xref: /openbmc/linux/drivers/soc/ti/knav_qmss_queue.c (revision c819e2cf)
1 /*
2  * Keystone Queue Manager subsystem driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5  * Authors:	Sandeep Nair <sandeep_n@ti.com>
6  *		Cyril Chemparathy <cyril@ti.com>
7  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/clk.h>
23 #include <linux/io.h>
24 #include <linux/interrupt.h>
25 #include <linux/bitops.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/platform_device.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_device.h>
33 #include <linux/of_address.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/firmware.h>
36 #include <linux/debugfs.h>
37 #include <linux/seq_file.h>
38 #include <linux/string.h>
39 #include <linux/soc/ti/knav_qmss.h>
40 
41 #include "knav_qmss.h"
42 
43 static struct knav_device *kdev;
44 static DEFINE_MUTEX(knav_dev_lock);
45 
46 /* Queue manager register indices in DTS */
47 #define KNAV_QUEUE_PEEK_REG_INDEX	0
48 #define KNAV_QUEUE_STATUS_REG_INDEX	1
49 #define KNAV_QUEUE_CONFIG_REG_INDEX	2
50 #define KNAV_QUEUE_REGION_REG_INDEX	3
51 #define KNAV_QUEUE_PUSH_REG_INDEX	4
52 #define KNAV_QUEUE_POP_REG_INDEX	5
53 
54 /* PDSP register indices in DTS */
55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
59 
60 #define knav_queue_idx_to_inst(kdev, idx)			\
61 	(kdev->instances + (idx << kdev->inst_shift))
62 
63 #define for_each_handle_rcu(qh, inst)			\
64 	list_for_each_entry_rcu(qh, &inst->handles, list)
65 
66 #define for_each_instance(idx, inst, kdev)		\
67 	for (idx = 0, inst = kdev->instances;		\
68 	     idx < (kdev)->num_queues_in_use;			\
69 	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
70 
71 /**
72  * knav_queue_notify: qmss queue notfier call
73  *
74  * @inst:		qmss queue instance like accumulator
75  */
76 void knav_queue_notify(struct knav_queue_inst *inst)
77 {
78 	struct knav_queue *qh;
79 
80 	if (!inst)
81 		return;
82 
83 	rcu_read_lock();
84 	for_each_handle_rcu(qh, inst) {
85 		if (atomic_read(&qh->notifier_enabled) <= 0)
86 			continue;
87 		if (WARN_ON(!qh->notifier_fn))
88 			continue;
89 		atomic_inc(&qh->stats.notifies);
90 		qh->notifier_fn(qh->notifier_fn_arg);
91 	}
92 	rcu_read_unlock();
93 }
94 EXPORT_SYMBOL_GPL(knav_queue_notify);
95 
96 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
97 {
98 	struct knav_queue_inst *inst = _instdata;
99 
100 	knav_queue_notify(inst);
101 	return IRQ_HANDLED;
102 }
103 
104 static int knav_queue_setup_irq(struct knav_range_info *range,
105 			  struct knav_queue_inst *inst)
106 {
107 	unsigned queue = inst->id - range->queue_base;
108 	unsigned long cpu_map;
109 	int ret = 0, irq;
110 
111 	if (range->flags & RANGE_HAS_IRQ) {
112 		irq = range->irqs[queue].irq;
113 		cpu_map = range->irqs[queue].cpu_map;
114 		ret = request_irq(irq, knav_queue_int_handler, 0,
115 					inst->irq_name, inst);
116 		if (ret)
117 			return ret;
118 		disable_irq(irq);
119 		if (cpu_map) {
120 			ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
121 			if (ret) {
122 				dev_warn(range->kdev->dev,
123 					 "Failed to set IRQ affinity\n");
124 				return ret;
125 			}
126 		}
127 	}
128 	return ret;
129 }
130 
131 static void knav_queue_free_irq(struct knav_queue_inst *inst)
132 {
133 	struct knav_range_info *range = inst->range;
134 	unsigned queue = inst->id - inst->range->queue_base;
135 	int irq;
136 
137 	if (range->flags & RANGE_HAS_IRQ) {
138 		irq = range->irqs[queue].irq;
139 		irq_set_affinity_hint(irq, NULL);
140 		free_irq(irq, inst);
141 	}
142 }
143 
144 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
145 {
146 	return !list_empty(&inst->handles);
147 }
148 
149 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
150 {
151 	return inst->range->flags & RANGE_RESERVED;
152 }
153 
154 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
155 {
156 	struct knav_queue *tmp;
157 
158 	rcu_read_lock();
159 	for_each_handle_rcu(tmp, inst) {
160 		if (tmp->flags & KNAV_QUEUE_SHARED) {
161 			rcu_read_unlock();
162 			return true;
163 		}
164 	}
165 	rcu_read_unlock();
166 	return false;
167 }
168 
169 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
170 						unsigned type)
171 {
172 	if ((type == KNAV_QUEUE_QPEND) &&
173 	    (inst->range->flags & RANGE_HAS_IRQ)) {
174 		return true;
175 	} else if ((type == KNAV_QUEUE_ACC) &&
176 		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
177 		return true;
178 	} else if ((type == KNAV_QUEUE_GP) &&
179 		!(inst->range->flags &
180 			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
181 		return true;
182 	}
183 	return false;
184 }
185 
186 static inline struct knav_queue_inst *
187 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
188 {
189 	struct knav_queue_inst *inst;
190 	int idx;
191 
192 	for_each_instance(idx, inst, kdev) {
193 		if (inst->id == id)
194 			return inst;
195 	}
196 	return NULL;
197 }
198 
199 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
200 {
201 	if (kdev->base_id <= id &&
202 	    kdev->base_id + kdev->num_queues > id) {
203 		id -= kdev->base_id;
204 		return knav_queue_match_id_to_inst(kdev, id);
205 	}
206 	return NULL;
207 }
208 
209 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
210 				      const char *name, unsigned flags)
211 {
212 	struct knav_queue *qh;
213 	unsigned id;
214 	int ret = 0;
215 
216 	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
217 	if (!qh)
218 		return ERR_PTR(-ENOMEM);
219 
220 	qh->flags = flags;
221 	qh->inst = inst;
222 	id = inst->id - inst->qmgr->start_queue;
223 	qh->reg_push = &inst->qmgr->reg_push[id];
224 	qh->reg_pop = &inst->qmgr->reg_pop[id];
225 	qh->reg_peek = &inst->qmgr->reg_peek[id];
226 
227 	/* first opener? */
228 	if (!knav_queue_is_busy(inst)) {
229 		struct knav_range_info *range = inst->range;
230 
231 		inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
232 		if (range->ops && range->ops->open_queue)
233 			ret = range->ops->open_queue(range, inst, flags);
234 
235 		if (ret) {
236 			devm_kfree(inst->kdev->dev, qh);
237 			return ERR_PTR(ret);
238 		}
239 	}
240 	list_add_tail_rcu(&qh->list, &inst->handles);
241 	return qh;
242 }
243 
244 static struct knav_queue *
245 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
246 {
247 	struct knav_queue_inst *inst;
248 	struct knav_queue *qh;
249 
250 	mutex_lock(&knav_dev_lock);
251 
252 	qh = ERR_PTR(-ENODEV);
253 	inst = knav_queue_find_by_id(id);
254 	if (!inst)
255 		goto unlock_ret;
256 
257 	qh = ERR_PTR(-EEXIST);
258 	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
259 		goto unlock_ret;
260 
261 	qh = ERR_PTR(-EBUSY);
