xref: /openbmc/linux/drivers/soc/ti/knav_qmss_queue.c (revision d2ba09c1)
1 /*
2  * Keystone Queue Manager subsystem driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5  * Authors:	Sandeep Nair <sandeep_n@ti.com>
6  *		Cyril Chemparathy <cyril@ti.com>
7  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18 
19 #include <linux/debugfs.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/firmware.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/module.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_irq.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/soc/ti/knav_qmss.h>
31 
32 #include "knav_qmss.h"
33 
34 static struct knav_device *kdev;
35 static DEFINE_MUTEX(knav_dev_lock);
36 
37 /* Queue manager register indices in DTS */
38 #define KNAV_QUEUE_PEEK_REG_INDEX	0
39 #define KNAV_QUEUE_STATUS_REG_INDEX	1
40 #define KNAV_QUEUE_CONFIG_REG_INDEX	2
41 #define KNAV_QUEUE_REGION_REG_INDEX	3
42 #define KNAV_QUEUE_PUSH_REG_INDEX	4
43 #define KNAV_QUEUE_POP_REG_INDEX	5
44 
45 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
46  * There are no status and vbusm push registers on this version
47  * of QMSS. Push registers are same as pop, So all indices above 1
48  * are to be re-defined
49  */
50 #define KNAV_L_QUEUE_CONFIG_REG_INDEX	1
51 #define KNAV_L_QUEUE_REGION_REG_INDEX	2
52 #define KNAV_L_QUEUE_PUSH_REG_INDEX	3
53 
54 /* PDSP register indices in DTS */
55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
59 
60 #define knav_queue_idx_to_inst(kdev, idx)			\
61 	(kdev->instances + (idx << kdev->inst_shift))
62 
63 #define for_each_handle_rcu(qh, inst)			\
64 	list_for_each_entry_rcu(qh, &inst->handles, list)
65 
66 #define for_each_instance(idx, inst, kdev)		\
67 	for (idx = 0, inst = kdev->instances;		\
68 	     idx < (kdev)->num_queues_in_use;			\
69 	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
70 
71 /* All firmware file names end up here. List the firmware file names below.
72  * Newest followed by older ones. Search is done from start of the array
73  * until a firmware file is found.
74  */
75 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
76 
77 static bool device_ready;
78 bool knav_qmss_device_ready(void)
79 {
80 	return device_ready;
81 }
82 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
83 
84 /**
85  * knav_queue_notify: qmss queue notfier call
86  *
87  * @inst:		qmss queue instance like accumulator
88  */
89 void knav_queue_notify(struct knav_queue_inst *inst)
90 {
91 	struct knav_queue *qh;
92 
93 	if (!inst)
94 		return;
95 
96 	rcu_read_lock();
97 	for_each_handle_rcu(qh, inst) {
98 		if (atomic_read(&qh->notifier_enabled) <= 0)
99 			continue;
100 		if (WARN_ON(!qh->notifier_fn))
101 			continue;
102 		atomic_inc(&qh->stats.notifies);
103 		qh->notifier_fn(qh->notifier_fn_arg);
104 	}
105 	rcu_read_unlock();
106 }
107 EXPORT_SYMBOL_GPL(knav_queue_notify);
108 
109 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
110 {
111 	struct knav_queue_inst *inst = _instdata;
112 
113 	knav_queue_notify(inst);
114 	return IRQ_HANDLED;
115 }
116 
117 static int knav_queue_setup_irq(struct knav_range_info *range,
118 			  struct knav_queue_inst *inst)
119 {
120 	unsigned queue = inst->id - range->queue_base;
121 	unsigned long cpu_map;
122 	int ret = 0, irq;
123 
124 	if (range->flags & RANGE_HAS_IRQ) {
125 		irq = range->irqs[queue].irq;
126 		cpu_map = range->irqs[queue].cpu_map;
127 		ret = request_irq(irq, knav_queue_int_handler, 0,
128 					inst->irq_name, inst);
129 		if (ret)
130 			return ret;
131 		disable_irq(irq);
132 		if (cpu_map) {
133 			ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
134 			if (ret) {
135 				dev_warn(range->kdev->dev,
136 					 "Failed to set IRQ affinity\n");
137 				return ret;
138 			}
139 		}
140 	}
141 	return ret;
142 }
143 
144 static void knav_queue_free_irq(struct knav_queue_inst *inst)
145 {
146 	struct knav_range_info *range = inst->range;
147 	unsigned queue = inst->id - inst->range->queue_base;
148 	int irq;
149 
150 	if (range->flags & RANGE_HAS_IRQ) {
151 		irq = range->irqs[queue].irq;
152 		irq_set_affinity_hint(irq, NULL);
153 		free_irq(irq, inst);
154 	}
155 }
156 
157 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
158 {
159 	return !list_empty(&inst->handles);
160 }
161 
162 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
163 {
164 	return inst->range->flags & RANGE_RESERVED;
165 }
166 
167 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
168 {
169 	struct knav_queue *tmp;
170 
171 	rcu_read_lock();
172 	for_each_handle_rcu(tmp, inst) {
173 		if (tmp->flags & KNAV_QUEUE_SHARED) {
174 			rcu_read_unlock();
175 			return true;
176 		}
177 	}
178 	rcu_read_unlock();
179 	return false;
180 }
181 
182 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
183 						unsigned type)
184 {
185 	if ((type == KNAV_QUEUE_QPEND) &&
186 	    (inst->range->flags & RANGE_HAS_IRQ)) {
187 		return true;
188 	} else if ((type == KNAV_QUEUE_ACC) &&
189 		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
190 		return true;
191 	} else if ((type == KNAV_QUEUE_GP) &&
192 		!(inst->range->flags &
193 			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
194 		return true;
195 	}
196 	return false;
197 }
198 
199 static inline struct knav_queue_inst *
200 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
201 {
202 	struct knav_queue_inst *inst;
203 	int idx;
204 
205 	for_each_instance(idx, inst, kdev) {
206 		if (inst->id == id)
207 			return inst;
208 	}
209 	return NULL;
210 }
211 
212 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
213 {
214 	if (kdev->base_id <= id &&
215 	    kdev->base_id + kdev->num_queues > id) {
216 		id -= kdev->base_id;
217 		return knav_queue_match_id_to_inst(kdev, id);
218 	}
219 	return NULL;
220 }
221 
222 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
223 				      const char *name, unsigned flags)
224 {
225 	struct knav_queue *qh;
226 	unsigned id;
227 	int ret = 0;
228 
229 	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
230 	if (!qh)
231 		return ERR_PTR(-ENOMEM);
232 
233 	qh->flags = flags;
234 	qh->inst = inst;
235 	id = inst->id - inst->qmgr->start_queue;
236 	qh->reg_push = &inst->qmgr->reg_push[id];
237 	qh->reg_pop = &inst->qmgr->reg_pop[id];
238 	qh->reg_peek = &inst->qmgr->reg_peek[id];
239 
240 	/* first opener? */
241 	if (!knav_queue_is_busy(inst)) {
242 		struct knav_range_info *range = inst->range;
243 
244 		inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
245 		if (range->ops && range->ops->open_queue)
246 			ret = range->ops->open_queue(range, inst, flags);
247 
248 		if (ret) {
249 			devm_kfree(inst->kdev->dev, qh);
250 			return ERR_PTR(ret);
251 		}
252 	}
253 	list_add_tail_rcu(&qh->list, &inst->handles);
254 	return qh;
255 }
256 
257 static struct knav_queue *
258 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
259 {
260 	struct knav_queue_inst *inst;
