1 /* 2 * Keystone Queue Manager subsystem driver 3 * 4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com 5 * Authors: Sandeep Nair <sandeep_n@ti.com> 6 * Cyril Chemparathy <cyril@ti.com> 7 * Santosh Shilimkar <santosh.shilimkar@ti.com> 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * version 2 as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 */ 18 19 #include <linux/debugfs.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/firmware.h> 22 #include <linux/interrupt.h> 23 #include <linux/io.h> 24 #include <linux/module.h> 25 #include <linux/of_address.h> 26 #include <linux/of_device.h> 27 #include <linux/of_irq.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/slab.h> 30 #include <linux/soc/ti/knav_qmss.h> 31 32 #include "knav_qmss.h" 33 34 static struct knav_device *kdev; 35 static DEFINE_MUTEX(knav_dev_lock); 36 37 /* Queue manager register indices in DTS */ 38 #define KNAV_QUEUE_PEEK_REG_INDEX 0 39 #define KNAV_QUEUE_STATUS_REG_INDEX 1 40 #define KNAV_QUEUE_CONFIG_REG_INDEX 2 41 #define KNAV_QUEUE_REGION_REG_INDEX 3 42 #define KNAV_QUEUE_PUSH_REG_INDEX 4 43 #define KNAV_QUEUE_POP_REG_INDEX 5 44 45 /* Queue manager register indices in DTS for QMSS in K2G NAVSS. 46 * There are no status and vbusm push registers on this version 47 * of QMSS. Push registers are same as pop, So all indices above 1 48 * are to be re-defined 49 */ 50 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1 51 #define KNAV_L_QUEUE_REGION_REG_INDEX 2 52 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3 53 54 /* PDSP register indices in DTS */ 55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0 56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1 57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2 58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3 59 60 #define knav_queue_idx_to_inst(kdev, idx) \ 61 (kdev->instances + (idx << kdev->inst_shift)) 62 63 #define for_each_handle_rcu(qh, inst) \ 64 list_for_each_entry_rcu(qh, &inst->handles, list) 65 66 #define for_each_instance(idx, inst, kdev) \ 67 for (idx = 0, inst = kdev->instances; \ 68 idx < (kdev)->num_queues_in_use; \ 69 idx++, inst = knav_queue_idx_to_inst(kdev, idx)) 70 71 /* All firmware file names end up here. List the firmware file names below. 72 * Newest followed by older ones. Search is done from start of the array 73 * until a firmware file is found. 74 */ 75 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"}; 76 77 static bool device_ready; 78 bool knav_qmss_device_ready(void) 79 { 80 return device_ready; 81 } 82 EXPORT_SYMBOL_GPL(knav_qmss_device_ready); 83 84 /** 85 * knav_queue_notify: qmss queue notfier call 86 * 87 * @inst: qmss queue instance like accumulator 88 */ 89 void knav_queue_notify(struct knav_queue_inst *inst) 90 { 91 struct knav_queue *qh; 92 93 if (!inst) 94 return; 95 96 rcu_read_lock(); 97 for_each_handle_rcu(qh, inst) { 98 if (atomic_read(&qh->notifier_enabled) <= 0) 99 continue; 100 if (WARN_ON(!qh->notifier_fn)) 101 continue; 102 atomic_inc(&qh->stats.notifies); 103 qh->notifier_fn(qh->notifier_fn_arg); 104 } 105 rcu_read_unlock(); 106 } 107 EXPORT_SYMBOL_GPL(knav_queue_notify); 108 109 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata) 110 { 111 struct knav_queue_inst *inst = _instdata; 112 113 knav_queue_notify(inst); 114 return IRQ_HANDLED; 115 } 116 117 static int knav_queue_setup_irq(struct knav_range_info *range, 118 struct knav_queue_inst *inst) 119 { 120 unsigned queue = inst->id - range->queue_base; 121 unsigned long cpu_map; 122 int ret = 0, irq; 123 124 if (range->flags & RANGE_HAS_IRQ) { 125 irq = range->irqs[queue].irq; 126 cpu_map = range->irqs[queue].cpu_map; 127 ret = request_irq(irq, knav_queue_int_handler, 0, 128 inst->irq_name, inst); 129 if (ret) 130 return ret; 131 disable_irq(irq); 132 if (cpu_map) { 133 ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map)); 134 if (ret) { 135 dev_warn(range->kdev->dev, 136 "Failed to set IRQ affinity\n"); 137 return ret; 138 } 139 } 140 } 141 return ret; 142 } 143 144 static void knav_queue_free_irq(struct knav_queue_inst *inst) 145 { 146 struct knav_range_info *range = inst->range; 147 unsigned queue = inst->id - inst->range->queue_base; 148 int irq; 149 150 if (range->flags & RANGE_HAS_IRQ) { 151 irq = range->irqs[queue].irq; 152 irq_set_affinity_hint(irq, NULL); 153 free_irq(irq, inst); 154 } 155 } 156 157 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst) 158 { 159 return !list_empty(&inst->handles); 160 } 161 162 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst) 163 { 164 return inst->range->flags & RANGE_RESERVED; 165 } 166 167 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst) 168 { 169 struct knav_queue *tmp; 170 171 rcu_read_lock(); 172 for_each_handle_rcu(tmp, inst) { 173 if (tmp->flags & KNAV_QUEUE_SHARED) { 174 rcu_read_unlock(); 175 return true; 176 } 177 } 178 rcu_read_unlock(); 179 return false; 180 } 181 182 static inline bool knav_queue_match_type(struct knav_queue_inst *inst, 183 unsigned type) 184 { 185 if ((type == KNAV_QUEUE_QPEND) && 186 (inst->range->flags & RANGE_HAS_IRQ)) { 187 return true; 188 } else if ((type == KNAV_QUEUE_ACC) && 189 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) { 190 return true; 191 } else if ((type == KNAV_QUEUE_GP) && 192 !(inst->range->flags & 193 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) { 194 return true; 195 } 196 return false; 197 } 198 199 static inline struct knav_queue_inst * 200 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id) 201 { 202 struct knav_queue_inst *inst; 203 int idx; 204 205 for_each_instance(idx, inst, kdev) { 206 if (inst->id == id) 207 return inst; 208 } 209 return NULL; 210 } 211 212 static inline struct knav_queue_inst *knav_queue_find_by_id(int id) 213 { 214 if (kdev->base_id <= id && 215 kdev->base_id + kdev->num_queues > id) { 216 id -= kdev->base_id; 217 return knav_queue_match_id_to_inst(kdev, id); 218 } 219 return NULL; 220 } 221 222 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst, 223 const char *name, unsigned flags) 224 { 225 struct knav_queue *qh; 226 unsigned id; 227 int ret = 0; 228 229 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL); 230 if (!qh) 231 return ERR_PTR(-ENOMEM); 232 233 qh->flags = flags; 234 qh->inst = inst; 235 id = inst->id - inst->qmgr->start_queue; 236 qh->reg_push = &inst->qmgr->reg_push[id]; 237 qh->reg_pop = &inst->qmgr->reg_pop[id]; 238 qh->reg_peek = &inst->qmgr->reg_peek[id]; 239 240 /* first opener? */ 241 if (!knav_queue_is_busy(inst)) { 242 struct knav_range_info *range = inst->range; 243 244 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 245 if (range->ops && range->ops->open_queue) 246 ret = range->ops->open_queue(range, inst, flags); 247 248 if (ret) { 249 devm_kfree(inst->kdev->dev, qh); 250 return ERR_PTR(ret); 251 } 252 } 253 list_add_tail_rcu(&qh->list, &inst->handles); 254 return qh; 255 } 256 257 static struct knav_queue * 258 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags) 259 { 260 struct knav_queue_inst *inst; 261 struct knav_queue *qh; 262 263 mutex_lock(&knav_dev_lock); 264 265 qh = ERR_PTR(-ENODEV); 266 inst = knav_queue_find_by_id(id); 267 if (!inst) 268 goto unlock_ret; 269 270 qh = ERR_PTR(-EEXIST); 271 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst)) 272 goto unlock_ret; 273 274 qh = ERR_PTR(-EBUSY); 275 if ((flags & KNAV_QUEUE_SHARED) && 276 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst))) 277 goto unlock_ret; 278 279 qh = __knav_queue_open(inst, name, flags); 280 281 unlock_ret: 282 mutex_unlock(&knav_dev_lock); 283 284 return qh; 285 } 286 287 static struct knav_queue *knav_queue_open_by_type(const char *name, 288 unsigned type, unsigned flags) 289 { 290 struct knav_queue_inst *inst; 291 struct knav_queue *qh = ERR_PTR(-EINVAL); 292 int idx; 293 294 mutex_lock(&knav_dev_lock); 295 296 for_each_instance(idx, inst, kdev) { 297 if (knav_queue_is_reserved(inst)) 298 continue; 299 if (!knav_queue_match_type(inst, type)) 300 continue; 301 if (knav_queue_is_busy(inst)) 302 continue; 303 qh = __knav_queue_open(inst, name, flags); 304 goto unlock_ret; 305 } 306 307 unlock_ret: 308 mutex_unlock(&knav_dev_lock); 309 return qh; 310 } 311 312 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled) 313 { 314 struct knav_range_info *range = inst->range; 315 316 if (range->ops && range->ops->set_notify) 317 range->ops->set_notify(range, inst, enabled); 318 } 319 320 static int knav_queue_enable_notifier(struct knav_queue *qh) 321 { 322 struct knav_queue_inst *inst = qh->inst; 323 bool first; 324 325 if (WARN_ON(!qh->notifier_fn)) 326 return -EINVAL; 327 328 /* Adjust the per handle notifier count */ 329 first = (atomic_inc_return(&qh->notifier_enabled) == 1); 330 if (!first) 331 return 0; /* nothing to do */ 332 333 /* Now adjust the per instance notifier count */ 334 first = (atomic_inc_return(&inst->num_notifiers) == 1); 335 if (first) 336 knav_queue_set_notify(inst, true); 337 338 return 0; 339 } 340 341 static int knav_queue_disable_notifier(struct knav_queue *qh) 342 { 343 struct knav_queue_inst *inst = qh->inst; 344 bool last; 345 346 last = (atomic_dec_return(&qh->notifier_enabled) == 0); 347 if (!last) 348 return 0; /* nothing to do */ 349 350 last = (atomic_dec_return(&inst->num_notifiers) == 0); 351 if (last) 352 knav_queue_set_notify(inst, false); 353 354 return 0; 355 } 356 357 static int knav_queue_set_notifier(struct knav_queue *qh, 358 struct knav_queue_notify_config *cfg) 359 { 360 knav_queue_notify_fn old_fn = qh->notifier_fn; 361 362 if (!cfg) 363 return -EINVAL; 364 365 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) 366 return -ENOTSUPP; 367 368 if (!cfg->fn && old_fn) 369 knav_queue_disable_notifier(qh); 370 371 qh->notifier_fn = cfg->fn; 372 qh->notifier_fn_arg = cfg->fn_arg; 373 374 if (cfg->fn && !old_fn) 375 knav_queue_enable_notifier(qh); 376 377 return 0; 378 } 379 380 static int knav_gp_set_notify(struct knav_range_info *range, 381 struct knav_queue_inst *inst, 382 bool enabled) 383 { 384 unsigned queue; 385 386 if (range->flags & RANGE_HAS_IRQ) { 387 queue = inst->id - range->queue_base; 388 if (enabled) 389 enable_irq(range->irqs[queue].irq); 390 else 391 disable_irq_nosync(range->irqs[queue].irq); 392 } 393 return 0; 394 } 395 396 static int knav_gp_open_queue(struct knav_range_info *range, 397 struct knav_queue_inst *inst, unsigned flags) 398 { 399 return knav_queue_setup_irq(range, inst); 400 } 401 402 static int knav_gp_close_queue(struct knav_range_info *range, 403 struct knav_queue_inst *inst) 404 { 405 knav_queue_free_irq(inst); 406 return 0; 407 } 408 409 struct knav_range_ops knav_gp_range_ops = { 410 .set_notify = knav_gp_set_notify, 411 .open_queue = knav_gp_open_queue, 412 .close_queue = knav_gp_close_queue, 413 }; 414 415 416 static int knav_queue_get_count(void *qhandle) 417 { 418 struct knav_queue *qh = qhandle; 419 struct knav_queue_inst *inst = qh->inst; 420 421 return readl_relaxed(&qh->reg_peek[0].entry_count) + 422 atomic_read(&inst->desc_count); 423 } 424 425 static void knav_queue_debug_show_instance(struct seq_file *s, 426 struct knav_queue_inst *inst) 427 { 428 struct knav_device *kdev = inst->kdev; 429 struct knav_queue *qh; 430 431 if (!knav_queue_is_busy(inst)) 432 return; 433 434 seq_printf(s, "\tqueue id %d (%s)\n", 435 kdev->base_id + inst->id, inst->name); 436 for_each_handle_rcu(qh, inst) { 437 seq_printf(s, "\t\thandle %p: ", qh); 438 seq_printf(s, "pushes %8d, ", 439 atomic_read(&qh->stats.pushes)); 440 seq_printf(s, "pops %8d, ", 441 atomic_read(&qh->stats.pops)); 442 seq_printf(s, "count %8d, ", 443 knav_queue_get_count(qh)); 444 seq_printf(s, "notifies %8d, ", 445 atomic_read(&qh->stats.notifies)); 446 seq_printf(s, "push errors %8d, ", 447 atomic_read(&qh->stats.push_errors)); 448 seq_printf(s, "pop errors %8d\n", 449 atomic_read(&qh->stats.pop_errors)); 450 } 451 } 452 453 static int knav_queue_debug_show(struct seq_file *s, void *v) 454 { 455 struct knav_queue_inst *inst; 456 int idx; 457 458 mutex_lock(&knav_dev_lock); 459 seq_printf(s, "%s: %u-%u\n", 460 dev_name(kdev->dev), kdev->base_id, 461 kdev->base_id + kdev->num_queues - 1); 462 for_each_instance(idx, inst, kdev) 463 knav_queue_debug_show_instance(s, inst); 464 mutex_unlock(&knav_dev_lock); 465 466 return 0; 467 } 468 469 static int knav_queue_debug_open(struct inode *inode, struct file *file) 470 { 471 return single_open(file, knav_queue_debug_show, NULL); 472 } 473 474 static const struct file_operations knav_queue_debug_ops = { 475 .open = knav_queue_debug_open, 476 .read = seq_read, 477 .llseek = seq_lseek, 478 .release = single_release, 479 }; 480 481 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout, 482 u32 flags) 483 { 484 unsigned long end; 485 u32 val = 0; 486 487 end = jiffies + msecs_to_jiffies(timeout); 488 while (time_after(end, jiffies)) { 489 val = readl_relaxed(addr); 490 if (flags) 491 val &= flags; 492 if (!val) 493 break; 494 cpu_relax(); 495 } 496 return val ? -ETIMEDOUT : 0; 497 } 498 499 500 static int knav_queue_flush(struct knav_queue *qh) 501 { 502 struct knav_queue_inst *inst = qh->inst; 503 unsigned id = inst->id - inst->qmgr->start_queue; 504 505 atomic_set(&inst->desc_count, 0); 506 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh); 507 return 0; 508 } 509 510 /** 511 * knav_queue_open() - open a hardware queue 512 * @name - name to give the queue handle 513 * @id - desired queue number if any or specifes the type 514 * of queue 515 * @flags - the following flags are applicable to queues: 516 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are 517 * exclusive by default. 