if (range->ops && range->ops->close_queue) 548 range->ops->close_queue(range, inst); 549 } 550 devm_kfree(inst->kdev->dev, qh); 551 } 552 EXPORT_SYMBOL_GPL(knav_queue_close); 553 554 /** 555 * knav_queue_device_control() - Perform control operations on a queue 556 * @qh - queue handle 557 * @cmd - control commands 558 * @arg - command argument 559 * 560 * Returns 0 on success, errno otherwise. 561 */ 562 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd, 563 unsigned long arg) 564 { 565 struct knav_queue *qh = qhandle; 566 struct knav_queue_notify_config *cfg; 567 int ret; 568 569 switch ((int)cmd) { 570 case KNAV_QUEUE_GET_ID: 571 ret = qh->inst->kdev->base_id + qh->inst->id; 572 break; 573 574 case KNAV_QUEUE_FLUSH: 575 ret = knav_queue_flush(qh); 576 break; 577 578 case KNAV_QUEUE_SET_NOTIFIER: 579 cfg = (void *)arg; 580 ret = knav_queue_set_notifier(qh, cfg); 581 break; 582 583 case KNAV_QUEUE_ENABLE_NOTIFY: 584 ret = knav_queue_enable_notifier(qh); 585 break; 586 587 case KNAV_QUEUE_DISABLE_NOTIFY: 588 ret = knav_queue_disable_notifier(qh); 589 break; 590 591 case KNAV_QUEUE_GET_COUNT: 592 ret = knav_queue_get_count(qh); 593 break; 594 595 default: 596 ret = -ENOTSUPP; 597 break; 598 } 599 return ret; 600 } 601 EXPORT_SYMBOL_GPL(knav_queue_device_control); 602 603 604 605 /** 606 * knav_queue_push() - push data (or descriptor) to the tail of a queue 607 * @qh - hardware queue handle 608 * @data - data to push 609 * @size - size of data to push 610 * @flags - can be used to pass additional information 611 * 612 * Returns 0 on success, errno otherwise. 613 */ 614 int knav_queue_push(void *qhandle, dma_addr_t dma, 615 unsigned size, unsigned flags) 616 { 617 struct knav_queue *qh = qhandle; 618 u32 val; 619 620 val = (u32)dma | ((size / 16) - 1); 621 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh); 622 623 atomic_inc(&qh->stats.pushes); 624 return 0; 625 } 626 EXPORT_SYMBOL_GPL(knav_queue_push); 627 628 /** 629 * knav_queue_pop() - pop data (or descriptor) from the head of a queue 630 * @qh - hardware queue handle 631 * @size - (optional) size of the data pop'ed. 632 * 633 * Returns a DMA address on success, 0 on failure. 634 */ 635 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size) 636 { 637 struct knav_queue *qh = qhandle; 638 struct knav_queue_inst *inst = qh->inst; 639 dma_addr_t dma; 640 u32 val, idx; 641 642 /* are we accumulated? */ 643 if (inst->descs) { 644 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) { 645 atomic_inc(&inst->desc_count); 646 return 0; 647 } 648 idx = atomic_inc_return(&inst->desc_head); 649 idx &= ACC_DESCS_MASK; 650 val = inst->descs[idx]; 651 } else { 652 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh); 653 if (unlikely(!val)) 654 return 0; 655 } 656 657 dma = val & DESC_PTR_MASK; 658 if (size) 659 *size = ((val & DESC_SIZE_MASK) + 1) * 16; 660 661 atomic_inc(&qh->stats.pops); 662 return dma; 663 } 664 EXPORT_SYMBOL_GPL(knav_queue_pop); 665 666 /* carve out descriptors and push into queue */ 667 static void kdesc_fill_pool(struct knav_pool *pool) 668 { 669 struct knav_region *region; 670 int i; 671 672 region = pool->region; 673 pool->desc_size = region->desc_size; 674 for (i = 0; i < pool->num_desc; i++) { 675 int index = pool->region_offset + i; 676 dma_addr_t dma_addr; 677 unsigned dma_size; 678 dma_addr = region->dma_start + (region->desc_size * index); 679 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES); 680 dma_sync_single_for_device(pool->dev, dma_addr, dma_size, 681 DMA_TO_DEVICE); 682 knav_queue_push(pool->queue, dma_addr, dma_size, 0); 683 } 684 } 685 686 /* pop out descriptors and close the queue */ 687 static void kdesc_empty_pool(struct knav_pool *pool) 688 { 689 dma_addr_t dma; 690 unsigned size; 691 void *desc; 692 int i; 693 694 if (!pool->queue) 695 return; 696 697 for (i = 0;; i++) { 698 dma = knav_queue_pop(pool->queue, &size); 699 if (!dma) 700 break; 701 desc = knav_pool_desc_dma_to_virt(pool, dma); 702 if (!desc) { 703 dev_dbg(pool->kdev->dev, 704 "couldn't unmap desc, continuing\n"); 705 continue; 706 } 707 } 708 WARN_ON(i != pool->num_desc); 709 knav_queue_close(pool->queue); 710 } 711 712 713 /* Get the DMA address of a descriptor */ 714 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt) 715 { 716 struct knav_pool *pool = ph; 717 return pool->region->dma_start + (virt - pool->region->virt_start); 718 } 719 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma); 720 721 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma) 722 { 723 struct knav_pool *pool = ph; 724 return pool->region->virt_start + (dma - pool->region->dma_start); 725 } 726 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt); 727 728 /** 729 * knav_pool_create() - Create a pool of descriptors 730 * @name - name to give the pool handle 731 * @num_desc - numbers of descriptors in the pool 732 * @region_id - QMSS region id from which the descriptors are to be 733 * allocated. 