xref: /openbmc/linux/drivers/soc/ti/knav_qmss_queue.c (revision d7a3d85e)
1 /*
2  * Keystone Queue Manager subsystem driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5  * Authors:	Sandeep Nair <sandeep_n@ti.com>
6  *		Cyril Chemparathy <cyril@ti.com>
7  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/clk.h>
23 #include <linux/io.h>
24 #include <linux/interrupt.h>
25 #include <linux/bitops.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/platform_device.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_device.h>
33 #include <linux/of_address.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/firmware.h>
36 #include <linux/debugfs.h>
37 #include <linux/seq_file.h>
38 #include <linux/string.h>
39 #include <linux/soc/ti/knav_qmss.h>
40 
41 #include "knav_qmss.h"
42 
43 static struct knav_device *kdev;
44 static DEFINE_MUTEX(knav_dev_lock);
45 
46 /* Queue manager register indices in DTS */
47 #define KNAV_QUEUE_PEEK_REG_INDEX	0
48 #define KNAV_QUEUE_STATUS_REG_INDEX	1
49 #define KNAV_QUEUE_CONFIG_REG_INDEX	2
50 #define KNAV_QUEUE_REGION_REG_INDEX	3
51 #define KNAV_QUEUE_PUSH_REG_INDEX	4
52 #define KNAV_QUEUE_POP_REG_INDEX	5
53 
54 /* PDSP register indices in DTS */
55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
59 
60 #define knav_queue_idx_to_inst(kdev, idx)			\
61 	(kdev->instances + (idx << kdev->inst_shift))
62 
63 #define for_each_handle_rcu(qh, inst)			\
64 	list_for_each_entry_rcu(qh, &inst->handles, list)
65 
66 #define for_each_instance(idx, inst, kdev)		\
67 	for (idx = 0, inst = kdev->instances;		\
68 	     idx < (kdev)->num_queues_in_use;			\
69 	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
70 
71 /**
72  * knav_queue_notify: qmss queue notfier call
73  *
74  * @inst:		qmss queue instance like accumulator
75  */
76 void knav_queue_notify(struct knav_queue_inst *inst)
77 {
78 	struct knav_queue *qh;
79 
80 	if (!inst)
81 		return;
82 
83 	rcu_read_lock();
84 	for_each_handle_rcu(qh, inst) {
85 		if (atomic_read(&qh->notifier_enabled) <= 0)
86 			continue;
87 		if (WARN_ON(!qh->notifier_fn))
88 			continue;
89 		atomic_inc(&qh->stats.notifies);
90 		qh->notifier_fn(qh->notifier_fn_arg);
91 	}
92 	rcu_read_unlock();
93 }
94 EXPORT_SYMBOL_GPL(knav_queue_notify);
95 
96 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
97 {
98 	struct knav_queue_inst *inst = _instdata;
99 
100 	knav_queue_notify(inst);
101 	return IRQ_HANDLED;
102 }
103 
104 static int knav_queue_setup_irq(struct knav_range_info *range,
105 			  struct knav_queue_inst *inst)
106 {
107 	unsigned queue = inst->id - range->queue_base;
108 	unsigned long cpu_map;
109 	int ret = 0, irq;
110 
111 	if (range->flags & RANGE_HAS_IRQ) {
112 		irq = range->irqs[queue].irq;
113 		cpu_map = range->irqs[queue].cpu_map;
114 		ret = request_irq(irq, knav_queue_int_handler, 0,
115 					inst->irq_name, inst);
116 		if (ret)
117 			return ret;
118 		disable_irq(irq);
119 		if (cpu_map) {
120 			ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
121 			if (ret) {
122 				dev_warn(range->kdev->dev,
123 					 "Failed to set IRQ affinity\n");
124 				return ret;
125 			}
126 		}
127 	}
128 	return ret;
129 }
130 
131 static void knav_queue_free_irq(struct knav_queue_inst *inst)
132 {
133 	struct knav_range_info *range = inst->range;
134 	unsigned queue = inst->id - inst->range->queue_base;
135 	int irq;
136 
137 	if (range->flags & RANGE_HAS_IRQ) {
138 		irq = range->irqs[queue].irq;
139 		irq_set_affinity_hint(irq, NULL);
140 		free_irq(irq, inst);
141 	}
142 }
143 
144 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
145 {
146 	return !list_empty(&inst->handles);
147 }
148 
149 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
150 {
151 	return inst->range->flags & RANGE_RESERVED;
152 }
153 
154 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
155 {
156 	struct knav_queue *tmp;
157 
158 	rcu_read_lock();
159 	for_each_handle_rcu(tmp, inst) {
160 		if (tmp->flags & KNAV_QUEUE_SHARED) {
161 			rcu_read_unlock();
162 			return true;
163 		}
164 	}
165 	rcu_read_unlock();
166 	return false;
167 }
168 
169 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
170 						unsigned type)
171 {
172 	if ((type == KNAV_QUEUE_QPEND) &&
173 	    (inst->range->flags & RANGE_HAS_IRQ)) {
174 		return true;
175 	} else if ((type == KNAV_QUEUE_ACC) &&
176 		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
177 		return true;
178 	} else if ((type == KNAV_QUEUE_GP) &&
179 		!(inst->range->flags &
180 			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
181 		return true;
182 	}
183 	return false;
184 }
185 
186 static inline struct knav_queue_inst *
187 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
188 {
189 	struct knav_queue_inst *inst;
190 	int idx;
191 
192 	for_each_instance(idx, inst, kdev) {
193 		if (inst->id == id)
194 			return inst;
195 	}
196 	return NULL;
197 }
198 
199 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
200 {
201 	if (kdev->base_id <= id &&
202 	    kdev->base_id + kdev->num_queues > id) {
203 		id -= kdev->base_id;
204 		return knav_queue_match_id_to_inst(kdev, id);
205 	}
206 	return NULL;
207 }
208 
209 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
210 				      const char *name, unsigned flags)
211 {
212 	struct knav_queue *qh;
213 	unsigned id;
214 	int ret = 0;
215 
216 	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
217 	if (!qh)
218 		return ERR_PTR(-ENOMEM);
219 
220 	qh->flags = flags;
221 	qh->inst = inst;
222 	id = inst->id - inst->qmgr->start_queue;
223 	qh->reg_push = &inst->qmgr->reg_push[id];
224 	qh->reg_pop = &inst->qmgr->reg_pop[id];
225 	qh->reg_peek = &inst->qmgr->reg_peek[id];
226 
227 	/* first opener? */
228 	if (!knav_queue_is_busy(inst)) {
229 		struct knav_range_info *range = inst->range;
230 
231 		inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
232 		if (range->ops && range->ops->open_queue)
233 			ret = range->ops->open_queue(range, inst, flags);
234 
235 		if (ret) {
236 			devm_kfree(inst->kdev->dev, qh);
237 			return ERR_PTR(ret);
238 		}
239 	}
240 	list_add_tail_rcu(&qh->list, &inst->handles);
241 	return qh;
242 }
243 
244 static struct knav_queue *
245 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
246 {
247 	struct knav_queue_inst *inst;
248 	struct knav_queue *qh;
249 
250 	mutex_lock(&knav_dev_lock);
251 
252 	qh = ERR_PTR(-ENODEV);
253 	inst = knav_queue_find_by_id(id);
254 	if (!inst)
255 		goto unlock_ret;
256 
257 	qh = ERR_PTR(-EEXIST);
258 	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
259 		goto unlock_ret;
260 
261 	qh = ERR_PTR(-EBUSY);
