xref: /openbmc/linux/drivers/soc/ti/knav_qmss_queue.c (revision ddae1423)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Keystone Queue Manager subsystem driver
4  *
5  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6  * Authors:	Sandeep Nair <sandeep_n@ti.com>
7  *		Cyril Chemparathy <cyril@ti.com>
8  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
9  */
10 
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/of_irq.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/slab.h>
22 #include <linux/soc/ti/knav_qmss.h>
23 
24 #include "knav_qmss.h"
25 
26 static struct knav_device *kdev;
27 static DEFINE_MUTEX(knav_dev_lock);
28 #define knav_dev_lock_held() \
29 	lockdep_is_held(&knav_dev_lock)
30 
31 /* Queue manager register indices in DTS */
32 #define KNAV_QUEUE_PEEK_REG_INDEX	0
33 #define KNAV_QUEUE_STATUS_REG_INDEX	1
34 #define KNAV_QUEUE_CONFIG_REG_INDEX	2
35 #define KNAV_QUEUE_REGION_REG_INDEX	3
36 #define KNAV_QUEUE_PUSH_REG_INDEX	4
37 #define KNAV_QUEUE_POP_REG_INDEX	5
38 
39 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
40  * There are no status and vbusm push registers on this version
41  * of QMSS. Push registers are same as pop, So all indices above 1
42  * are to be re-defined
43  */
44 #define KNAV_L_QUEUE_CONFIG_REG_INDEX	1
45 #define KNAV_L_QUEUE_REGION_REG_INDEX	2
46 #define KNAV_L_QUEUE_PUSH_REG_INDEX	3
47 
48 /* PDSP register indices in DTS */
49 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
50 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
51 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
52 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
53 
54 #define knav_queue_idx_to_inst(kdev, idx)			\
55 	(kdev->instances + (idx << kdev->inst_shift))
56 
57 #define for_each_handle_rcu(qh, inst)				\
58 	list_for_each_entry_rcu(qh, &inst->handles, list,	\
59 				knav_dev_lock_held())
60 
61 #define for_each_instance(idx, inst, kdev)		\
62 	for (idx = 0, inst = kdev->instances;		\
63 	     idx < (kdev)->num_queues_in_use;			\
64 	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
65 
66 /* All firmware file names end up here. List the firmware file names below.
67  * Newest followed by older ones. Search is done from start of the array
68  * until a firmware file is found.
69  */
70 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
71 
72 static bool device_ready;
73 bool knav_qmss_device_ready(void)
74 {
75 	return device_ready;
76 }
77 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
78 
79 /**
80  * knav_queue_notify: qmss queue notfier call
81  *
82  * @inst:		qmss queue instance like accumulator
83  */
84 void knav_queue_notify(struct knav_queue_inst *inst)
85 {
86 	struct knav_queue *qh;
87 
88 	if (!inst)
89 		return;
90 
91 	rcu_read_lock();
92 	for_each_handle_rcu(qh, inst) {
93 		if (atomic_read(&qh->notifier_enabled) <= 0)
94 			continue;
95 		if (WARN_ON(!qh->notifier_fn))
96 			continue;
97 		this_cpu_inc(qh->stats->notifies);
98 		qh->notifier_fn(qh->notifier_fn_arg);
99 	}
100 	rcu_read_unlock();
101 }
102 EXPORT_SYMBOL_GPL(knav_queue_notify);
103 
104 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
105 {
106 	struct knav_queue_inst *inst = _instdata;
107 
108 	knav_queue_notify(inst);
109 	return IRQ_HANDLED;
110 }
111 
112 static int knav_queue_setup_irq(struct knav_range_info *range,
113 			  struct knav_queue_inst *inst)
114 {
115 	unsigned queue = inst->id - range->queue_base;
116 	int ret = 0, irq;
117 
118 	if (range->flags & RANGE_HAS_IRQ) {
119 		irq = range->irqs[queue].irq;
120 		ret = request_irq(irq, knav_queue_int_handler, 0,
121 					inst->irq_name, inst);
122 		if (ret)
123 			return ret;
124 		disable_irq(irq);
125 		if (range->irqs[queue].cpu_mask) {
126 			ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
127 			if (ret) {
128 				dev_warn(range->kdev->dev,
129 					 "Failed to set IRQ affinity\n");
130 				return ret;
131 			}
132 		}
133 	}
134 	return ret;
135 }
136 
137 static void knav_queue_free_irq(struct knav_queue_inst *inst)
138 {
139 	struct knav_range_info *range = inst->range;
140 	unsigned queue = inst->id - inst->range->queue_base;
141 	int irq;
142 
143 	if (range->flags & RANGE_HAS_IRQ) {
144 		irq = range->irqs[queue].irq;
145 		irq_set_affinity_hint(irq, NULL);
146 		free_irq(irq, inst);
147 	}
148 }
149 
150 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
151 {
152 	return !list_empty(&inst->handles);
153 }
154 
155 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
156 {
157 	return inst->range->flags & RANGE_RESERVED;
158 }
159 
160 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
161 {
162 	struct knav_queue *tmp;
163 
164 	rcu_read_lock();
165 	for_each_handle_rcu(tmp, inst) {
166 		if (tmp->flags & KNAV_QUEUE_SHARED) {
167 			rcu_read_unlock();
168 			return true;
169 		}
170 	}
171 	rcu_read_unlock();
172 	return false;
173 }
174 
175 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
176 						unsigned type)
177 {
178 	if ((type == KNAV_QUEUE_QPEND) &&
179 	    (inst->range->flags & RANGE_HAS_IRQ)) {
180 		return true;
181 	} else if ((type == KNAV_QUEUE_ACC) &&
182 		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
183 		return true;
184 	} else if ((type == KNAV_QUEUE_GP) &&
185 		!(inst->range->flags &
186 			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
187 		return true;
188 	}
189 	return false;
190 }
191 
192 static inline struct knav_queue_inst *
193 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
194 {
195 	struct knav_queue_inst *inst;
196 	int idx;
197 
198 	for_each_instance(idx, inst, kdev) {
199 		if (inst->id == id)
200 			return inst;
201 	}
202 	return NULL;
203 }
204 
205 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
206 {
207 	if (kdev->base_id <= id &&
208 	    kdev->base_id + kdev->num_queues > id) {
209 		id -= kdev->base_id;
210 		return knav_queue_match_id_to_inst(kdev, id);
211 	}
212 	return NULL;
213 }
214 
215 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
216 				      const char *name, unsigned flags)
217 {
218 	struct knav_queue *qh;
219 	unsigned id;
220 	int ret = 0;
221 
222 	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
223 	if (!qh)
224 		return ERR_PTR(-ENOMEM);
225 
226 	qh->stats = alloc_percpu(struct knav_queue_stats);
227 	if (!qh->stats) {
228 		ret = -ENOMEM;
229 		goto err;
230 	}
231 
232 	qh->flags = flags;
233 	qh->inst = inst;
234 	id = inst->id - inst->qmgr->start_queue;
235 	qh->reg_push = &inst->qmgr->reg_push[id];
236 	qh->reg_pop = &inst->qmgr->reg_pop[id];
237 	qh->reg_peek = &inst->qmgr->reg_peek[id];
238 
239 	/* first opener? */
240 	if (!knav_queue_is_busy(inst)) {
241 		struct knav_range_info *range = inst->range;
242 
243 		inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
244 		if (range->ops && range->ops->open_queue)
245 			ret = range->ops->open_queue(range, inst, flags);
246 
247 		if (ret)
248 			goto err;
249 	}
250 	list_add_tail_rcu(&qh->list, &inst->handles);
251 	return qh;
252 
253 err:
254 	if (qh->stats)
255 		free_percpu(qh->stats);
256 	devm_kfree(inst->kdev->dev, qh);
257 	return ERR_PTR(ret);
258 }
259 
260 static struct knav_queue *