518 * Subsequent attempts to open a shared queue should 519 * also have this flag. 520 * 521 * Returns a handle to the open hardware queue if successful. Use IS_ERR() 522 * to check the returned value for error codes. 523 */ 524 void *knav_queue_open(const char *name, unsigned id, 525 unsigned flags) 526 { 527 struct knav_queue *qh = ERR_PTR(-EINVAL); 528 529 switch (id) { 530 case KNAV_QUEUE_QPEND: 531 case KNAV_QUEUE_ACC: 532 case KNAV_QUEUE_GP: 533 qh = knav_queue_open_by_type(name, id, flags); 534 break; 535 536 default: 537 qh = knav_queue_open_by_id(name, id, flags); 538 break; 539 } 540 return qh; 541 } 542 EXPORT_SYMBOL_GPL(knav_queue_open); 543 544 /** 545 * knav_queue_close() - close a hardware queue handle 546 * @qh - handle to close 547 */ 548 void knav_queue_close(void *qhandle) 549 { 550 struct knav_queue *qh = qhandle; 551 struct knav_queue_inst *inst = qh->inst; 552 553 while (atomic_read(&qh->notifier_enabled) > 0) 554 knav_queue_disable_notifier(qh); 555 556 mutex_lock(&knav_dev_lock); 557 list_del_rcu(&qh->list); 558 mutex_unlock(&knav_dev_lock); 559 synchronize_rcu(); 560 if (!knav_queue_is_busy(inst)) { 561 struct knav_range_info *range = inst->range; 562 563 if (range->ops && range->ops->close_queue) 564 range->ops->close_queue(range, inst); 565 } 566 devm_kfree(inst->kdev->dev, qh); 567 } 568 EXPORT_SYMBOL_GPL(knav_queue_close); 569 570 /** 571 * knav_queue_device_control() - Perform control operations on a queue 572 * @qh - queue handle 573 * @cmd - control commands 574 * @arg - command argument 575 * 576 * Returns 0 on success, errno otherwise. 577 */ 578 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd, 579 unsigned long arg) 580 { 581 struct knav_queue *qh = qhandle; 582 struct knav_queue_notify_config *cfg; 583 int ret; 584 585 switch ((int)cmd) { 586 case KNAV_QUEUE_GET_ID: 587 ret = qh->inst->kdev->base_id + qh->inst->id; 588 break; 589 590 case KNAV_QUEUE_FLUSH: 591 ret = knav_queue_flush(qh); 592 break; 593 594 case KNAV_QUEUE_SET_NOTIFIER: 595 cfg = (void *)arg; 596 ret = knav_queue_set_notifier(qh, cfg); 597 break; 598 599 case KNAV_QUEUE_ENABLE_NOTIFY: 600 ret = knav_queue_enable_notifier(qh); 601 break; 602 603 case KNAV_QUEUE_DISABLE_NOTIFY: 604 ret = knav_queue_disable_notifier(qh); 605 break; 606 607 case KNAV_QUEUE_GET_COUNT: 608 ret = knav_queue_get_count(qh); 609 break; 610 611 default: 612 ret = -ENOTSUPP; 613 break; 614 } 615 return ret; 616 } 617 EXPORT_SYMBOL_GPL(knav_queue_device_control); 618 619 620 621 /** 622 * knav_queue_push() - push data (or descriptor) to the tail of a queue 623 * @qh - hardware queue handle 624 * @data - data to push 625 * @size - size of data to push 626 * @flags - can be used to pass additional information 627 * 628 * Returns 0 on success, errno otherwise. 629 */ 630 int knav_queue_push(void *qhandle, dma_addr_t dma, 631 unsigned size, unsigned flags) 632 { 633 struct knav_queue *qh = qhandle; 634 u32 val; 635 636 val = (u32)dma | ((size / 16) - 1); 637 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh); 638 639 atomic_inc(&qh->stats.pushes); 640 return 0; 641 } 642 EXPORT_SYMBOL_GPL(knav_queue_push); 643 644 /** 645 * knav_queue_pop() - pop data (or descriptor) from the head of a queue 646 * @qh - hardware queue handle 647 * @size - (optional) size of the data pop'ed. 648 * 649 * Returns a DMA address on success, 0 on failure. 650 */ 651 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size) 652 { 653 struct knav_queue *qh = qhandle; 654 struct knav_queue_inst *inst = qh->inst; 655 dma_addr_t dma; 656 u32 val, idx; 657 658 /* are we accumulated? */ 659 if (inst->descs) { 660 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) { 661 atomic_inc(&inst->desc_count); 662 return 0; 663 } 664 idx = atomic_inc_return(&inst->desc_head); 665 idx &= ACC_DESCS_MASK; 666 val = inst->descs[idx]; 667 } else { 668 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh); 669 if (unlikely(!val)) 670 return 0; 671 } 672 673 dma = val & DESC_PTR_MASK; 674 if (size) 675 *size = ((val & DESC_SIZE_MASK) + 1) * 16; 676 677 atomic_inc(&qh->stats.pops); 678 return dma; 679 } 680 EXPORT_SYMBOL_GPL(knav_queue_pop); 681 682 /* carve out descriptors and push into queue */ 683 static void kdesc_fill_pool(struct knav_pool *pool) 684 { 685 struct knav_region *region; 686 int i; 687 688 region = pool->region; 689 pool->desc_size = region->desc_size; 690 for (i = 0; i < pool->num_desc; i++) { 691 int index = pool->region_offset + i; 692 dma_addr_t dma_addr; 693 unsigned dma_size; 694 dma_addr = region->dma_start + (region->desc_size * index); 695 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES); 696 dma_sync_single_for_device(pool->dev, dma_addr, dma_size, 697 DMA_TO_DEVICE); 698 knav_queue_push(pool->queue, dma_addr, dma_size, 0); 699 } 700 } 701 702 /* pop out descriptors and close the queue */ 703 static void kdesc_empty_pool(struct knav_pool *pool) 704 { 705 dma_addr_t dma; 706 unsigned size; 707 void *desc; 708 int i; 709 710 if (!pool->queue) 711 return; 712 713 for (i = 0;; i++) { 714 dma = knav_queue_pop(pool->queue, &size); 715 if (!dma) 716 break; 717 desc = knav_pool_desc_dma_to_virt(pool, dma); 718 if (!desc) { 719 dev_dbg(pool->kdev->dev, 720 "couldn't unmap desc, continuing\n"); 721 continue; 722 } 723 } 724 WARN_ON(i != pool->num_desc); 725 knav_queue_close(pool->queue); 726 } 727 728 729 /* Get the DMA address of a descriptor */ 730 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt) 731 { 732 struct knav_pool *pool = ph; 733 return pool->region->dma_start + (virt - pool->region->virt_start); 734 } 735 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma); 736 737 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma) 738 { 739 struct knav_pool *pool = ph; 740 return pool->region->virt_start + (dma - pool->region->dma_start); 741 } 742 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt); 743 744 /** 745 * knav_pool_create() - Create a pool of descriptors 746 * @name - name to give the pool handle 747 * @num_desc - numbers of descriptors in the pool 748 * @region_id - QMSS region id from which the descriptors are to be 749 * allocated. 