734 * 735 * Returns a pool handle on success. 736 * Use IS_ERR_OR_NULL() to identify error values on return. 737 */ 738 void *knav_pool_create(const char *name, 739 int num_desc, int region_id) 740 { 741 struct knav_region *reg_itr, *region = NULL; 742 struct knav_pool *pool, *pi; 743 struct list_head *node; 744 unsigned last_offset; 745 bool slot_found; 746 int ret; 747 748 if (!kdev) 749 return ERR_PTR(-EPROBE_DEFER); 750 751 if (!kdev->dev) 752 return ERR_PTR(-ENODEV); 753 754 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 755 if (!pool) { 756 dev_err(kdev->dev, "out of memory allocating pool\n"); 757 return ERR_PTR(-ENOMEM); 758 } 759 760 for_each_region(kdev, reg_itr) { 761 if (reg_itr->id != region_id) 762 continue; 763 region = reg_itr; 764 break; 765 } 766 767 if (!region) { 768 dev_err(kdev->dev, "region-id(%d) not found\n", region_id); 769 ret = -EINVAL; 770 goto err; 771 } 772 773 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0); 774 if (IS_ERR_OR_NULL(pool->queue)) { 775 dev_err(kdev->dev, 776 "failed to open queue for pool(%s), error %ld\n", 777 name, PTR_ERR(pool->queue)); 778 ret = PTR_ERR(pool->queue); 779 goto err; 780 } 781 782 pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL); 783 pool->kdev = kdev; 784 pool->dev = kdev->dev; 785 786 mutex_lock(&knav_dev_lock); 787 788 if (num_desc > (region->num_desc - region->used_desc)) { 789 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n", 790 region_id, name); 791 ret = -ENOMEM; 792 goto err_unlock; 793 } 794 795 /* Region maintains a sorted (by region offset) list of pools 796 * use the first free slot which is large enough to accomodate 797 * the request 798 */ 799 last_offset = 0; 800 slot_found = false; 801 node = ®ion->pools; 802 list_for_each_entry(pi, ®ion->pools, region_inst) { 803 if ((pi->region_offset - last_offset) >= num_desc) { 804 slot_found = true; 805 break; 806 } 807 last_offset = pi->region_offset + pi->num_desc; 808 } 809 node = &pi->region_inst; 810 811 if (slot_found) { 812 pool->region = region; 813 pool->num_desc = num_desc; 814 pool->region_offset = last_offset; 815 region->used_desc += num_desc; 816 list_add_tail(&pool->list, &kdev->pools); 817 list_add_tail(&pool->region_inst, node); 818 } else { 819 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n", 820 name, region_id); 821 ret = -ENOMEM; 822 goto err_unlock; 823 } 824 825 mutex_unlock(&knav_dev_lock); 826 kdesc_fill_pool(pool); 827 return pool; 828 829 err_unlock: 830 mutex_unlock(&knav_dev_lock); 831 err: 832 kfree(pool->name); 833 devm_kfree(kdev->dev, pool); 834 return ERR_PTR(ret); 835 } 836 EXPORT_SYMBOL_GPL(knav_pool_create); 837 838 /** 839 * knav_pool_destroy() - Free a pool of descriptors 840 * @pool - pool handle 841 */ 842 void knav_pool_destroy(void *ph) 843 { 844 struct knav_pool *pool = ph; 845 846 if (!pool) 847 return; 848 849 if (!pool->region) 850 return; 851 852 kdesc_empty_pool(pool); 853 mutex_lock(&knav_dev_lock); 854 855 pool->region->used_desc -= pool->num_desc; 856 list_del(&pool->region_inst); 857 list_del(&pool->list); 858 859 mutex_unlock(&knav_dev_lock); 860 kfree(pool->name); 861 devm_kfree(kdev->dev, pool); 862 } 863 EXPORT_SYMBOL_GPL(knav_pool_destroy); 864 865 866 /** 867 * knav_pool_desc_get() - Get a descriptor from the pool 868 * @pool - pool handle 869 * 870 * Returns descriptor from the pool. 871 */ 872 void *knav_pool_desc_get(void *ph) 873 { 874 struct knav_pool *pool = ph; 875 dma_addr_t dma; 876 unsigned size; 877 void *data; 878 879 dma = knav_queue_pop(pool->queue, &size); 880 if (unlikely(!dma)) 881 return ERR_PTR(-ENOMEM); 882 data = knav_pool_desc_dma_to_virt(pool, dma); 883 return data; 884 } 885 EXPORT_SYMBOL_GPL(knav_pool_desc_get); 886 887 /** 888 * knav_pool_desc_put() - return a descriptor to the pool 889 * @pool - pool handle 890 */ 891 void knav_pool_desc_put(void *ph, void *desc) 892 { 893 struct knav_pool *pool = ph; 894 dma_addr_t dma; 895 dma = knav_pool_desc_virt_to_dma(pool, desc); 896 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0); 897 } 898 EXPORT_SYMBOL_GPL(knav_pool_desc_put); 899 900 /** 901 * knav_pool_desc_map() - Map descriptor for DMA transfer 902 * @pool - pool handle 903 * @desc - address of descriptor to map 904 * @size - size of descriptor to map 905 * @dma - DMA address return pointer 906 * @dma_sz - adjusted return pointer 907 * 908 * Returns 0 on success, errno otherwise. 