261 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
262 {
263 	struct knav_queue_inst *inst;
264 	struct knav_queue *qh;
265 
266 	mutex_lock(&knav_dev_lock);
267 
268 	qh = ERR_PTR(-ENODEV);
269 	inst = knav_queue_find_by_id(id);
270 	if (!inst)
271 		goto unlock_ret;
272 
273 	qh = ERR_PTR(-EEXIST);
274 	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
275 		goto unlock_ret;
276 
277 	qh = ERR_PTR(-EBUSY);
278 	if ((flags & KNAV_QUEUE_SHARED) &&
279 	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
280 		goto unlock_ret;
281 
282 	qh = __knav_queue_open(inst, name, flags);
283 
284 unlock_ret:
285 	mutex_unlock(&knav_dev_lock);
286 
287 	return qh;
288 }
289 
290 static struct knav_queue *knav_queue_open_by_type(const char *name,
291 						unsigned type, unsigned flags)
292 {
293 	struct knav_queue_inst *inst;
294 	struct knav_queue *qh = ERR_PTR(-EINVAL);
295 	int idx;
296 
297 	mutex_lock(&knav_dev_lock);
298 
299 	for_each_instance(idx, inst, kdev) {
300 		if (knav_queue_is_reserved(inst))
301 			continue;
302 		if (!knav_queue_match_type(inst, type))
303 			continue;
304 		if (knav_queue_is_busy(inst))
305 			continue;
306 		qh = __knav_queue_open(inst, name, flags);
307 		goto unlock_ret;
308 	}
309 
310 unlock_ret:
311 	mutex_unlock(&knav_dev_lock);
312 	return qh;
313 }
314 
315 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
316 {
317 	struct knav_range_info *range = inst->range;
318 
319 	if (range->ops && range->ops->set_notify)
320 		range->ops->set_notify(range, inst, enabled);
321 }
322 
323 static int knav_queue_enable_notifier(struct knav_queue *qh)
324 {
325 	struct knav_queue_inst *inst = qh->inst;
326 	bool first;
327 
328 	if (WARN_ON(!qh->notifier_fn))
329 		return -EINVAL;
330 
331 	/* Adjust the per handle notifier count */
332 	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
333 	if (!first)
334 		return 0; /* nothing to do */
335 
336 	/* Now adjust the per instance notifier count */
337 	first = (atomic_inc_return(&inst->num_notifiers) == 1);
338 	if (first)
339 		knav_queue_set_notify(inst, true);
340 
341 	return 0;
342 }
343 
344 static int knav_queue_disable_notifier(struct knav_queue *qh)
345 {
346 	struct knav_queue_inst *inst = qh->inst;
347 	bool last;
348 
349 	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
350 	if (!last)
351 		return 0; /* nothing to do */
352 
353 	last = (atomic_dec_return(&inst->num_notifiers) == 0);
354 	if (last)
355 		knav_queue_set_notify(inst, false);
356 
357 	return 0;
358 }
359 
360 static int knav_queue_set_notifier(struct knav_queue *qh,
361 				struct knav_queue_notify_config *cfg)
362 {
363 	knav_queue_notify_fn old_fn = qh->notifier_fn;
364 
365 	if (!cfg)
366 		return -EINVAL;
367 
368 	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
369 		return -ENOTSUPP;
370 
371 	if (!cfg->fn && old_fn)
372 		knav_queue_disable_notifier(qh);
373 
374 	qh->notifier_fn = cfg->fn;
375 	qh->notifier_fn_arg = cfg->fn_arg;
376 
377 	if (cfg->fn && !old_fn)
378 		knav_queue_enable_notifier(qh);
379 
380 	return 0;
381 }
382 
383 static int knav_gp_set_notify(struct knav_range_info *range,
384 			       struct knav_queue_inst *inst,
385 			       bool enabled)
386 {
387 	unsigned queue;
388 
389 	if (range->flags & RANGE_HAS_IRQ) {
390 		queue = inst->id - range->queue_base;
391 		if (enabled)
392 			enable_irq(range->irqs[queue].irq);
393 		else
394 			disable_irq_nosync(range->irqs[queue].irq);
395 	}
396 	return 0;
397 }
398 
399 static int knav_gp_open_queue(struct knav_range_info *range,
400 				struct knav_queue_inst *inst, unsigned flags)
401 {
402 	return knav_queue_setup_irq(range, inst);
403 }
404 
405 static int knav_gp_close_queue(struct knav_range_info *range,
406 				struct knav_queue_inst *inst)
407 {
408 	knav_queue_free_irq(inst);
409 	return 0;
410 }
411 
412 struct knav_range_ops knav_gp_range_ops = {
413 	.set_notify	= knav_gp_set_notify,
414 	.open_queue	= knav_gp_open_queue,
415 	.close_queue	= knav_gp_close_queue,
416 };
417 
418 
419 static int knav_queue_get_count(void *qhandle)
420 {
421 	struct knav_queue *qh = qhandle;
422 	struct knav_queue_inst *inst = qh->inst;
423 
424 	return readl_relaxed(&qh->reg_peek[0].entry_count) +
425 		atomic_read(&inst->desc_count);
426 }
427 
428 static void knav_queue_debug_show_instance(struct seq_file *s,
429 					struct knav_queue_inst *inst)
430 {
431 	struct knav_device *kdev = inst->kdev;
432 	struct knav_queue *qh;
433 	int cpu = 0;
434 	int pushes = 0;
435 	int pops = 0;
436 	int push_errors = 0;
437 	int pop_errors = 0;
438 	int notifies = 0;
439 
440 	if (!knav_queue_is_busy(inst))
441 		return;
442 
443 	seq_printf(s, "\tqueue id %d (%s)\n",
444 		   kdev->base_id + inst->id, inst->name);
445 	for_each_handle_rcu(qh, inst) {
446 		for_each_possible_cpu(cpu) {
447 			pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
448 			pops += per_cpu_ptr(qh->stats, cpu)->pops;
449 			push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
450 			pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
451 			notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
452 		}
453 
454 		seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
455 				qh,
456 				pushes,
457 				pops,
458 				knav_queue_get_count(qh),
459 				notifies,
460 				push_errors,
461 				pop_errors);
462 	}
463 }
464 
465 static int knav_queue_debug_show(struct seq_file *s, void *v)
466 {
467 	struct knav_queue_inst *inst;
468 	int idx;
469 
470 	mutex_lock(&knav_dev_lock);
471 	seq_printf(s, "%s: %u-%u\n",
472 		   dev_name(kdev->dev), kdev->base_id,
473 		   kdev->base_id + kdev->num_queues - 1);
474 	for_each_instance(idx, inst, kdev)
475 		knav_queue_debug_show_instance(s, inst);
476 	mutex_unlock(&knav_dev_lock);
477 
478 	return 0;
479 }
480 
481 static int knav_queue_debug_open(struct inode *inode, struct file *file)
482 {
483 	return single_open(file, knav_queue_debug_show, NULL);
484 }
485 
486 static const struct file_operations knav_queue_debug_ops = {
487 	.open		= knav_queue_debug_open,
488 	.read		= seq_read,
489 	.llseek		= seq_lseek,
490 	.release	= single_release,
491 };
492 
493 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
494 					u32 flags)
495 {
496 	unsigned long end;
497 	u32 val = 0;
498 
499 	end = jiffies + msecs_to_jiffies(timeout);
500 	while (time_after(end, jiffies)) {
501 		val = readl_relaxed(addr);
502 		if (flags)
503 			val &= flags;
504 		if (!val)
505 			break;
506 		cpu_relax();
507 	}
508 	return val ? -ETIMEDOUT : 0;
509 }
510 
511 
512 static int knav_queue_flush(struct knav_queue *qh)
513 {
514 	struct knav_queue_inst *inst = qh->inst;
515 	unsigned id = inst->id - inst->qmgr->start_queue;
516 
517 	atomic_set(&inst->desc_count, 0);
518 	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
519 	return 0;
520 }
521 
522 /**
523  * knav_queue_open()	- open a hardware queue
524  * @name		- name to give the queue handle
525  * @id			- desired queue number if any or specifes the type
526  *			  of queue
527  * @flags		- the following flags are applicable to queues:
528  *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
529  *			     exclusive by default.