262 	if ((flags & KNAV_QUEUE_SHARED) &&
263 	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
264 		goto unlock_ret;
265 
266 	qh = __knav_queue_open(inst, name, flags);
267 
268 unlock_ret:
269 	mutex_unlock(&knav_dev_lock);
270 
271 	return qh;
272 }
273 
274 static struct knav_queue *knav_queue_open_by_type(const char *name,
275 						unsigned type, unsigned flags)
276 {
277 	struct knav_queue_inst *inst;
278 	struct knav_queue *qh = ERR_PTR(-EINVAL);
279 	int idx;
280 
281 	mutex_lock(&knav_dev_lock);
282 
283 	for_each_instance(idx, inst, kdev) {
284 		if (knav_queue_is_reserved(inst))
285 			continue;
286 		if (!knav_queue_match_type(inst, type))
287 			continue;
288 		if (knav_queue_is_busy(inst))
289 			continue;
290 		qh = __knav_queue_open(inst, name, flags);
291 		goto unlock_ret;
292 	}
293 
294 unlock_ret:
295 	mutex_unlock(&knav_dev_lock);
296 	return qh;
297 }
298 
299 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
300 {
301 	struct knav_range_info *range = inst->range;
302 
303 	if (range->ops && range->ops->set_notify)
304 		range->ops->set_notify(range, inst, enabled);
305 }
306 
307 static int knav_queue_enable_notifier(struct knav_queue *qh)
308 {
309 	struct knav_queue_inst *inst = qh->inst;
310 	bool first;
311 
312 	if (WARN_ON(!qh->notifier_fn))
313 		return -EINVAL;
314 
315 	/* Adjust the per handle notifier count */
316 	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
317 	if (!first)
318 		return 0; /* nothing to do */
319 
320 	/* Now adjust the per instance notifier count */
321 	first = (atomic_inc_return(&inst->num_notifiers) == 1);
322 	if (first)
323 		knav_queue_set_notify(inst, true);
324 
325 	return 0;
326 }
327 
328 static int knav_queue_disable_notifier(struct knav_queue *qh)
329 {
330 	struct knav_queue_inst *inst = qh->inst;
331 	bool last;
332 
333 	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
334 	if (!last)
335 		return 0; /* nothing to do */
336 
337 	last = (atomic_dec_return(&inst->num_notifiers) == 0);
338 	if (last)
339 		knav_queue_set_notify(inst, false);
340 
341 	return 0;
342 }
343 
344 static int knav_queue_set_notifier(struct knav_queue *qh,
345 				struct knav_queue_notify_config *cfg)
346 {
347 	knav_queue_notify_fn old_fn = qh->notifier_fn;
348 
349 	if (!cfg)
350 		return -EINVAL;
351 
352 	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
353 		return -ENOTSUPP;
354 
355 	if (!cfg->fn && old_fn)
356 		knav_queue_disable_notifier(qh);
357 
358 	qh->notifier_fn = cfg->fn;
359 	qh->notifier_fn_arg = cfg->fn_arg;
360 
361 	if (cfg->fn && !old_fn)
362 		knav_queue_enable_notifier(qh);
363 
364 	return 0;
365 }
366 
367 static int knav_gp_set_notify(struct knav_range_info *range,
368 			       struct knav_queue_inst *inst,
369 			       bool enabled)
370 {
371 	unsigned queue;
372 
373 	if (range->flags & RANGE_HAS_IRQ) {
374 		queue = inst->id - range->queue_base;
375 		if (enabled)
376 			enable_irq(range->irqs[queue].irq);
377 		else
378 			disable_irq_nosync(range->irqs[queue].irq);
379 	}
380 	return 0;
381 }
382 
383 static int knav_gp_open_queue(struct knav_range_info *range,
384 				struct knav_queue_inst *inst, unsigned flags)
385 {
386 	return knav_queue_setup_irq(range, inst);
387 }
388 
389 static int knav_gp_close_queue(struct knav_range_info *range,
390 				struct knav_queue_inst *inst)
391 {
392 	knav_queue_free_irq(inst);
393 	return 0;
394 }
395 
396 struct knav_range_ops knav_gp_range_ops = {
397 	.set_notify	= knav_gp_set_notify,
398 	.open_queue	= knav_gp_open_queue,
399 	.close_queue	= knav_gp_close_queue,
400 };
401 
402 
403 static int knav_queue_get_count(void *qhandle)
404 {
405 	struct knav_queue *qh = qhandle;
406 	struct knav_queue_inst *inst = qh->inst;
407 
408 	return readl_relaxed(&qh->reg_peek[0].entry_count) +
409 		atomic_read(&inst->desc_count);
410 }
411 
412 static void knav_queue_debug_show_instance(struct seq_file *s,
413 					struct knav_queue_inst *inst)
414 {
415 	struct knav_device *kdev = inst->kdev;
416 	struct knav_queue *qh;
417 
418 	if (!knav_queue_is_busy(inst))
419 		return;
420 
421 	seq_printf(s, "\tqueue id %d (%s)\n",
422 		   kdev->base_id + inst->id, inst->name);
423 	for_each_handle_rcu(qh, inst) {
424 		seq_printf(s, "\t\thandle %p: ", qh);
425 		seq_printf(s, "pushes %8d, ",
426 			   atomic_read(&qh->stats.pushes));
427 		seq_printf(s, "pops %8d, ",
428 			   atomic_read(&qh->stats.pops));
429 		seq_printf(s, "count %8d, ",
430 			   knav_queue_get_count(qh));
431 		seq_printf(s, "notifies %8d, ",
432 			   atomic_read(&qh->stats.notifies));
433 		seq_printf(s, "push errors %8d, ",
434 			   atomic_read(&qh->stats.push_errors));
435 		seq_printf(s, "pop errors %8d\n",
436 			   atomic_read(&qh->stats.pop_errors));
437 	}
438 }
439 
440 static int knav_queue_debug_show(struct seq_file *s, void *v)
441 {
442 	struct knav_queue_inst *inst;
443 	int idx;
444 
445 	mutex_lock(&knav_dev_lock);
446 	seq_printf(s, "%s: %u-%u\n",
447 		   dev_name(kdev->dev), kdev->base_id,
448 		   kdev->base_id + kdev->num_queues - 1);
449 	for_each_instance(idx, inst, kdev)
450 		knav_queue_debug_show_instance(s, inst);
451 	mutex_unlock(&knav_dev_lock);
452 
453 	return 0;
454 }
455 
456 static int knav_queue_debug_open(struct inode *inode, struct file *file)
457 {
458 	return single_open(file, knav_queue_debug_show, NULL);
459 }
460 
461 static const struct file_operations knav_queue_debug_ops = {
462 	.open		= knav_queue_debug_open,
463 	.read		= seq_read,
464 	.llseek		= seq_lseek,
465 	.release	= single_release,
466 };
467 
468 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
469 					u32 flags)
470 {
471 	unsigned long end;
472 	u32 val = 0;
473 
474 	end = jiffies + msecs_to_jiffies(timeout);
475 	while (time_after(end, jiffies)) {
476 		val = readl_relaxed(addr);
477 		if (flags)
478 			val &= flags;
479 		if (!val)
480 			break;
481 		cpu_relax();
482 	}
483 	return val ? -ETIMEDOUT : 0;
484 }
485 
486 
487 static int knav_queue_flush(struct knav_queue *qh)
488 {
489 	struct knav_queue_inst *inst = qh->inst;
490 	unsigned id = inst->id - inst->qmgr->start_queue;
491 
492 	atomic_set(&inst->desc_count, 0);
493 	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
494 	return 0;
495 }
496 
497 /**
498  * knav_queue_open()	- open a hardware queue
499  * @name		- name to give the queue handle
500  * @id			- desired queue number if any or specifes the type
501  *			  of queue
502  * @flags		- the following flags are applicable to queues:
503  *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
504  *			     exclusive by default.