909 */ 910 int knav_pool_desc_map(void *ph, void *desc, unsigned size, 911 dma_addr_t *dma, unsigned *dma_sz) 912 { 913 struct knav_pool *pool = ph; 914 *dma = knav_pool_desc_virt_to_dma(pool, desc); 915 size = min(size, pool->region->desc_size); 916 size = ALIGN(size, SMP_CACHE_BYTES); 917 *dma_sz = size; 918 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE); 919 920 /* Ensure the descriptor reaches to the memory */ 921 __iowmb(); 922 923 return 0; 924 } 925 EXPORT_SYMBOL_GPL(knav_pool_desc_map); 926 927 /** 928 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer 929 * @pool - pool handle 930 * @dma - DMA address of descriptor to unmap 931 * @dma_sz - size of descriptor to unmap 932 * 933 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify 934 * error values on return. 935 */ 936 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz) 937 { 938 struct knav_pool *pool = ph; 939 unsigned desc_sz; 940 void *desc; 941 942 desc_sz = min(dma_sz, pool->region->desc_size); 943 desc = knav_pool_desc_dma_to_virt(pool, dma); 944 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE); 945 prefetch(desc); 946 return desc; 947 } 948 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap); 949 950 /** 951 * knav_pool_count() - Get the number of descriptors in pool. 952 * @pool - pool handle 953 * Returns number of elements in the pool. 954 */ 955 int knav_pool_count(void *ph) 956 { 957 struct knav_pool *pool = ph; 958 return knav_queue_get_count(pool->queue); 959 } 960 EXPORT_SYMBOL_GPL(knav_pool_count); 961 962 static void knav_queue_setup_region(struct knav_device *kdev, 963 struct knav_region *region) 964 { 965 unsigned hw_num_desc, hw_desc_size, size; 966 struct knav_reg_region __iomem *regs; 967 struct knav_qmgr_info *qmgr; 968 struct knav_pool *pool; 969 int id = region->id; 970 struct page *page; 971 972 /* unused region? */ 973 if (!region->num_desc) { 974 dev_warn(kdev->dev, "unused region %s\n", region->name); 975 return; 976 } 977 978 /* get hardware descriptor value */ 979 hw_num_desc = ilog2(region->num_desc - 1) + 1; 980 981 /* did we force fit ourselves into nothingness? */ 982 if (region->num_desc < 32) { 983 region->num_desc = 0; 984 dev_warn(kdev->dev, "too few descriptors in region %s\n", 985 region->name); 986 return; 987 } 988 989 size = region->num_desc * region->desc_size; 990 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA | 991 GFP_DMA32); 992 if (!region->virt_start) { 993 region->num_desc = 0; 994 dev_err(kdev->dev, "memory alloc failed for region %s\n", 995 region->name); 996 return; 997 } 998 region->virt_end = region->virt_start + size; 999 page = virt_to_page(region->virt_start); 1000 1001 region->dma_start = dma_map_page(kdev->dev, page, 0, size, 1002 DMA_BIDIRECTIONAL); 1003 if (dma_mapping_error(kdev->dev, region->dma_start)) { 1004 dev_err(kdev->dev, "dma map failed for region %s\n", 1005 region->name); 1006 goto fail; 1007 } 1008 region->dma_end = region->dma_start + size; 1009 1010 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 1011 if (!pool) { 1012 dev_err(kdev->dev, "out of memory allocating dummy pool\n"); 1013 goto fail; 1014 } 1015 pool->num_desc = 0; 1016 pool->region_offset = region->num_desc; 1017 list_add(&pool->region_inst, ®ion->pools); 1018 1019 dev_dbg(kdev->dev, 1020 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n", 1021 region->name, id, region->desc_size, region->num_desc, 1022 region->link_index, ®ion->dma_start, ®ion->dma_end, 1023 region->virt_start, region->virt_end); 1024 1025 hw_desc_size = (region->desc_size / 16) - 1; 1026 hw_num_desc -= 5; 1027 1028 for_each_qmgr(kdev, qmgr) { 1029 regs = qmgr->reg_region + id; 1030 writel_relaxed((u32)region->dma_start, ®s->base); 1031 writel_relaxed(region->link_index, ®s->start_index); 1032 writel_relaxed(hw_desc_size << 16 | hw_num_desc, 1033 ®s->size_count); 1034 } 1035 return; 1036 1037 fail: 1038 if (region->dma_start) 1039 dma_unmap_page(kdev->dev, region->dma_start, size, 1040 DMA_BIDIRECTIONAL); 1041 if (region->virt_start) 1042 free_pages_exact(region->virt_start, size); 1043 region->num_desc = 0; 1044 return; 1045 } 1046 1047 static const char *knav_queue_find_name(struct device_node *node) 1048 { 1049 const char *name; 1050 1051 if (of_property_read_string(node, "label", &name) < 0) 1052 name = node->name; 1053 if (!name) 1054 name = "unknown"; 