530  *			     Subsequent attempts to open a shared queue should
531  *			     also have this flag.
532  *
533  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
534  * to check the returned value for error codes.
535  */
536 void *knav_queue_open(const char *name, unsigned id,
537 					unsigned flags)
538 {
539 	struct knav_queue *qh = ERR_PTR(-EINVAL);
540 
541 	switch (id) {
542 	case KNAV_QUEUE_QPEND:
543 	case KNAV_QUEUE_ACC:
544 	case KNAV_QUEUE_GP:
545 		qh = knav_queue_open_by_type(name, id, flags);
546 		break;
547 
548 	default:
549 		qh = knav_queue_open_by_id(name, id, flags);
550 		break;
551 	}
552 	return qh;
553 }
554 EXPORT_SYMBOL_GPL(knav_queue_open);
555 
556 /**
557  * knav_queue_close()	- close a hardware queue handle
558  * @qh			- handle to close
559  */
560 void knav_queue_close(void *qhandle)
561 {
562 	struct knav_queue *qh = qhandle;
563 	struct knav_queue_inst *inst = qh->inst;
564 
565 	while (atomic_read(&qh->notifier_enabled) > 0)
566 		knav_queue_disable_notifier(qh);
567 
568 	mutex_lock(&knav_dev_lock);
569 	list_del_rcu(&qh->list);
570 	mutex_unlock(&knav_dev_lock);
571 	synchronize_rcu();
572 	if (!knav_queue_is_busy(inst)) {
573 		struct knav_range_info *range = inst->range;
574 
575 		if (range->ops && range->ops->close_queue)
576 			range->ops->close_queue(range, inst);
577 	}
578 	free_percpu(qh->stats);
579 	devm_kfree(inst->kdev->dev, qh);
580 }
581 EXPORT_SYMBOL_GPL(knav_queue_close);
582 
583 /**
584  * knav_queue_device_control()	- Perform control operations on a queue
585  * @qh				- queue handle
586  * @cmd				- control commands
587  * @arg				- command argument
588  *
589  * Returns 0 on success, errno otherwise.
590  */
591 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
592 				unsigned long arg)
593 {
594 	struct knav_queue *qh = qhandle;
595 	struct knav_queue_notify_config *cfg;
596 	int ret;
597 
598 	switch ((int)cmd) {
599 	case KNAV_QUEUE_GET_ID:
600 		ret = qh->inst->kdev->base_id + qh->inst->id;
601 		break;
602 
603 	case KNAV_QUEUE_FLUSH:
604 		ret = knav_queue_flush(qh);
605 		break;
606 
607 	case KNAV_QUEUE_SET_NOTIFIER:
608 		cfg = (void *)arg;
609 		ret = knav_queue_set_notifier(qh, cfg);
610 		break;
611 
612 	case KNAV_QUEUE_ENABLE_NOTIFY:
613 		ret = knav_queue_enable_notifier(qh);
614 		break;
615 
616 	case KNAV_QUEUE_DISABLE_NOTIFY:
617 		ret = knav_queue_disable_notifier(qh);
618 		break;
619 
620 	case KNAV_QUEUE_GET_COUNT:
621 		ret = knav_queue_get_count(qh);
622 		break;
623 
624 	default:
625 		ret = -ENOTSUPP;
626 		break;
627 	}
628 	return ret;
629 }
630 EXPORT_SYMBOL_GPL(knav_queue_device_control);
631 
632 
633 
634 /**
635  * knav_queue_push()	- push data (or descriptor) to the tail of a queue
636  * @qh			- hardware queue handle
637  * @data		- data to push
638  * @size		- size of data to push
639  * @flags		- can be used to pass additional information
640  *
641  * Returns 0 on success, errno otherwise.
642  */
643 int knav_queue_push(void *qhandle, dma_addr_t dma,
644 					unsigned size, unsigned flags)
645 {
646 	struct knav_queue *qh = qhandle;
647 	u32 val;
648 
649 	val = (u32)dma | ((size / 16) - 1);
650 	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
651 
652 	this_cpu_inc(qh->stats->pushes);
653 	return 0;
654 }
655 EXPORT_SYMBOL_GPL(knav_queue_push);
656 
657 /**
658  * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
659  * @qh			- hardware queue handle
660  * @size		- (optional) size of the data pop'ed.
661  *
662  * Returns a DMA address on success, 0 on failure.
663  */
664 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
665 {
666 	struct knav_queue *qh = qhandle;
667 	struct knav_queue_inst *inst = qh->inst;
668 	dma_addr_t dma;
669 	u32 val, idx;
670 
671 	/* are we accumulated? */
672 	if (inst->descs) {
673 		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
674 			atomic_inc(&inst->desc_count);
675 			return 0;
676 		}
677 		idx  = atomic_inc_return(&inst->desc_head);
678 		idx &= ACC_DESCS_MASK;
679 		val = inst->descs[idx];
680 	} else {
681 		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
682 		if (unlikely(!val))
683 			return 0;
684 	}
685 
686 	dma = val & DESC_PTR_MASK;
687 	if (size)
688 		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
689 
690 	this_cpu_inc(qh->stats->pops);
691 	return dma;
692 }
693 EXPORT_SYMBOL_GPL(knav_queue_pop);
694 
695 /* carve out descriptors and push into queue */
696 static void kdesc_fill_pool(struct knav_pool *pool)
697 {
698 	struct knav_region *region;
699 	int i;
700 
701 	region = pool->region;
702 	pool->desc_size = region->desc_size;
703 	for (i = 0; i < pool->num_desc; i++) {
704 		int index = pool->region_offset + i;
705 		dma_addr_t dma_addr;
706 		unsigned dma_size;
707 		dma_addr = region->dma_start + (region->desc_size * index);
708 		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
709 		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
710 					   DMA_TO_DEVICE);
711 		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
712 	}
713 }
714 
715 /* pop out descriptors and close the queue */
716 static void kdesc_empty_pool(struct knav_pool *pool)
717 {
718 	dma_addr_t dma;
719 	unsigned size;
720 	void *desc;
721 	int i;
722 
723 	if (!pool->queue)
724 		return;
725 
726 	for (i = 0;; i++) {
727 		dma = knav_queue_pop(pool->queue, &size);
728 		if (!dma)
729 			break;
730 		desc = knav_pool_desc_dma_to_virt(pool, dma);
731 		if (!desc) {
732 			dev_dbg(pool->kdev->dev,
733 				"couldn't unmap desc, continuing\n");
734 			continue;
735 		}
736 	}
737 	WARN_ON(i != pool->num_desc);
738 	knav_queue_close(pool->queue);
739 }
740 
741 
742 /* Get the DMA address of a descriptor */
743 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
744 {
745 	struct knav_pool *pool = ph;
746 	return pool->region->dma_start + (virt - pool->region->virt_start);
747 }
748 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
749 
750 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
751 {
752 	struct knav_pool *pool = ph;
753 	return pool->region->virt_start + (dma - pool->region->dma_start);
754 }
755 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
756 
757 /**
758  * knav_pool_create()	- Create a pool of descriptors
759  * @name		- name to give the pool handle
760  * @num_desc		- numbers of descriptors in the pool
761  * @region_id		- QMSS region id from which the descriptors are to be
762  *			  allocated.
763  *
764  * Returns a pool handle on success.
765  * Use IS_ERR_OR_NULL() to identify error values on return.