505  *			     Subsequent attempts to open a shared queue should
506  *			     also have this flag.
507  *
508  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
509  * to check the returned value for error codes.
510  */
511 void *knav_queue_open(const char *name, unsigned id,
512 					unsigned flags)
513 {
514 	struct knav_queue *qh = ERR_PTR(-EINVAL);
515 
516 	switch (id) {
517 	case KNAV_QUEUE_QPEND:
518 	case KNAV_QUEUE_ACC:
519 	case KNAV_QUEUE_GP:
520 		qh = knav_queue_open_by_type(name, id, flags);
521 		break;
522 
523 	default:
524 		qh = knav_queue_open_by_id(name, id, flags);
525 		break;
526 	}
527 	return qh;
528 }
529 EXPORT_SYMBOL_GPL(knav_queue_open);
530 
531 /**
532  * knav_queue_close()	- close a hardware queue handle
533  * @qh			- handle to close
534  */
535 void knav_queue_close(void *qhandle)
536 {
537 	struct knav_queue *qh = qhandle;
538 	struct knav_queue_inst *inst = qh->inst;
539 
540 	while (atomic_read(&qh->notifier_enabled) > 0)
541 		knav_queue_disable_notifier(qh);
542 
543 	mutex_lock(&knav_dev_lock);
544 	list_del_rcu(&qh->list);
545 	mutex_unlock(&knav_dev_lock);
546 	synchronize_rcu();
547 	if (!knav_queue_is_busy(inst)) {
548 		struct knav_range_info *range = inst->range;
549 
550 		if (range->ops && range->ops->close_queue)
551 			range->ops->close_queue(range, inst);
552 	}
553 	devm_kfree(inst->kdev->dev, qh);
554 }
555 EXPORT_SYMBOL_GPL(knav_queue_close);
556 
557 /**
558  * knav_queue_device_control()	- Perform control operations on a queue
559  * @qh				- queue handle
560  * @cmd				- control commands
561  * @arg				- command argument
562  *
563  * Returns 0 on success, errno otherwise.
564  */
565 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
566 				unsigned long arg)
567 {
568 	struct knav_queue *qh = qhandle;
569 	struct knav_queue_notify_config *cfg;
570 	int ret;
571 
572 	switch ((int)cmd) {
573 	case KNAV_QUEUE_GET_ID:
574 		ret = qh->inst->kdev->base_id + qh->inst->id;
575 		break;
576 
577 	case KNAV_QUEUE_FLUSH:
578 		ret = knav_queue_flush(qh);
579 		break;
580 
581 	case KNAV_QUEUE_SET_NOTIFIER:
582 		cfg = (void *)arg;
583 		ret = knav_queue_set_notifier(qh, cfg);
584 		break;
585 
586 	case KNAV_QUEUE_ENABLE_NOTIFY:
587 		ret = knav_queue_enable_notifier(qh);
588 		break;
589 
590 	case KNAV_QUEUE_DISABLE_NOTIFY:
591 		ret = knav_queue_disable_notifier(qh);
592 		break;
593 
594 	case KNAV_QUEUE_GET_COUNT:
595 		ret = knav_queue_get_count(qh);
596 		break;
597 
598 	default:
599 		ret = -ENOTSUPP;
600 		break;
601 	}
602 	return ret;
603 }
604 EXPORT_SYMBOL_GPL(knav_queue_device_control);
605 
606 
607 
608 /**
609  * knav_queue_push()	- push data (or descriptor) to the tail of a queue
610  * @qh			- hardware queue handle
611  * @data		- data to push
612  * @size		- size of data to push
613  * @flags		- can be used to pass additional information
614  *
615  * Returns 0 on success, errno otherwise.
616  */
617 int knav_queue_push(void *qhandle, dma_addr_t dma,
618 					unsigned size, unsigned flags)
619 {
620 	struct knav_queue *qh = qhandle;
621 	u32 val;
622 
623 	val = (u32)dma | ((size / 16) - 1);
624 	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
625 
626 	atomic_inc(&qh->stats.pushes);
627 	return 0;
628 }
629 EXPORT_SYMBOL_GPL(knav_queue_push);
630 
631 /**
632  * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
633  * @qh			- hardware queue handle
634  * @size		- (optional) size of the data pop'ed.
635  *
636  * Returns a DMA address on success, 0 on failure.
637  */
638 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
639 {
640 	struct knav_queue *qh = qhandle;
641 	struct knav_queue_inst *inst = qh->inst;
642 	dma_addr_t dma;
643 	u32 val, idx;
644 
645 	/* are we accumulated? */
646 	if (inst->descs) {
647 		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
648 			atomic_inc(&inst->desc_count);
649 			return 0;
650 		}
651 		idx  = atomic_inc_return(&inst->desc_head);
652 		idx &= ACC_DESCS_MASK;
653 		val = inst->descs[idx];
654 	} else {
655 		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
656 		if (unlikely(!val))
657 			return 0;
658 	}
659 
660 	dma = val & DESC_PTR_MASK;
661 	if (size)
662 		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
663 
664 	atomic_inc(&qh->stats.pops);
665 	return dma;
666 }
667 EXPORT_SYMBOL_GPL(knav_queue_pop);
668 
669 /* carve out descriptors and push into queue */
670 static void kdesc_fill_pool(struct knav_pool *pool)
671 {
672 	struct knav_region *region;
673 	int i;
674 
675 	region = pool->region;
676 	pool->desc_size = region->desc_size;
677 	for (i = 0; i < pool->num_desc; i++) {
678 		int index = pool->region_offset + i;
679 		dma_addr_t dma_addr;
680 		unsigned dma_size;
681 		dma_addr = region->dma_start + (region->desc_size * index);
682 		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
683 		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
684 					   DMA_TO_DEVICE);
685 		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
686 	}
687 }
688 
689 /* pop out descriptors and close the queue */
690 static void kdesc_empty_pool(struct knav_pool *pool)
691 {
692 	dma_addr_t dma;
693 	unsigned size;
694 	void *desc;
695 	int i;
696 
697 	if (!pool->queue)
698 		return;
699 
700 	for (i = 0;; i++) {
701 		dma = knav_queue_pop(pool->queue, &size);
702 		if (!dma)
703 			break;
704 		desc = knav_pool_desc_dma_to_virt(pool, dma);
705 		if (!desc) {
706 			dev_dbg(pool->kdev->dev,
707 				"couldn't unmap desc, continuing\n");
708 			continue;
709 		}
710 	}
711 	WARN_ON(i != pool->num_desc);
712 	knav_queue_close(pool->queue);
713 }
714 
715 
716 /* Get the DMA address of a descriptor */
717 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
718 {
719 	struct knav_pool *pool = ph;
720 	return pool->region->dma_start + (virt - pool->region->virt_start);
721 }
722 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
723 
724 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
725 {
726 	struct knav_pool *pool = ph;
727 	return pool->region->virt_start + (dma - pool->region->dma_start);
728 }
729 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
730 
731 /**
732  * knav_pool_create()	- Create a pool of descriptors
733  * @name		- name to give the pool handle
734  * @num_desc		- numbers of descriptors in the pool
735  * @region_id		- QMSS region id from which the descriptors are to be
736  *			  allocated.