1055 return name; 1056 } 1057 1058 static int knav_queue_setup_regions(struct knav_device *kdev, 1059 struct device_node *regions) 1060 { 1061 struct device *dev = kdev->dev; 1062 struct knav_region *region; 1063 struct device_node *child; 1064 u32 temp[2]; 1065 int ret; 1066 1067 for_each_child_of_node(regions, child) { 1068 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL); 1069 if (!region) { 1070 dev_err(dev, "out of memory allocating region\n"); 1071 return -ENOMEM; 1072 } 1073 1074 region->name = knav_queue_find_name(child); 1075 of_property_read_u32(child, "id", ®ion->id); 1076 ret = of_property_read_u32_array(child, "region-spec", temp, 2); 1077 if (!ret) { 1078 region->num_desc = temp[0]; 1079 region->desc_size = temp[1]; 1080 } else { 1081 dev_err(dev, "invalid region info %s\n", region->name); 1082 devm_kfree(dev, region); 1083 continue; 1084 } 1085 1086 if (!of_get_property(child, "link-index", NULL)) { 1087 dev_err(dev, "No link info for %s\n", region->name); 1088 devm_kfree(dev, region); 1089 continue; 1090 } 1091 ret = of_property_read_u32(child, "link-index", 1092 ®ion->link_index); 1093 if (ret) { 1094 dev_err(dev, "link index not found for %s\n", 1095 region->name); 1096 devm_kfree(dev, region); 1097 continue; 1098 } 1099 1100 INIT_LIST_HEAD(®ion->pools); 1101 list_add_tail(®ion->list, &kdev->regions); 1102 } 1103 if (list_empty(&kdev->regions)) { 1104 dev_err(dev, "no valid region information found\n"); 1105 return -ENODEV; 1106 } 1107 1108 /* Next, we run through the regions and set things up */ 1109 for_each_region(kdev, region) 1110 knav_queue_setup_region(kdev, region); 1111 1112 return 0; 1113 } 1114 1115 static int knav_get_link_ram(struct knav_device *kdev, 1116 const char *name, 1117 struct knav_link_ram_block *block) 1118 { 1119 struct platform_device *pdev = to_platform_device(kdev->dev); 1120 struct device_node *node = pdev->dev.of_node; 1121 u32 temp[2]; 1122 1123 /* 1124 * Note: link ram resources are specified in "entry" sized units. In 1125 * reality, although entries are ~40bits in hardware, we treat them as 1126 * 64-bit entities here. 1127 * 1128 * For example, to specify the internal link ram for Keystone-I class 1129 * devices, we would set the linkram0 resource to 0x80000-0x83fff. 1130 * 1131 * This gets a bit weird when other link rams are used. For example, 1132 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries 1133 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000, 1134 * which accounts for 64-bits per entry, for 16K entries. 1135 */ 1136 if (!of_property_read_u32_array(node, name , temp, 2)) { 1137 if (temp[0]) { 1138 /* 1139 * queue_base specified => using internal or onchip 1140 * link ram WARNING - we do not "reserve" this block 1141 */ 1142 block->dma = (dma_addr_t)temp[0]; 1143 block->virt = NULL; 1144 block->size = temp[1]; 1145 } else { 1146 block->size = temp[1]; 1147 /* queue_base not specific => allocate requested size */ 1148 block->virt = dmam_alloc_coherent(kdev->dev, 1149 8 * block->size, &block->dma, 1150 GFP_KERNEL); 1151 if (!block->virt) { 1152 dev_err(kdev->dev, "failed to alloc linkram\n"); 1153 return -ENOMEM; 1154 } 1155 } 1156 } else { 1157 return -ENODEV; 1158 } 1159 return 0; 1160 } 1161 1162 static int knav_queue_setup_link_ram(struct knav_device *kdev) 1163 { 1164 struct knav_link_ram_block *block; 1165 struct knav_qmgr_info *qmgr; 1166 1167 for_each_qmgr(kdev, qmgr) { 1168 block = &kdev->link_rams[0]; 1169 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n", 1170 &block->dma, block->virt, block->size); 1171 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0); 1172 writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0); 1173 1174 block++; 1175 if (!block->size) 1176 continue; 1177 1178 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n", 1179 &block->dma, block->virt, block->size); 1180 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1); 1181 } 1182 1183 return 0; 1184 } 1185 1186 static int knav_setup_queue_range(struct knav_device *kdev, 1187 struct device_node *node) 1188 { 1189 struct device *dev = kdev->dev; 1190 struct knav_range_info *range; 1191 struct knav_qmgr_info *qmgr; 1192 u32 temp[2], start, end, id, index; 1193 int ret, i; 1194 1195 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL); 1196 if (!range) { 1197 dev_err(dev, "out of memory allocating range\n"); 1198 return -ENOMEM; 1199 } 1200 1201 range->kdev = kdev; 1202 range->name = knav_queue_find_name(node); 1203 ret = of_property_read_u32_array(node, "qrange", temp, 2); 1204 if (!ret) { 1205 