262 	if ((flags & KNAV_QUEUE_SHARED) &&
263 	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
264 		goto unlock_ret;
265 
266 	qh = __knav_queue_open(inst, name, flags);
267 
268 unlock_ret:
269 	mutex_unlock(&knav_dev_lock);
270 
271 	return qh;
272 }
273 
274 static struct knav_queue *knav_queue_open_by_type(const char *name,
275 						unsigned type, unsigned flags)
276 {
277 	struct knav_queue_inst *inst;
278 	struct knav_queue *qh = ERR_PTR(-EINVAL);
279 	int idx;
280 
281 	mutex_lock(&knav_dev_lock);
282 
283 	for_each_instance(idx, inst, kdev) {
284 		if (knav_queue_is_reserved(inst))
285 			continue;
286 		if (!knav_queue_match_type(inst, type))
287 			continue;
288 		if (knav_queue_is_busy(inst))
289 			continue;
290 		qh = __knav_queue_open(inst, name, flags);
291 		goto unlock_ret;
292 	}
293 
294 unlock_ret:
295 	mutex_unlock(&knav_dev_lock);
296 	return qh;
297 }
298 
299 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
300 {
301 	struct knav_range_info *range = inst->range;
302 
303 	if (range->ops && range->ops->set_notify)
304 		range->ops->set_notify(range, inst, enabled);
305 }
306 
307 static int knav_queue_enable_notifier(struct knav_queue *qh)
308 {
309 	struct knav_queue_inst *inst = qh->inst;
310 	bool first;
311 
312 	if (WARN_ON(!qh->notifier_fn))
313 		return -EINVAL;
314 
315 	/* Adjust the per handle notifier count */
316 	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
317 	if (!first)
318 		return 0; /* nothing to do */
319 
320 	/* Now adjust the per instance notifier count */
321 	first = (atomic_inc_return(&inst->num_notifiers) == 1);
322 	if (first)
323 		knav_queue_set_notify(inst, true);
324 
325 	return 0;
326 }
327 
328 static int knav_queue_disable_notifier(struct knav_queue *qh)
329 {
330 	struct knav_queue_inst *inst = qh->inst;
331 	bool last;
332 
333 	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
334 	if (!last)
335 		return 0; /* nothing to do */
336 
337 	last = (atomic_dec_return(&inst->num_notifiers) == 0);
338 	if (last)
339 		knav_queue_set_notify(inst, false);
340 
341 	return 0;
342 }
343 
344 static int knav_queue_set_notifier(struct knav_queue *qh,
345 				struct knav_queue_notify_config *cfg)
346 {
347 	knav_queue_notify_fn old_fn = qh->notifier_fn;
348 
349 	if (!cfg)
350 		return -EINVAL;
351 
352 	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
353 		return -ENOTSUPP;
354 
355 	if (!cfg->fn && old_fn)
356 		knav_queue_disable_notifier(qh);
357 
358 	qh->notifier_fn = cfg->fn;
359 	qh->notifier_fn_arg = cfg->fn_arg;
360 
361 	if (cfg->fn && !old_fn)
362 		knav_queue_enable_notifier(qh);
363 
364 	return 0;
365 }
366 
367 static int knav_gp_set_notify(struct knav_range_info *range,
368 			       struct knav_queue_inst *inst,
369 			       bool enabled)
370 {
371 	unsigned queue;
372 
373 	if (range->flags & RANGE_HAS_IRQ) {
374 		queue = inst->id - range->queue_base;
375 		if (enabled)
376 			enable_irq(range->irqs[queue].irq);
377 		else
378 			disable_irq_nosync(range->irqs[queue].irq);
379 	}
380 	return 0;
381 }
382 
383 static int knav_gp_open_queue(struct knav_range_info *range,
384 				struct knav_queue_inst *inst, unsigned flags)
385 {
386 	return knav_queue_setup_irq(range, inst);
387 }
388 
389 static int knav_gp_close_queue(struct knav_range_info *range,
390 				struct knav_queue_inst *inst)
391 {
392 	knav_queue_free_irq(inst);
393 	return 0;
394 }
395 
396 struct knav_range_ops knav_gp_range_ops = {
397 	.set_notify	= knav_gp_set_notify,
398 	.open_queue	= knav_gp_open_queue,
399 	.close_queue	= knav_gp_close_queue,
400 };
401 
402 
403 static int knav_queue_get_count(void *qhandle)
404 {
405 	struct knav_queue *qh = qhandle;
406 	struct knav_queue_inst *inst = qh->inst;
407 
408 	return readl_relaxed(&qh->reg_peek[0].entry_count) +
409 		atomic_read(&inst->desc_count);
410 }
411 
412 static void knav_queue_debug_show_instance(struct seq_file *s,
413 					struct knav_queue_inst *inst)
414 {
415 	struct knav_device *kdev = inst->kdev;
416 	struct knav_queue *qh;
417 
418 	if (!knav_queue_is_busy(inst))
419 		return;
420 
421 	seq_printf(s, "\tqueue id %d (%s)\n",
422 		   kdev->base_id + inst->id, inst->name);
423 	for_each_handle_rcu(qh, inst) {
424 		seq_printf(s, "\t\thandle %p: ", qh);
425 		seq_printf(s, "pushes %8d, ",
426 			   atomic_read(&qh->stats.pushes));
427 		seq_printf(s, "pops %8d, ",
428 			   atomic_read(&qh->stats.pops));
429 		seq_printf(s, "count %8d, ",
430 			   knav_queue_get_count(qh));
431 		seq_printf(s, "notifies %8d, ",
432 			   atomic_read(&qh->stats.notifies));
433 		seq_printf(s, "push errors %8d, ",
434 			   atomic_read(&qh->stats.push_errors));
435 		seq_printf(s, "pop errors %8d\n",
436 			   atomic_read(&qh->stats.pop_errors));
437 	}
438 }
439 
440 static int knav_queue_debug_show(struct seq_file *s, void *v)
441 {
442 	struct knav_queue_inst *inst;
443 	int idx;
444 
445 	mutex_lock(&knav_dev_lock);
446 	seq_printf(s, "%s: %u-%u\n",
447 		   dev_name(kdev->dev), kdev->base_id,
448 		   kdev->base_id + kdev->num_queues - 1);
449 	for_each_instance(idx, inst, kdev)
450 		knav_queue_debug_show_instance(s, inst);
451 	mutex_unlock(&knav_dev_lock);
452 
453 	return 0;
454 }
455 
456 static int knav_queue_debug_open(struct inode *inode, struct file *file)
457 {
458 	return single_open(file, knav_queue_debug_show, NULL);
459 }
460 
461 static const struct file_operations knav_queue_debug_ops = {
462 	.open		= knav_queue_debug_open,
463 	.read		= seq_read,
464 	.llseek		= seq_lseek,
465 	.release	= single_release,
466 };
467 
468 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
469 					u32 flags)
470 {
471 	unsigned long end;
472 	u32 val = 0;
473 
474 	end = jiffies + msecs_to_jiffies(timeout);
475 	while (time_after(end, jiffies)) {
476 		val = readl_relaxed(addr);
477 		if (flags)
478 			val &= flags;
479 		if (!val)
480 			break;
481 		cpu_relax();
482 	}
483 	return val ? -ETIMEDOUT : 0;
484 }
485 
486 
487 static int knav_queue_flush(struct knav_queue *qh)
488 {
489 	struct knav_queue_inst *inst = qh->inst;
490 	unsigned id = inst->id - inst->qmgr->start_queue;
491 
492 	atomic_set(&inst->desc_count, 0);
493 	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
494 	return 0;
495 }
496 
497 /**
498  * knav_queue_open()	- open a hardware queue
499  * @name		- name to give the queue handle
500  * @id			- desired queue number if any or specifes the type
501  *			  of queue
502  * @flags		- the following flags are applicable to queues:
503  *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
504  *			     exclusive by default.