750 * 751 * Returns a pool handle on success. 752 * Use IS_ERR_OR_NULL() to identify error values on return. 753 */ 754 void *knav_pool_create(const char *name, 755 int num_desc, int region_id) 756 { 757 struct knav_region *reg_itr, *region = NULL; 758 struct knav_pool *pool, *pi; 759 struct list_head *node; 760 unsigned last_offset; 761 bool slot_found; 762 int ret; 763 764 if (!kdev) 765 return ERR_PTR(-EPROBE_DEFER); 766 767 if (!kdev->dev) 768 return ERR_PTR(-ENODEV); 769 770 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 771 if (!pool) { 772 dev_err(kdev->dev, "out of memory allocating pool\n"); 773 return ERR_PTR(-ENOMEM); 774 } 775 776 for_each_region(kdev, reg_itr) { 777 if (reg_itr->id != region_id) 778 continue; 779 region = reg_itr; 780 break; 781 } 782 783 if (!region) { 784 dev_err(kdev->dev, "region-id(%d) not found\n", region_id); 785 ret = -EINVAL; 786 goto err; 787 } 788 789 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0); 790 if (IS_ERR_OR_NULL(pool->queue)) { 791 dev_err(kdev->dev, 792 "failed to open queue for pool(%s), error %ld\n", 793 name, PTR_ERR(pool->queue)); 794 ret = PTR_ERR(pool->queue); 795 goto err; 796 } 797 798 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 799 pool->kdev = kdev; 800 pool->dev = kdev->dev; 801 802 mutex_lock(&knav_dev_lock); 803 804 if (num_desc > (region->num_desc - region->used_desc)) { 805 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n", 806 region_id, name); 807 ret = -ENOMEM; 808 goto err_unlock; 809 } 810 811 /* Region maintains a sorted (by region offset) list of pools 812 * use the first free slot which is large enough to accomodate 813 * the request 814 */ 815 last_offset = 0; 816 slot_found = false; 817 node = ®ion->pools; 818 list_for_each_entry(pi, ®ion->pools, region_inst) { 819 if ((pi->region_offset - last_offset) >= num_desc) { 820 slot_found = true; 821 break; 822 } 823 last_offset = pi->region_offset + pi->num_desc; 824 } 825 node = &pi->region_inst; 826 827 if (slot_found) { 828 pool->region = region; 829 pool->num_desc = num_desc; 830 pool->region_offset = last_offset; 831 region->used_desc += num_desc; 832 list_add_tail(&pool->list, &kdev->pools); 833 list_add_tail(&pool->region_inst, node); 834 } else { 835 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n", 836 name, region_id); 837 ret = -ENOMEM; 838 goto err_unlock; 839 } 840 841 mutex_unlock(&knav_dev_lock); 842 kdesc_fill_pool(pool); 843 return pool; 844 845 err_unlock: 846 mutex_unlock(&knav_dev_lock); 847 err: 848 kfree(pool->name); 849 devm_kfree(kdev->dev, pool); 850 return ERR_PTR(ret); 851 } 852 EXPORT_SYMBOL_GPL(knav_pool_create); 853 854 /** 855 * knav_pool_destroy() - Free a pool of descriptors 856 * @pool - pool handle 857 */ 858 void knav_pool_destroy(void *ph) 859 { 860 struct knav_pool *pool = ph; 861 862 if (!pool) 863 return; 864 865 if (!pool->region) 866 return; 867 868 kdesc_empty_pool(pool); 869 mutex_lock(&knav_dev_lock); 870 871 pool->region->used_desc -= pool->num_desc; 872 list_del(&pool->region_inst); 873 list_del(&pool->list); 874 875 mutex_unlock(&knav_dev_lock); 876 kfree(pool->name); 877 devm_kfree(kdev->dev, pool); 878 } 879 EXPORT_SYMBOL_GPL(knav_pool_destroy); 880 881 882 /** 883 * knav_pool_desc_get() - Get a descriptor from the pool 884 * @pool - pool handle 885 * 886 * Returns descriptor from the pool. 887 */ 888 void *knav_pool_desc_get(void *ph) 889 { 890 struct knav_pool *pool = ph; 891 dma_addr_t dma; 892 unsigned size; 893 void *data; 894 895 dma = knav_queue_pop(pool->queue, &size); 896 if (unlikely(!dma)) 897 return ERR_PTR(-ENOMEM); 898 data = knav_pool_desc_dma_to_virt(pool, dma); 899 return data; 900 } 901 EXPORT_SYMBOL_GPL(knav_pool_desc_get); 902 903 /** 904 * knav_pool_desc_put() - return a descriptor to the pool 905 * @pool - pool handle 906 */ 907 void knav_pool_desc_put(void *ph, void *desc) 908 { 909 struct knav_pool *pool = ph; 910 dma_addr_t dma; 911 dma = knav_pool_desc_virt_to_dma(pool, desc); 912 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0); 913 } 914 EXPORT_SYMBOL_GPL(knav_pool_desc_put); 915 916 /** 917 * knav_pool_desc_map() - Map descriptor for DMA transfer 918 * @pool - pool handle 919 * @desc - address of descriptor to map 920 * @size - size of descriptor to map 921 * @dma - DMA address return pointer 922 * @dma_sz - adjusted return pointer 923 * 924 * Returns 0 on success, errno otherwise. 925 */ 926 int knav_pool_desc_map(void *ph, void *desc, unsigned size, 927 dma_addr_t *dma, unsigned *dma_sz) 928 { 929 struct knav_pool *pool = ph; 930 *dma = knav_pool_desc_virt_to_dma(pool, desc); 931 size = min(size, pool->region->desc_size); 932 size = ALIGN(size, SMP_CACHE_BYTES); 933 *dma_sz = size; 934 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE); 935 936 /* Ensure the descriptor reaches to the memory */ 937 __iowmb(); 938 939 return 0; 940 } 941 EXPORT_SYMBOL_GPL(knav_pool_desc_map); 942 943 /** 944 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer 945 * @pool - pool handle 946 * @dma - DMA address of descriptor to unmap 947 * @dma_sz - size of descriptor to unmap 948 * 949 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify 950 * error values on return. 951 */ 952 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz) 953 { 954 struct knav_pool *pool = ph; 955 unsigned desc_sz; 956 void *desc; 957 958 desc_sz = min(dma_sz, pool->region->desc_size); 959 desc = knav_pool_desc_dma_to_virt(pool, dma); 960 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE); 961 prefetch(desc); 962 return desc; 963 } 964 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap); 965 966 /** 967 * knav_pool_count() - Get the number of descriptors in pool. 968 * @pool - pool handle 969 * Returns number of elements in the pool. 970 */ 971 int knav_pool_count(void *ph) 972 { 973 struct knav_pool *pool = ph; 974 return knav_queue_get_count(pool->queue); 975 } 976 EXPORT_SYMBOL_GPL(knav_pool_count); 977 978 static void knav_queue_setup_region(struct knav_device *kdev, 979 struct knav_region *region) 980 { 981 unsigned hw_num_desc, hw_desc_size, size; 982 struct knav_reg_region __iomem *regs; 983 struct knav_qmgr_info *qmgr; 984 struct knav_pool *pool; 985 int id = region->id; 986 struct page *page; 987 988 /* unused region? */ 989 if (!region->num_desc) { 990 dev_warn(kdev->dev, "unused region %s\n", region->name); 991 return; 992 } 993 994 /* get hardware descriptor value */ 995 hw_num_desc = ilog2(region->num_desc - 1) + 1; 996 997 /* did we force fit ourselves into nothingness? */ 998 if (region->num_desc < 32) { 999 region->num_desc = 0; 1000 dev_warn(kdev->dev, "too few descriptors in region %s\n", 1001 region->name); 1002 return; 1003 } 1004 1005 size = region->num_desc * region->desc_size; 1006 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA | 1007 GFP_DMA32); 1008 if (!region->virt_start) { 1009 region->num_desc = 0; 1010 dev_err(kdev->dev, "memory alloc failed for region %s\n", 1011 region->name); 1012 return; 1013 } 1014 region->virt_end = region->virt_start + size; 1015 page = virt_to_page(region->virt_start); 1016 1017 region->dma_start = dma_map_page(kdev->dev, page, 0, size, 1018 DMA_BIDIRECTIONAL); 1019 if (dma_mapping_error(kdev->dev, region->dma_start)) { 1020 dev_err(kdev->dev, "dma map failed for region %s\n", 1021 region->name); 1022 goto fail; 1023 } 1024 region->dma_end = region->dma_start + size; 1025 1026 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 1027 if (!pool) { 1028 dev_err(kdev->dev, "out of memory allocating dummy pool\n"); 1029 goto fail; 1030 } 1031 pool->num_desc = 0; 1032 pool->region_offset = region->num_desc; 1033 list_add(&pool->region_inst, ®ion->pools); 1034 1035 dev_dbg(kdev->dev, 1036 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n", 1037 region->name, id, region->desc_size, region->num_desc, 1038 region->link_index, ®ion->dma_start, ®ion->dma_end, 1039 region->virt_start, region->virt_end); 1040 1041 hw_desc_size = (region->desc_size / 16) - 1; 1042 hw_num_desc -= 5; 1043 1044 for_each_qmgr(kdev, qmgr) { 1045 regs = qmgr->reg_region + id; 1046 writel_relaxed((u32)region->dma_start, ®s->base); 1047 writel_relaxed(region->link_index, ®s->start_index); 1048 writel_relaxed(hw_desc_size << 16 | hw_num_desc, 1049 ®s->size_count); 1050 } 1051 return; 1052 1053 fail: 1054 if (region->dma_start) 1055 dma_unmap_page(kdev->dev, region->dma_start, size, 1056 DMA_BIDIRECTIONAL); 1057 if (region->virt_start) 1058 free_pages_exact(region->virt_start, size); 1059 region->num_desc = 0; 1060 return; 1061 } 1062 1063 static const char *knav_queue_find_name(struct device_node *node) 1064 { 1065 const char *name; 1066 1067 if (of_property_read_string(node, "label", &name) < 0) 1068 name = node->name; 1069 if (!name) 1070 name = "unknown"; 1071 return name; 1072 } 1073 1074 static int knav_queue_setup_regions(struct knav_device *kdev, 1075 struct device_node *regions) 1076 { 1077 struct device *dev = kdev->dev; 1078 struct knav_region *region; 1079 struct device_node *child; 1080 u32 temp[2]; 1081 int ret; 1082 1083 for_each_child_of_node(regions, child) { 1084 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL); 1085 if (!region) { 1086 dev_err(dev, "out of memory allocating region\n"); 1087 return -ENOMEM; 1088 } 1089 1090 region->name = knav_queue_find_name(child); 1091 of_property_read_u32(child, "id", ®ion->id); 1092 ret = of_property_read_u32_array(child, "region-spec", temp, 2); 1093 if (!ret) { 1094 region->num_desc = temp[0]; 1095 region->desc_size = temp[1]; 1096 } else { 1097 dev_err(dev, "invalid region info %s\n", region->name); 1098 devm_kfree(dev, region); 1099 continue; 1100 } 1101 1102 if (!of_get_property(child, "link-index", NULL)) { 1103 dev_err(dev, "No link info for %s\n", region->name); 1104 devm_kfree(dev, region); 1105 continue; 1106 } 1107 ret = of_property_read_u32(child, "link-index", 1108 ®ion->link_index); 1109 if (ret) { 1110 dev_err(dev, "link index not found for %s\n", 1111 region->name); 1112 devm_kfree(dev, region); 1113 continue; 1114 } 1115 1116 INIT_LIST_HEAD(®ion->pools); 1117 list_add_tail(®ion->list, &kdev->regions); 1118 } 1119 if (list_empty(&kdev->regions)) { 1120 dev_err(dev, "no valid region information found\n"); 1121 return -ENODEV; 1122 } 1123 1124 /* Next, we run through the regions and set things up */ 1125 for_each_region(kdev, region) 1126 knav_queue_setup_region(kdev, region); 1127 1128 return 0; 1129 } 1130 1131 static int knav_get_link_ram(struct knav_device *kdev, 1132 const char *name, 1133 struct knav_link_ram_block *block) 1134 { 1135 struct platform_device *pdev = to_platform_device(kdev->dev); 1136 struct device_node *node = pdev->dev.of_node; 1137 u32 temp[2]; 1138 1139 /* 1140 * Note: link ram resources are specified in "entry" sized units. In 1141 * reality, although entries are ~40bits in hardware, we treat them as 1142 * 64-bit entities here. 1143 * 1144 * For example, to specify the internal link ram for Keystone-I class 1145 * devices, we would set the linkram0 resource to 0x80000-0x83fff. 1146 * 1147 * This gets a bit weird when other link rams are used. For example, 1148 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries 1149 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000, 1150 * which accounts for 64-bits per entry, for 16K entries. 1151 */ 1152 if (!of_property_read_u32_array(node, name , temp, 2)) { 1153 if (temp[0]) { 1154 /* 1155 * queue_base specified => using internal or onchip 1156 * link ram WARNING - we do not "reserve" this block 1157 */ 1158 block->dma = (dma_addr_t)temp[0]; 1159 block->virt = NULL; 1160 block->size = temp[1]; 1161 } else { 1162 block->size = temp[1]; 1163 /* queue_base not specific => allocate requested size */ 1164 block->virt = dmam_alloc_coherent(kdev->dev, 1165 8 * block->size, &block->dma, 1166 GFP_KERNEL); 1167 if (!block->virt) { 1168 dev_err(kdev->dev, "failed to alloc linkram\n"); 1169 return -ENOMEM; 1170 } 1171 } 1172 } else { 1173 return -ENODEV; 1174 } 1175 return 0; 1176 } 1177 1178 static int knav_queue_setup_link_ram(struct knav_device *kdev) 1179 { 1180 struct knav_link_ram_block *block; 1181 struct knav_qmgr_info *qmgr; 1182 1183 for_each_qmgr(kdev, qmgr) { 1184 block = &kdev->link_rams[0]; 1185 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n", 1186 &block->dma, block->virt, block->size); 1187 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0); 1188 if (kdev->version == QMSS_66AK2G) 1189 writel_relaxed(block->size, 1190 &qmgr->reg_config->link_ram_size0); 1191 else 1192 writel_relaxed(block->size - 1, 1193 &qmgr->reg_config->link_ram_size0); 1194 block++; 1195 if (!block->size) 1196 continue; 1197 1198 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n", 1199 &block->dma, block->virt, block->size); 1200 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1); 1201 } 1202 1203 return 0; 1204 } 1205 1206 static int knav_setup_queue_range(struct knav_device *kdev, 1207 struct device_node *node) 