range->queue_base = temp[0] - kdev->base_id; 1206 range->num_queues = temp[1]; 1207 } else { 1208 dev_err(dev, "invalid queue range %s\n", range->name); 1209 devm_kfree(dev, range); 1210 return -EINVAL; 1211 } 1212 1213 for (i = 0; i < RANGE_MAX_IRQS; i++) { 1214 struct of_phandle_args oirq; 1215 1216 if (of_irq_parse_one(node, i, &oirq)) 1217 break; 1218 1219 range->irqs[i].irq = irq_create_of_mapping(&oirq); 1220 if (range->irqs[i].irq == IRQ_NONE) 1221 break; 1222 1223 range->num_irqs++; 1224 1225 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) 1226 range->irqs[i].cpu_map = 1227 (oirq.args[2] & 0x0000ff00) >> 8; 1228 } 1229 1230 range->num_irqs = min(range->num_irqs, range->num_queues); 1231 if (range->num_irqs) 1232 range->flags |= RANGE_HAS_IRQ; 1233 1234 if (of_get_property(node, "qalloc-by-id", NULL)) 1235 range->flags |= RANGE_RESERVED; 1236 1237 if (of_get_property(node, "accumulator", NULL)) { 1238 ret = knav_init_acc_range(kdev, node, range); 1239 if (ret < 0) { 1240 devm_kfree(dev, range); 1241 return ret; 1242 } 1243 } else { 1244 range->ops = &knav_gp_range_ops; 1245 } 1246 1247 /* set threshold to 1, and flush out the queues */ 1248 for_each_qmgr(kdev, qmgr) { 1249 start = max(qmgr->start_queue, range->queue_base); 1250 end = min(qmgr->start_queue + qmgr->num_queues, 1251 range->queue_base + range->num_queues); 1252 for (id = start; id < end; id++) { 1253 index = id - qmgr->start_queue; 1254 writel_relaxed(THRESH_GTE | 1, 1255 &qmgr->reg_peek[index].ptr_size_thresh); 1256 writel_relaxed(0, 1257 &qmgr->reg_push[index].ptr_size_thresh); 1258 } 1259 } 1260 1261 list_add_tail(&range->list, &kdev->queue_ranges); 1262 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n", 1263 range->name, range->queue_base, 1264 range->queue_base + range->num_queues - 1, 1265 range->num_irqs, 1266 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "", 1267 (range->flags & RANGE_RESERVED) ? ", reserved" : "", 1268 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : ""); 1269 kdev->num_queues_in_use += range->num_queues; 1270 return 0; 1271 } 1272 1273 static int knav_setup_queue_pools(struct knav_device *kdev, 1274 struct device_node *queue_pools) 1275 { 1276 struct device_node *type, *range; 1277 int ret; 1278 1279 for_each_child_of_node(queue_pools, type) { 1280 for_each_child_of_node(type, range) { 1281 ret = knav_setup_queue_range(kdev, range); 1282 /* return value ignored, we init the rest... */ 1283 } 1284 } 1285 1286 /* ... and barf if they all failed! */ 1287 if (list_empty(&kdev->queue_ranges)) { 1288 dev_err(kdev->dev, "no valid queue range found\n"); 1289 return -ENODEV; 1290 } 1291 return 0; 1292 } 1293 1294 static void knav_free_queue_range(struct knav_device *kdev, 1295 struct knav_range_info *range) 1296 { 1297 if (range->ops && range->ops->free_range) 1298 range->ops->free_range(range); 1299 list_del(&range->list); 1300 devm_kfree(kdev->dev, range); 1301 } 1302 1303 static void knav_free_queue_ranges(struct knav_device *kdev) 1304 { 1305 struct knav_range_info *range; 1306 1307 for (;;) { 1308 range = first_queue_range(kdev); 1309 if (!range) 1310 break; 1311 knav_free_queue_range(kdev, range); 1312 } 1313 } 1314 1315 static void knav_queue_free_regions(struct knav_device *kdev) 1316 { 1317 struct knav_region *region; 1318 struct knav_pool *pool, *tmp; 1319 unsigned size; 1320 1321 for (;;) { 1322 region = first_region(kdev); 1323 if (!region) 1324 break; 1325 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst) 1326 knav_pool_destroy(pool); 1327 1328 size = region->virt_end - region->virt_start; 1329 if (size) 1330 free_pages_exact(region->virt_start, size); 1331 list_del(®ion->list); 1332 devm_kfree(kdev->dev, region); 1333 } 1334 } 1335 1336 static void __iomem *knav_queue_map_reg(struct knav_device *kdev, 1337 struct device_node *node, int index) 1338 { 1339 struct resource res; 1340 void __iomem *regs; 1341 int ret; 1342 1343 ret = of_address_to_resource(node, index, &res); 1344 if (ret) { 1345 dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n", 1346 node->name, index); 1347 return ERR_PTR(ret); 1348 } 1349 1350 regs = devm_ioremap_resource(kdev->dev, &res); 1351 if (IS_ERR(regs)) 1352 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n", 1353 index, node->name); 1354 return regs; 1355 } 1356 1357 static int knav_queue_init_qmgrs(struct knav_device *kdev, 1358 struct device_node *qmgrs) 1359 { 1360 struct device *dev = kdev->dev; 1361 struct knav_qmgr_info *qmgr; 1362 struct device_node *child; 1363 u32 temp[2]; 1364 int ret; 1365 1366 