766  */
767 void *knav_pool_create(const char *name,
768 					int num_desc, int region_id)
769 {
770 	struct knav_region *reg_itr, *region = NULL;
771 	struct knav_pool *pool, *pi;
772 	struct list_head *node;
773 	unsigned last_offset;
774 	bool slot_found;
775 	int ret;
776 
777 	if (!kdev)
778 		return ERR_PTR(-EPROBE_DEFER);
779 
780 	if (!kdev->dev)
781 		return ERR_PTR(-ENODEV);
782 
783 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
784 	if (!pool) {
785 		dev_err(kdev->dev, "out of memory allocating pool\n");
786 		return ERR_PTR(-ENOMEM);
787 	}
788 
789 	for_each_region(kdev, reg_itr) {
790 		if (reg_itr->id != region_id)
791 			continue;
792 		region = reg_itr;
793 		break;
794 	}
795 
796 	if (!region) {
797 		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
798 		ret = -EINVAL;
799 		goto err;
800 	}
801 
802 	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
803 	if (IS_ERR_OR_NULL(pool->queue)) {
804 		dev_err(kdev->dev,
805 			"failed to open queue for pool(%s), error %ld\n",
806 			name, PTR_ERR(pool->queue));
807 		ret = PTR_ERR(pool->queue);
808 		goto err;
809 	}
810 
811 	pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
812 	pool->kdev = kdev;
813 	pool->dev = kdev->dev;
814 
815 	mutex_lock(&knav_dev_lock);
816 
817 	if (num_desc > (region->num_desc - region->used_desc)) {
818 		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
819 			region_id, name);
820 		ret = -ENOMEM;
821 		goto err_unlock;
822 	}
823 
824 	/* Region maintains a sorted (by region offset) list of pools
825 	 * use the first free slot which is large enough to accomodate
826 	 * the request
827 	 */
828 	last_offset = 0;
829 	slot_found = false;
830 	node = &region->pools;
831 	list_for_each_entry(pi, &region->pools, region_inst) {
832 		if ((pi->region_offset - last_offset) >= num_desc) {
833 			slot_found = true;
834 			break;
835 		}
836 		last_offset = pi->region_offset + pi->num_desc;
837 	}
838 	node = &pi->region_inst;
839 
840 	if (slot_found) {
841 		pool->region = region;
842 		pool->num_desc = num_desc;
843 		pool->region_offset = last_offset;
844 		region->used_desc += num_desc;
845 		list_add_tail(&pool->list, &kdev->pools);
846 		list_add_tail(&pool->region_inst, node);
847 	} else {
848 		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
849 			name, region_id);
850 		ret = -ENOMEM;
851 		goto err_unlock;
852 	}
853 
854 	mutex_unlock(&knav_dev_lock);
855 	kdesc_fill_pool(pool);
856 	return pool;
857 
858 err_unlock:
859 	mutex_unlock(&knav_dev_lock);
860 err:
861 	kfree(pool->name);
862 	devm_kfree(kdev->dev, pool);
863 	return ERR_PTR(ret);
864 }
865 EXPORT_SYMBOL_GPL(knav_pool_create);
866 
867 /**
868  * knav_pool_destroy()	- Free a pool of descriptors
869  * @pool		- pool handle
870  */
871 void knav_pool_destroy(void *ph)
872 {
873 	struct knav_pool *pool = ph;
874 
875 	if (!pool)
876 		return;
877 
878 	if (!pool->region)
879 		return;
880 
881 	kdesc_empty_pool(pool);
882 	mutex_lock(&knav_dev_lock);
883 
884 	pool->region->used_desc -= pool->num_desc;
885 	list_del(&pool->region_inst);
886 	list_del(&pool->list);
887 
888 	mutex_unlock(&knav_dev_lock);
889 	kfree(pool->name);
890 	devm_kfree(kdev->dev, pool);
891 }
892 EXPORT_SYMBOL_GPL(knav_pool_destroy);
893 
894 
895 /**
896  * knav_pool_desc_get()	- Get a descriptor from the pool
897  * @pool			- pool handle
898  *
899  * Returns descriptor from the pool.
900  */
901 void *knav_pool_desc_get(void *ph)
902 {
903 	struct knav_pool *pool = ph;
904 	dma_addr_t dma;
905 	unsigned size;
906 	void *data;
907 
908 	dma = knav_queue_pop(pool->queue, &size);
909 	if (unlikely(!dma))
910 		return ERR_PTR(-ENOMEM);
911 	data = knav_pool_desc_dma_to_virt(pool, dma);
912 	return data;
913 }
914 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
915 
916 /**
917  * knav_pool_desc_put()	- return a descriptor to the pool
918  * @pool			- pool handle
919  */
920 void knav_pool_desc_put(void *ph, void *desc)
921 {
922 	struct knav_pool *pool = ph;
923 	dma_addr_t dma;
924 	dma = knav_pool_desc_virt_to_dma(pool, desc);
925 	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
926 }
927 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
928 
929 /**
930  * knav_pool_desc_map()	- Map descriptor for DMA transfer
931  * @pool			- pool handle
932  * @desc			- address of descriptor to map
933  * @size			- size of descriptor to map
934  * @dma				- DMA address return pointer
935  * @dma_sz			- adjusted return pointer
936  *
937  * Returns 0 on success, errno otherwise.
938  */
939 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
940 					dma_addr_t *dma, unsigned *dma_sz)
941 {
942 	struct knav_pool *pool = ph;
943 	*dma = knav_pool_desc_virt_to_dma(pool, desc);
944 	size = min(size, pool->region->desc_size);
945 	size = ALIGN(size, SMP_CACHE_BYTES);
946 	*dma_sz = size;
947 	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
948 
949 	/* Ensure the descriptor reaches to the memory */
950 	__iowmb();
951 
952 	return 0;
953 }
954 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
955 
956 /**
957  * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
958  * @pool			- pool handle
959  * @dma				- DMA address of descriptor to unmap
960  * @dma_sz			- size of descriptor to unmap
961  *
962  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
963  * error values on return.
964  */
965 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
966 {
967 	struct knav_pool *pool = ph;
968 	unsigned desc_sz;
969 	void *desc;
970 
971 	desc_sz = min(dma_sz, pool->region->desc_size);
972 	desc = knav_pool_desc_dma_to_virt(pool, dma);
973 	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
974 	prefetch(desc);
975 	return desc;
976 }
977 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
978 
979 /**
980  * knav_pool_count()	- Get the number of descriptors in pool.
981  * @pool		- pool handle
982  * Returns number of elements in the pool.