1208 { 1209 struct device *dev = kdev->dev; 1210 struct knav_range_info *range; 1211 struct knav_qmgr_info *qmgr; 1212 u32 temp[2], start, end, id, index; 1213 int ret, i; 1214 1215 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL); 1216 if (!range) { 1217 dev_err(dev, "out of memory allocating range\n"); 1218 return -ENOMEM; 1219 } 1220 1221 range->kdev = kdev; 1222 range->name = knav_queue_find_name(node); 1223 ret = of_property_read_u32_array(node, "qrange", temp, 2); 1224 if (!ret) { 1225 range->queue_base = temp[0] - kdev->base_id; 1226 range->num_queues = temp[1]; 1227 } else { 1228 dev_err(dev, "invalid queue range %s\n", range->name); 1229 devm_kfree(dev, range); 1230 return -EINVAL; 1231 } 1232 1233 for (i = 0; i < RANGE_MAX_IRQS; i++) { 1234 struct of_phandle_args oirq; 1235 1236 if (of_irq_parse_one(node, i, &oirq)) 1237 break; 1238 1239 range->irqs[i].irq = irq_create_of_mapping(&oirq); 1240 if (range->irqs[i].irq == IRQ_NONE) 1241 break; 1242 1243 range->num_irqs++; 1244 1245 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) 1246 range->irqs[i].cpu_map = 1247 (oirq.args[2] & 0x0000ff00) >> 8; 1248 } 1249 1250 range->num_irqs = min(range->num_irqs, range->num_queues); 1251 if (range->num_irqs) 1252 range->flags |= RANGE_HAS_IRQ; 1253 1254 if (of_get_property(node, "qalloc-by-id", NULL)) 1255 range->flags |= RANGE_RESERVED; 1256 1257 if (of_get_property(node, "accumulator", NULL)) { 1258 ret = knav_init_acc_range(kdev, node, range); 1259 if (ret < 0) { 1260 devm_kfree(dev, range); 1261 return ret; 1262 } 1263 } else { 1264 range->ops = &knav_gp_range_ops; 1265 } 1266 1267 /* set threshold to 1, and flush out the queues */ 1268 for_each_qmgr(kdev, qmgr) { 1269 start = max(qmgr->start_queue, range->queue_base); 1270 end = min(qmgr->start_queue + qmgr->num_queues, 1271 range->queue_base + range->num_queues); 1272 for (id = start; id < end; id++) { 1273 index = id - qmgr->start_queue; 1274 writel_relaxed(THRESH_GTE | 1, 1275 &qmgr->reg_peek[index].ptr_size_thresh); 1276 writel_relaxed(0, 1277 &qmgr->reg_push[index].ptr_size_thresh); 1278 } 1279 } 1280 1281 list_add_tail(&range->list, &kdev->queue_ranges); 1282 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n", 1283 range->name, range->queue_base, 1284 range->queue_base + range->num_queues - 1, 1285 range->num_irqs, 1286 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "", 1287 (range->flags & RANGE_RESERVED) ? ", reserved" : "", 1288 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : ""); 1289 kdev->num_queues_in_use += range->num_queues; 1290 return 0; 1291 } 1292 1293 static int knav_setup_queue_pools(struct knav_device *kdev, 1294 struct device_node *queue_pools) 1295 { 1296 struct device_node *type, *range; 1297 int ret; 1298 1299 for_each_child_of_node(queue_pools, type) { 1300 for_each_child_of_node(type, range) { 1301 ret = knav_setup_queue_range(kdev, range); 1302 /* return value ignored, we init the rest... */ 1303 } 1304 } 1305 1306 /* ... and barf if they all failed! */ 1307 if (list_empty(&kdev->queue_ranges)) { 1308 dev_err(kdev->dev, "no valid queue range found\n"); 1309 return -ENODEV; 1310 } 1311 return 0; 1312 } 1313 1314 static void knav_free_queue_range(struct knav_device *kdev, 1315 struct knav_range_info *range) 1316 { 1317 if (range->ops && range->ops->free_range) 1318 range->ops->free_range(range); 1319 list_del(&range->list); 1320 devm_kfree(kdev->dev, range); 1321 } 1322 1323 static void knav_free_queue_ranges(struct knav_device *kdev) 1324 { 1325 struct knav_range_info *range; 1326 1327 for (;;) { 1328 range = first_queue_range(kdev); 1329 if (!range) 1330 break; 1331 knav_free_queue_range(kdev, range); 1332 } 1333 } 1334 1335 static void knav_queue_free_regions(struct knav_device *kdev) 1336 { 1337 struct knav_region *region; 1338 struct knav_pool *pool, *tmp; 1339 unsigned size; 1340 1341 for (;;) { 1342 region = first_region(kdev); 1343 if (!region) 1344 break; 1345 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst) 1346 knav_pool_destroy(pool); 1347 1348 size = region->virt_end - region->virt_start; 1349 if (size) 1350 free_pages_exact(region->virt_start, size); 1351 list_del(®ion->list); 1352 devm_kfree(kdev->dev, region); 1353 } 1354 } 1355 1356 static void __iomem *knav_queue_map_reg(struct knav_device *kdev, 1357 struct device_node *node, int index) 1358 { 1359 struct resource res; 1360 void __iomem *regs; 1361 int ret; 1362 1363 ret = of_address_to_resource(node, index, &res); 1364 if (ret) { 1365 dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n", 1366 node->name, index); 1367 return ERR_PTR(ret); 1368 } 1369 1370 regs = devm_ioremap_resource(kdev->dev, &res); 1371 if (IS_ERR(regs)) 1372 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n", 1373 index, node->name); 1374 return regs; 1375 } 1376 1377 static int knav_queue_init_qmgrs(struct knav_device *kdev, 1378 struct device_node *qmgrs) 1379 { 1380 struct device *dev = kdev->dev; 1381 struct knav_qmgr_info *qmgr; 1382 struct device_node *child; 1383 u32 temp[2]; 1384 int ret; 1385 1386 for_each_child_of_node(qmgrs, child) { 1387 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL); 1388 if (!qmgr) { 1389 dev_err(dev, "out of memory allocating qmgr\n"); 1390 return -ENOMEM; 1391 } 1392 1393 ret = of_property_read_u32_array(child, "managed-queues", 1394 temp, 2); 1395 if (!ret) { 1396 qmgr->start_queue = temp[0]; 1397 qmgr->num_queues = temp[1]; 1398 } else { 1399 dev_err(dev, "invalid qmgr queue range\n"); 1400 devm_kfree(dev, qmgr); 1401 continue; 1402 } 1403 1404 dev_info(dev, "qmgr start queue %d, number of queues %d\n", 1405 qmgr->start_queue, qmgr->num_queues); 1406 1407 qmgr->reg_peek = 1408 knav_queue_map_reg(kdev, child, 1409 KNAV_QUEUE_PEEK_REG_INDEX); 1410 1411 if (kdev->version == QMSS) { 1412 qmgr->reg_status = 1413 knav_queue_map_reg(kdev, child, 1414 KNAV_QUEUE_STATUS_REG_INDEX); 1415 } 1416 1417 qmgr->reg_config = 1418 knav_queue_map_reg(kdev, child, 1419 (kdev->version == QMSS_66AK2G) ? 1420 KNAV_L_QUEUE_CONFIG_REG_INDEX : 1421 KNAV_QUEUE_CONFIG_REG_INDEX); 1422 qmgr->reg_region = 1423 knav_queue_map_reg(kdev, child, 1424 (kdev->version == QMSS_66AK2G) ? 1425 KNAV_L_QUEUE_REGION_REG_INDEX : 1426 KNAV_QUEUE_REGION_REG_INDEX); 1427 1428 qmgr->reg_push = 1429 knav_queue_map_reg(kdev, child, 1430 (kdev->version == QMSS_66AK2G) ? 