for_each_child_of_node(qmgrs, child) { 1367 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL); 1368 if (!qmgr) { 1369 dev_err(dev, "out of memory allocating qmgr\n"); 1370 return -ENOMEM; 1371 } 1372 1373 ret = of_property_read_u32_array(child, "managed-queues", 1374 temp, 2); 1375 if (!ret) { 1376 qmgr->start_queue = temp[0]; 1377 qmgr->num_queues = temp[1]; 1378 } else { 1379 dev_err(dev, "invalid qmgr queue range\n"); 1380 devm_kfree(dev, qmgr); 1381 continue; 1382 } 1383 1384 dev_info(dev, "qmgr start queue %d, number of queues %d\n", 1385 qmgr->start_queue, qmgr->num_queues); 1386 1387 qmgr->reg_peek = 1388 knav_queue_map_reg(kdev, child, 1389 KNAV_QUEUE_PEEK_REG_INDEX); 1390 qmgr->reg_status = 1391 knav_queue_map_reg(kdev, child, 1392 KNAV_QUEUE_STATUS_REG_INDEX); 1393 qmgr->reg_config = 1394 knav_queue_map_reg(kdev, child, 1395 KNAV_QUEUE_CONFIG_REG_INDEX); 1396 qmgr->reg_region = 1397 knav_queue_map_reg(kdev, child, 1398 KNAV_QUEUE_REGION_REG_INDEX); 1399 qmgr->reg_push = 1400 knav_queue_map_reg(kdev, child, 1401 KNAV_QUEUE_PUSH_REG_INDEX); 1402 qmgr->reg_pop = 1403 knav_queue_map_reg(kdev, child, 1404 KNAV_QUEUE_POP_REG_INDEX); 1405 1406 if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) || 1407 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) || 1408 IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) { 1409 dev_err(dev, "failed to map qmgr regs\n"); 1410 if (!IS_ERR(qmgr->reg_peek)) 1411 devm_iounmap(dev, qmgr->reg_peek); 1412 if (!IS_ERR(qmgr->reg_status)) 1413 devm_iounmap(dev, qmgr->reg_status); 1414 if (!IS_ERR(qmgr->reg_config)) 1415 devm_iounmap(dev, qmgr->reg_config); 1416 if (!IS_ERR(qmgr->reg_region)) 1417 devm_iounmap(dev, qmgr->reg_region); 1418 if (!IS_ERR(qmgr->reg_push)) 1419 devm_iounmap(dev, qmgr->reg_push); 1420 if (!IS_ERR(qmgr->reg_pop)) 1421 devm_iounmap(dev, qmgr->reg_pop); 1422 devm_kfree(dev, qmgr); 1423 continue; 1424 } 1425 1426 list_add_tail(&qmgr->list, &kdev->qmgrs); 1427 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n", 1428 qmgr->start_queue, qmgr->num_queues, 1429 qmgr->reg_peek, qmgr->reg_status, 1430 qmgr->reg_config, qmgr->reg_region, 1431 qmgr->reg_push, qmgr->reg_pop); 1432 } 1433 return 0; 1434 } 1435 1436 static int knav_queue_init_pdsps(struct knav_device *kdev, 1437 struct device_node *pdsps) 1438 { 1439 struct device *dev = kdev->dev; 1440 struct knav_pdsp_info *pdsp; 1441 struct device_node *child; 1442 1443 for_each_child_of_node(pdsps, child) { 1444 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL); 1445 if (!pdsp) { 1446 dev_err(dev, "out of memory allocating pdsp\n"); 1447 return -ENOMEM; 1448 } 1449 pdsp->name = knav_queue_find_name(child); 1450 pdsp->iram = 1451 knav_queue_map_reg(kdev, child, 1452 KNAV_QUEUE_PDSP_IRAM_REG_INDEX); 1453 pdsp->regs = 1454 knav_queue_map_reg(kdev, child, 1455 KNAV_QUEUE_PDSP_REGS_REG_INDEX); 1456 pdsp->intd = 1457 knav_queue_map_reg(kdev, child, 1458 KNAV_QUEUE_PDSP_INTD_REG_INDEX); 1459 pdsp->command = 1460 knav_queue_map_reg(kdev, child, 1461 KNAV_QUEUE_PDSP_CMD_REG_INDEX); 1462 1463 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) || 1464 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) { 1465 dev_err(dev, "failed to map pdsp %s regs\n", 1466 pdsp->name); 1467 if (!IS_ERR(pdsp->command)) 1468 devm_iounmap(dev, pdsp->command); 1469 if (!IS_ERR(pdsp->iram)) 1470 devm_iounmap(dev, pdsp->iram); 1471 if (!IS_ERR(pdsp->regs)) 1472 devm_iounmap(dev, pdsp->regs); 1473 if (!IS_ERR(pdsp->intd)) 1474 devm_iounmap(dev, pdsp->intd); 1475 devm_kfree(dev, pdsp); 1476 continue; 1477 } 1478 of_property_read_u32(child, "id", &pdsp->id); 1479 list_add_tail(&pdsp->list, &kdev->pdsps); 1480 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n", 1481 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs, 1482 pdsp->intd); 1483 } 1484 return 0; 1485 } 1486 1487 static int knav_queue_stop_pdsp(struct knav_device *kdev, 1488 struct knav_pdsp_info *pdsp) 1489 { 1490 u32 val, timeout = 1000; 1491 int ret; 1492 1493 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE; 1494 writel_relaxed(val, &pdsp->regs->control); 1495 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout, 1496 PDSP_CTRL_RUNNING); 1497 if (ret < 0) { 1498 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name); 1499 return ret; 1500 } 1501 pdsp->loaded = false; 1502 pdsp->started = false; 1503 return 0; 1504 } 1505 1506 static int knav_queue_load_pdsp(struct knav_device *kdev, 1507 struct knav_pdsp_info *pdsp) 1508 { 1509 int i, ret, fwlen; 1510 const struct firmware *fw; 1511 bool found = false; 1512 u32 *fwdata; 