983  */
984 int knav_pool_count(void *ph)
985 {
986 	struct knav_pool *pool = ph;
987 	return knav_queue_get_count(pool->queue);
988 }
989 EXPORT_SYMBOL_GPL(knav_pool_count);
990 
991 static void knav_queue_setup_region(struct knav_device *kdev,
992 					struct knav_region *region)
993 {
994 	unsigned hw_num_desc, hw_desc_size, size;
995 	struct knav_reg_region __iomem  *regs;
996 	struct knav_qmgr_info *qmgr;
997 	struct knav_pool *pool;
998 	int id = region->id;
999 	struct page *page;
1000 
1001 	/* unused region? */
1002 	if (!region->num_desc) {
1003 		dev_warn(kdev->dev, "unused region %s\n", region->name);
1004 		return;
1005 	}
1006 
1007 	/* get hardware descriptor value */
1008 	hw_num_desc = ilog2(region->num_desc - 1) + 1;
1009 
1010 	/* did we force fit ourselves into nothingness? */
1011 	if (region->num_desc < 32) {
1012 		region->num_desc = 0;
1013 		dev_warn(kdev->dev, "too few descriptors in region %s\n",
1014 			 region->name);
1015 		return;
1016 	}
1017 
1018 	size = region->num_desc * region->desc_size;
1019 	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1020 						GFP_DMA32);
1021 	if (!region->virt_start) {
1022 		region->num_desc = 0;
1023 		dev_err(kdev->dev, "memory alloc failed for region %s\n",
1024 			region->name);
1025 		return;
1026 	}
1027 	region->virt_end = region->virt_start + size;
1028 	page = virt_to_page(region->virt_start);
1029 
1030 	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1031 					 DMA_BIDIRECTIONAL);
1032 	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1033 		dev_err(kdev->dev, "dma map failed for region %s\n",
1034 			region->name);
1035 		goto fail;
1036 	}
1037 	region->dma_end = region->dma_start + size;
1038 
1039 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1040 	if (!pool) {
1041 		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1042 		goto fail;
1043 	}
1044 	pool->num_desc = 0;
1045 	pool->region_offset = region->num_desc;
1046 	list_add(&pool->region_inst, &region->pools);
1047 
1048 	dev_dbg(kdev->dev,
1049 		"region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1050 		region->name, id, region->desc_size, region->num_desc,
1051 		region->link_index, &region->dma_start, &region->dma_end,
1052 		region->virt_start, region->virt_end);
1053 
1054 	hw_desc_size = (region->desc_size / 16) - 1;
1055 	hw_num_desc -= 5;
1056 
1057 	for_each_qmgr(kdev, qmgr) {
1058 		regs = qmgr->reg_region + id;
1059 		writel_relaxed((u32)region->dma_start, &regs->base);
1060 		writel_relaxed(region->link_index, &regs->start_index);
1061 		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1062 			       &regs->size_count);
1063 	}
1064 	return;
1065 
1066 fail:
1067 	if (region->dma_start)
1068 		dma_unmap_page(kdev->dev, region->dma_start, size,
1069 				DMA_BIDIRECTIONAL);
1070 	if (region->virt_start)
1071 		free_pages_exact(region->virt_start, size);
1072 	region->num_desc = 0;
1073 	return;
1074 }
1075 
1076 static const char *knav_queue_find_name(struct device_node *node)
1077 {
1078 	const char *name;
1079 
1080 	if (of_property_read_string(node, "label", &name) < 0)
1081 		name = node->name;
1082 	if (!name)
1083 		name = "unknown";
1084 	return name;
1085 }
1086 
1087 static int knav_queue_setup_regions(struct knav_device *kdev,
1088 					struct device_node *regions)
1089 {
1090 	struct device *dev = kdev->dev;
1091 	struct knav_region *region;
1092 	struct device_node *child;
1093 	u32 temp[2];
1094 	int ret;
1095 
1096 	for_each_child_of_node(regions, child) {
1097 		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1098 		if (!region) {
1099 			dev_err(dev, "out of memory allocating region\n");
1100 			return -ENOMEM;
1101 		}
1102 
1103 		region->name = knav_queue_find_name(child);
1104 		of_property_read_u32(child, "id", &region->id);
1105 		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1106 		if (!ret) {
1107 			region->num_desc  = temp[0];
1108 			region->desc_size = temp[1];
1109 		} else {
1110 			dev_err(dev, "invalid region info %s\n", region->name);
1111 			devm_kfree(dev, region);
1112 			continue;
1113 		}
1114 
1115 		if (!of_get_property(child, "link-index", NULL)) {
1116 			dev_err(dev, "No link info for %s\n", region->name);
1117 			devm_kfree(dev, region);
1118 			continue;
1119 		}
1120 		ret = of_property_read_u32(child, "link-index",
1121 					   &region->link_index);
1122 		if (ret) {
1123 			dev_err(dev, "link index not found for %s\n",
1124 				region->name);
1125 			devm_kfree(dev, region);
1126 			continue;
1127 		}
1128 
1129 		INIT_LIST_HEAD(&region->pools);
1130 		list_add_tail(&region->list, &kdev->regions);
1131 	}
1132 	if (list_empty(&kdev->regions)) {
1133 		dev_err(dev, "no valid region information found\n");
1134 		return -ENODEV;
1135 	}
1136 
1137 	/* Next, we run through the regions and set things up */
1138 	for_each_region(kdev, region)
1139 		knav_queue_setup_region(kdev, region);
1140 
1141 	return 0;
1142 }
1143 
1144 static int knav_get_link_ram(struct knav_device *kdev,
1145 				       const char *name,
1146 				       struct knav_link_ram_block *block)
1147 {
1148 	struct platform_device *pdev = to_platform_device(kdev->dev);
1149 	struct device_node *node = pdev->dev.of_node;
1150 	u32 temp[2];
1151 
1152 	/*
1153 	 * Note: link ram resources are specified in "entry" sized units. In
1154 	 * reality, although entries are ~40bits in hardware, we treat them as
1155 	 * 64-bit entities here.
1156 	 *
1157 	 * For example, to specify the internal link ram for Keystone-I class
1158 	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1159 	 *
1160 	 * This gets a bit weird when other link rams are used.  For example,
1161 	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1162 	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1163 	 * which accounts for 64-bits per entry, for 16K entries.
1164 	 */
1165 	if (!of_property_read_u32_array(node, name , temp, 2)) {
1166 		if (temp[0]) {
1167 			/*
1168 			 * queue_base specified => using internal or onchip
1169 			 * link ram WARNING - we do not "reserve" this block
1170 			 */
1171 			block->dma = (dma_addr_t)temp[0];
1172 			block->virt = NULL;
1173 			block->size = temp[1];
1174 		} else {
1175 			block->size = temp[1];
1176 			/* queue_base not specific => allocate requested size */
1177 			block->virt = dmam_alloc_coherent(kdev->dev,
1178 						  8 * block->size, &block->dma,
1179 						  GFP_KERNEL);
1180 			if (!block->virt) {
1181 				dev_err(kdev->dev, "failed to alloc linkram\n");
1182 				return -ENOMEM;
1183 			}
1184 		}
1185 	} else {
1186 		return -ENODEV;
1187 	}
1188 	return 0;
1189 }
1190 
1191 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1192 {
1193 	struct knav_link_ram_block *block;
1194 	struct knav_qmgr_info *qmgr;
1195 
1196 	for_each_qmgr(kdev, qmgr) {
1197 		block = &kdev->link_rams[0];
1198 		dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1199 			&block->dma, block->virt, block->size);
1200 		writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1201 		if (kdev->version == QMSS_66AK2G)
1202 			writel_relaxed(block->size,
1203 				       &qmgr->reg_config->link_ram_size0);
1204 		else
1205 			writel_relaxed(block->size - 1,
1206 				       &qmgr->reg_config->link_ram_size0);
1207 		block++;
1208 		if (!block->size)
1209 			continue;
1210 