261 	struct knav_queue *qh;
262 
263 	mutex_lock(&knav_dev_lock);
264 
265 	qh = ERR_PTR(-ENODEV);
266 	inst = knav_queue_find_by_id(id);
267 	if (!inst)
268 		goto unlock_ret;
269 
270 	qh = ERR_PTR(-EEXIST);
271 	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
272 		goto unlock_ret;
273 
274 	qh = ERR_PTR(-EBUSY);
275 	if ((flags & KNAV_QUEUE_SHARED) &&
276 	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
277 		goto unlock_ret;
278 
279 	qh = __knav_queue_open(inst, name, flags);
280 
281 unlock_ret:
282 	mutex_unlock(&knav_dev_lock);
283 
284 	return qh;
285 }
286 
287 static struct knav_queue *knav_queue_open_by_type(const char *name,
288 						unsigned type, unsigned flags)
289 {
290 	struct knav_queue_inst *inst;
291 	struct knav_queue *qh = ERR_PTR(-EINVAL);
292 	int idx;
293 
294 	mutex_lock(&knav_dev_lock);
295 
296 	for_each_instance(idx, inst, kdev) {
297 		if (knav_queue_is_reserved(inst))
298 			continue;
299 		if (!knav_queue_match_type(inst, type))
300 			continue;
301 		if (knav_queue_is_busy(inst))
302 			continue;
303 		qh = __knav_queue_open(inst, name, flags);
304 		goto unlock_ret;
305 	}
306 
307 unlock_ret:
308 	mutex_unlock(&knav_dev_lock);
309 	return qh;
310 }
311 
312 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
313 {
314 	struct knav_range_info *range = inst->range;
315 
316 	if (range->ops && range->ops->set_notify)
317 		range->ops->set_notify(range, inst, enabled);
318 }
319 
320 static int knav_queue_enable_notifier(struct knav_queue *qh)
321 {
322 	struct knav_queue_inst *inst = qh->inst;
323 	bool first;
324 
325 	if (WARN_ON(!qh->notifier_fn))
326 		return -EINVAL;
327 
328 	/* Adjust the per handle notifier count */
329 	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
330 	if (!first)
331 		return 0; /* nothing to do */
332 
333 	/* Now adjust the per instance notifier count */
334 	first = (atomic_inc_return(&inst->num_notifiers) == 1);
335 	if (first)
336 		knav_queue_set_notify(inst, true);
337 
338 	return 0;
339 }
340 
341 static int knav_queue_disable_notifier(struct knav_queue *qh)
342 {
343 	struct knav_queue_inst *inst = qh->inst;
344 	bool last;
345 
346 	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
347 	if (!last)
348 		return 0; /* nothing to do */
349 
350 	last = (atomic_dec_return(&inst->num_notifiers) == 0);
351 	if (last)
352 		knav_queue_set_notify(inst, false);
353 
354 	return 0;
355 }
356 
357 static int knav_queue_set_notifier(struct knav_queue *qh,
358 				struct knav_queue_notify_config *cfg)
359 {
360 	knav_queue_notify_fn old_fn = qh->notifier_fn;
361 
362 	if (!cfg)
363 		return -EINVAL;
364 
365 	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
366 		return -ENOTSUPP;
367 
368 	if (!cfg->fn && old_fn)
369 		knav_queue_disable_notifier(qh);
370 
371 	qh->notifier_fn = cfg->fn;
372 	qh->notifier_fn_arg = cfg->fn_arg;
373 
374 	if (cfg->fn && !old_fn)
375 		knav_queue_enable_notifier(qh);
376 
377 	return 0;
378 }
379 
380 static int knav_gp_set_notify(struct knav_range_info *range,
381 			       struct knav_queue_inst *inst,
382 			       bool enabled)
383 {
384 	unsigned queue;
385 
386 	if (range->flags & RANGE_HAS_IRQ) {
387 		queue = inst->id - range->queue_base;
388 		if (enabled)
389 			enable_irq(range->irqs[queue].irq);
390 		else
391 			disable_irq_nosync(range->irqs[queue].irq);
392 	}
393 	return 0;
394 }
395 
396 static int knav_gp_open_queue(struct knav_range_info *range,
397 				struct knav_queue_inst *inst, unsigned flags)
398 {
399 	return knav_queue_setup_irq(range, inst);
400 }
401 
402 static int knav_gp_close_queue(struct knav_range_info *range,
403 				struct knav_queue_inst *inst)
404 {
405 	knav_queue_free_irq(inst);
406 	return 0;
407 }
408 
409 struct knav_range_ops knav_gp_range_ops = {
410 	.set_notify	= knav_gp_set_notify,
411 	.open_queue	= knav_gp_open_queue,
412 	.close_queue	= knav_gp_close_queue,
413 };
414 
415 
416 static int knav_queue_get_count(void *qhandle)
417 {
418 	struct knav_queue *qh = qhandle;
419 	struct knav_queue_inst *inst = qh->inst;
420 
421 	return readl_relaxed(&qh->reg_peek[0].entry_count) +
422 		atomic_read(&inst->desc_count);
423 }
424 
425 static void knav_queue_debug_show_instance(struct seq_file *s,
426 					struct knav_queue_inst *inst)
427 {
428 	struct knav_device *kdev = inst->kdev;
429 	struct knav_queue *qh;
430 
431 	if (!knav_queue_is_busy(inst))
432 		return;
433 
434 	seq_printf(s, "\tqueue id %d (%s)\n",
435 		   kdev->base_id + inst->id, inst->name);
436 	for_each_handle_rcu(qh, inst) {
437 		seq_printf(s, "\t\thandle %p: ", qh);
438 		seq_printf(s, "pushes %8d, ",
439 			   atomic_read(&qh->stats.pushes));
440 		seq_printf(s, "pops %8d, ",
441 			   atomic_read(&qh->stats.pops));
442 		seq_printf(s, "count %8d, ",
443 			   knav_queue_get_count(qh));
444 		seq_printf(s, "notifies %8d, ",
445 			   atomic_read(&qh->stats.notifies));
446 		seq_printf(s, "push errors %8d, ",
447 			   atomic_read(&qh->stats.push_errors));
448 		seq_printf(s, "pop errors %8d\n",
449 			   atomic_read(&qh->stats.pop_errors));
450 	}
451 }
452 
453 static int knav_queue_debug_show(struct seq_file *s, void *v)
454 {
455 	struct knav_queue_inst *inst;
456 	int idx;
457 
458 	mutex_lock(&knav_dev_lock);
459 	seq_printf(s, "%s: %u-%u\n",
460 		   dev_name(kdev->dev), kdev->base_id,
461 		   kdev->base_id + kdev->num_queues - 1);
462 	for_each_instance(idx, inst, kdev)
463 		knav_queue_debug_show_instance(s, inst);
464 	mutex_unlock(&knav_dev_lock);
465 
466 	return 0;
467 }
468 
469 static int knav_queue_debug_open(struct inode *inode, struct file *file)
470 {
471 	return single_open(file, knav_queue_debug_show, NULL);
472 }
473 
474 static const struct file_operations knav_queue_debug_ops = {
475 	.open		= knav_queue_debug_open,
476 	.read		= seq_read,
477 	.llseek		= seq_lseek,
478 	.release	= single_release,
479 };
480 
481 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
482 					u32 flags)
483 {
484 	unsigned long end;
485 	u32 val = 0;
486 
487 	end = jiffies + msecs_to_jiffies(timeout);
488 	while (time_after(end, jiffies)) {
489 		val = readl_relaxed(addr);
490 		if (flags)
491 			val &= flags;
492 		if (!val)
493 			break;
494 		cpu_relax();
495 	}
496 	return val ? -ETIMEDOUT : 0;
497 }
498 
499 
500 static int knav_queue_flush(struct knav_queue *qh)
501 {
502 	struct knav_queue_inst *inst = qh->inst;
503 	unsigned id = inst->id - inst->qmgr->start_queue;
504 
505 	atomic_set(&inst->desc_count, 0);
506 	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
507 	return 0;
508 }
509 
510 /**
511  * knav_queue_open()	- open a hardware queue
512  * @name		- name to give the queue handle
513  * @id			- desired queue number if any or specifes the type
514  *			  of queue
515  * @flags		- the following flags are applicable to queues:
516  *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
517  *			     exclusive by default.