1513 1514 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) { 1515 if (knav_acc_firmwares[i]) { 1516 ret = request_firmware_direct(&fw, 1517 knav_acc_firmwares[i], 1518 kdev->dev); 1519 if (!ret) { 1520 found = true; 1521 break; 1522 } 1523 } 1524 } 1525 1526 if (!found) { 1527 dev_err(kdev->dev, "failed to get firmware for pdsp\n"); 1528 return -ENODEV; 1529 } 1530 1531 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n", 1532 knav_acc_firmwares[i]); 1533 1534 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18); 1535 /* download the firmware */ 1536 fwdata = (u32 *)fw->data; 1537 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32); 1538 for (i = 0; i < fwlen; i++) 1539 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i); 1540 1541 release_firmware(fw); 1542 return 0; 1543 } 1544 1545 static int knav_queue_start_pdsp(struct knav_device *kdev, 1546 struct knav_pdsp_info *pdsp) 1547 { 1548 u32 val, timeout = 1000; 1549 int ret; 1550 1551 /* write a command for sync */ 1552 writel_relaxed(0xffffffff, pdsp->command); 1553 while (readl_relaxed(pdsp->command) != 0xffffffff) 1554 cpu_relax(); 1555 1556 /* soft reset the PDSP */ 1557 val = readl_relaxed(&pdsp->regs->control); 1558 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET); 1559 writel_relaxed(val, &pdsp->regs->control); 1560 1561 /* enable pdsp */ 1562 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE; 1563 writel_relaxed(val, &pdsp->regs->control); 1564 1565 /* wait for command register to clear */ 1566 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0); 1567 if (ret < 0) { 1568 dev_err(kdev->dev, 1569 "timed out on pdsp %s command register wait\n", 1570 pdsp->name); 1571 return ret; 1572 } 1573 return 0; 1574 } 1575 1576 static void knav_queue_stop_pdsps(struct knav_device *kdev) 1577 { 1578 struct knav_pdsp_info *pdsp; 1579 1580 /* disable all pdsps */ 1581 for_each_pdsp(kdev, pdsp) 1582 knav_queue_stop_pdsp(kdev, pdsp); 1583 } 1584 1585 static int knav_queue_start_pdsps(struct knav_device *kdev) 1586 { 1587 struct knav_pdsp_info *pdsp; 1588 int ret; 1589 1590 knav_queue_stop_pdsps(kdev); 1591 /* now load them all. We return success even if pdsp 1592 * is not loaded as acc channels are optional on having 1593 * firmware availability in the system. We set the loaded 1594 * and stated flag and when initialize the acc range, check 1595 * it and init the range only if pdsp is started. 1596 */ 1597 for_each_pdsp(kdev, pdsp) { 1598 ret = knav_queue_load_pdsp(kdev, pdsp); 1599 if (!ret) 1600 pdsp->loaded = true; 1601 } 1602 1603 for_each_pdsp(kdev, pdsp) { 1604 if (pdsp->loaded) { 1605 ret = knav_queue_start_pdsp(kdev, pdsp); 1606 if (!ret) 1607 pdsp->started = true; 1608 } 1609 } 1610 return 0; 1611 } 1612 1613 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id) 1614 { 1615 struct knav_qmgr_info *qmgr; 1616 1617 for_each_qmgr(kdev, qmgr) { 1618 if ((id >= qmgr->start_queue) && 1619 (id < qmgr->start_queue + qmgr->num_queues)) 1620 return qmgr; 1621 } 1622 return NULL; 1623 } 1624 1625 static int knav_queue_init_queue(struct knav_device *kdev, 1626 struct knav_range_info *range, 1627 struct knav_queue_inst *inst, 1628 unsigned id) 1629 { 1630 char irq_name[KNAV_NAME_SIZE]; 1631 inst->qmgr = knav_find_qmgr(id); 1632 if (!inst->qmgr) 1633 return -1; 1634 1635 INIT_LIST_HEAD(&inst->handles); 1636 inst->kdev = kdev; 1637 inst->range = range; 1638 inst->irq_num = -1; 1639 inst->id = id; 1640 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id); 1641 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL); 1642 1643 if (range->ops && range->ops->init_queue) 1644 return range->ops->init_queue(range, inst); 1645 else 1646 return 0; 1647 } 1648 1649 static int knav_queue_init_queues(struct knav_device *kdev) 1650 { 1651 struct knav_range_info *range; 1652 int size, id, base_idx; 1653 int idx = 0, ret = 0; 1654 1655 /* how much do we need for instance data? */ 1656 size = sizeof(struct knav_queue_inst); 1657 1658 /* round this up to a power of 2, keep the index to instance 1659 * arithmetic fast. 1660 * */ 1661 kdev->inst_shift = order_base_2(size); 1662 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use; 1663 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL); 1664 if (!kdev->instances) 1665 return -ENOMEM; 1666 1667 for_each_queue_range(kdev, range) { 1668 if (range->ops && range->ops->init_range) 1669 range->ops->init_range(range); 1670 base_idx = idx; 1671 for (id = range->queue_base; 1672 id < range->queue_base + range->num_queues; id++, idx++) { 1673 ret = knav_queue_init_queue(kdev, range, 