1211 		dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1212 			&block->dma, block->virt, block->size);
1213 		writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1214 	}
1215 
1216 	return 0;
1217 }
1218 
1219 static int knav_setup_queue_range(struct knav_device *kdev,
1220 					struct device_node *node)
1221 {
1222 	struct device *dev = kdev->dev;
1223 	struct knav_range_info *range;
1224 	struct knav_qmgr_info *qmgr;
1225 	u32 temp[2], start, end, id, index;
1226 	int ret, i;
1227 
1228 	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1229 	if (!range) {
1230 		dev_err(dev, "out of memory allocating range\n");
1231 		return -ENOMEM;
1232 	}
1233 
1234 	range->kdev = kdev;
1235 	range->name = knav_queue_find_name(node);
1236 	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1237 	if (!ret) {
1238 		range->queue_base = temp[0] - kdev->base_id;
1239 		range->num_queues = temp[1];
1240 	} else {
1241 		dev_err(dev, "invalid queue range %s\n", range->name);
1242 		devm_kfree(dev, range);
1243 		return -EINVAL;
1244 	}
1245 
1246 	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1247 		struct of_phandle_args oirq;
1248 
1249 		if (of_irq_parse_one(node, i, &oirq))
1250 			break;
1251 
1252 		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1253 		if (range->irqs[i].irq == IRQ_NONE)
1254 			break;
1255 
1256 		range->num_irqs++;
1257 
1258 		if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1259 			unsigned long mask;
1260 			int bit;
1261 
1262 			range->irqs[i].cpu_mask = devm_kzalloc(dev,
1263 							       cpumask_size(), GFP_KERNEL);
1264 			if (!range->irqs[i].cpu_mask)
1265 				return -ENOMEM;
1266 
1267 			mask = (oirq.args[2] & 0x0000ff00) >> 8;
1268 			for_each_set_bit(bit, &mask, BITS_PER_LONG)
1269 				cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1270 		}
1271 	}
1272 
1273 	range->num_irqs = min(range->num_irqs, range->num_queues);
1274 	if (range->num_irqs)
1275 		range->flags |= RANGE_HAS_IRQ;
1276 
1277 	if (of_get_property(node, "qalloc-by-id", NULL))
1278 		range->flags |= RANGE_RESERVED;
1279 
1280 	if (of_get_property(node, "accumulator", NULL)) {
1281 		ret = knav_init_acc_range(kdev, node, range);
1282 		if (ret < 0) {
1283 			devm_kfree(dev, range);
1284 			return ret;
1285 		}
1286 	} else {
1287 		range->ops = &knav_gp_range_ops;
1288 	}
1289 
1290 	/* set threshold to 1, and flush out the queues */
1291 	for_each_qmgr(kdev, qmgr) {
1292 		start = max(qmgr->start_queue, range->queue_base);
1293 		end   = min(qmgr->start_queue + qmgr->num_queues,
1294 			    range->queue_base + range->num_queues);
1295 		for (id = start; id < end; id++) {
1296 			index = id - qmgr->start_queue;
1297 			writel_relaxed(THRESH_GTE | 1,
1298 				       &qmgr->reg_peek[index].ptr_size_thresh);
1299 			writel_relaxed(0,
1300 				       &qmgr->reg_push[index].ptr_size_thresh);
1301 		}
1302 	}
1303 
1304 	list_add_tail(&range->list, &kdev->queue_ranges);
1305 	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1306 		range->name, range->queue_base,
1307 		range->queue_base + range->num_queues - 1,
1308 		range->num_irqs,
1309 		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1310 		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1311 		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1312 	kdev->num_queues_in_use += range->num_queues;
1313 	return 0;
1314 }
1315 
1316 static int knav_setup_queue_pools(struct knav_device *kdev,
1317 				   struct device_node *queue_pools)
1318 {
1319 	struct device_node *type, *range;
1320 	int ret;
1321 
1322 	for_each_child_of_node(queue_pools, type) {
1323 		for_each_child_of_node(type, range) {
1324 			ret = knav_setup_queue_range(kdev, range);
1325 			/* return value ignored, we init the rest... */
1326 		}
1327 	}
1328 
1329 	/* ... and barf if they all failed! */
1330 	if (list_empty(&kdev->queue_ranges)) {
1331 		dev_err(kdev->dev, "no valid queue range found\n");
1332 		return -ENODEV;
1333 	}
1334 	return 0;
1335 }
1336 
1337 static void knav_free_queue_range(struct knav_device *kdev,
1338 				  struct knav_range_info *range)
1339 {
1340 	if (range->ops && range->ops->free_range)
1341 		range->ops->free_range(range);
1342 	list_del(&range->list);
1343 	devm_kfree(kdev->dev, range);
1344 }
1345 
1346 static void knav_free_queue_ranges(struct knav_device *kdev)
1347 {
1348 	struct knav_range_info *range;
1349 
1350 	for (;;) {
1351 		range = first_queue_range(kdev);
1352 		if (!range)
1353 			break;
1354 		knav_free_queue_range(kdev, range);
1355 	}
1356 }
1357 
1358 static void knav_queue_free_regions(struct knav_device *kdev)
1359 {
1360 	struct knav_region *region;
1361 	struct knav_pool *pool, *tmp;
1362 	unsigned size;
1363 
1364 	for (;;) {
1365 		region = first_region(kdev);
1366 		if (!region)
1367 			break;
1368 		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1369 			knav_pool_destroy(pool);
1370 
1371 		size = region->virt_end - region->virt_start;
1372 		if (size)
1373 			free_pages_exact(region->virt_start, size);
1374 		list_del(&region->list);
1375 		devm_kfree(kdev->dev, region);
1376 	}
1377 }
1378 
1379 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1380 					struct device_node *node, int index)
1381 {
1382 	struct resource res;
1383 	void __iomem *regs;
1384 	int ret;
1385 
1386 	ret = of_address_to_resource(node, index, &res);
1387 	if (ret) {
1388 		dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1389 			node, index);
1390 		return ERR_PTR(ret);
1391 	}
1392 
1393 	regs = devm_ioremap_resource(kdev->dev, &res);
1394 	if (IS_ERR(regs))
1395 		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1396 			index, node);
1397 	return regs;
1398 }
1399 
1400 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1401 					struct device_node *qmgrs)
1402 {
1403 	struct device *dev = kdev->dev;
1404 	struct knav_qmgr_info *qmgr;
1405 	struct device_node *child;
1406 	u32 temp[2];
1407 	int ret;
1408 
1409 	for_each_child_of_node(qmgrs, child) {
1410 		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1411 		if (!qmgr) {
1412 			dev_err(dev, "out of memory allocating qmgr\n");
1413 			return -ENOMEM;
1414 		}
1415 
1416 		ret = of_property_read_u32_array(child, "managed-queues",
1417 						 temp, 2);
1418 		if (!ret) {
1419 			qmgr->start_queue = temp[0];
1420 			qmgr->num_queues = temp[1];
1421 		} else {
1422 			dev_err(dev, "invalid qmgr queue range\n");
1423 			devm_kfree(dev, qmgr);
1424 			continue;
1425 		}
1426 
1427 		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1428 			 qmgr->start_queue, qmgr->num_queues);
1429 
1430 		qmgr->reg_peek =
1431 			knav_queue_map_reg(kdev, child,
1432 					   KNAV_QUEUE_PEEK_REG_INDEX);
1433 
1434 		if (kdev->version == QMSS) {
1435 			qmgr->reg_status =
1436 				knav_queue_map_reg(kdev, child,
1437 						   KNAV_QUEUE_STATUS_REG_INDEX);
1438 		}
1439 
1440 		qmgr->reg_config =
1441 			knav_queue_map_reg(kdev, child,
1442 					   (kdev->version == QMSS_66AK2G) ?
1443 					   KNAV_L_QUEUE_CONFIG_REG_INDEX :
1444 					   KNAV_QUEUE_CONFIG_REG_INDEX);
1445 		qmgr->reg_region =
1446 			knav_queue_map_reg(kdev, child,
1447 					   (kdev->version == QMSS_66AK2G) ?
1448 					   KNAV_L_QUEUE_REGION_REG_INDEX :
1449 					   KNAV_QUEUE_REGION_REG_INDEX);
1450 
1451 		qmgr->reg_push =
1452 			knav_queue_map_reg(kdev, child,
1453 					   (kdev->version == QMSS_66AK2G) ?