518  *			     Subsequent attempts to open a shared queue should
519  *			     also have this flag.
520  *
521  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
522  * to check the returned value for error codes.
523  */
524 void *knav_queue_open(const char *name, unsigned id,
525 					unsigned flags)
526 {
527 	struct knav_queue *qh = ERR_PTR(-EINVAL);
528 
529 	switch (id) {
530 	case KNAV_QUEUE_QPEND:
531 	case KNAV_QUEUE_ACC:
532 	case KNAV_QUEUE_GP:
533 		qh = knav_queue_open_by_type(name, id, flags);
534 		break;
535 
536 	default:
537 		qh = knav_queue_open_by_id(name, id, flags);
538 		break;
539 	}
540 	return qh;
541 }
542 EXPORT_SYMBOL_GPL(knav_queue_open);
543 
544 /**
545  * knav_queue_close()	- close a hardware queue handle
546  * @qh			- handle to close
547  */
548 void knav_queue_close(void *qhandle)
549 {
550 	struct knav_queue *qh = qhandle;
551 	struct knav_queue_inst *inst = qh->inst;
552 
553 	while (atomic_read(&qh->notifier_enabled) > 0)
554 		knav_queue_disable_notifier(qh);
555 
556 	mutex_lock(&knav_dev_lock);
557 	list_del_rcu(&qh->list);
558 	mutex_unlock(&knav_dev_lock);
559 	synchronize_rcu();
560 	if (!knav_queue_is_busy(inst)) {
561 		struct knav_range_info *range = inst->range;
562 
563 		if (range->ops && range->ops->close_queue)
564 			range->ops->close_queue(range, inst);
565 	}
566 	devm_kfree(inst->kdev->dev, qh);
567 }
568 EXPORT_SYMBOL_GPL(knav_queue_close);
569 
570 /**
571  * knav_queue_device_control()	- Perform control operations on a queue
572  * @qh				- queue handle
573  * @cmd				- control commands
574  * @arg				- command argument
575  *
576  * Returns 0 on success, errno otherwise.
577  */
578 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
579 				unsigned long arg)
580 {
581 	struct knav_queue *qh = qhandle;
582 	struct knav_queue_notify_config *cfg;
583 	int ret;
584 
585 	switch ((int)cmd) {
586 	case KNAV_QUEUE_GET_ID:
587 		ret = qh->inst->kdev->base_id + qh->inst->id;
588 		break;
589 
590 	case KNAV_QUEUE_FLUSH:
591 		ret = knav_queue_flush(qh);
592 		break;
593 
594 	case KNAV_QUEUE_SET_NOTIFIER:
595 		cfg = (void *)arg;
596 		ret = knav_queue_set_notifier(qh, cfg);
597 		break;
598 
599 	case KNAV_QUEUE_ENABLE_NOTIFY:
600 		ret = knav_queue_enable_notifier(qh);
601 		break;
602 
603 	case KNAV_QUEUE_DISABLE_NOTIFY:
604 		ret = knav_queue_disable_notifier(qh);
605 		break;
606 
607 	case KNAV_QUEUE_GET_COUNT:
608 		ret = knav_queue_get_count(qh);
609 		break;
610 
611 	default:
612 		ret = -ENOTSUPP;
613 		break;
614 	}
615 	return ret;
616 }
617 EXPORT_SYMBOL_GPL(knav_queue_device_control);
618 
619 
620 
621 /**
622  * knav_queue_push()	- push data (or descriptor) to the tail of a queue
623  * @qh			- hardware queue handle
624  * @data		- data to push
625  * @size		- size of data to push
626  * @flags		- can be used to pass additional information
627  *
628  * Returns 0 on success, errno otherwise.
629  */
630 int knav_queue_push(void *qhandle, dma_addr_t dma,
631 					unsigned size, unsigned flags)
632 {
633 	struct knav_queue *qh = qhandle;
634 	u32 val;
635 
636 	val = (u32)dma | ((size / 16) - 1);
637 	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
638 
639 	atomic_inc(&qh->stats.pushes);
640 	return 0;
641 }
642 EXPORT_SYMBOL_GPL(knav_queue_push);
643 
644 /**
645  * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
646  * @qh			- hardware queue handle
647  * @size		- (optional) size of the data pop'ed.
648  *
649  * Returns a DMA address on success, 0 on failure.
650  */
651 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
652 {
653 	struct knav_queue *qh = qhandle;
654 	struct knav_queue_inst *inst = qh->inst;
655 	dma_addr_t dma;
656 	u32 val, idx;
657 
658 	/* are we accumulated? */
659 	if (inst->descs) {
660 		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
661 			atomic_inc(&inst->desc_count);
662 			return 0;
663 		}
664 		idx  = atomic_inc_return(&inst->desc_head);
665 		idx &= ACC_DESCS_MASK;
666 		val = inst->descs[idx];
667 	} else {
668 		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
669 		if (unlikely(!val))
670 			return 0;
671 	}
672 
673 	dma = val & DESC_PTR_MASK;
674 	if (size)
675 		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
676 
677 	atomic_inc(&qh->stats.pops);
678 	return dma;
679 }
680 EXPORT_SYMBOL_GPL(knav_queue_pop);
681 
682 /* carve out descriptors and push into queue */
683 static void kdesc_fill_pool(struct knav_pool *pool)
684 {
685 	struct knav_region *region;
686 	int i;
687 
688 	region = pool->region;
689 	pool->desc_size = region->desc_size;
690 	for (i = 0; i < pool->num_desc; i++) {
691 		int index = pool->region_offset + i;
692 		dma_addr_t dma_addr;
693 		unsigned dma_size;
694 		dma_addr = region->dma_start + (region->desc_size * index);
695 		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
696 		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
697 					   DMA_TO_DEVICE);
698 		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
699 	}
700 }
701 
702 /* pop out descriptors and close the queue */
703 static void kdesc_empty_pool(struct knav_pool *pool)
704 {
705 	dma_addr_t dma;
706 	unsigned size;
707 	void *desc;
708 	int i;
709 
710 	if (!pool->queue)
711 		return;
712 
713 	for (i = 0;; i++) {
714 		dma = knav_queue_pop(pool->queue, &size);
715 		if (!dma)
716 			break;
717 		desc = knav_pool_desc_dma_to_virt(pool, dma);
718 		if (!desc) {
719 			dev_dbg(pool->kdev->dev,
720 				"couldn't unmap desc, continuing\n");
721 			continue;
722 		}
723 	}
724 	WARN_ON(i != pool->num_desc);
725 	knav_queue_close(pool->queue);
726 }
727 
728 
729 /* Get the DMA address of a descriptor */
730 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
731 {
732 	struct knav_pool *pool = ph;
733 	return pool->region->dma_start + (virt - pool->region->virt_start);
734 }
735 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
736 
737 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
738 {
739 	struct knav_pool *pool = ph;
740 	return pool->region->virt_start + (dma - pool->region->dma_start);
741 }
742 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
743 
744 /**
745  * knav_pool_create()	- Create a pool of descriptors
746  * @name		- name to give the pool handle
747  * @num_desc		- numbers of descriptors in the pool
748  * @region_id		- QMSS region id from which the descriptors are to be
749  *			  allocated.
750  *
751  * Returns a pool handle on success.
752  * Use IS_ERR_OR_NULL() to identify error values on return.