1674 knav_queue_idx_to_inst(kdev, idx), id); 1675 if (ret < 0) 1676 return ret; 1677 } 1678 range->queue_base_inst = 1679 knav_queue_idx_to_inst(kdev, base_idx); 1680 } 1681 return 0; 1682 } 1683 1684 static int knav_queue_probe(struct platform_device *pdev) 1685 { 1686 struct device_node *node = pdev->dev.of_node; 1687 struct device_node *qmgrs, *queue_pools, *regions, *pdsps; 1688 struct device *dev = &pdev->dev; 1689 u32 temp[2]; 1690 int ret; 1691 1692 if (!node) { 1693 dev_err(dev, "device tree info unavailable\n"); 1694 return -ENODEV; 1695 } 1696 1697 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL); 1698 if (!kdev) { 1699 dev_err(dev, "memory allocation failed\n"); 1700 return -ENOMEM; 1701 } 1702 1703 platform_set_drvdata(pdev, kdev); 1704 kdev->dev = dev; 1705 INIT_LIST_HEAD(&kdev->queue_ranges); 1706 INIT_LIST_HEAD(&kdev->qmgrs); 1707 INIT_LIST_HEAD(&kdev->pools); 1708 INIT_LIST_HEAD(&kdev->regions); 1709 INIT_LIST_HEAD(&kdev->pdsps); 1710 1711 pm_runtime_enable(&pdev->dev); 1712 ret = pm_runtime_get_sync(&pdev->dev); 1713 if (ret < 0) { 1714 dev_err(dev, "Failed to enable QMSS\n"); 1715 return ret; 1716 } 1717 1718 if (of_property_read_u32_array(node, "queue-range", temp, 2)) { 1719 dev_err(dev, "queue-range not specified\n"); 1720 ret = -ENODEV; 1721 goto err; 1722 } 1723 kdev->base_id = temp[0]; 1724 kdev->num_queues = temp[1]; 1725 1726 /* Initialize queue managers using device tree configuration */ 1727 qmgrs = of_get_child_by_name(node, "qmgrs"); 1728 if (!qmgrs) { 1729 dev_err(dev, "queue manager info not specified\n"); 1730 ret = -ENODEV; 1731 goto err; 1732 } 1733 ret = knav_queue_init_qmgrs(kdev, qmgrs); 1734 of_node_put(qmgrs); 1735 if (ret) 1736 goto err; 1737 1738 /* get pdsp configuration values from device tree */ 1739 pdsps = of_get_child_by_name(node, "pdsps"); 1740 if (pdsps) { 1741 ret = knav_queue_init_pdsps(kdev, pdsps); 1742 if (ret) 1743 goto err; 1744 1745 ret = knav_queue_start_pdsps(kdev); 1746 if (ret) 1747 goto err; 1748 } 1749 of_node_put(pdsps); 1750 1751 /* get usable queue range values from device tree */ 1752 queue_pools = of_get_child_by_name(node, "queue-pools"); 1753 if (!queue_pools) { 1754 dev_err(dev, "queue-pools not specified\n"); 1755 ret = -ENODEV; 1756 goto err; 1757 } 1758 ret = knav_setup_queue_pools(kdev, queue_pools); 1759 of_node_put(queue_pools); 1760 if (ret) 1761 goto err; 1762 1763 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]); 1764 if (ret) { 1765 dev_err(kdev->dev, "could not setup linking ram\n"); 1766 goto err; 1767 } 1768 1769 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]); 1770 if (ret) { 1771 /* 1772 * nothing really, we have one linking ram already, so we just 1773 * live within our means 1774 */ 1775 } 1776 1777 ret = knav_queue_setup_link_ram(kdev); 1778 if (ret) 1779 goto err; 1780 1781 regions = of_get_child_by_name(node, "descriptor-regions"); 1782 if (!regions) { 1783 dev_err(dev, "descriptor-regions not specified\n"); 1784 goto err; 1785 } 1786 ret = knav_queue_setup_regions(kdev, regions); 1787 of_node_put(regions); 1788 if (ret) 1789 goto err; 1790 1791 ret = knav_queue_init_queues(kdev); 1792 if (ret < 0) { 1793 dev_err(dev, "hwqueue initialization failed\n"); 1794 goto err; 1795 } 1796 1797 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL, 1798 &knav_queue_debug_ops); 1799 return 0; 1800 1801 err: 1802 knav_queue_stop_pdsps(kdev); 1803 knav_queue_free_regions(kdev); 1804 knav_free_queue_ranges(kdev); 1805 pm_runtime_put_sync(&pdev->dev); 1806 pm_runtime_disable(&pdev->dev); 1807 return ret; 1808 } 1809 1810 static int knav_queue_remove(struct platform_device *pdev) 1811 { 1812 /* TODO: Free resources */ 1813 pm_runtime_put_sync(&pdev->dev); 1814 pm_runtime_disable(&pdev->dev); 1815 return 0; 1816 } 1817 1818 /* Match table for of_platform binding */ 1819 static struct of_device_id keystone_qmss_of_match[] = { 1820 { .compatible = "ti,keystone-navigator-qmss", }, 1821 {}, 1822 }; 1823 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match); 1824 1825 static struct platform_driver keystone_qmss_driver = { 1826 .probe = knav_queue_probe, 1827 .remove = knav_queue_remove, 1828 .driver = { 1829 .name = "keystone-navigator-qmss", 1830 .of_match_table = keystone_qmss_of_match, 1831 }, 1832 }; 1833 module_platform_driver(keystone_qmss_driver); 1834 1835 MODULE_LICENSE("GPL v2"); 1836 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs"); 1837 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>"); 1838 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>"); 1839