505  *			     Subsequent attempts to open a shared queue should
506  *			     also have this flag.
507  *
508  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
509  * to check the returned value for error codes.
510  */
511 void *knav_queue_open(const char *name, unsigned id,
512 					unsigned flags)
513 {
514 	struct knav_queue *qh = ERR_PTR(-EINVAL);
515 
516 	switch (id) {
517 	case KNAV_QUEUE_QPEND:
518 	case KNAV_QUEUE_ACC:
519 	case KNAV_QUEUE_GP:
520 		qh = knav_queue_open_by_type(name, id, flags);
521 		break;
522 
523 	default:
524 		qh = knav_queue_open_by_id(name, id, flags);
525 		break;
526 	}
527 	return qh;
528 }
529 EXPORT_SYMBOL_GPL(knav_queue_open);
530 
531 /**
532  * knav_queue_close()	- close a hardware queue handle
533  * @qh			- handle to close
534  */
535 void knav_queue_close(void *qhandle)
536 {
537 	struct knav_queue *qh = qhandle;
538 	struct knav_queue_inst *inst = qh->inst;
539 
540 	while (atomic_read(&qh->notifier_enabled) > 0)
541 		knav_queue_disable_notifier(qh);
542 
543 	mutex_lock(&knav_dev_lock);
544 	list_del_rcu(&qh->list);
545 	mutex_unlock(&knav_dev_lock);
546 	synchronize_rcu();
547 	if (!knav_queue_is_busy(inst)) {
548 		struct knav_range_info *range = inst->range;
549 
550 		if (range->ops && range->ops->close_queue)
551 			range->ops->close_queue(range, inst);
552 	}
553 	devm_kfree(inst->kdev->dev, qh);
554 }
555 EXPORT_SYMBOL_GPL(knav_queue_close);
556 
557 /**
558  * knav_queue_device_control()	- Perform control operations on a queue
559  * @qh				- queue handle
560  * @cmd				- control commands
561  * @arg				- command argument
562  *
563  * Returns 0 on success, errno otherwise.
564  */
565 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
566 				unsigned long arg)
567 {
568 	struct knav_queue *qh = qhandle;
569 	struct knav_queue_notify_config *cfg;
570 	int ret;
571 
572 	switch ((int)cmd) {
573 	case KNAV_QUEUE_GET_ID:
574 		ret = qh->inst->kdev->base_id + qh->inst->id;
575 		break;
576 
577 	case KNAV_QUEUE_FLUSH:
578 		ret = knav_queue_flush(qh);
579 		break;
580 
581 	case KNAV_QUEUE_SET_NOTIFIER:
582 		cfg = (void *)arg;
583 		ret = knav_queue_set_notifier(qh, cfg);
584 		break;
585 
586 	case KNAV_QUEUE_ENABLE_NOTIFY:
587 		ret = knav_queue_enable_notifier(qh);
588 		break;
589 
590 	case KNAV_QUEUE_DISABLE_NOTIFY:
591 		ret = knav_queue_disable_notifier(qh);
592 		break;
593 
594 	case KNAV_QUEUE_GET_COUNT:
595 		ret = knav_queue_get_count(qh);
596 		break;
597 
598 	default:
599 		ret = -ENOTSUPP;
600 		break;
601 	}
602 	return ret;
603 }
604 EXPORT_SYMBOL_GPL(knav_queue_device_control);
605 
606 
607 
608 /**
609  * knav_queue_push()	- push data (or descriptor) to the tail of a queue
610  * @qh			- hardware queue handle
611  * @data		- data to push
612  * @size		- size of data to push
613  * @flags		- can be used to pass additional information
614  *
615  * Returns 0 on success, errno otherwise.
616  */
617 int knav_queue_push(void *qhandle, dma_addr_t dma,
618 					unsigned size, unsigned flags)
619 {
620 	struct knav_queue *qh = qhandle;
621 	u32 val;
622 
623 	val = (u32)dma | ((size / 16) - 1);
624 	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
625 
626 	atomic_inc(&qh->stats.pushes);
627 	return 0;
628 }
629 
630 /**
631  * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
632  * @qh			- hardware queue handle
633  * @size		- (optional) size of the data pop'ed.
634  *
635  * Returns a DMA address on success, 0 on failure.
636  */
637 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
638 {
639 	struct knav_queue *qh = qhandle;
640 	struct knav_queue_inst *inst = qh->inst;
641 	dma_addr_t dma;
642 	u32 val, idx;
643 
644 	/* are we accumulated? */
645 	if (inst->descs) {
646 		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
647 			atomic_inc(&inst->desc_count);
648 			return 0;
649 		}
650 		idx  = atomic_inc_return(&inst->desc_head);
651 		idx &= ACC_DESCS_MASK;
652 		val = inst->descs[idx];
653 	} else {
654 		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
655 		if (unlikely(!val))
656 			return 0;
657 	}
658 
659 	dma = val & DESC_PTR_MASK;
660 	if (size)
661 		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
662 
663 	atomic_inc(&qh->stats.pops);
664 	return dma;
665 }
666 
667 /* carve out descriptors and push into queue */
668 static void kdesc_fill_pool(struct knav_pool *pool)
669 {
670 	struct knav_region *region;
671 	int i;
672 
673 	region = pool->region;
674 	pool->desc_size = region->desc_size;
675 	for (i = 0; i < pool->num_desc; i++) {
676 		int index = pool->region_offset + i;
677 		dma_addr_t dma_addr;
678 		unsigned dma_size;
679 		dma_addr = region->dma_start + (region->desc_size * index);
680 		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
681 		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
682 					   DMA_TO_DEVICE);
683 		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
684 	}
685 }
686 
687 /* pop out descriptors and close the queue */
688 static void kdesc_empty_pool(struct knav_pool *pool)
689 {
690 	dma_addr_t dma;
691 	unsigned size;
692 	void *desc;
693 	int i;
694 
695 	if (!pool->queue)
696 		return;
697 
698 	for (i = 0;; i++) {
699 		dma = knav_queue_pop(pool->queue, &size);
700 		if (!dma)
701 			break;
702 		desc = knav_pool_desc_dma_to_virt(pool, dma);
703 		if (!desc) {
704 			dev_dbg(pool->kdev->dev,
705 				"couldn't unmap desc, continuing\n");
706 			continue;
707 		}
708 	}
709 	WARN_ON(i != pool->num_desc);
710 	knav_queue_close(pool->queue);
711 }
712 
713 
714 /* Get the DMA address of a descriptor */
715 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
716 {
717 	struct knav_pool *pool = ph;
718 	return pool->region->dma_start + (virt - pool->region->virt_start);
719 }
720 
721 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
722 {
723 	struct knav_pool *pool = ph;
724 	return pool->region->virt_start + (dma - pool->region->dma_start);
725 }
726 
727 /**
728  * knav_pool_create()	- Create a pool of descriptors
729  * @name		- name to give the pool handle
730  * @num_desc		- numbers of descriptors in the pool
731  * @region_id		- QMSS region id from which the descriptors are to be
732  *			  allocated.