1431 KNAV_L_QUEUE_PUSH_REG_INDEX : 1432 KNAV_QUEUE_PUSH_REG_INDEX); 1433 1434 if (kdev->version == QMSS) { 1435 qmgr->reg_pop = 1436 knav_queue_map_reg(kdev, child, 1437 KNAV_QUEUE_POP_REG_INDEX); 1438 } 1439 1440 if (IS_ERR(qmgr->reg_peek) || 1441 ((kdev->version == QMSS) && 1442 (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) || 1443 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) || 1444 IS_ERR(qmgr->reg_push)) { 1445 dev_err(dev, "failed to map qmgr regs\n"); 1446 if (kdev->version == QMSS) { 1447 if (!IS_ERR(qmgr->reg_status)) 1448 devm_iounmap(dev, qmgr->reg_status); 1449 if (!IS_ERR(qmgr->reg_pop)) 1450 devm_iounmap(dev, qmgr->reg_pop); 1451 } 1452 if (!IS_ERR(qmgr->reg_peek)) 1453 devm_iounmap(dev, qmgr->reg_peek); 1454 if (!IS_ERR(qmgr->reg_config)) 1455 devm_iounmap(dev, qmgr->reg_config); 1456 if (!IS_ERR(qmgr->reg_region)) 1457 devm_iounmap(dev, qmgr->reg_region); 1458 if (!IS_ERR(qmgr->reg_push)) 1459 devm_iounmap(dev, qmgr->reg_push); 1460 devm_kfree(dev, qmgr); 1461 continue; 1462 } 1463 1464 /* Use same push register for pop as well */ 1465 if (kdev->version == QMSS_66AK2G) 1466 qmgr->reg_pop = qmgr->reg_push; 1467 1468 list_add_tail(&qmgr->list, &kdev->qmgrs); 1469 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n", 1470 qmgr->start_queue, qmgr->num_queues, 1471 qmgr->reg_peek, qmgr->reg_status, 1472 qmgr->reg_config, qmgr->reg_region, 1473 qmgr->reg_push, qmgr->reg_pop); 1474 } 1475 return 0; 1476 } 1477 1478 static int knav_queue_init_pdsps(struct knav_device *kdev, 1479 struct device_node *pdsps) 1480 { 1481 struct device *dev = kdev->dev; 1482 struct knav_pdsp_info *pdsp; 1483 struct device_node *child; 1484 1485 for_each_child_of_node(pdsps, child) { 1486 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL); 1487 if (!pdsp) { 1488 dev_err(dev, "out of memory allocating pdsp\n"); 1489 return -ENOMEM; 1490 } 1491 pdsp->name = knav_queue_find_name(child); 1492 pdsp->iram = 1493 knav_queue_map_reg(kdev, child, 1494 KNAV_QUEUE_PDSP_IRAM_REG_INDEX); 1495 pdsp->regs = 1496 knav_queue_map_reg(kdev, child, 1497 KNAV_QUEUE_PDSP_REGS_REG_INDEX); 1498 pdsp->intd = 1499 knav_queue_map_reg(kdev, child, 1500 KNAV_QUEUE_PDSP_INTD_REG_INDEX); 1501 pdsp->command = 1502 knav_queue_map_reg(kdev, child, 1503 KNAV_QUEUE_PDSP_CMD_REG_INDEX); 1504 1505 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) || 1506 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) { 1507 dev_err(dev, "failed to map pdsp %s regs\n", 1508 pdsp->name); 1509 if (!IS_ERR(pdsp->command)) 1510 devm_iounmap(dev, pdsp->command); 1511 if (!IS_ERR(pdsp->iram)) 1512 devm_iounmap(dev, pdsp->iram); 1513 if (!IS_ERR(pdsp->regs)) 1514 devm_iounmap(dev, pdsp->regs); 1515 if (!IS_ERR(pdsp->intd)) 1516 devm_iounmap(dev, pdsp->intd); 1517 devm_kfree(dev, pdsp); 1518 continue; 1519 } 1520 of_property_read_u32(child, "id", &pdsp->id); 1521 list_add_tail(&pdsp->list, &kdev->pdsps); 1522 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n", 1523 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs, 1524 pdsp->intd); 1525 } 1526 return 0; 1527 } 1528 1529 static int knav_queue_stop_pdsp(struct knav_device *kdev, 1530 struct knav_pdsp_info *pdsp) 1531 { 1532 u32 val, timeout = 1000; 1533 int ret; 1534 1535 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE; 1536 writel_relaxed(val, &pdsp->regs->control); 1537 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout, 1538 PDSP_CTRL_RUNNING); 1539 if (ret < 0) { 1540 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name); 1541 return ret; 1542 } 1543 pdsp->loaded = false; 1544 pdsp->started = false; 1545 return 0; 1546 } 1547 1548 static int knav_queue_load_pdsp(struct knav_device *kdev, 1549 struct knav_pdsp_info *pdsp) 1550 { 1551 int i, ret, fwlen; 1552 const struct firmware *fw; 1553 bool found = false; 1554 u32 *fwdata; 1555 1556 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) { 1557 if (knav_acc_firmwares[i]) { 1558 ret = request_firmware_direct(&fw, 1559 knav_acc_firmwares[i], 1560 kdev->dev); 1561 if (!ret) { 1562 found = true; 1563 break; 1564 } 1565 } 1566 } 1567 1568 if (!found) { 1569 dev_err(kdev->dev, "failed to get firmware for pdsp\n"); 1570 return -ENODEV; 1571 } 1572 1573 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n", 1574 knav_acc_firmwares[i]); 1575 1576 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18); 1577 /* download the firmware */ 1578 fwdata = (u32 *)fw->data; 1579 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32); 1580 for (i = 0; i < fwlen; i++) 1581 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i); 1582 1583 release_firmware(fw); 1584 return 0; 1585 } 1586 1587 static int knav_queue_start_pdsp(struct knav_device *kdev, 1588 struct knav_pdsp_info *pdsp) 1589 { 1590 u32 val, timeout = 1000; 1591 int ret; 1592 1593 /* write a command for sync */ 1594 writel_relaxed(0xffffffff, pdsp->command); 1595 while (readl_relaxed(pdsp->command) != 0xffffffff) 1596 cpu_relax(); 1597 1598 /* soft reset the PDSP */ 1599 val = readl_relaxed(&pdsp->regs->control); 1600 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET); 1601 writel_relaxed(val, &pdsp->regs->control); 1602 1603 /* enable pdsp */ 1604 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE; 1605 writel_relaxed(val, &pdsp->regs->control); 1606 1607 /* wait for command register to clear */ 1608 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0); 1609 if (ret < 0) { 1610 dev_err(kdev->dev, 1611 "timed out on pdsp %s command register wait\n", 1612 pdsp->name); 1613 return ret; 1614 } 1615 return 0; 1616 } 1617 1618 static void knav_queue_stop_pdsps(struct knav_device *kdev) 1619 { 1620 struct knav_pdsp_info *pdsp; 1621 1622 /* disable all pdsps */ 1623 for_each_pdsp(kdev, pdsp) 1624 knav_queue_stop_pdsp(kdev, pdsp); 1625 } 1626 1627 static int knav_queue_start_pdsps(struct knav_device *kdev) 1628 { 1629 struct knav_pdsp_info *pdsp; 1630 int ret; 1631 1632 knav_queue_stop_pdsps(kdev); 1633 /* now load them all. We return success even if pdsp 1634 * is not loaded as acc channels are optional on having 1635 * firmware availability in the system. We set the loaded 1636 * and stated flag and when initialize the acc range, check 1637 * it and init the range only if pdsp is started. 