737  *
738  * Returns a pool handle on success.
739  * Use IS_ERR_OR_NULL() to identify error values on return.
740  */
741 void *knav_pool_create(const char *name,
742 					int num_desc, int region_id)
743 {
744 	struct knav_region *reg_itr, *region = NULL;
745 	struct knav_pool *pool, *pi;
746 	struct list_head *node;
747 	unsigned last_offset;
748 	bool slot_found;
749 	int ret;
750 
751 	if (!kdev->dev)
752 		return ERR_PTR(-ENODEV);
753 
754 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
755 	if (!pool) {
756 		dev_err(kdev->dev, "out of memory allocating pool\n");
757 		return ERR_PTR(-ENOMEM);
758 	}
759 
760 	for_each_region(kdev, reg_itr) {
761 		if (reg_itr->id != region_id)
762 			continue;
763 		region = reg_itr;
764 		break;
765 	}
766 
767 	if (!region) {
768 		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
769 		ret = -EINVAL;
770 		goto err;
771 	}
772 
773 	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
774 	if (IS_ERR_OR_NULL(pool->queue)) {
775 		dev_err(kdev->dev,
776 			"failed to open queue for pool(%s), error %ld\n",
777 			name, PTR_ERR(pool->queue));
778 		ret = PTR_ERR(pool->queue);
779 		goto err;
780 	}
781 
782 	pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
783 	pool->kdev = kdev;
784 	pool->dev = kdev->dev;
785 
786 	mutex_lock(&knav_dev_lock);
787 
788 	if (num_desc > (region->num_desc - region->used_desc)) {
789 		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
790 			region_id, name);
791 		ret = -ENOMEM;
792 		goto err_unlock;
793 	}
794 
795 	/* Region maintains a sorted (by region offset) list of pools
796 	 * use the first free slot which is large enough to accomodate
797 	 * the request
798 	 */
799 	last_offset = 0;
800 	slot_found = false;
801 	node = &region->pools;
802 	list_for_each_entry(pi, &region->pools, region_inst) {
803 		if ((pi->region_offset - last_offset) >= num_desc) {
804 			slot_found = true;
805 			break;
806 		}
807 		last_offset = pi->region_offset + pi->num_desc;
808 	}
809 	node = &pi->region_inst;
810 
811 	if (slot_found) {
812 		pool->region = region;
813 		pool->num_desc = num_desc;
814 		pool->region_offset = last_offset;
815 		region->used_desc += num_desc;
816 		list_add_tail(&pool->list, &kdev->pools);
817 		list_add_tail(&pool->region_inst, node);
818 	} else {
819 		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
820 			name, region_id);
821 		ret = -ENOMEM;
822 		goto err_unlock;
823 	}
824 
825 	mutex_unlock(&knav_dev_lock);
826 	kdesc_fill_pool(pool);
827 	return pool;
828 
829 err_unlock:
830 	mutex_unlock(&knav_dev_lock);
831 err:
832 	kfree(pool->name);
833 	devm_kfree(kdev->dev, pool);
834 	return ERR_PTR(ret);
835 }
836 EXPORT_SYMBOL_GPL(knav_pool_create);
837 
838 /**
839  * knav_pool_destroy()	- Free a pool of descriptors
840  * @pool		- pool handle
841  */
842 void knav_pool_destroy(void *ph)
843 {
844 	struct knav_pool *pool = ph;
845 
846 	if (!pool)
847 		return;
848 
849 	if (!pool->region)
850 		return;
851 
852 	kdesc_empty_pool(pool);
853 	mutex_lock(&knav_dev_lock);
854 
855 	pool->region->used_desc -= pool->num_desc;
856 	list_del(&pool->region_inst);
857 	list_del(&pool->list);
858 
859 	mutex_unlock(&knav_dev_lock);
860 	kfree(pool->name);
861 	devm_kfree(kdev->dev, pool);
862 }
863 EXPORT_SYMBOL_GPL(knav_pool_destroy);
864 
865 
866 /**
867  * knav_pool_desc_get()	- Get a descriptor from the pool
868  * @pool			- pool handle
869  *
870  * Returns descriptor from the pool.
871  */
872 void *knav_pool_desc_get(void *ph)
873 {
874 	struct knav_pool *pool = ph;
875 	dma_addr_t dma;
876 	unsigned size;
877 	void *data;
878 
879 	dma = knav_queue_pop(pool->queue, &size);
880 	if (unlikely(!dma))
881 		return ERR_PTR(-ENOMEM);
882 	data = knav_pool_desc_dma_to_virt(pool, dma);
883 	return data;
884 }
885 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
886 
887 /**
888  * knav_pool_desc_put()	- return a descriptor to the pool
889  * @pool			- pool handle
890  */
891 void knav_pool_desc_put(void *ph, void *desc)
892 {
893 	struct knav_pool *pool = ph;
894 	dma_addr_t dma;
895 	dma = knav_pool_desc_virt_to_dma(pool, desc);
896 	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
897 }
898 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
899 
900 /**
901  * knav_pool_desc_map()	- Map descriptor for DMA transfer
902  * @pool			- pool handle
903  * @desc			- address of descriptor to map
904  * @size			- size of descriptor to map
905  * @dma				- DMA address return pointer
906  * @dma_sz			- adjusted return pointer
907  *
908  * Returns 0 on success, errno otherwise.
909  */
910 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
911 					dma_addr_t *dma, unsigned *dma_sz)
912 {
913 	struct knav_pool *pool = ph;
914 	*dma = knav_pool_desc_virt_to_dma(pool, desc);
915 	size = min(size, pool->region->desc_size);
916 	size = ALIGN(size, SMP_CACHE_BYTES);
917 	*dma_sz = size;
918 	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
919 
920 	/* Ensure the descriptor reaches to the memory */
921 	__iowmb();
922 
923 	return 0;
924 }
925 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
926 
927 /**
928  * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
929  * @pool			- pool handle
930  * @dma				- DMA address of descriptor to unmap
931  * @dma_sz			- size of descriptor to unmap
932  *
933  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
934  * error values on return.
935  */
936 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
937 {
938 	struct knav_pool *pool = ph;
939 	unsigned desc_sz;
940 	void *desc;
941 
942 	desc_sz = min(dma_sz, pool->region->desc_size);
943 	desc = knav_pool_desc_dma_to_virt(pool, dma);
944 	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
945 	prefetch(desc);
946 	return desc;
947 }
948 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
949 
950 /**
951  * knav_pool_count()	- Get the number of descriptors in pool.
952  * @pool		- pool handle
953  * Returns number of elements in the pool.