753  */
754 void *knav_pool_create(const char *name,
755 					int num_desc, int region_id)
756 {
757 	struct knav_region *reg_itr, *region = NULL;
758 	struct knav_pool *pool, *pi;
759 	struct list_head *node;
760 	unsigned last_offset;
761 	bool slot_found;
762 	int ret;
763 
764 	if (!kdev)
765 		return ERR_PTR(-EPROBE_DEFER);
766 
767 	if (!kdev->dev)
768 		return ERR_PTR(-ENODEV);
769 
770 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
771 	if (!pool) {
772 		dev_err(kdev->dev, "out of memory allocating pool\n");
773 		return ERR_PTR(-ENOMEM);
774 	}
775 
776 	for_each_region(kdev, reg_itr) {
777 		if (reg_itr->id != region_id)
778 			continue;
779 		region = reg_itr;
780 		break;
781 	}
782 
783 	if (!region) {
784 		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
785 		ret = -EINVAL;
786 		goto err;
787 	}
788 
789 	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
790 	if (IS_ERR_OR_NULL(pool->queue)) {
791 		dev_err(kdev->dev,
792 			"failed to open queue for pool(%s), error %ld\n",
793 			name, PTR_ERR(pool->queue));
794 		ret = PTR_ERR(pool->queue);
795 		goto err;
796 	}
797 
798 	pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
799 	pool->kdev = kdev;
800 	pool->dev = kdev->dev;
801 
802 	mutex_lock(&knav_dev_lock);
803 
804 	if (num_desc > (region->num_desc - region->used_desc)) {
805 		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
806 			region_id, name);
807 		ret = -ENOMEM;
808 		goto err_unlock;
809 	}
810 
811 	/* Region maintains a sorted (by region offset) list of pools
812 	 * use the first free slot which is large enough to accomodate
813 	 * the request
814 	 */
815 	last_offset = 0;
816 	slot_found = false;
817 	node = &region->pools;
818 	list_for_each_entry(pi, &region->pools, region_inst) {
819 		if ((pi->region_offset - last_offset) >= num_desc) {
820 			slot_found = true;
821 			break;
822 		}
823 		last_offset = pi->region_offset + pi->num_desc;
824 	}
825 	node = &pi->region_inst;
826 
827 	if (slot_found) {
828 		pool->region = region;
829 		pool->num_desc = num_desc;
830 		pool->region_offset = last_offset;
831 		region->used_desc += num_desc;
832 		list_add_tail(&pool->list, &kdev->pools);
833 		list_add_tail(&pool->region_inst, node);
834 	} else {
835 		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
836 			name, region_id);
837 		ret = -ENOMEM;
838 		goto err_unlock;
839 	}
840 
841 	mutex_unlock(&knav_dev_lock);
842 	kdesc_fill_pool(pool);
843 	return pool;
844 
845 err_unlock:
846 	mutex_unlock(&knav_dev_lock);
847 err:
848 	kfree(pool->name);
849 	devm_kfree(kdev->dev, pool);
850 	return ERR_PTR(ret);
851 }
852 EXPORT_SYMBOL_GPL(knav_pool_create);
853 
854 /**
855  * knav_pool_destroy()	- Free a pool of descriptors
856  * @pool		- pool handle
857  */
858 void knav_pool_destroy(void *ph)
859 {
860 	struct knav_pool *pool = ph;
861 
862 	if (!pool)
863 		return;
864 
865 	if (!pool->region)
866 		return;
867 
868 	kdesc_empty_pool(pool);
869 	mutex_lock(&knav_dev_lock);
870 
871 	pool->region->used_desc -= pool->num_desc;
872 	list_del(&pool->region_inst);
873 	list_del(&pool->list);
874 
875 	mutex_unlock(&knav_dev_lock);
876 	kfree(pool->name);
877 	devm_kfree(kdev->dev, pool);
878 }
879 EXPORT_SYMBOL_GPL(knav_pool_destroy);
880 
881 
882 /**
883  * knav_pool_desc_get()	- Get a descriptor from the pool
884  * @pool			- pool handle
885  *
886  * Returns descriptor from the pool.
887  */
888 void *knav_pool_desc_get(void *ph)
889 {
890 	struct knav_pool *pool = ph;
891 	dma_addr_t dma;
892 	unsigned size;
893 	void *data;
894 
895 	dma = knav_queue_pop(pool->queue, &size);
896 	if (unlikely(!dma))
897 		return ERR_PTR(-ENOMEM);
898 	data = knav_pool_desc_dma_to_virt(pool, dma);
899 	return data;
900 }
901 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
902 
903 /**
904  * knav_pool_desc_put()	- return a descriptor to the pool
905  * @pool			- pool handle
906  */
907 void knav_pool_desc_put(void *ph, void *desc)
908 {
909 	struct knav_pool *pool = ph;
910 	dma_addr_t dma;
911 	dma = knav_pool_desc_virt_to_dma(pool, desc);
912 	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
913 }
914 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
915 
916 /**
917  * knav_pool_desc_map()	- Map descriptor for DMA transfer
918  * @pool			- pool handle
919  * @desc			- address of descriptor to map
920  * @size			- size of descriptor to map
921  * @dma				- DMA address return pointer
922  * @dma_sz			- adjusted return pointer
923  *
924  * Returns 0 on success, errno otherwise.
925  */
926 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
927 					dma_addr_t *dma, unsigned *dma_sz)
928 {
929 	struct knav_pool *pool = ph;
930 	*dma = knav_pool_desc_virt_to_dma(pool, desc);
931 	size = min(size, pool->region->desc_size);
932 	size = ALIGN(size, SMP_CACHE_BYTES);
933 	*dma_sz = size;
934 	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
935 
936 	/* Ensure the descriptor reaches to the memory */
937 	__iowmb();
938 
939 	return 0;
940 }
941 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
942 
943 /**
944  * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
945  * @pool			- pool handle
946  * @dma				- DMA address of descriptor to unmap
947  * @dma_sz			- size of descriptor to unmap
948  *
949  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
950  * error values on return.
951  */
952 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
953 {
954 	struct knav_pool *pool = ph;
955 	unsigned desc_sz;
956 	void *desc;
957 
958 	desc_sz = min(dma_sz, pool->region->desc_size);
959 	desc = knav_pool_desc_dma_to_virt(pool, dma);
960 	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
961 	prefetch(desc);
962 	return desc;
963 }
964 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
965 
966 /**
967  * knav_pool_count()	- Get the number of descriptors in pool.
968  * @pool		- pool handle
969  * Returns number of elements in the pool.