733  *
734  * Returns a pool handle on success.
735  * Use IS_ERR_OR_NULL() to identify error values on return.
736  */
737 void *knav_pool_create(const char *name,
738 					int num_desc, int region_id)
739 {
740 	struct knav_region *reg_itr, *region = NULL;
741 	struct knav_pool *pool, *pi;
742 	struct list_head *node;
743 	unsigned last_offset;
744 	bool slot_found;
745 	int ret;
746 
747 	if (!kdev->dev)
748 		return ERR_PTR(-ENODEV);
749 
750 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
751 	if (!pool) {
752 		dev_err(kdev->dev, "out of memory allocating pool\n");
753 		return ERR_PTR(-ENOMEM);
754 	}
755 
756 	for_each_region(kdev, reg_itr) {
757 		if (reg_itr->id != region_id)
758 			continue;
759 		region = reg_itr;
760 		break;
761 	}
762 
763 	if (!region) {
764 		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
765 		ret = -EINVAL;
766 		goto err;
767 	}
768 
769 	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
770 	if (IS_ERR_OR_NULL(pool->queue)) {
771 		dev_err(kdev->dev,
772 			"failed to open queue for pool(%s), error %ld\n",
773 			name, PTR_ERR(pool->queue));
774 		ret = PTR_ERR(pool->queue);
775 		goto err;
776 	}
777 
778 	pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
779 	pool->kdev = kdev;
780 	pool->dev = kdev->dev;
781 
782 	mutex_lock(&knav_dev_lock);
783 
784 	if (num_desc > (region->num_desc - region->used_desc)) {
785 		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
786 			region_id, name);
787 		ret = -ENOMEM;
788 		goto err_unlock;
789 	}
790 
791 	/* Region maintains a sorted (by region offset) list of pools
792 	 * use the first free slot which is large enough to accomodate
793 	 * the request
794 	 */
795 	last_offset = 0;
796 	slot_found = false;
797 	node = &region->pools;
798 	list_for_each_entry(pi, &region->pools, region_inst) {
799 		if ((pi->region_offset - last_offset) >= num_desc) {
800 			slot_found = true;
801 			break;
802 		}
803 		last_offset = pi->region_offset + pi->num_desc;
804 	}
805 	node = &pi->region_inst;
806 
807 	if (slot_found) {
808 		pool->region = region;
809 		pool->num_desc = num_desc;
810 		pool->region_offset = last_offset;
811 		region->used_desc += num_desc;
812 		list_add_tail(&pool->list, &kdev->pools);
813 		list_add_tail(&pool->region_inst, node);
814 	} else {
815 		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
816 			name, region_id);
817 		ret = -ENOMEM;
818 		goto err_unlock;
819 	}
820 
821 	mutex_unlock(&knav_dev_lock);
822 	kdesc_fill_pool(pool);
823 	return pool;
824 
825 err_unlock:
826 	mutex_unlock(&knav_dev_lock);
827 err:
828 	kfree(pool->name);
829 	devm_kfree(kdev->dev, pool);
830 	return ERR_PTR(ret);
831 }
832 EXPORT_SYMBOL_GPL(knav_pool_create);
833 
834 /**
835  * knav_pool_destroy()	- Free a pool of descriptors
836  * @pool		- pool handle
837  */
838 void knav_pool_destroy(void *ph)
839 {
840 	struct knav_pool *pool = ph;
841 
842 	if (!pool)
843 		return;
844 
845 	if (!pool->region)
846 		return;
847 
848 	kdesc_empty_pool(pool);
849 	mutex_lock(&knav_dev_lock);
850 
851 	pool->region->used_desc -= pool->num_desc;
852 	list_del(&pool->region_inst);
853 	list_del(&pool->list);
854 
855 	mutex_unlock(&knav_dev_lock);
856 	kfree(pool->name);
857 	devm_kfree(kdev->dev, pool);
858 }
859 EXPORT_SYMBOL_GPL(knav_pool_destroy);
860 
861 
862 /**
863  * knav_pool_desc_get()	- Get a descriptor from the pool
864  * @pool			- pool handle
865  *
866  * Returns descriptor from the pool.
867  */
868 void *knav_pool_desc_get(void *ph)
869 {
870 	struct knav_pool *pool = ph;
871 	dma_addr_t dma;
872 	unsigned size;
873 	void *data;
874 
875 	dma = knav_queue_pop(pool->queue, &size);
876 	if (unlikely(!dma))
877 		return ERR_PTR(-ENOMEM);
878 	data = knav_pool_desc_dma_to_virt(pool, dma);
879 	return data;
880 }
881 
882 /**
883  * knav_pool_desc_put()	- return a descriptor to the pool
884  * @pool			- pool handle
885  */
886 void knav_pool_desc_put(void *ph, void *desc)
887 {
888 	struct knav_pool *pool = ph;
889 	dma_addr_t dma;
890 	dma = knav_pool_desc_virt_to_dma(pool, desc);
891 	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
892 }
893 
894 /**
895  * knav_pool_desc_map()	- Map descriptor for DMA transfer
896  * @pool			- pool handle
897  * @desc			- address of descriptor to map
898  * @size			- size of descriptor to map
899  * @dma				- DMA address return pointer
900  * @dma_sz			- adjusted return pointer
901  *
902  * Returns 0 on success, errno otherwise.
903  */
904 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
905 					dma_addr_t *dma, unsigned *dma_sz)
906 {
907 	struct knav_pool *pool = ph;
908 	*dma = knav_pool_desc_virt_to_dma(pool, desc);
909 	size = min(size, pool->region->desc_size);
910 	size = ALIGN(size, SMP_CACHE_BYTES);
911 	*dma_sz = size;
912 	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
913 
914 	/* Ensure the descriptor reaches to the memory */
915 	__iowmb();
916 
917 	return 0;
918 }
919 
920 /**
921  * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
922  * @pool			- pool handle
923  * @dma				- DMA address of descriptor to unmap
924  * @dma_sz			- size of descriptor to unmap
925  *
926  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
927  * error values on return.
928  */
929 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
930 {
931 	struct knav_pool *pool = ph;
932 	unsigned desc_sz;
933 	void *desc;
934 
935 	desc_sz = min(dma_sz, pool->region->desc_size);
936 	desc = knav_pool_desc_dma_to_virt(pool, dma);
937 	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
938 	prefetch(desc);
939 	return desc;
940 }
941 
942 /**
943  * knav_pool_count()	- Get the number of descriptors in pool.
944  * @pool		- pool handle
945  * Returns number of elements in the pool.