954  */
955 int knav_pool_count(void *ph)
956 {
957 	struct knav_pool *pool = ph;
958 	return knav_queue_get_count(pool->queue);
959 }
960 EXPORT_SYMBOL_GPL(knav_pool_count);
961 
962 static void knav_queue_setup_region(struct knav_device *kdev,
963 					struct knav_region *region)
964 {
965 	unsigned hw_num_desc, hw_desc_size, size;
966 	struct knav_reg_region __iomem  *regs;
967 	struct knav_qmgr_info *qmgr;
968 	struct knav_pool *pool;
969 	int id = region->id;
970 	struct page *page;
971 
972 	/* unused region? */
973 	if (!region->num_desc) {
974 		dev_warn(kdev->dev, "unused region %s\n", region->name);
975 		return;
976 	}
977 
978 	/* get hardware descriptor value */
979 	hw_num_desc = ilog2(region->num_desc - 1) + 1;
980 
981 	/* did we force fit ourselves into nothingness? */
982 	if (region->num_desc < 32) {
983 		region->num_desc = 0;
984 		dev_warn(kdev->dev, "too few descriptors in region %s\n",
985 			 region->name);
986 		return;
987 	}
988 
989 	size = region->num_desc * region->desc_size;
990 	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
991 						GFP_DMA32);
992 	if (!region->virt_start) {
993 		region->num_desc = 0;
994 		dev_err(kdev->dev, "memory alloc failed for region %s\n",
995 			region->name);
996 		return;
997 	}
998 	region->virt_end = region->virt_start + size;
999 	page = virt_to_page(region->virt_start);
1000 
1001 	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1002 					 DMA_BIDIRECTIONAL);
1003 	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1004 		dev_err(kdev->dev, "dma map failed for region %s\n",
1005 			region->name);
1006 		goto fail;
1007 	}
1008 	region->dma_end = region->dma_start + size;
1009 
1010 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1011 	if (!pool) {
1012 		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1013 		goto fail;
1014 	}
1015 	pool->num_desc = 0;
1016 	pool->region_offset = region->num_desc;
1017 	list_add(&pool->region_inst, &region->pools);
1018 
1019 	dev_dbg(kdev->dev,
1020 		"region %s (%d): size:%d, link:%d@%d, phys:%08x-%08x, virt:%p-%p\n",
1021 		region->name, id, region->desc_size, region->num_desc,
1022 		region->link_index, region->dma_start, region->dma_end,
1023 		region->virt_start, region->virt_end);
1024 
1025 	hw_desc_size = (region->desc_size / 16) - 1;
1026 	hw_num_desc -= 5;
1027 
1028 	for_each_qmgr(kdev, qmgr) {
1029 		regs = qmgr->reg_region + id;
1030 		writel_relaxed(region->dma_start, &regs->base);
1031 		writel_relaxed(region->link_index, &regs->start_index);
1032 		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1033 			       &regs->size_count);
1034 	}
1035 	return;
1036 
1037 fail:
1038 	if (region->dma_start)
1039 		dma_unmap_page(kdev->dev, region->dma_start, size,
1040 				DMA_BIDIRECTIONAL);
1041 	if (region->virt_start)
1042 		free_pages_exact(region->virt_start, size);
1043 	region->num_desc = 0;
1044 	return;
1045 }
1046 
1047 static const char *knav_queue_find_name(struct device_node *node)
1048 {
1049 	const char *name;
1050 
1051 	if (of_property_read_string(node, "label", &name) < 0)
1052 		name = node->name;
1053 	if (!name)
1054 		name = "unknown";
1055 	return name;
1056 }
1057 
1058 static int knav_queue_setup_regions(struct knav_device *kdev,
1059 					struct device_node *regions)
1060 {
1061 	struct device *dev = kdev->dev;
1062 	struct knav_region *region;
1063 	struct device_node *child;
1064 	u32 temp[2];
1065 	int ret;
1066 
1067 	for_each_child_of_node(regions, child) {
1068 		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1069 		if (!region) {
1070 			dev_err(dev, "out of memory allocating region\n");
1071 			return -ENOMEM;
1072 		}
1073 
1074 		region->name = knav_queue_find_name(child);
1075 		of_property_read_u32(child, "id", &region->id);
1076 		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1077 		if (!ret) {
1078 			region->num_desc  = temp[0];
1079 			region->desc_size = temp[1];
1080 		} else {
1081 			dev_err(dev, "invalid region info %s\n", region->name);
1082 			devm_kfree(dev, region);
1083 			continue;
1084 		}
1085 
1086 		if (!of_get_property(child, "link-index", NULL)) {
1087 			dev_err(dev, "No link info for %s\n", region->name);
1088 			devm_kfree(dev, region);
1089 			continue;
1090 		}
1091 		ret = of_property_read_u32(child, "link-index",
1092 					   &region->link_index);
1093 		if (ret) {
1094 			dev_err(dev, "link index not found for %s\n",
1095 				region->name);
1096 			devm_kfree(dev, region);
1097 			continue;
1098 		}
1099 
1100 		INIT_LIST_HEAD(&region->pools);
1101 		list_add_tail(&region->list, &kdev->regions);
1102 	}
1103 	if (list_empty(&kdev->regions)) {
1104 		dev_err(dev, "no valid region information found\n");
1105 		return -ENODEV;
1106 	}
1107 
1108 	/* Next, we run through the regions and set things up */
1109 	for_each_region(kdev, region)
1110 		knav_queue_setup_region(kdev, region);
1111 
1112 	return 0;
1113 }
1114 
1115 static int knav_get_link_ram(struct knav_device *kdev,
1116 				       const char *name,
1117 				       struct knav_link_ram_block *block)
1118 {
1119 	struct platform_device *pdev = to_platform_device(kdev->dev);
1120 	struct device_node *node = pdev->dev.of_node;
1121 	u32 temp[2];
1122 
1123 	/*
1124 	 * Note: link ram resources are specified in "entry" sized units. In
1125 	 * reality, although entries are ~40bits in hardware, we treat them as
1126 	 * 64-bit entities here.
1127 	 *
1128 	 * For example, to specify the internal link ram for Keystone-I class
1129 	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1130 	 *
1131 	 * This gets a bit weird when other link rams are used.  For example,
1132 	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1133 	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1134 	 * which accounts for 64-bits per entry, for 16K entries.