1454 					    KNAV_L_QUEUE_PUSH_REG_INDEX :
1455 					    KNAV_QUEUE_PUSH_REG_INDEX);
1456 
1457 		if (kdev->version == QMSS) {
1458 			qmgr->reg_pop =
1459 				knav_queue_map_reg(kdev, child,
1460 						   KNAV_QUEUE_POP_REG_INDEX);
1461 		}
1462 
1463 		if (IS_ERR(qmgr->reg_peek) ||
1464 		    ((kdev->version == QMSS) &&
1465 		    (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1466 		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1467 		    IS_ERR(qmgr->reg_push)) {
1468 			dev_err(dev, "failed to map qmgr regs\n");
1469 			if (kdev->version == QMSS) {
1470 				if (!IS_ERR(qmgr->reg_status))
1471 					devm_iounmap(dev, qmgr->reg_status);
1472 				if (!IS_ERR(qmgr->reg_pop))
1473 					devm_iounmap(dev, qmgr->reg_pop);
1474 			}
1475 			if (!IS_ERR(qmgr->reg_peek))
1476 				devm_iounmap(dev, qmgr->reg_peek);
1477 			if (!IS_ERR(qmgr->reg_config))
1478 				devm_iounmap(dev, qmgr->reg_config);
1479 			if (!IS_ERR(qmgr->reg_region))
1480 				devm_iounmap(dev, qmgr->reg_region);
1481 			if (!IS_ERR(qmgr->reg_push))
1482 				devm_iounmap(dev, qmgr->reg_push);
1483 			devm_kfree(dev, qmgr);
1484 			continue;
1485 		}
1486 
1487 		/* Use same push register for pop as well */
1488 		if (kdev->version == QMSS_66AK2G)
1489 			qmgr->reg_pop = qmgr->reg_push;
1490 
1491 		list_add_tail(&qmgr->list, &kdev->qmgrs);
1492 		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1493 			 qmgr->start_queue, qmgr->num_queues,
1494 			 qmgr->reg_peek, qmgr->reg_status,
1495 			 qmgr->reg_config, qmgr->reg_region,
1496 			 qmgr->reg_push, qmgr->reg_pop);
1497 	}
1498 	return 0;
1499 }
1500 
1501 static int knav_queue_init_pdsps(struct knav_device *kdev,
1502 					struct device_node *pdsps)
1503 {
1504 	struct device *dev = kdev->dev;
1505 	struct knav_pdsp_info *pdsp;
1506 	struct device_node *child;
1507 
1508 	for_each_child_of_node(pdsps, child) {
1509 		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1510 		if (!pdsp) {
1511 			dev_err(dev, "out of memory allocating pdsp\n");
1512 			return -ENOMEM;
1513 		}
1514 		pdsp->name = knav_queue_find_name(child);
1515 		pdsp->iram =
1516 			knav_queue_map_reg(kdev, child,
1517 					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1518 		pdsp->regs =
1519 			knav_queue_map_reg(kdev, child,
1520 					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1521 		pdsp->intd =
1522 			knav_queue_map_reg(kdev, child,
1523 					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1524 		pdsp->command =
1525 			knav_queue_map_reg(kdev, child,
1526 					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1527 
1528 		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1529 		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1530 			dev_err(dev, "failed to map pdsp %s regs\n",
1531 				pdsp->name);
1532 			if (!IS_ERR(pdsp->command))
1533 				devm_iounmap(dev, pdsp->command);
1534 			if (!IS_ERR(pdsp->iram))
1535 				devm_iounmap(dev, pdsp->iram);
1536 			if (!IS_ERR(pdsp->regs))
1537 				devm_iounmap(dev, pdsp->regs);
1538 			if (!IS_ERR(pdsp->intd))
1539 				devm_iounmap(dev, pdsp->intd);
1540 			devm_kfree(dev, pdsp);
1541 			continue;
1542 		}
1543 		of_property_read_u32(child, "id", &pdsp->id);
1544 		list_add_tail(&pdsp->list, &kdev->pdsps);
1545 		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1546 			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1547 			pdsp->intd);
1548 	}
1549 	return 0;
1550 }
1551 
1552 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1553 			  struct knav_pdsp_info *pdsp)
1554 {
1555 	u32 val, timeout = 1000;
1556 	int ret;
1557 
1558 	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1559 	writel_relaxed(val, &pdsp->regs->control);
1560 	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1561 					PDSP_CTRL_RUNNING);
1562 	if (ret < 0) {
1563 		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1564 		return ret;
1565 	}
1566 	pdsp->loaded = false;
1567 	pdsp->started = false;
1568 	return 0;
1569 }
1570 
1571 static int knav_queue_load_pdsp(struct knav_device *kdev,
1572 			  struct knav_pdsp_info *pdsp)
1573 {
1574 	int i, ret, fwlen;
1575 	const struct firmware *fw;
1576 	bool found = false;
1577 	u32 *fwdata;
1578 
1579 	for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1580 		if (knav_acc_firmwares[i]) {
1581 			ret = request_firmware_direct(&fw,
1582 						      knav_acc_firmwares[i],
1583 						      kdev->dev);
1584 			if (!ret) {
1585 				found = true;
1586 				break;
1587 			}
1588 		}
1589 	}
1590 
1591 	if (!found) {
1592 		dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1593 		return -ENODEV;
1594 	}
1595 
1596 	dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1597 		 knav_acc_firmwares[i]);
1598 
1599 	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1600 	/* download the firmware */
1601 	fwdata = (u32 *)fw->data;
1602 	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1603 	for (i = 0; i < fwlen; i++)
1604 		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1605 
1606 	release_firmware(fw);
1607 	return 0;
1608 }
1609 
1610 static int knav_queue_start_pdsp(struct knav_device *kdev,
1611 			   struct knav_pdsp_info *pdsp)
1612 {
1613 	u32 val, timeout = 1000;
1614 	int ret;
1615 
1616 	/* write a command for sync */
1617 	writel_relaxed(0xffffffff, pdsp->command);
1618 	while (readl_relaxed(pdsp->command) != 0xffffffff)
1619 		cpu_relax();
1620 
1621 	/* soft reset the PDSP */
1622 	val  = readl_relaxed(&pdsp->regs->control);
1623 	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1624 	writel_relaxed(val, &pdsp->regs->control);
1625 
1626 	/* enable pdsp */
1627 	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1628 	writel_relaxed(val, &pdsp->regs->control);
1629 
1630 	/* wait for command register to clear */
1631 	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1632 	if (ret < 0) {
1633 		dev_err(kdev->dev,
1634 			"timed out on pdsp %s command register wait\n",
1635 			pdsp->name);
1636 		return ret;
1637 	}
1638 	return 0;
1639 }
1640 
1641 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1642 {
1643 	struct knav_pdsp_info *pdsp;
1644 
1645 	/* disable all pdsps */
1646 	for_each_pdsp(kdev, pdsp)
1647 		knav_queue_stop_pdsp(kdev, pdsp);
1648 }
1649 
1650 static int knav_queue_start_pdsps(struct knav_device *kdev)
1651 {
1652 	struct knav_pdsp_info *pdsp;
1653 	int ret;
1654 
1655 	knav_queue_stop_pdsps(kdev);
1656 	/* now load them all. We return success even if pdsp
1657 	 * is not loaded as acc channels are optional on having
1658 	 * firmware availability in the system. We set the loaded
1659 	 * and stated flag and when initialize the acc range, check
1660 	 * it and init the range only if pdsp is started.