970  */
971 int knav_pool_count(void *ph)
972 {
973 	struct knav_pool *pool = ph;
974 	return knav_queue_get_count(pool->queue);
975 }
976 EXPORT_SYMBOL_GPL(knav_pool_count);
977 
978 static void knav_queue_setup_region(struct knav_device *kdev,
979 					struct knav_region *region)
980 {
981 	unsigned hw_num_desc, hw_desc_size, size;
982 	struct knav_reg_region __iomem  *regs;
983 	struct knav_qmgr_info *qmgr;
984 	struct knav_pool *pool;
985 	int id = region->id;
986 	struct page *page;
987 
988 	/* unused region? */
989 	if (!region->num_desc) {
990 		dev_warn(kdev->dev, "unused region %s\n", region->name);
991 		return;
992 	}
993 
994 	/* get hardware descriptor value */
995 	hw_num_desc = ilog2(region->num_desc - 1) + 1;
996 
997 	/* did we force fit ourselves into nothingness? */
998 	if (region->num_desc < 32) {
999 		region->num_desc = 0;
1000 		dev_warn(kdev->dev, "too few descriptors in region %s\n",
1001 			 region->name);
1002 		return;
1003 	}
1004 
1005 	size = region->num_desc * region->desc_size;
1006 	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1007 						GFP_DMA32);
1008 	if (!region->virt_start) {
1009 		region->num_desc = 0;
1010 		dev_err(kdev->dev, "memory alloc failed for region %s\n",
1011 			region->name);
1012 		return;
1013 	}
1014 	region->virt_end = region->virt_start + size;
1015 	page = virt_to_page(region->virt_start);
1016 
1017 	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1018 					 DMA_BIDIRECTIONAL);
1019 	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1020 		dev_err(kdev->dev, "dma map failed for region %s\n",
1021 			region->name);
1022 		goto fail;
1023 	}
1024 	region->dma_end = region->dma_start + size;
1025 
1026 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1027 	if (!pool) {
1028 		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1029 		goto fail;
1030 	}
1031 	pool->num_desc = 0;
1032 	pool->region_offset = region->num_desc;
1033 	list_add(&pool->region_inst, &region->pools);
1034 
1035 	dev_dbg(kdev->dev,
1036 		"region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1037 		region->name, id, region->desc_size, region->num_desc,
1038 		region->link_index, &region->dma_start, &region->dma_end,
1039 		region->virt_start, region->virt_end);
1040 
1041 	hw_desc_size = (region->desc_size / 16) - 1;
1042 	hw_num_desc -= 5;
1043 
1044 	for_each_qmgr(kdev, qmgr) {
1045 		regs = qmgr->reg_region + id;
1046 		writel_relaxed((u32)region->dma_start, &regs->base);
1047 		writel_relaxed(region->link_index, &regs->start_index);
1048 		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1049 			       &regs->size_count);
1050 	}
1051 	return;
1052 
1053 fail:
1054 	if (region->dma_start)
1055 		dma_unmap_page(kdev->dev, region->dma_start, size,
1056 				DMA_BIDIRECTIONAL);
1057 	if (region->virt_start)
1058 		free_pages_exact(region->virt_start, size);
1059 	region->num_desc = 0;
1060 	return;
1061 }
1062 
1063 static const char *knav_queue_find_name(struct device_node *node)
1064 {
1065 	const char *name;
1066 
1067 	if (of_property_read_string(node, "label", &name) < 0)
1068 		name = node->name;
1069 	if (!name)
1070 		name = "unknown";
1071 	return name;
1072 }
1073 
1074 static int knav_queue_setup_regions(struct knav_device *kdev,
1075 					struct device_node *regions)
1076 {
1077 	struct device *dev = kdev->dev;
1078 	struct knav_region *region;
1079 	struct device_node *child;
1080 	u32 temp[2];
1081 	int ret;
1082 
1083 	for_each_child_of_node(regions, child) {
1084 		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1085 		if (!region) {
1086 			dev_err(dev, "out of memory allocating region\n");
1087 			return -ENOMEM;
1088 		}
1089 
1090 		region->name = knav_queue_find_name(child);
1091 		of_property_read_u32(child, "id", &region->id);
1092 		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1093 		if (!ret) {
1094 			region->num_desc  = temp[0];
1095 			region->desc_size = temp[1];
1096 		} else {
1097 			dev_err(dev, "invalid region info %s\n", region->name);
1098 			devm_kfree(dev, region);
1099 			continue;
1100 		}
1101 
1102 		if (!of_get_property(child, "link-index", NULL)) {
1103 			dev_err(dev, "No link info for %s\n", region->name);
1104 			devm_kfree(dev, region);
1105 			continue;
1106 		}
1107 		ret = of_property_read_u32(child, "link-index",
1108 					   &region->link_index);
1109 		if (ret) {
1110 			dev_err(dev, "link index not found for %s\n",
1111 				region->name);
1112 			devm_kfree(dev, region);
1113 			continue;
1114 		}
1115 
1116 		INIT_LIST_HEAD(&region->pools);
1117 		list_add_tail(&region->list, &kdev->regions);
1118 	}
1119 	if (list_empty(&kdev->regions)) {
1120 		dev_err(dev, "no valid region information found\n");
1121 		return -ENODEV;
1122 	}
1123 
1124 	/* Next, we run through the regions and set things up */
1125 	for_each_region(kdev, region)
1126 		knav_queue_setup_region(kdev, region);
1127 
1128 	return 0;
1129 }
1130 
1131 static int knav_get_link_ram(struct knav_device *kdev,
1132 				       const char *name,
1133 				       struct knav_link_ram_block *block)
1134 {
1135 	struct platform_device *pdev = to_platform_device(kdev->dev);
1136 	struct device_node *node = pdev->dev.of_node;
1137 	u32 temp[2];
1138 
1139 	/*
1140 	 * Note: link ram resources are specified in "entry" sized units. In
1141 	 * reality, although entries are ~40bits in hardware, we treat them as
1142 	 * 64-bit entities here.
1143 	 *
1144 	 * For example, to specify the internal link ram for Keystone-I class
1145 	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1146 	 *
1147 	 * This gets a bit weird when other link rams are used.  For example,
1148 	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1149 	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1150 	 * which accounts for 64-bits per entry, for 16K entries.
1151 	 */
1152 	if (!of_property_read_u32_array(node, name , temp, 2)) {
1153 		if (temp[0]) {
1154 			/*
1155 			 * queue_base specified => using internal or onchip
1156 			 * link ram WARNING - we do not "reserve" this block
1157 			 */
1158 			block->dma = (dma_addr_t)temp[0];
1159 			block->virt = NULL;
1160 			block->size = temp[1];
1161 		} else {
1162 			block->size = temp[1];
1163 			/* queue_base not specific => allocate requested size */
1164 			block->virt = dmam_alloc_coherent(kdev->dev,
1165 						  8 * block->size, &block->dma,
1166 						  GFP_KERNEL);
1167 			if (!block->virt) {
1168 				dev_err(kdev->dev, "failed to alloc linkram\n");
1169 				return -ENOMEM;
1170 			}
1171 		}
1172 	} else {
1173 		return -ENODEV;
1174 	}
1175 	return 0;
1176 }
1177 
1178 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1179 {
1180 	struct knav_link_ram_block *block;
1181 	struct knav_qmgr_info *qmgr;
1182 
1183 	for_each_qmgr(kdev, qmgr) {
1184 		block = &kdev->link_rams[0];
1185 		dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1186 			&block->dma, block->virt, block->size);
1187 		writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1188 		if (kdev->version == QMSS_66AK2G)
1189 			writel_relaxed(block->size,
1190 				       &qmgr->reg_config->link_ram_size0);
1191 		else
1192 			writel_relaxed(block->size - 1,