1135 	 */
1136 	if (!of_property_read_u32_array(node, name , temp, 2)) {
1137 		if (temp[0]) {
1138 			/*
1139 			 * queue_base specified => using internal or onchip
1140 			 * link ram WARNING - we do not "reserve" this block
1141 			 */
1142 			block->phys = (dma_addr_t)temp[0];
1143 			block->virt = NULL;
1144 			block->size = temp[1];
1145 		} else {
1146 			block->size = temp[1];
1147 			/* queue_base not specific => allocate requested size */
1148 			block->virt = dmam_alloc_coherent(kdev->dev,
1149 						  8 * block->size, &block->phys,
1150 						  GFP_KERNEL);
1151 			if (!block->virt) {
1152 				dev_err(kdev->dev, "failed to alloc linkram\n");
1153 				return -ENOMEM;
1154 			}
1155 		}
1156 	} else {
1157 		return -ENODEV;
1158 	}
1159 	return 0;
1160 }
1161 
1162 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1163 {
1164 	struct knav_link_ram_block *block;
1165 	struct knav_qmgr_info *qmgr;
1166 
1167 	for_each_qmgr(kdev, qmgr) {
1168 		block = &kdev->link_rams[0];
1169 		dev_dbg(kdev->dev, "linkram0: phys:%x, virt:%p, size:%x\n",
1170 			block->phys, block->virt, block->size);
1171 		writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base0);
1172 		writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1173 
1174 		block++;
1175 		if (!block->size)
1176 			return 0;
1177 
1178 		dev_dbg(kdev->dev, "linkram1: phys:%x, virt:%p, size:%x\n",
1179 			block->phys, block->virt, block->size);
1180 		writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base1);
1181 	}
1182 
1183 	return 0;
1184 }
1185 
1186 static int knav_setup_queue_range(struct knav_device *kdev,
1187 					struct device_node *node)
1188 {
1189 	struct device *dev = kdev->dev;
1190 	struct knav_range_info *range;
1191 	struct knav_qmgr_info *qmgr;
1192 	u32 temp[2], start, end, id, index;
1193 	int ret, i;
1194 
1195 	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1196 	if (!range) {
1197 		dev_err(dev, "out of memory allocating range\n");
1198 		return -ENOMEM;
1199 	}
1200 
1201 	range->kdev = kdev;
1202 	range->name = knav_queue_find_name(node);
1203 	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1204 	if (!ret) {
1205 		range->queue_base = temp[0] - kdev->base_id;
1206 		range->num_queues = temp[1];
1207 	} else {
1208 		dev_err(dev, "invalid queue range %s\n", range->name);
1209 		devm_kfree(dev, range);
1210 		return -EINVAL;
1211 	}
1212 
1213 	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1214 		struct of_phandle_args oirq;
1215 
1216 		if (of_irq_parse_one(node, i, &oirq))
1217 			break;
1218 
1219 		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1220 		if (range->irqs[i].irq == IRQ_NONE)
1221 			break;
1222 
1223 		range->num_irqs++;
1224 
1225 		if (oirq.args_count == 3)
1226 			range->irqs[i].cpu_map =
1227 				(oirq.args[2] & 0x0000ff00) >> 8;
1228 	}
1229 
1230 	range->num_irqs = min(range->num_irqs, range->num_queues);
1231 	if (range->num_irqs)
1232 		range->flags |= RANGE_HAS_IRQ;
1233 
1234 	if (of_get_property(node, "qalloc-by-id", NULL))
1235 		range->flags |= RANGE_RESERVED;
1236 
1237 	if (of_get_property(node, "accumulator", NULL)) {
1238 		ret = knav_init_acc_range(kdev, node, range);
1239 		if (ret < 0) {
1240 			devm_kfree(dev, range);
1241 			return ret;
1242 		}
1243 	} else {
1244 		range->ops = &knav_gp_range_ops;
1245 	}
1246 
1247 	/* set threshold to 1, and flush out the queues */
1248 	for_each_qmgr(kdev, qmgr) {
1249 		start = max(qmgr->start_queue, range->queue_base);
1250 		end   = min(qmgr->start_queue + qmgr->num_queues,
1251 			    range->queue_base + range->num_queues);
1252 		for (id = start; id < end; id++) {
1253 			index = id - qmgr->start_queue;
1254 			writel_relaxed(THRESH_GTE | 1,
1255 				       &qmgr->reg_peek[index].ptr_size_thresh);
1256 			writel_relaxed(0,
1257 				       &qmgr->reg_push[index].ptr_size_thresh);
1258 		}
1259 	}
1260 
1261 	list_add_tail(&range->list, &kdev->queue_ranges);
1262 	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1263 		range->name, range->queue_base,
1264 		range->queue_base + range->num_queues - 1,
1265 		range->num_irqs,
1266 		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1267 		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1268 		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1269 	kdev->num_queues_in_use += range->num_queues;
1270 	return 0;
1271 }
1272 
1273 static int knav_setup_queue_pools(struct knav_device *kdev,
1274 				   struct device_node *queue_pools)
1275 {
1276 	struct device_node *type, *range;
1277 	int ret;
1278 
1279 	for_each_child_of_node(queue_pools, type) {
1280 		for_each_child_of_node(type, range) {
1281 			ret = knav_setup_queue_range(kdev, range);
1282 			/* return value ignored, we init the rest... */
1283 		}
1284 	}
1285 
1286 	/* ... and barf if they all failed! */
1287 	if (list_empty(&kdev->queue_ranges)) {
1288 		dev_err(kdev->dev, "no valid queue range found\n");
1289 		return -ENODEV;
1290 	}
1291 	return 0;
1292 }
1293 
1294 static void knav_free_queue_range(struct knav_device *kdev,
1295 				  struct knav_range_info *range)
1296 {
1297 	if (range->ops && range->ops->free_range)
1298 		range->ops->free_range(range);
1299 	list_del(&range->list);
1300 	devm_kfree(kdev->dev, range);
1301 }
1302 
1303 static void knav_free_queue_ranges(struct knav_device *kdev)
1304 {
1305 	struct knav_range_info *range;
1306 
1307 	for (;;) {
1308 		range = first_queue_range(kdev);
1309 		if (!range)
1310 			break;
1311 		knav_free_queue_range(kdev, range);
1312 	}
1313 }
1314 
1315 static void knav_queue_free_regions(struct knav_device *kdev)
1316 {
1317 	struct knav_region *region;
1318 	struct knav_pool *pool, *tmp;
1319 	unsigned size;
1320 
1321 	for (;;) {
1322 		region = first_region(kdev);
1323 		if (!region)
1324 			break;
1325 		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1326 			knav_pool_destroy(pool);
1327 
1328 		size = region->virt_end - region->virt_start;
1329 		if (size)
1330 			free_pages_exact(region->virt_start, size);
1331 		list_del(&region->list);
1332 		devm_kfree(kdev->dev, region);
1333 	}
1334 }
1335 
1336 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1337 					struct device_node *node, int index)
1338 {
1339 	struct resource res;
1340 	void __iomem *regs;
1341 	int ret;
1342 
1343 	ret = of_address_to_resource(node, index, &res);
1344 	if (ret) {
1345 		dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1346 			node->name, index);
1347 		return ERR_PTR(ret);
1348 	}
1349 
1350 	regs = devm_ioremap_resource(kdev->dev, &res);
1351 	if (IS_ERR(regs))
1352 		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1353 			index, node->name);
1354 	return regs;
1355 }
1356 
1357 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1358 					struct device_node *qmgrs)
1359 {
1360 	struct device *dev = kdev->dev;
1361 	struct knav_qmgr_info *qmgr;
1362 	struct device_node *child;
1363 	u32 temp[2];
1364 	int ret;
1365 
1366 	for_each_child_of_node(qmgrs, child) {
1367 		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1368 		if (!qmgr) {
1369 			dev_err(dev, "out of memory allocating qmgr\n");
1370 			return -ENOMEM;
1371 		}
1372 
1373 		ret = of_property_read_u32_array(child, "managed-queues",
1374 						 temp, 2);
1375 		if (!ret) {
1376 			qmgr->start_queue = temp[0];
1377 			qmgr->num_queues = temp[1];
1378 		} else {
1379 			dev_err(dev, "invalid qmgr queue range\n");
1380 			devm_kfree(dev, qmgr);
1381 			continue;
1382 		}
1383 
1384 		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1385 			 qmgr->start_queue, qmgr->num_queues);
1386 
1387 		qmgr->reg_peek =
1388 			knav_queue_map_reg(kdev, child,
1389 					   KNAV_QUEUE_PEEK_REG_INDEX);
1390 		qmgr->reg_status =
1391 			knav_queue_map_reg(kdev, child,
1392 					   KNAV_QUEUE_STATUS_REG_INDEX);
1393 		qmgr->reg_config =
1394 			knav_queue_map_reg(kdev, child,
1395 					   KNAV_QUEUE_CONFIG_REG_INDEX);