1661 	 */
1662 	for_each_pdsp(kdev, pdsp) {
1663 		ret = knav_queue_load_pdsp(kdev, pdsp);
1664 		if (!ret)
1665 			pdsp->loaded = true;
1666 	}
1667 
1668 	for_each_pdsp(kdev, pdsp) {
1669 		if (pdsp->loaded) {
1670 			ret = knav_queue_start_pdsp(kdev, pdsp);
1671 			if (!ret)
1672 				pdsp->started = true;
1673 		}
1674 	}
1675 	return 0;
1676 }
1677 
1678 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1679 {
1680 	struct knav_qmgr_info *qmgr;
1681 
1682 	for_each_qmgr(kdev, qmgr) {
1683 		if ((id >= qmgr->start_queue) &&
1684 		    (id < qmgr->start_queue + qmgr->num_queues))
1685 			return qmgr;
1686 	}
1687 	return NULL;
1688 }
1689 
1690 static int knav_queue_init_queue(struct knav_device *kdev,
1691 					struct knav_range_info *range,
1692 					struct knav_queue_inst *inst,
1693 					unsigned id)
1694 {
1695 	char irq_name[KNAV_NAME_SIZE];
1696 	inst->qmgr = knav_find_qmgr(id);
1697 	if (!inst->qmgr)
1698 		return -1;
1699 
1700 	INIT_LIST_HEAD(&inst->handles);
1701 	inst->kdev = kdev;
1702 	inst->range = range;
1703 	inst->irq_num = -1;
1704 	inst->id = id;
1705 	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1706 	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1707 
1708 	if (range->ops && range->ops->init_queue)
1709 		return range->ops->init_queue(range, inst);
1710 	else
1711 		return 0;
1712 }
1713 
1714 static int knav_queue_init_queues(struct knav_device *kdev)
1715 {
1716 	struct knav_range_info *range;
1717 	int size, id, base_idx;
1718 	int idx = 0, ret = 0;
1719 
1720 	/* how much do we need for instance data? */
1721 	size = sizeof(struct knav_queue_inst);
1722 
1723 	/* round this up to a power of 2, keep the index to instance
1724 	 * arithmetic fast.
1725 	 * */
1726 	kdev->inst_shift = order_base_2(size);
1727 	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1728 	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1729 	if (!kdev->instances)
1730 		return -ENOMEM;
1731 
1732 	for_each_queue_range(kdev, range) {
1733 		if (range->ops && range->ops->init_range)
1734 			range->ops->init_range(range);
1735 		base_idx = idx;
1736 		for (id = range->queue_base;
1737 		     id < range->queue_base + range->num_queues; id++, idx++) {
1738 			ret = knav_queue_init_queue(kdev, range,
1739 					knav_queue_idx_to_inst(kdev, idx), id);
1740 			if (ret < 0)
1741 				return ret;
1742 		}
1743 		range->queue_base_inst =
1744 			knav_queue_idx_to_inst(kdev, base_idx);
1745 	}
1746 	return 0;
1747 }
1748 
1749 /* Match table for of_platform binding */
1750 static const struct of_device_id keystone_qmss_of_match[] = {
1751 	{
1752 		.compatible = "ti,keystone-navigator-qmss",
1753 	},
1754 	{
1755 		.compatible = "ti,66ak2g-navss-qm",
1756 		.data	= (void *)QMSS_66AK2G,
1757 	},
1758 	{},
1759 };
1760 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1761 
1762 static int knav_queue_probe(struct platform_device *pdev)
1763 {
1764 	struct device_node *node = pdev->dev.of_node;
1765 	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1766 	const struct of_device_id *match;
1767 	struct device *dev = &pdev->dev;
1768 	u32 temp[2];
1769 	int ret;
1770 
1771 	if (!node) {
1772 		dev_err(dev, "device tree info unavailable\n");
1773 		return -ENODEV;
1774 	}
1775 
1776 	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1777 	if (!kdev) {
1778 		dev_err(dev, "memory allocation failed\n");
1779 		return -ENOMEM;
1780 	}
1781 
1782 	match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1783 	if (match && match->data)
1784 		kdev->version = QMSS_66AK2G;
1785 
1786 	platform_set_drvdata(pdev, kdev);
1787 	kdev->dev = dev;
1788 	INIT_LIST_HEAD(&kdev->queue_ranges);
1789 	INIT_LIST_HEAD(&kdev->qmgrs);
1790 	INIT_LIST_HEAD(&kdev->pools);
1791 	INIT_LIST_HEAD(&kdev->regions);
1792 	INIT_LIST_HEAD(&kdev->pdsps);
1793 
1794 	pm_runtime_enable(&pdev->dev);
1795 	ret = pm_runtime_get_sync(&pdev->dev);
1796 	if (ret < 0) {
1797 		dev_err(dev, "Failed to enable QMSS\n");
1798 		return ret;
1799 	}
1800 
1801 	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1802 		dev_err(dev, "queue-range not specified\n");
1803 		ret = -ENODEV;
1804 		goto err;
1805 	}
1806 	kdev->base_id    = temp[0];
1807 	kdev->num_queues = temp[1];
1808 
1809 	/* Initialize queue managers using device tree configuration */
1810 	qmgrs =  of_get_child_by_name(node, "qmgrs");
1811 	if (!qmgrs) {
1812 		dev_err(dev, "queue manager info not specified\n");
1813 		ret = -ENODEV;
1814 		goto err;
1815 	}
1816 	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1817 	of_node_put(qmgrs);
1818 	if (ret)
1819 		goto err;
1820 
1821 	/* get pdsp configuration values from device tree */
1822 	pdsps =  of_get_child_by_name(node, "pdsps");
1823 	if (pdsps) {
1824 		ret = knav_queue_init_pdsps(kdev, pdsps);
1825 		if (ret)
1826 			goto err;
1827 
1828 		ret = knav_queue_start_pdsps(kdev);
1829 		if (ret)
1830 			goto err;
1831 	}
1832 	of_node_put(pdsps);
1833 
1834 	/* get usable queue range values from device tree */
1835 	queue_pools = of_get_child_by_name(node, "queue-pools");
1836 	if (!queue_pools) {
1837 		dev_err(dev, "queue-pools not specified\n");
1838 		ret = -ENODEV;
1839 		goto err;
1840 	}
1841 	ret = knav_setup_queue_pools(kdev, queue_pools);
1842 	of_node_put(queue_pools);
1843 	if (ret)
1844 		goto err;
1845 
1846 	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1847 	if (ret) {
1848 		dev_err(kdev->dev, "could not setup linking ram\n");
1849 		goto err;
1850 	}
1851 
1852 	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1853 	if (ret) {
1854 		/*
1855 		 * nothing really, we have one linking ram already, so we just
1856 		 * live within our means
1857 		 */
1858 	}
1859 
1860 	ret = knav_queue_setup_link_ram(kdev);
1861 	if (ret)
1862 		goto err;
1863 
1864 	regions =  of_get_child_by_name(node, "descriptor-regions");
1865 	if (!regions) {
1866 		dev_err(dev, "descriptor-regions not specified\n");
1867 		goto err;
1868 	}
1869 	ret = knav_queue_setup_regions(kdev, regions);
1870 	of_node_put(regions);
1871 	if (ret)
1872 		goto err;
1873 
1874 	ret = knav_queue_init_queues(kdev);
1875 	if (ret < 0) {
1876 		dev_err(dev, "hwqueue initialization failed\n");
1877 		goto err;
1878 	}
1879 
1880 	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1881 			    &knav_queue_debug_ops);
1882 	device_ready = true;
1883 	return 0;
1884 
1885 err:
1886 	knav_queue_stop_pdsps(kdev);
1887 	knav_queue_free_regions(kdev);
1888 	knav_free_queue_ranges(kdev);
1889 	pm_runtime_put_sync(&pdev->dev);
1890 	pm_runtime_disable(&pdev->dev);
1891 	return ret;
1892 }
1893 
1894 static int knav_queue_remove(struct platform_device *pdev)
1895 {
1896 	/* TODO: Free resources */
1897 	pm_runtime_put_sync(&pdev->dev);
1898 	pm_runtime_disable(&pdev->dev);
1899 	return 0;
1900 }
1901 
1902 static struct platform_driver keystone_qmss_driver = {
1903 	.probe		= knav_queue_probe,
1904 	.remove		= knav_queue_remove,
1905 	.driver		= {
1906 		.name	= "keystone-navigator-qmss",
1907 		.of_match_table = keystone_qmss_of_match,
1908 	},
1909 };
1910 module_platform_driver(keystone_qmss_driver);
1911 
1912 MODULE_LICENSE("GPL v2");
1913 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1914 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1915 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1916