946  */
947 int knav_pool_count(void *ph)
948 {
949 	struct knav_pool *pool = ph;
950 	return knav_queue_get_count(pool->queue);
951 }
952 
953 static void knav_queue_setup_region(struct knav_device *kdev,
954 					struct knav_region *region)
955 {
956 	unsigned hw_num_desc, hw_desc_size, size;
957 	struct knav_reg_region __iomem  *regs;
958 	struct knav_qmgr_info *qmgr;
959 	struct knav_pool *pool;
960 	int id = region->id;
961 	struct page *page;
962 
963 	/* unused region? */
964 	if (!region->num_desc) {
965 		dev_warn(kdev->dev, "unused region %s\n", region->name);
966 		return;
967 	}
968 
969 	/* get hardware descriptor value */
970 	hw_num_desc = ilog2(region->num_desc - 1) + 1;
971 
972 	/* did we force fit ourselves into nothingness? */
973 	if (region->num_desc < 32) {
974 		region->num_desc = 0;
975 		dev_warn(kdev->dev, "too few descriptors in region %s\n",
976 			 region->name);
977 		return;
978 	}
979 
980 	size = region->num_desc * region->desc_size;
981 	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
982 						GFP_DMA32);
983 	if (!region->virt_start) {
984 		region->num_desc = 0;
985 		dev_err(kdev->dev, "memory alloc failed for region %s\n",
986 			region->name);
987 		return;
988 	}
989 	region->virt_end = region->virt_start + size;
990 	page = virt_to_page(region->virt_start);
991 
992 	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
993 					 DMA_BIDIRECTIONAL);
994 	if (dma_mapping_error(kdev->dev, region->dma_start)) {
995 		dev_err(kdev->dev, "dma map failed for region %s\n",
996 			region->name);
997 		goto fail;
998 	}
999 	region->dma_end = region->dma_start + size;
1000 
1001 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1002 	if (!pool) {
1003 		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1004 		goto fail;
1005 	}
1006 	pool->num_desc = 0;
1007 	pool->region_offset = region->num_desc;
1008 	list_add(&pool->region_inst, &region->pools);
1009 
1010 	dev_dbg(kdev->dev,
1011 		"region %s (%d): size:%d, link:%d@%d, phys:%08x-%08x, virt:%p-%p\n",
1012 		region->name, id, region->desc_size, region->num_desc,
1013 		region->link_index, region->dma_start, region->dma_end,
1014 		region->virt_start, region->virt_end);
1015 
1016 	hw_desc_size = (region->desc_size / 16) - 1;
1017 	hw_num_desc -= 5;
1018 
1019 	for_each_qmgr(kdev, qmgr) {
1020 		regs = qmgr->reg_region + id;
1021 		writel_relaxed(region->dma_start, &regs->base);
1022 		writel_relaxed(region->link_index, &regs->start_index);
1023 		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1024 			       &regs->size_count);
1025 	}
1026 	return;
1027 
1028 fail:
1029 	if (region->dma_start)
1030 		dma_unmap_page(kdev->dev, region->dma_start, size,
1031 				DMA_BIDIRECTIONAL);
1032 	if (region->virt_start)
1033 		free_pages_exact(region->virt_start, size);
1034 	region->num_desc = 0;
1035 	return;
1036 }
1037 
1038 static const char *knav_queue_find_name(struct device_node *node)
1039 {
1040 	const char *name;
1041 
1042 	if (of_property_read_string(node, "label", &name) < 0)
1043 		name = node->name;
1044 	if (!name)
1045 		name = "unknown";
1046 	return name;
1047 }
1048 
1049 static int knav_queue_setup_regions(struct knav_device *kdev,
1050 					struct device_node *regions)
1051 {
1052 	struct device *dev = kdev->dev;
1053 	struct knav_region *region;
1054 	struct device_node *child;
1055 	u32 temp[2];
1056 	int ret;
1057 
1058 	for_each_child_of_node(regions, child) {
1059 		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1060 		if (!region) {
1061 			dev_err(dev, "out of memory allocating region\n");
1062 			return -ENOMEM;
1063 		}
1064 
1065 		region->name = knav_queue_find_name(child);
1066 		of_property_read_u32(child, "id", &region->id);
1067 		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1068 		if (!ret) {
1069 			region->num_desc  = temp[0];
1070 			region->desc_size = temp[1];
1071 		} else {
1072 			dev_err(dev, "invalid region info %s\n", region->name);
1073 			devm_kfree(dev, region);
1074 			continue;
1075 		}
1076 
1077 		if (!of_get_property(child, "link-index", NULL)) {
1078 			dev_err(dev, "No link info for %s\n", region->name);
1079 			devm_kfree(dev, region);
1080 			continue;
1081 		}
1082 		ret = of_property_read_u32(child, "link-index",
1083 					   &region->link_index);
1084 		if (ret) {
1085 			dev_err(dev, "link index not found for %s\n",
1086 				region->name);
1087 			devm_kfree(dev, region);
1088 			continue;
1089 		}
1090 
1091 		INIT_LIST_HEAD(&region->pools);
1092 		list_add_tail(&region->list, &kdev->regions);
1093 	}
1094 	if (list_empty(&kdev->regions)) {
1095 		dev_err(dev, "no valid region information found\n");
1096 		return -ENODEV;
1097 	}
1098 
1099 	/* Next, we run through the regions and set things up */
1100 	for_each_region(kdev, region)
1101 		knav_queue_setup_region(kdev, region);
1102 
1103 	return 0;
1104 }
1105 
1106 static int knav_get_link_ram(struct knav_device *kdev,
1107 				       const char *name,
1108 				       struct knav_link_ram_block *block)
1109 {
1110 	struct platform_device *pdev = to_platform_device(kdev->dev);
1111 	struct device_node *node = pdev->dev.of_node;
1112 	u32 temp[2];
1113 
1114 	/*
1115 	 * Note: link ram resources are specified in "entry" sized units. In
1116 	 * reality, although entries are ~40bits in hardware, we treat them as
1117 	 * 64-bit entities here.
1118 	 *
1119 	 * For example, to specify the internal link ram for Keystone-I class
1120 	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1121 	 *
1122 	 * This gets a bit weird when other link rams are used.  For example,
1123 	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1124 	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1125 	 * which accounts for 64-bits per entry, for 16K entries.