1396 		qmgr->reg_region =
1397 			knav_queue_map_reg(kdev, child,
1398 					   KNAV_QUEUE_REGION_REG_INDEX);
1399 		qmgr->reg_push =
1400 			knav_queue_map_reg(kdev, child,
1401 					   KNAV_QUEUE_PUSH_REG_INDEX);
1402 		qmgr->reg_pop =
1403 			knav_queue_map_reg(kdev, child,
1404 					   KNAV_QUEUE_POP_REG_INDEX);
1405 
1406 		if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1407 		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1408 		    IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1409 			dev_err(dev, "failed to map qmgr regs\n");
1410 			if (!IS_ERR(qmgr->reg_peek))
1411 				devm_iounmap(dev, qmgr->reg_peek);
1412 			if (!IS_ERR(qmgr->reg_status))
1413 				devm_iounmap(dev, qmgr->reg_status);
1414 			if (!IS_ERR(qmgr->reg_config))
1415 				devm_iounmap(dev, qmgr->reg_config);
1416 			if (!IS_ERR(qmgr->reg_region))
1417 				devm_iounmap(dev, qmgr->reg_region);
1418 			if (!IS_ERR(qmgr->reg_push))
1419 				devm_iounmap(dev, qmgr->reg_push);
1420 			if (!IS_ERR(qmgr->reg_pop))
1421 				devm_iounmap(dev, qmgr->reg_pop);
1422 			devm_kfree(dev, qmgr);
1423 			continue;
1424 		}
1425 
1426 		list_add_tail(&qmgr->list, &kdev->qmgrs);
1427 		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1428 			 qmgr->start_queue, qmgr->num_queues,
1429 			 qmgr->reg_peek, qmgr->reg_status,
1430 			 qmgr->reg_config, qmgr->reg_region,
1431 			 qmgr->reg_push, qmgr->reg_pop);
1432 	}
1433 	return 0;
1434 }
1435 
1436 static int knav_queue_init_pdsps(struct knav_device *kdev,
1437 					struct device_node *pdsps)
1438 {
1439 	struct device *dev = kdev->dev;
1440 	struct knav_pdsp_info *pdsp;
1441 	struct device_node *child;
1442 	int ret;
1443 
1444 	for_each_child_of_node(pdsps, child) {
1445 		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1446 		if (!pdsp) {
1447 			dev_err(dev, "out of memory allocating pdsp\n");
1448 			return -ENOMEM;
1449 		}
1450 		pdsp->name = knav_queue_find_name(child);
1451 		ret = of_property_read_string(child, "firmware",
1452 					      &pdsp->firmware);
1453 		if (ret < 0 || !pdsp->firmware) {
1454 			dev_err(dev, "unknown firmware for pdsp %s\n",
1455 				pdsp->name);
1456 			devm_kfree(dev, pdsp);
1457 			continue;
1458 		}
1459 		dev_dbg(dev, "pdsp name %s fw name :%s\n", pdsp->name,
1460 			pdsp->firmware);
1461 
1462 		pdsp->iram =
1463 			knav_queue_map_reg(kdev, child,
1464 					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1465 		pdsp->regs =
1466 			knav_queue_map_reg(kdev, child,
1467 					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1468 		pdsp->intd =
1469 			knav_queue_map_reg(kdev, child,
1470 					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1471 		pdsp->command =
1472 			knav_queue_map_reg(kdev, child,
1473 					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1474 
1475 		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1476 		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1477 			dev_err(dev, "failed to map pdsp %s regs\n",
1478 				pdsp->name);
1479 			if (!IS_ERR(pdsp->command))
1480 				devm_iounmap(dev, pdsp->command);
1481 			if (!IS_ERR(pdsp->iram))
1482 				devm_iounmap(dev, pdsp->iram);
1483 			if (!IS_ERR(pdsp->regs))
1484 				devm_iounmap(dev, pdsp->regs);
1485 			if (!IS_ERR(pdsp->intd))
1486 				devm_iounmap(dev, pdsp->intd);
1487 			devm_kfree(dev, pdsp);
1488 			continue;
1489 		}
1490 		of_property_read_u32(child, "id", &pdsp->id);
1491 		list_add_tail(&pdsp->list, &kdev->pdsps);
1492 		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p, firmware %s\n",
1493 			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1494 			pdsp->intd, pdsp->firmware);
1495 	}
1496 	return 0;
1497 }
1498 
1499 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1500 			  struct knav_pdsp_info *pdsp)
1501 {
1502 	u32 val, timeout = 1000;
1503 	int ret;
1504 
1505 	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1506 	writel_relaxed(val, &pdsp->regs->control);
1507 	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1508 					PDSP_CTRL_RUNNING);
1509 	if (ret < 0) {
1510 		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1511 		return ret;
1512 	}
1513 	return 0;
1514 }
1515 
1516 static int knav_queue_load_pdsp(struct knav_device *kdev,
1517 			  struct knav_pdsp_info *pdsp)
1518 {
1519 	int i, ret, fwlen;
1520 	const struct firmware *fw;
1521 	u32 *fwdata;
1522 
1523 	ret = request_firmware(&fw, pdsp->firmware, kdev->dev);
1524 	if (ret) {
1525 		dev_err(kdev->dev, "failed to get firmware %s for pdsp %s\n",
1526 			pdsp->firmware, pdsp->name);
1527 		return ret;
1528 	}
1529 	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1530 	/* download the firmware */
1531 	fwdata = (u32 *)fw->data;
1532 	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1533 	for (i = 0; i < fwlen; i++)
1534 		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1535 
1536 	release_firmware(fw);
1537 	return 0;
1538 }
1539 
1540 static int knav_queue_start_pdsp(struct knav_device *kdev,
1541 			   struct knav_pdsp_info *pdsp)
1542 {
1543 	u32 val, timeout = 1000;
1544 	int ret;
1545 
1546 	/* write a command for sync */
1547 	writel_relaxed(0xffffffff, pdsp->command);
1548 	while (readl_relaxed(pdsp->command) != 0xffffffff)
1549 		cpu_relax();
1550 
1551 	/* soft reset the PDSP */
1552 	val  = readl_relaxed(&pdsp->regs->control);
1553 	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1554 	writel_relaxed(val, &pdsp->regs->control);
1555 
1556 	/* enable pdsp */
1557 	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1558 	writel_relaxed(val, &pdsp->regs->control);
1559 
1560 	/* wait for command register to clear */
1561 	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1562 	if (ret < 0) {
1563 		dev_err(kdev->dev,
1564 			"timed out on pdsp %s command register wait\n",
1565 			pdsp->name);
1566 		return ret;
1567 	}
1568 	return 0;
1569 }
1570 
1571 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1572 {
1573 	struct knav_pdsp_info *pdsp;
1574 
1575 	/* disable all pdsps */
1576 	for_each_pdsp(kdev, pdsp)
1577 		knav_queue_stop_pdsp(kdev, pdsp);
1578 }
1579 
1580 static int knav_queue_start_pdsps(struct knav_device *kdev)
1581 {
1582 	struct knav_pdsp_info *pdsp;
1583 	int ret;
1584 
1585 	knav_queue_stop_pdsps(kdev);
1586 	/* now load them all */
1587 	for_each_pdsp(kdev, pdsp) {
1588 		ret = knav_queue_load_pdsp(kdev, pdsp);
1589 		if (ret < 0)
1590 			return ret;
1591 	}
1592 
1593 	for_each_pdsp(kdev, pdsp) {
1594 		ret = knav_queue_start_pdsp(kdev, pdsp);
1595 		WARN_ON(ret);
1596 	}
1597 	return 0;
1598 }
1599 
1600 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1601 {
1602 	struct knav_qmgr_info *qmgr;
1603 
1604 	for_each_qmgr(kdev, qmgr) {
1605 		if ((id >= qmgr->start_queue) &&
1606 		    (id < qmgr->start_queue + qmgr->num_queues))
1607 			return qmgr;
1608 	}
1609 	return NULL;
1610 }
1611 
1612 static int knav_queue_init_queue(struct knav_device *kdev,
1613 					struct knav_range_info *range,
1614 					struct knav_queue_inst *inst,
1615 					unsigned id)
1616 {
1617 	char irq_name[KNAV_NAME_SIZE];
1618 	inst->qmgr = knav_find_qmgr(id);
1619 	if (!inst->qmgr)
1620 		return -1;
1621 
1622 	INIT_LIST_HEAD(&inst->handles);
1623 	inst->kdev = kdev;
1624 	inst->range = range;
1625 	inst->irq_num = -1;
1626 	inst->id = id;
1627 	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1628 	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1629 
1630 	if (range->ops && range->ops->init_queue)
1631 		return range->ops->init_queue(range, inst);
1632 	else
1633 		return 0;
1634 }
1635 
1636 static int knav_queue_init_queues(struct knav_device *kdev)
1637 {
1638 	struct knav_range_info *range;
1639 	int size, id, base_idx;
1640 	int idx = 0, ret = 0;
1641 
1642 	/* how much do we need for instance data? */
1643 	size = sizeof(struct knav_queue_inst);
1644 
1645 	/* round this up to a power of 2, keep the index to instance
1646 	 * arithmetic fast.