1638 */ 1639 for_each_pdsp(kdev, pdsp) { 1640 ret = knav_queue_load_pdsp(kdev, pdsp); 1641 if (!ret) 1642 pdsp->loaded = true; 1643 } 1644 1645 for_each_pdsp(kdev, pdsp) { 1646 if (pdsp->loaded) { 1647 ret = knav_queue_start_pdsp(kdev, pdsp); 1648 if (!ret) 1649 pdsp->started = true; 1650 } 1651 } 1652 return 0; 1653 } 1654 1655 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id) 1656 { 1657 struct knav_qmgr_info *qmgr; 1658 1659 for_each_qmgr(kdev, qmgr) { 1660 if ((id >= qmgr->start_queue) && 1661 (id < qmgr->start_queue + qmgr->num_queues)) 1662 return qmgr; 1663 } 1664 return NULL; 1665 } 1666 1667 static int knav_queue_init_queue(struct knav_device *kdev, 1668 struct knav_range_info *range, 1669 struct knav_queue_inst *inst, 1670 unsigned id) 1671 { 1672 char irq_name[KNAV_NAME_SIZE]; 1673 inst->qmgr = knav_find_qmgr(id); 1674 if (!inst->qmgr) 1675 return -1; 1676 1677 INIT_LIST_HEAD(&inst->handles); 1678 inst->kdev = kdev; 1679 inst->range = range; 1680 inst->irq_num = -1; 1681 inst->id = id; 1682 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id); 1683 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL); 1684 1685 if (range->ops && range->ops->init_queue) 1686 return range->ops->init_queue(range, inst); 1687 else 1688 return 0; 1689 } 1690 1691 static int knav_queue_init_queues(struct knav_device *kdev) 1692 { 1693 struct knav_range_info *range; 1694 int size, id, base_idx; 1695 int idx = 0, ret = 0; 1696 1697 /* how much do we need for instance data? */ 1698 size = sizeof(struct knav_queue_inst); 1699 1700 /* round this up to a power of 2, keep the index to instance 1701 * arithmetic fast. 1702 * */ 1703 kdev->inst_shift = order_base_2(size); 1704 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use; 1705 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL); 1706 if (!kdev->instances) 1707 return -ENOMEM; 1708 1709 for_each_queue_range(kdev, range) { 1710 if (range->ops && range->ops->init_range) 1711 range->ops->init_range(range); 1712 base_idx = idx; 1713 for (id = range->queue_base; 1714 id < range->queue_base + range->num_queues; id++, idx++) { 1715 ret = knav_queue_init_queue(kdev, range, 1716 knav_queue_idx_to_inst(kdev, idx), id); 1717 if (ret < 0) 1718 return ret; 1719 } 1720 range->queue_base_inst = 1721 knav_queue_idx_to_inst(kdev, base_idx); 1722 } 1723 return 0; 1724 } 1725 1726 /* Match table for of_platform binding */ 1727 static const struct of_device_id keystone_qmss_of_match[] = { 1728 { 1729 .compatible = "ti,keystone-navigator-qmss", 1730 }, 1731 { 1732 .compatible = "ti,66ak2g-navss-qm", 1733 .data = (void *)QMSS_66AK2G, 1734 }, 1735 {}, 1736 }; 1737 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match); 1738 1739 static int knav_queue_probe(struct platform_device *pdev) 1740 { 1741 struct device_node *node = pdev->dev.of_node; 1742 struct device_node *qmgrs, *queue_pools, *regions, *pdsps; 1743 const struct of_device_id *match; 1744 struct device *dev = &pdev->dev; 1745 u32 temp[2]; 1746 int ret; 1747 1748 if (!node) { 1749 dev_err(dev, "device tree info unavailable\n"); 1750 return -ENODEV; 1751 } 1752 1753 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL); 1754 if (!kdev) { 1755 dev_err(dev, "memory allocation failed\n"); 1756 return -ENOMEM; 1757 } 1758 1759 match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev); 1760 if (match && match->data) 1761 kdev->version = QMSS_66AK2G; 1762 1763 platform_set_drvdata(pdev, kdev); 1764 kdev->dev = dev; 1765 INIT_LIST_HEAD(&kdev->queue_ranges); 1766 INIT_LIST_HEAD(&kdev->qmgrs); 1767 INIT_LIST_HEAD(&kdev->pools); 1768 INIT_LIST_HEAD(&kdev->regions); 1769 INIT_LIST_HEAD(&kdev->pdsps); 1770 1771 pm_runtime_enable(&pdev->dev); 1772 ret = pm_runtime_get_sync(&pdev->dev); 1773 if (ret < 0) { 1774 dev_err(dev, "Failed to enable QMSS\n"); 1775 return ret; 1776 } 1777 1778 if (of_property_read_u32_array(node, "queue-range", temp, 2)) { 1779 dev_err(dev, "queue-range not specified\n"); 1780 ret = -ENODEV; 1781 goto err; 1782 } 1783 kdev->base_id = temp[0]; 1784 kdev->num_queues = temp[1]; 1785 1786 /* Initialize queue managers using device tree configuration */ 1787 qmgrs = of_get_child_by_name(node, "qmgrs"); 1788 if (!qmgrs) { 1789 dev_err(dev, "queue manager info not specified\n"); 1790 ret = -ENODEV; 1791 goto err; 1792 } 1793 ret = knav_queue_init_qmgrs(kdev, qmgrs); 1794 of_node_put(qmgrs); 1795 if (ret) 1796 goto err; 1797 1798 /* get pdsp configuration values from device tree */ 1799 pdsps = of_get_child_by_name(node, "pdsps"); 1800 if (pdsps) { 1801 ret = knav_queue_init_pdsps(kdev, pdsps); 1802 if (ret) 1803 goto err; 1804 1805 ret = knav_queue_start_pdsps(kdev); 1806 if (ret) 1807 goto err; 1808 } 1809 of_node_put(pdsps); 1810 1811 /* get usable queue range values from device tree */ 1812 queue_pools = of_get_child_by_name(node, "queue-pools"); 1813 if (!queue_pools) { 1814 dev_err(dev, "queue-pools not specified\n"); 1815 ret = -ENODEV; 1816 goto err; 1817 } 1818 ret = knav_setup_queue_pools(kdev, queue_pools); 1819 of_node_put(queue_pools); 1820 if (ret) 1821 goto err; 1822 1823 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]); 1824 if (ret) { 1825 dev_err(kdev->dev, "could not setup linking ram\n"); 1826 goto err; 1827 } 1828 1829 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]); 1830 if (ret) { 1831 /* 1832 * nothing really, we have one linking ram already, so we just 1833 * live within our means 1834 */ 1835 } 1836 1837 ret = knav_queue_setup_link_ram(kdev); 1838 if (ret) 1839 goto err; 1840 1841 regions = of_get_child_by_name(node, "descriptor-regions"); 1842 if (!regions) { 1843 dev_err(dev, "descriptor-regions not specified\n"); 1844 goto err; 1845 } 1846 ret = knav_queue_setup_regions(kdev, regions); 1847 of_node_put(regions); 1848 if (ret) 1849 goto err; 1850 1851 ret = knav_queue_init_queues(kdev); 1852 if (ret < 0) { 1853 dev_err(dev, "hwqueue initialization failed\n"); 1854 goto err; 1855 } 1856 1857 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL, 1858 &knav_queue_debug_ops); 1859 device_ready = true; 1860 return 0; 1861 1862 err: 1863 knav_queue_stop_pdsps(kdev); 1864 knav_queue_free_regions(kdev); 1865 knav_free_queue_ranges(kdev); 1866 pm_runtime_put_sync(&pdev->dev); 1867 pm_runtime_disable(&pdev->dev); 1868 return ret; 1869 } 1870 1871 static int knav_queue_remove(struct platform_device *pdev) 1872 { 1873 /* TODO: Free resources */ 1874 pm_runtime_put_sync(&pdev->dev); 1875 pm_runtime_disable(&pdev->dev); 1876 return 0; 1877 } 1878 1879 static struct platform_driver keystone_qmss_driver = { 1880 .probe = knav_queue_probe, 1881 .remove = knav_queue_remove, 1882 .driver = { 1883 .name = "keystone-navigator-qmss", 1884 .of_match_table = keystone_qmss_of_match, 1885 }, 1886 }; 1887 module_platform_driver(keystone_qmss_driver); 1888 1889 MODULE_LICENSE("GPL v2"); 1890 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs"); 1891 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>"); 1892 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>"); 1893