1126 	 */
1127 	if (!of_property_read_u32_array(node, name , temp, 2)) {
1128 		if (temp[0]) {
1129 			/*
1130 			 * queue_base specified => using internal or onchip
1131 			 * link ram WARNING - we do not "reserve" this block
1132 			 */
1133 			block->phys = (dma_addr_t)temp[0];
1134 			block->virt = NULL;
1135 			block->size = temp[1];
1136 		} else {
1137 			block->size = temp[1];
1138 			/* queue_base not specific => allocate requested size */
1139 			block->virt = dmam_alloc_coherent(kdev->dev,
1140 						  8 * block->size, &block->phys,
1141 						  GFP_KERNEL);
1142 			if (!block->virt) {
1143 				dev_err(kdev->dev, "failed to alloc linkram\n");
1144 				return -ENOMEM;
1145 			}
1146 		}
1147 	} else {
1148 		return -ENODEV;
1149 	}
1150 	return 0;
1151 }
1152 
1153 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1154 {
1155 	struct knav_link_ram_block *block;
1156 	struct knav_qmgr_info *qmgr;
1157 
1158 	for_each_qmgr(kdev, qmgr) {
1159 		block = &kdev->link_rams[0];
1160 		dev_dbg(kdev->dev, "linkram0: phys:%x, virt:%p, size:%x\n",
1161 			block->phys, block->virt, block->size);
1162 		writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base0);
1163 		writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1164 
1165 		block++;
1166 		if (!block->size)
1167 			return 0;
1168 
1169 		dev_dbg(kdev->dev, "linkram1: phys:%x, virt:%p, size:%x\n",
1170 			block->phys, block->virt, block->size);
1171 		writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base1);
1172 	}
1173 
1174 	return 0;
1175 }
1176 
1177 static int knav_setup_queue_range(struct knav_device *kdev,
1178 					struct device_node *node)
1179 {
1180 	struct device *dev = kdev->dev;
1181 	struct knav_range_info *range;
1182 	struct knav_qmgr_info *qmgr;
1183 	u32 temp[2], start, end, id, index;
1184 	int ret, i;
1185 
1186 	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1187 	if (!range) {
1188 		dev_err(dev, "out of memory allocating range\n");
1189 		return -ENOMEM;
1190 	}
1191 
1192 	range->kdev = kdev;
1193 	range->name = knav_queue_find_name(node);
1194 	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1195 	if (!ret) {
1196 		range->queue_base = temp[0] - kdev->base_id;
1197 		range->num_queues = temp[1];
1198 	} else {
1199 		dev_err(dev, "invalid queue range %s\n", range->name);
1200 		devm_kfree(dev, range);
1201 		return -EINVAL;
1202 	}
1203 
1204 	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1205 		struct of_phandle_args oirq;
1206 
1207 		if (of_irq_parse_one(node, i, &oirq))
1208 			break;
1209 
1210 		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1211 		if (range->irqs[i].irq == IRQ_NONE)
1212 			break;
1213 
1214 		range->num_irqs++;
1215 
1216 		if (oirq.args_count == 3)
1217 			range->irqs[i].cpu_map =
1218 				(oirq.args[2] & 0x0000ff00) >> 8;
1219 	}
1220 
1221 	range->num_irqs = min(range->num_irqs, range->num_queues);
1222 	if (range->num_irqs)
1223 		range->flags |= RANGE_HAS_IRQ;
1224 
1225 	if (of_get_property(node, "qalloc-by-id", NULL))
1226 		range->flags |= RANGE_RESERVED;
1227 
1228 	if (of_get_property(node, "accumulator", NULL)) {
1229 		ret = knav_init_acc_range(kdev, node, range);
1230 		if (ret < 0) {
1231 			devm_kfree(dev, range);
1232 			return ret;
1233 		}
1234 	} else {
1235 		range->ops = &knav_gp_range_ops;
1236 	}
1237 
1238 	/* set threshold to 1, and flush out the queues */
1239 	for_each_qmgr(kdev, qmgr) {
1240 		start = max(qmgr->start_queue, range->queue_base);
1241 		end   = min(qmgr->start_queue + qmgr->num_queues,
1242 			    range->queue_base + range->num_queues);
1243 		for (id = start; id < end; id++) {
1244 			index = id - qmgr->start_queue;
1245 			writel_relaxed(THRESH_GTE | 1,
1246 				       &qmgr->reg_peek[index].ptr_size_thresh);
1247 			writel_relaxed(0,
1248 				       &qmgr->reg_push[index].ptr_size_thresh);
1249 		}
1250 	}
1251 
1252 	list_add_tail(&range->list, &kdev->queue_ranges);
1253 	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1254 		range->name, range->queue_base,
1255 		range->queue_base + range->num_queues - 1,
1256 		range->num_irqs,
1257 		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1258 		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1259 		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1260 	kdev->num_queues_in_use += range->num_queues;
1261 	return 0;
1262 }
1263 
1264 static int knav_setup_queue_pools(struct knav_device *kdev,
1265 				   struct device_node *queue_pools)
1266 {
1267 	struct device_node *type, *range;
1268 	int ret;
1269 
1270 	for_each_child_of_node(queue_pools, type) {
1271 		for_each_child_of_node(type, range) {
1272 			ret = knav_setup_queue_range(kdev, range);
1273 			/* return value ignored, we init the rest... */
1274 		}
1275 	}
1276 
1277 	/* ... and barf if they all failed! */
1278 	if (list_empty(&kdev->queue_ranges)) {
1279 		dev_err(kdev->dev, "no valid queue range found\n");
1280 		return -ENODEV;
1281 	}
1282 	return 0;
1283 }
1284 
1285 static void knav_free_queue_range(struct knav_device *kdev,
1286 				  struct knav_range_info *range)
1287 {
1288 	if (range->ops && range->ops->free_range)
1289 		range->ops->free_range(range);
1290 	list_del(&range->list);
1291 	devm_kfree(kdev->dev, range);
1292 }
1293 
1294 static void knav_free_queue_ranges(struct knav_device *kdev)
1295 {
1296 	struct knav_range_info *range;
1297 
1298 	for (;;) {
1299 		range = first_queue_range(kdev);
1300 		if (!range)
1301 			break;
1302 		knav_free_queue_range(kdev, range);
1303 	}
1304 }
1305 
1306 static void knav_queue_free_regions(struct knav_device *kdev)
1307 {
1308 	struct knav_region *region;
1309 	struct knav_pool *pool, *tmp;
1310 	unsigned size;
1311 
1312 	for (;;) {
1313 		region = first_region(kdev);
1314 		if (!region)
1315 			break;
1316 		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1317 			knav_pool_destroy(pool);
1318 
1319 		size = region->virt_end - region->virt_start;
1320 		if (size)
1321 			free_pages_exact(region->virt_start, size);
1322 		list_del(&region->list);
1323 		devm_kfree(kdev->dev, region);
1324 	}
1325 }
1326 
1327 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1328 					struct device_node *node, int index)
1329 {
1330 	struct resource res;
1331 	void __iomem *regs;
1332 	int ret;
1333 
1334 	ret = of_address_to_resource(node, index, &res);
1335 	if (ret) {
1336 		dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1337 			node->name, index);
1338 		return ERR_PTR(ret);
1339 	}
1340 
1341 	regs = devm_ioremap_resource(kdev->dev, &res);
1342 	if (IS_ERR(regs))
1343 		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1344 			index, node->name);
1345 	return regs;
1346 }
1347 
1348 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1349 					struct device_node *qmgrs)
1350 {
1351 	struct device *dev = kdev->dev;
1352 	struct knav_qmgr_info *qmgr;
1353 	struct device_node *child;
1354 	u32 temp[2];
1355 	int ret;
1356 
1357 	for_each_child_of_node(qmgrs, child) {
1358 		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1359 		if (!qmgr) {
1360 			dev_err(dev, "out of memory allocating qmgr\n");
1361 			return -ENOMEM;
1362 		}
1363 
1364 		ret = of_property_read_u32_array(child, "managed-queues",
1365 						 temp, 2);
1366 		if (!ret) {
1367 			qmgr->start_queue = temp[0];
1368 			qmgr->num_queues = temp[1];
1369 		} else {
1370 			dev_err(dev, "invalid qmgr queue range\n");
1371 			devm_kfree(dev, qmgr);
1372 			continue;
1373 		}
1374 
1375 		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1376 			 qmgr->start_queue, qmgr->num_queues);
1377 
1378 		qmgr->reg_peek =
1379 			knav_queue_map_reg(kdev, child,
1380 					   KNAV_QUEUE_PEEK_REG_INDEX);
1381 		qmgr->reg_status =
1382 			knav_queue_map_reg(kdev, child,
1383 					   KNAV_QUEUE_STATUS_REG_INDEX);
1384 		qmgr->reg_config =
1385 			knav_queue_map_reg(kdev, child,
1386 					   KNAV_QUEUE_CONFIG_REG_INDEX);