1647 	 * */
1648 	kdev->inst_shift = order_base_2(size);
1649 	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1650 	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1651 	if (!kdev->instances)
1652 		return -ENOMEM;
1653 
1654 	for_each_queue_range(kdev, range) {
1655 		if (range->ops && range->ops->init_range)
1656 			range->ops->init_range(range);
1657 		base_idx = idx;
1658 		for (id = range->queue_base;
1659 		     id < range->queue_base + range->num_queues; id++, idx++) {
1660 			ret = knav_queue_init_queue(kdev, range,
1661 					knav_queue_idx_to_inst(kdev, idx), id);
1662 			if (ret < 0)
1663 				return ret;
1664 		}
1665 		range->queue_base_inst =
1666 			knav_queue_idx_to_inst(kdev, base_idx);
1667 	}
1668 	return 0;
1669 }
1670 
1671 static int knav_queue_probe(struct platform_device *pdev)
1672 {
1673 	struct device_node *node = pdev->dev.of_node;
1674 	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1675 	struct device *dev = &pdev->dev;
1676 	u32 temp[2];
1677 	int ret;
1678 
1679 	if (!node) {
1680 		dev_err(dev, "device tree info unavailable\n");
1681 		return -ENODEV;
1682 	}
1683 
1684 	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1685 	if (!kdev) {
1686 		dev_err(dev, "memory allocation failed\n");
1687 		return -ENOMEM;
1688 	}
1689 
1690 	platform_set_drvdata(pdev, kdev);
1691 	kdev->dev = dev;
1692 	INIT_LIST_HEAD(&kdev->queue_ranges);
1693 	INIT_LIST_HEAD(&kdev->qmgrs);
1694 	INIT_LIST_HEAD(&kdev->pools);
1695 	INIT_LIST_HEAD(&kdev->regions);
1696 	INIT_LIST_HEAD(&kdev->pdsps);
1697 
1698 	pm_runtime_enable(&pdev->dev);
1699 	ret = pm_runtime_get_sync(&pdev->dev);
1700 	if (ret < 0) {
1701 		dev_err(dev, "Failed to enable QMSS\n");
1702 		return ret;
1703 	}
1704 
1705 	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1706 		dev_err(dev, "queue-range not specified\n");
1707 		ret = -ENODEV;
1708 		goto err;
1709 	}
1710 	kdev->base_id    = temp[0];
1711 	kdev->num_queues = temp[1];
1712 
1713 	/* Initialize queue managers using device tree configuration */
1714 	qmgrs =  of_get_child_by_name(node, "qmgrs");
1715 	if (!qmgrs) {
1716 		dev_err(dev, "queue manager info not specified\n");
1717 		ret = -ENODEV;
1718 		goto err;
1719 	}
1720 	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1721 	of_node_put(qmgrs);
1722 	if (ret)
1723 		goto err;
1724 
1725 	/* get pdsp configuration values from device tree */
1726 	pdsps =  of_get_child_by_name(node, "pdsps");
1727 	if (pdsps) {
1728 		ret = knav_queue_init_pdsps(kdev, pdsps);
1729 		if (ret)
1730 			goto err;
1731 
1732 		ret = knav_queue_start_pdsps(kdev);
1733 		if (ret)
1734 			goto err;
1735 	}
1736 	of_node_put(pdsps);
1737 
1738 	/* get usable queue range values from device tree */
1739 	queue_pools = of_get_child_by_name(node, "queue-pools");
1740 	if (!queue_pools) {
1741 		dev_err(dev, "queue-pools not specified\n");
1742 		ret = -ENODEV;
1743 		goto err;
1744 	}
1745 	ret = knav_setup_queue_pools(kdev, queue_pools);
1746 	of_node_put(queue_pools);
1747 	if (ret)
1748 		goto err;
1749 
1750 	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1751 	if (ret) {
1752 		dev_err(kdev->dev, "could not setup linking ram\n");
1753 		goto err;
1754 	}
1755 
1756 	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1757 	if (ret) {
1758 		/*
1759 		 * nothing really, we have one linking ram already, so we just
1760 		 * live within our means
1761 		 */
1762 	}
1763 
1764 	ret = knav_queue_setup_link_ram(kdev);
1765 	if (ret)
1766 		goto err;
1767 
1768 	regions =  of_get_child_by_name(node, "descriptor-regions");
1769 	if (!regions) {
1770 		dev_err(dev, "descriptor-regions not specified\n");
1771 		goto err;
1772 	}
1773 	ret = knav_queue_setup_regions(kdev, regions);
1774 	of_node_put(regions);
1775 	if (ret)
1776 		goto err;
1777 
1778 	ret = knav_queue_init_queues(kdev);
1779 	if (ret < 0) {
1780 		dev_err(dev, "hwqueue initialization failed\n");
1781 		goto err;
1782 	}
1783 
1784 	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1785 			    &knav_queue_debug_ops);
1786 	return 0;
1787 
1788 err:
1789 	knav_queue_stop_pdsps(kdev);
1790 	knav_queue_free_regions(kdev);
1791 	knav_free_queue_ranges(kdev);
1792 	pm_runtime_put_sync(&pdev->dev);
1793 	pm_runtime_disable(&pdev->dev);
1794 	return ret;
1795 }
1796 
1797 static int knav_queue_remove(struct platform_device *pdev)
1798 {
1799 	/* TODO: Free resources */
1800 	pm_runtime_put_sync(&pdev->dev);
1801 	pm_runtime_disable(&pdev->dev);
1802 	return 0;
1803 }
1804 
1805 /* Match table for of_platform binding */
1806 static struct of_device_id keystone_qmss_of_match[] = {
1807 	{ .compatible = "ti,keystone-navigator-qmss", },
1808 	{},
1809 };
1810 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1811 
1812 static struct platform_driver keystone_qmss_driver = {
1813 	.probe		= knav_queue_probe,
1814 	.remove		= knav_queue_remove,
1815 	.driver		= {
1816 		.name	= "keystone-navigator-qmss",
1817 		.of_match_table = keystone_qmss_of_match,
1818 	},
1819 };
1820 module_platform_driver(keystone_qmss_driver);
1821 
1822 MODULE_LICENSE("GPL v2");
1823 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1824 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1825 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1826