1193 				       &qmgr->reg_config->link_ram_size0);
1194 		block++;
1195 		if (!block->size)
1196 			continue;
1197 
1198 		dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1199 			&block->dma, block->virt, block->size);
1200 		writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1201 	}
1202 
1203 	return 0;
1204 }
1205 
1206 static int knav_setup_queue_range(struct knav_device *kdev,
1207 					struct device_node *node)
1208 {
1209 	struct device *dev = kdev->dev;
1210 	struct knav_range_info *range;
1211 	struct knav_qmgr_info *qmgr;
1212 	u32 temp[2], start, end, id, index;
1213 	int ret, i;
1214 
1215 	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1216 	if (!range) {
1217 		dev_err(dev, "out of memory allocating range\n");
1218 		return -ENOMEM;
1219 	}
1220 
1221 	range->kdev = kdev;
1222 	range->name = knav_queue_find_name(node);
1223 	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1224 	if (!ret) {
1225 		range->queue_base = temp[0] - kdev->base_id;
1226 		range->num_queues = temp[1];
1227 	} else {
1228 		dev_err(dev, "invalid queue range %s\n", range->name);
1229 		devm_kfree(dev, range);
1230 		return -EINVAL;
1231 	}
1232 
1233 	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1234 		struct of_phandle_args oirq;
1235 
1236 		if (of_irq_parse_one(node, i, &oirq))
1237 			break;
1238 
1239 		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1240 		if (range->irqs[i].irq == IRQ_NONE)
1241 			break;
1242 
1243 		range->num_irqs++;
1244 
1245 		if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3)
1246 			range->irqs[i].cpu_map =
1247 				(oirq.args[2] & 0x0000ff00) >> 8;
1248 	}
1249 
1250 	range->num_irqs = min(range->num_irqs, range->num_queues);
1251 	if (range->num_irqs)
1252 		range->flags |= RANGE_HAS_IRQ;
1253 
1254 	if (of_get_property(node, "qalloc-by-id", NULL))
1255 		range->flags |= RANGE_RESERVED;
1256 
1257 	if (of_get_property(node, "accumulator", NULL)) {
1258 		ret = knav_init_acc_range(kdev, node, range);
1259 		if (ret < 0) {
1260 			devm_kfree(dev, range);
1261 			return ret;
1262 		}
1263 	} else {
1264 		range->ops = &knav_gp_range_ops;
1265 	}
1266 
1267 	/* set threshold to 1, and flush out the queues */
1268 	for_each_qmgr(kdev, qmgr) {
1269 		start = max(qmgr->start_queue, range->queue_base);
1270 		end   = min(qmgr->start_queue + qmgr->num_queues,
1271 			    range->queue_base + range->num_queues);
1272 		for (id = start; id < end; id++) {
1273 			index = id - qmgr->start_queue;
1274 			writel_relaxed(THRESH_GTE | 1,
1275 				       &qmgr->reg_peek[index].ptr_size_thresh);
1276 			writel_relaxed(0,
1277 				       &qmgr->reg_push[index].ptr_size_thresh);
1278 		}
1279 	}
1280 
1281 	list_add_tail(&range->list, &kdev->queue_ranges);
1282 	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1283 		range->name, range->queue_base,
1284 		range->queue_base + range->num_queues - 1,
1285 		range->num_irqs,
1286 		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1287 		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1288 		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1289 	kdev->num_queues_in_use += range->num_queues;
1290 	return 0;
1291 }
1292 
1293 static int knav_setup_queue_pools(struct knav_device *kdev,
1294 				   struct device_node *queue_pools)
1295 {
1296 	struct device_node *type, *range;
1297 	int ret;
1298 
1299 	for_each_child_of_node(queue_pools, type) {
1300 		for_each_child_of_node(type, range) {
1301 			ret = knav_setup_queue_range(kdev, range);
1302 			/* return value ignored, we init the rest... */
1303 		}
1304 	}
1305 
1306 	/* ... and barf if they all failed! */
1307 	if (list_empty(&kdev->queue_ranges)) {
1308 		dev_err(kdev->dev, "no valid queue range found\n");
1309 		return -ENODEV;
1310 	}
1311 	return 0;
1312 }
1313 
1314 static void knav_free_queue_range(struct knav_device *kdev,
1315 				  struct knav_range_info *range)
1316 {
1317 	if (range->ops && range->ops->free_range)
1318 		range->ops->free_range(range);
1319 	list_del(&range->list);
1320 	devm_kfree(kdev->dev, range);
1321 }
1322 
1323 static void knav_free_queue_ranges(struct knav_device *kdev)
1324 {
1325 	struct knav_range_info *range;
1326 
1327 	for (;;) {
1328 		range = first_queue_range(kdev);
1329 		if (!range)
1330 			break;
1331 		knav_free_queue_range(kdev, range);
1332 	}
1333 }
1334 
1335 static void knav_queue_free_regions(struct knav_device *kdev)
1336 {
1337 	struct knav_region *region;
1338 	struct knav_pool *pool, *tmp;
1339 	unsigned size;
1340 
1341 	for (;;) {
1342 		region = first_region(kdev);
1343 		if (!region)
1344 			break;
1345 		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1346 			knav_pool_destroy(pool);
1347 
1348 		size = region->virt_end - region->virt_start;
1349 		if (size)
1350 			free_pages_exact(region->virt_start, size);
1351 		list_del(&region->list);
1352 		devm_kfree(kdev->dev, region);
1353 	}
1354 }
1355 
1356 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1357 					struct device_node *node, int index)
1358 {
1359 	struct resource res;
1360 	void __iomem *regs;
1361 	int ret;
1362 
1363 	ret = of_address_to_resource(node, index, &res);
1364 	if (ret) {
1365 		dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1366 			node->name, index);
1367 		return ERR_PTR(ret);
1368 	}
1369 
1370 	regs = devm_ioremap_resource(kdev->dev, &res);
1371 	if (IS_ERR(regs))
1372 		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1373 			index, node->name);
1374 	return regs;
1375 }
1376 
1377 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1378 					struct device_node *qmgrs)
1379 {
1380 	struct device *dev = kdev->dev;
1381 	struct knav_qmgr_info *qmgr;
1382 	struct device_node *child;
1383 	u32 temp[2];
1384 	int ret;
1385 
1386 	for_each_child_of_node(qmgrs, child) {
1387 		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1388 		if (!qmgr) {
1389 			dev_err(dev, "out of memory allocating qmgr\n");
1390 			return -ENOMEM;
1391 		}
1392 
1393 		ret = of_property_read_u32_array(child, "managed-queues",
1394 						 temp, 2);
1395 		if (!ret) {
1396 			qmgr->start_queue = temp[0];
1397 			qmgr->num_queues = temp[1];
1398 		} else {
1399 			dev_err(dev, "invalid qmgr queue range\n");
1400 			devm_kfree(dev, qmgr);
1401 			continue;
1402 		}
1403 
1404 		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1405 			 qmgr->start_queue, qmgr->num_queues);
1406 
1407 		qmgr->reg_peek =
1408 			knav_queue_map_reg(kdev, child,
1409 					   KNAV_QUEUE_PEEK_REG_INDEX);
1410 
1411 		if (kdev->version == QMSS) {
1412 			qmgr->reg_status =
1413 				knav_queue_map_reg(kdev, child,
1414 						   KNAV_QUEUE_STATUS_REG_INDEX);
1415 		}
1416 
1417 		qmgr->reg_config =
1418 			knav_queue_map_reg(kdev, child,
1419 					   (kdev->version == QMSS_66AK2G) ?
1420 					   KNAV_L_QUEUE_CONFIG_REG_INDEX :
1421 					   KNAV_QUEUE_CONFIG_REG_INDEX);
1422 		qmgr->reg_region =
1423 			knav_queue_map_reg(kdev, child,
1424 					   (kdev->version == QMSS_66AK2G) ?
1425 					   KNAV_L_QUEUE_REGION_REG_INDEX :
1426 					   KNAV_QUEUE_REGION_REG_INDEX);
1427 
1428 		qmgr->reg_push =
1429 			knav_queue_map_reg(kdev, child,
1430 					   (kdev->version == QMSS_66AK2G) ?