1387 		qmgr->reg_region =
1388 			knav_queue_map_reg(kdev, child,
1389 					   KNAV_QUEUE_REGION_REG_INDEX);
1390 		qmgr->reg_push =
1391 			knav_queue_map_reg(kdev, child,
1392 					   KNAV_QUEUE_PUSH_REG_INDEX);
1393 		qmgr->reg_pop =
1394 			knav_queue_map_reg(kdev, child,
1395 					   KNAV_QUEUE_POP_REG_INDEX);
1396 
1397 		if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1398 		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1399 		    IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1400 			dev_err(dev, "failed to map qmgr regs\n");
1401 			if (!IS_ERR(qmgr->reg_peek))
1402 				devm_iounmap(dev, qmgr->reg_peek);
1403 			if (!IS_ERR(qmgr->reg_status))
1404 				devm_iounmap(dev, qmgr->reg_status);
1405 			if (!IS_ERR(qmgr->reg_config))
1406 				devm_iounmap(dev, qmgr->reg_config);
1407 			if (!IS_ERR(qmgr->reg_region))
1408 				devm_iounmap(dev, qmgr->reg_region);
1409 			if (!IS_ERR(qmgr->reg_push))
1410 				devm_iounmap(dev, qmgr->reg_push);
1411 			if (!IS_ERR(qmgr->reg_pop))
1412 				devm_iounmap(dev, qmgr->reg_pop);
1413 			devm_kfree(dev, qmgr);
1414 			continue;
1415 		}
1416 
1417 		list_add_tail(&qmgr->list, &kdev->qmgrs);
1418 		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1419 			 qmgr->start_queue, qmgr->num_queues,
1420 			 qmgr->reg_peek, qmgr->reg_status,
1421 			 qmgr->reg_config, qmgr->reg_region,
1422 			 qmgr->reg_push, qmgr->reg_pop);
1423 	}
1424 	return 0;
1425 }
1426 
1427 static int knav_queue_init_pdsps(struct knav_device *kdev,
1428 					struct device_node *pdsps)
1429 {
1430 	struct device *dev = kdev->dev;
1431 	struct knav_pdsp_info *pdsp;
1432 	struct device_node *child;
1433 	int ret;
1434 
1435 	for_each_child_of_node(pdsps, child) {
1436 		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1437 		if (!pdsp) {
1438 			dev_err(dev, "out of memory allocating pdsp\n");
1439 			return -ENOMEM;
1440 		}
1441 		pdsp->name = knav_queue_find_name(child);
1442 		ret = of_property_read_string(child, "firmware",
1443 					      &pdsp->firmware);
1444 		if (ret < 0 || !pdsp->firmware) {
1445 			dev_err(dev, "unknown firmware for pdsp %s\n",
1446 				pdsp->name);
1447 			devm_kfree(dev, pdsp);
1448 			continue;
1449 		}
1450 		dev_dbg(dev, "pdsp name %s fw name :%s\n", pdsp->name,
1451 			pdsp->firmware);
1452 
1453 		pdsp->iram =
1454 			knav_queue_map_reg(kdev, child,
1455 					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1456 		pdsp->regs =
1457 			knav_queue_map_reg(kdev, child,
1458 					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1459 		pdsp->intd =
1460 			knav_queue_map_reg(kdev, child,
1461 					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1462 		pdsp->command =
1463 			knav_queue_map_reg(kdev, child,
1464 					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1465 
1466 		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1467 		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1468 			dev_err(dev, "failed to map pdsp %s regs\n",
1469 				pdsp->name);
1470 			if (!IS_ERR(pdsp->command))
1471 				devm_iounmap(dev, pdsp->command);
1472 			if (!IS_ERR(pdsp->iram))
1473 				devm_iounmap(dev, pdsp->iram);
1474 			if (!IS_ERR(pdsp->regs))
1475 				devm_iounmap(dev, pdsp->regs);
1476 			if (!IS_ERR(pdsp->intd))
1477 				devm_iounmap(dev, pdsp->intd);
1478 			devm_kfree(dev, pdsp);
1479 			continue;
1480 		}
1481 		of_property_read_u32(child, "id", &pdsp->id);
1482 		list_add_tail(&pdsp->list, &kdev->pdsps);
1483 		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p, firmware %s\n",
1484 			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1485 			pdsp->intd, pdsp->firmware);
1486 	}
1487 	return 0;
1488 }
1489 
1490 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1491 			  struct knav_pdsp_info *pdsp)
1492 {
1493 	u32 val, timeout = 1000;
1494 	int ret;
1495 
1496 	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1497 	writel_relaxed(val, &pdsp->regs->control);
1498 	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1499 					PDSP_CTRL_RUNNING);
1500 	if (ret < 0) {
1501 		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1502 		return ret;
1503 	}
1504 	return 0;
1505 }
1506 
1507 static int knav_queue_load_pdsp(struct knav_device *kdev,
1508 			  struct knav_pdsp_info *pdsp)
1509 {
1510 	int i, ret, fwlen;
1511 	const struct firmware *fw;
1512 	u32 *fwdata;
1513 
1514 	ret = request_firmware(&fw, pdsp->firmware, kdev->dev);
1515 	if (ret) {
1516 		dev_err(kdev->dev, "failed to get firmware %s for pdsp %s\n",
1517 			pdsp->firmware, pdsp->name);
1518 		return ret;
1519 	}
1520 	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1521 	/* download the firmware */
1522 	fwdata = (u32 *)fw->data;
1523 	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1524 	for (i = 0; i < fwlen; i++)
1525 		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1526 
1527 	release_firmware(fw);
1528 	return 0;
1529 }
1530 
1531 static int knav_queue_start_pdsp(struct knav_device *kdev,
1532 			   struct knav_pdsp_info *pdsp)
1533 {
1534 	u32 val, timeout = 1000;
1535 	int ret;
1536 
1537 	/* write a command for sync */
1538 	writel_relaxed(0xffffffff, pdsp->command);
1539 	while (readl_relaxed(pdsp->command) != 0xffffffff)
1540 		cpu_relax();
1541 
1542 	/* soft reset the PDSP */
1543 	val  = readl_relaxed(&pdsp->regs->control);
1544 	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1545 	writel_relaxed(val, &pdsp->regs->control);
1546 
1547 	/* enable pdsp */
1548 	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1549 	writel_relaxed(val, &pdsp->regs->control);
1550 
1551 	/* wait for command register to clear */
1552 	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1553 	if (ret < 0) {
1554 		dev_err(kdev->dev,
1555 			"timed out on pdsp %s command register wait\n",
1556 			pdsp->name);
1557 		return ret;
1558 	}
1559 	return 0;
1560 }
1561 
1562 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1563 {
1564 	struct knav_pdsp_info *pdsp;
1565 
1566 	/* disable all pdsps */
1567 	for_each_pdsp(kdev, pdsp)
1568 		knav_queue_stop_pdsp(kdev, pdsp);
1569 }
1570 
1571 static int knav_queue_start_pdsps(struct knav_device *kdev)
1572 {
1573 	struct knav_pdsp_info *pdsp;
1574 	int ret;
1575 
1576 	knav_queue_stop_pdsps(kdev);
1577 	/* now load them all */
1578 	for_each_pdsp(kdev, pdsp) {
1579 		ret = knav_queue_load_pdsp(kdev, pdsp);
1580 		if (ret < 0)
1581 			return ret;
1582 	}
1583 
1584 	for_each_pdsp(kdev, pdsp) {
1585 		ret = knav_queue_start_pdsp(kdev, pdsp);
1586 		WARN_ON(ret);
1587 	}
1588 	return 0;
1589 }
1590 
1591 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1592 {
1593 	struct knav_qmgr_info *qmgr;
1594 
1595 	for_each_qmgr(kdev, qmgr) {
1596 		if ((id >= qmgr->start_queue) &&
1597 		    (id < qmgr->start_queue + qmgr->num_queues))
1598 			return qmgr;
1599 	}
1600 	return NULL;
1601 }
1602 
1603 static int knav_queue_init_queue(struct knav_device *kdev,
1604 					struct knav_range_info *range,
1605 					struct knav_queue_inst *inst,
1606 					unsigned id)
1607 {
1608 	char irq_name[KNAV_NAME_SIZE];
1609 	inst->qmgr = knav_find_qmgr(id);
1610 	if (!inst->qmgr)
1611 		return -1;
1612 
1613 	INIT_LIST_HEAD(&inst->handles);
1614 	inst->kdev = kdev;
1615 	inst->range = range;
1616 	inst->irq_num = -1;
1617 	inst->id = id;
1618 	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1619 	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1620 
1621 	if (range->ops && range->ops->init_queue)
1622 		return range->ops->init_queue(range, inst);
1623 	else
1624 		return 0;
1625 }
1626 
1627 static int knav_queue_init_queues(struct knav_device *kdev)
1628 {
1629 	struct knav_range_info *range;
1630 	int size, id, base_idx;
1631 	int idx = 0, ret = 0;
1632 
1633 	/* how much do we need for instance data? */
1634 	size = sizeof(struct knav_queue_inst);
1635 
1636 	/* round this up to a power of 2, keep the index to instance
1637 	 * arithmetic fast.