1431 					    KNAV_L_QUEUE_PUSH_REG_INDEX :
1432 					    KNAV_QUEUE_PUSH_REG_INDEX);
1433 
1434 		if (kdev->version == QMSS) {
1435 			qmgr->reg_pop =
1436 				knav_queue_map_reg(kdev, child,
1437 						   KNAV_QUEUE_POP_REG_INDEX);
1438 		}
1439 
1440 		if (IS_ERR(qmgr->reg_peek) ||
1441 		    ((kdev->version == QMSS) &&
1442 		    (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1443 		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1444 		    IS_ERR(qmgr->reg_push)) {
1445 			dev_err(dev, "failed to map qmgr regs\n");
1446 			if (kdev->version == QMSS) {
1447 				if (!IS_ERR(qmgr->reg_status))
1448 					devm_iounmap(dev, qmgr->reg_status);
1449 				if (!IS_ERR(qmgr->reg_pop))
1450 					devm_iounmap(dev, qmgr->reg_pop);
1451 			}
1452 			if (!IS_ERR(qmgr->reg_peek))
1453 				devm_iounmap(dev, qmgr->reg_peek);
1454 			if (!IS_ERR(qmgr->reg_config))
1455 				devm_iounmap(dev, qmgr->reg_config);
1456 			if (!IS_ERR(qmgr->reg_region))
1457 				devm_iounmap(dev, qmgr->reg_region);
1458 			if (!IS_ERR(qmgr->reg_push))
1459 				devm_iounmap(dev, qmgr->reg_push);
1460 			devm_kfree(dev, qmgr);
1461 			continue;
1462 		}
1463 
1464 		/* Use same push register for pop as well */
1465 		if (kdev->version == QMSS_66AK2G)
1466 			qmgr->reg_pop = qmgr->reg_push;
1467 
1468 		list_add_tail(&qmgr->list, &kdev->qmgrs);
1469 		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1470 			 qmgr->start_queue, qmgr->num_queues,
1471 			 qmgr->reg_peek, qmgr->reg_status,
1472 			 qmgr->reg_config, qmgr->reg_region,
1473 			 qmgr->reg_push, qmgr->reg_pop);
1474 	}
1475 	return 0;
1476 }
1477 
1478 static int knav_queue_init_pdsps(struct knav_device *kdev,
1479 					struct device_node *pdsps)
1480 {
1481 	struct device *dev = kdev->dev;
1482 	struct knav_pdsp_info *pdsp;
1483 	struct device_node *child;
1484 
1485 	for_each_child_of_node(pdsps, child) {
1486 		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1487 		if (!pdsp) {
1488 			dev_err(dev, "out of memory allocating pdsp\n");
1489 			return -ENOMEM;
1490 		}
1491 		pdsp->name = knav_queue_find_name(child);
1492 		pdsp->iram =
1493 			knav_queue_map_reg(kdev, child,
1494 					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1495 		pdsp->regs =
1496 			knav_queue_map_reg(kdev, child,
1497 					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1498 		pdsp->intd =
1499 			knav_queue_map_reg(kdev, child,
1500 					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1501 		pdsp->command =
1502 			knav_queue_map_reg(kdev, child,
1503 					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1504 
1505 		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1506 		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1507 			dev_err(dev, "failed to map pdsp %s regs\n",
1508 				pdsp->name);
1509 			if (!IS_ERR(pdsp->command))
1510 				devm_iounmap(dev, pdsp->command);
1511 			if (!IS_ERR(pdsp->iram))
1512 				devm_iounmap(dev, pdsp->iram);
1513 			if (!IS_ERR(pdsp->regs))
1514 				devm_iounmap(dev, pdsp->regs);
1515 			if (!IS_ERR(pdsp->intd))
1516 				devm_iounmap(dev, pdsp->intd);
1517 			devm_kfree(dev, pdsp);
1518 			continue;
1519 		}
1520 		of_property_read_u32(child, "id", &pdsp->id);
1521 		list_add_tail(&pdsp->list, &kdev->pdsps);
1522 		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1523 			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1524 			pdsp->intd);
1525 	}
1526 	return 0;
1527 }
1528 
1529 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1530 			  struct knav_pdsp_info *pdsp)
1531 {
1532 	u32 val, timeout = 1000;
1533 	int ret;
1534 
1535 	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1536 	writel_relaxed(val, &pdsp->regs->control);
1537 	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1538 					PDSP_CTRL_RUNNING);
1539 	if (ret < 0) {
1540 		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1541 		return ret;
1542 	}
1543 	pdsp->loaded = false;
1544 	pdsp->started = false;
1545 	return 0;
1546 }
1547 
1548 static int knav_queue_load_pdsp(struct knav_device *kdev,
1549 			  struct knav_pdsp_info *pdsp)
1550 {
1551 	int i, ret, fwlen;
1552 	const struct firmware *fw;
1553 	bool found = false;
1554 	u32 *fwdata;
1555 
1556 	for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1557 		if (knav_acc_firmwares[i]) {
1558 			ret = request_firmware_direct(&fw,
1559 						      knav_acc_firmwares[i],
1560 						      kdev->dev);
1561 			if (!ret) {
1562 				found = true;
1563 				break;
1564 			}
1565 		}
1566 	}
1567 
1568 	if (!found) {
1569 		dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1570 		return -ENODEV;
1571 	}
1572 
1573 	dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1574 		 knav_acc_firmwares[i]);
1575 
1576 	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1577 	/* download the firmware */
1578 	fwdata = (u32 *)fw->data;
1579 	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1580 	for (i = 0; i < fwlen; i++)
1581 		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1582 
1583 	release_firmware(fw);
1584 	return 0;
1585 }
1586 
1587 static int knav_queue_start_pdsp(struct knav_device *kdev,
1588 			   struct knav_pdsp_info *pdsp)
1589 {
1590 	u32 val, timeout = 1000;
1591 	int ret;
1592 
1593 	/* write a command for sync */
1594 	writel_relaxed(0xffffffff, pdsp->command);
1595 	while (readl_relaxed(pdsp->command) != 0xffffffff)
1596 		cpu_relax();
1597 
1598 	/* soft reset the PDSP */
1599 	val  = readl_relaxed(&pdsp->regs->control);
1600 	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1601 	writel_relaxed(val, &pdsp->regs->control);
1602 
1603 	/* enable pdsp */
1604 	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1605 	writel_relaxed(val, &pdsp->regs->control);
1606 
1607 	/* wait for command register to clear */
1608 	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1609 	if (ret < 0) {
1610 		dev_err(kdev->dev,
1611 			"timed out on pdsp %s command register wait\n",
1612 			pdsp->name);
1613 		return ret;
1614 	}
1615 	return 0;
1616 }
1617 
1618 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1619 {
1620 	struct knav_pdsp_info *pdsp;
1621 
1622 	/* disable all pdsps */
1623 	for_each_pdsp(kdev, pdsp)
1624 		knav_queue_stop_pdsp(kdev, pdsp);
1625 }
1626 
1627 static int knav_queue_start_pdsps(struct knav_device *kdev)
1628 {
1629 	struct knav_pdsp_info *pdsp;
1630 	int ret;
1631 
1632 	knav_queue_stop_pdsps(kdev);
1633 	/* now load them all. We return success even if pdsp
1634 	 * is not loaded as acc channels are optional on having
1635 	 * firmware availability in the system. We set the loaded
1636 	 * and stated flag and when initialize the acc range, check
1637 	 * it and init the range only if pdsp is started.
1638 	 */
1639 	for_each_pdsp(kdev, pdsp) {
1640 		ret = knav_queue_load_pdsp(kdev, pdsp);
1641 		if (!ret)
1642 			pdsp->loaded = true;
1643 	}
1644 
1645 	for_each_pdsp(kdev, pdsp) {
1646 		if (pdsp->loaded) {
1647 			ret = knav_queue_start_pdsp(kdev, pdsp);
1648 			if (!ret)
1649 				pdsp->started = true;
1650 		}
1651 	}
1652 	return 0;
1653 }
1654 
1655 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1656 {
1657 	struct knav_qmgr_info *qmgr;
1658 
1659 	for_each_qmgr(kdev, qmgr) {
1660 		if ((id >= qmgr->start_queue) &&
1661 		    (id < qmgr->start_queue + qmgr->num_queues))
1662 			return qmgr;
1663 	}
1664 	return NULL;
1665 }
1666 
1667 static int knav_queue_init_queue(struct knav_device *kdev,
1668 					struct knav_range_info *range,
1669 					struct knav_queue_inst *inst,
1670 					unsigned id)
1671 {
1672 	char irq_name[KNAV_NAME_SIZE];
1673 	inst->qmgr = knav_find_qmgr(id);
1674 	if (!inst->qmgr)
1675 		return -1;
1676 
1677 	INIT_LIST_HEAD(&inst->handles);
1678 	inst->kdev = kdev;
1679 	inst->range = range;
1680 	inst->irq_num = -1;
1681 	inst->id = id;
1682 	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1683 	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1684 
1685 	if (range->ops && range->ops->init_queue)
1686 		return range->ops->init_queue(range, inst);
1687 	else
1688 		return 0;
1689 }
1690 
1691 static int knav_queue_init_queues(struct knav_device *kdev)
1692 {
1693 	struct knav_range_info *range;
1694 	int size, id, base_idx;
1695 	int idx = 0, ret = 0;
1696 
1697 	/* how much do we need for instance data? */
1698 	size = sizeof(struct knav_queue_inst);
1699 
1700 	/* round this up to a power of 2, keep the index to instance
1701 	 * arithmetic fast.
1702 	 * */
1703 	kdev->inst_shift = order_base_2(size);
1704 	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1705 	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1706 	if (!kdev->instances)
1707 		return -ENOMEM;
1708 
1709 	for_each_queue_range(kdev, range) {
1710 		if (range->ops && range->ops->init_range)
1711 			range->ops->init_range(range);
1712 		base_idx = idx;
1713 		for (id = range->queue_base;
1714 		     id < range->queue_base + range->num_queues; id++, idx++) {
1715 			ret = knav_queue_init_queue(kdev, range,
1716 					knav_queue_idx_to_inst(kdev, idx), id);
1717 			if (ret < 0)
1718 				return ret;
1719 		}
1720 		range->queue_base_inst =
1721 			knav_queue_idx_to_inst(kdev, base_idx);
1722 	}
1723 	return 0;
1724 }
1725 
1726 /* Match table for of_platform binding */
1727 static const struct of_device_id keystone_qmss_of_match[] = {
1728 	{
1729 		.compatible = "ti,keystone-navigator-qmss",
1730 	},
1731 	{
1732 		.compatible = "ti,66ak2g-navss-qm",
1733 		.data	= (void *)QMSS_66AK2G,
1734 	},
1735 	{},
1736 };
1737 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1738 
1739 static int knav_queue_probe(struct platform_device *pdev)
1740 {
1741 	struct device_node *node = pdev->dev.of_node;
1742 	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1743 	const struct of_device_id *match;
1744 	struct device *dev = &pdev->dev;
1745 	u32 temp[2];
1746 	int ret;
1747 
1748 	if (!node) {
1749 		dev_err(dev, "device tree info unavailable\n");
1750 		return -ENODEV;
1751 	}
1752 
1753 	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1754 	if (!kdev) {
1755 		dev_err(dev, "memory allocation failed\n");
1756 		return -ENOMEM;
1757 	}
1758 
1759 	match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1760 	if (match && match->data)
1761 		kdev->version = QMSS_66AK2G;
1762 
1763 	platform_set_drvdata(pdev, kdev);
1764 	kdev->dev = dev;
1765 	INIT_LIST_HEAD(&kdev->queue_ranges);
1766 	INIT_LIST_HEAD(&kdev->qmgrs);
1767 	INIT_LIST_HEAD(&kdev->pools);
1768 	INIT_LIST_HEAD(&kdev->regions);
1769 	INIT_LIST_HEAD(&kdev->pdsps);
1770 
1771 	pm_runtime_enable(&pdev->dev);
1772 	ret = pm_runtime_get_sync(&pdev->dev);
1773 	if (ret < 0) {
1774 		dev_err(dev, "Failed to enable QMSS\n");
1775 		return ret;
1776 	}
1777 
1778 	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1779 		dev_err(dev, "queue-range not specified\n");
1780 		ret = -ENODEV;
1781 		goto err;
1782 	}
1783 	kdev->base_id    = temp[0];
1784 	kdev->num_queues = temp[1];
1785 
1786 	/* Initialize queue managers using device tree configuration */
1787 	qmgrs =  of_get_child_by_name(node, "qmgrs");
1788 	if (!qmgrs) {
1789 		dev_err(dev, "queue manager info not specified\n");
1790 		ret = -ENODEV;
1791 		goto err;
1792 	}
1793 	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1794 	of_node_put(qmgrs);
1795 	if (ret)
1796 		goto err;
1797 
1798 	/* get pdsp configuration values from device tree */
1799 	pdsps =  of_get_child_by_name(node, "pdsps");
1800 	if (pdsps) {
1801 		ret = knav_queue_init_pdsps(kdev, pdsps);
1802 		if (ret)
1803 			goto err;
1804 
1805 		ret = knav_queue_start_pdsps(kdev);
1806 		if (ret)
1807 			goto err;
1808 	}
1809 	of_node_put(pdsps);
1810 
1811 	/* get usable queue range values from device tree */
1812 	queue_pools = of_get_child_by_name(node, "queue-pools");
1813 	if (!queue_pools) {
1814 		dev_err(dev, "queue-pools not specified\n");
1815 		ret = -ENODEV;
1816 		goto err;
1817 	}
1818 	ret = knav_setup_queue_pools(kdev, queue_pools);
1819 	of_node_put(queue_pools);
1820 	if (ret)
1821 		goto err;
1822 
1823 	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1824 	if (ret) {
1825 		dev_err(kdev->dev, "could not setup linking ram\n");
1826 		goto err;
1827 	}
1828 
1829 	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1830 	if (ret) {
1831 		/*
1832 		 * nothing really, we have one linking ram already, so we just
1833 		 * live within our means
1834 		 */
1835 	}
1836 
1837 	ret = knav_queue_setup_link_ram(kdev);
1838 	if (ret)
1839 		goto err;
1840 
1841 	regions =  of_get_child_by_name(node, "descriptor-regions");
1842 	if (!regions) {
1843 		dev_err(dev, "descriptor-regions not specified\n");
1844 		goto err;
1845 	}
1846 	ret = knav_queue_setup_regions(kdev, regions);
1847 	of_node_put(regions);
1848 	if (ret)
1849 		goto err;
1850 
1851 	ret = knav_queue_init_queues(kdev);
1852 	if (ret < 0) {
1853 		dev_err(dev, "hwqueue initialization failed\n");
1854 		goto err;
1855 	}
1856 
1857 	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1858 			    &knav_queue_debug_ops);
1859 	device_ready = true;
1860 	return 0;
1861 
1862 err:
1863 	knav_queue_stop_pdsps(kdev);
1864 	knav_queue_free_regions(kdev);
1865 	knav_free_queue_ranges(kdev);
1866 	pm_runtime_put_sync(&pdev->dev);
1867 	pm_runtime_disable(&pdev->dev);
1868 	return ret;
1869 }
1870 
1871 static int knav_queue_remove(struct platform_device *pdev)
1872 {
1873 	/* TODO: Free resources */
1874 	pm_runtime_put_sync(&pdev->dev);
1875 	pm_runtime_disable(&pdev->dev);
1876 	return 0;
1877 }
1878 
1879 static struct platform_driver keystone_qmss_driver = {
1880 	.probe		= knav_queue_probe,
1881 	.remove		= knav_queue_remove,
1882 	.driver		= {
1883 		.name	= "keystone-navigator-qmss",
1884 		.of_match_table = keystone_qmss_of_match,
1885 	},
1886 };
1887 module_platform_driver(keystone_qmss_driver);
1888 
1889 MODULE_LICENSE("GPL v2");
1890 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1891 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1892 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1893