1638 	 * */
1639 	kdev->inst_shift = order_base_2(size);
1640 	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1641 	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1642 	if (!kdev->instances)
1643 		return -ENOMEM;
1644 
1645 	for_each_queue_range(kdev, range) {
1646 		if (range->ops && range->ops->init_range)
1647 			range->ops->init_range(range);
1648 		base_idx = idx;
1649 		for (id = range->queue_base;
1650 		     id < range->queue_base + range->num_queues; id++, idx++) {
1651 			ret = knav_queue_init_queue(kdev, range,
1652 					knav_queue_idx_to_inst(kdev, idx), id);
1653 			if (ret < 0)
1654 				return ret;
1655 		}
1656 		range->queue_base_inst =
1657 			knav_queue_idx_to_inst(kdev, base_idx);
1658 	}
1659 	return 0;
1660 }
1661 
1662 static int knav_queue_probe(struct platform_device *pdev)
1663 {
1664 	struct device_node *node = pdev->dev.of_node;
1665 	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1666 	struct device *dev = &pdev->dev;
1667 	u32 temp[2];
1668 	int ret;
1669 
1670 	if (!node) {
1671 		dev_err(dev, "device tree info unavailable\n");
1672 		return -ENODEV;
1673 	}
1674 
1675 	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1676 	if (!kdev) {
1677 		dev_err(dev, "memory allocation failed\n");
1678 		return -ENOMEM;
1679 	}
1680 
1681 	platform_set_drvdata(pdev, kdev);
1682 	kdev->dev = dev;
1683 	INIT_LIST_HEAD(&kdev->queue_ranges);
1684 	INIT_LIST_HEAD(&kdev->qmgrs);
1685 	INIT_LIST_HEAD(&kdev->pools);
1686 	INIT_LIST_HEAD(&kdev->regions);
1687 	INIT_LIST_HEAD(&kdev->pdsps);
1688 
1689 	pm_runtime_enable(&pdev->dev);
1690 	ret = pm_runtime_get_sync(&pdev->dev);
1691 	if (ret < 0) {
1692 		dev_err(dev, "Failed to enable QMSS\n");
1693 		return ret;
1694 	}
1695 
1696 	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1697 		dev_err(dev, "queue-range not specified\n");
1698 		ret = -ENODEV;
1699 		goto err;
1700 	}
1701 	kdev->base_id    = temp[0];
1702 	kdev->num_queues = temp[1];
1703 
1704 	/* Initialize queue managers using device tree configuration */
1705 	qmgrs =  of_get_child_by_name(node, "qmgrs");
1706 	if (!qmgrs) {
1707 		dev_err(dev, "queue manager info not specified\n");
1708 		ret = -ENODEV;
1709 		goto err;
1710 	}
1711 	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1712 	of_node_put(qmgrs);
1713 	if (ret)
1714 		goto err;
1715 
1716 	/* get pdsp configuration values from device tree */
1717 	pdsps =  of_get_child_by_name(node, "pdsps");
1718 	if (pdsps) {
1719 		ret = knav_queue_init_pdsps(kdev, pdsps);
1720 		if (ret)
1721 			goto err;
1722 
1723 		ret = knav_queue_start_pdsps(kdev);
1724 		if (ret)
1725 			goto err;
1726 	}
1727 	of_node_put(pdsps);
1728 
1729 	/* get usable queue range values from device tree */
1730 	queue_pools = of_get_child_by_name(node, "queue-pools");
1731 	if (!queue_pools) {
1732 		dev_err(dev, "queue-pools not specified\n");
1733 		ret = -ENODEV;
1734 		goto err;
1735 	}
1736 	ret = knav_setup_queue_pools(kdev, queue_pools);
1737 	of_node_put(queue_pools);
1738 	if (ret)
1739 		goto err;
1740 
1741 	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1742 	if (ret) {
1743 		dev_err(kdev->dev, "could not setup linking ram\n");
1744 		goto err;
1745 	}
1746 
1747 	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1748 	if (ret) {
1749 		/*
1750 		 * nothing really, we have one linking ram already, so we just
1751 		 * live within our means
1752 		 */
1753 	}
1754 
1755 	ret = knav_queue_setup_link_ram(kdev);
1756 	if (ret)
1757 		goto err;
1758 
1759 	regions =  of_get_child_by_name(node, "descriptor-regions");
1760 	if (!regions) {
1761 		dev_err(dev, "descriptor-regions not specified\n");
1762 		goto err;
1763 	}
1764 	ret = knav_queue_setup_regions(kdev, regions);
1765 	of_node_put(regions);
1766 	if (ret)
1767 		goto err;
1768 
1769 	ret = knav_queue_init_queues(kdev);
1770 	if (ret < 0) {
1771 		dev_err(dev, "hwqueue initialization failed\n");
1772 		goto err;
1773 	}
1774 
1775 	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1776 			    &knav_queue_debug_ops);
1777 	return 0;
1778 
1779 err:
1780 	knav_queue_stop_pdsps(kdev);
1781 	knav_queue_free_regions(kdev);
1782 	knav_free_queue_ranges(kdev);
1783 	pm_runtime_put_sync(&pdev->dev);
1784 	pm_runtime_disable(&pdev->dev);
1785 	return ret;
1786 }
1787 
1788 static int knav_queue_remove(struct platform_device *pdev)
1789 {
1790 	/* TODO: Free resources */
1791 	pm_runtime_put_sync(&pdev->dev);
1792 	pm_runtime_disable(&pdev->dev);
1793 	return 0;
1794 }
1795 
1796 /* Match table for of_platform binding */
1797 static struct of_device_id keystone_qmss_of_match[] = {
1798 	{ .compatible = "ti,keystone-navigator-qmss", },
1799 	{},
1800 };
1801 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1802 
1803 static struct platform_driver keystone_qmss_driver = {
1804 	.probe		= knav_queue_probe,
1805 	.remove		= knav_queue_remove,
1806 	.driver		= {
1807 		.name	= "keystone-navigator-qmss",
1808 		.of_match_table = keystone_qmss_of_match,
1809 	},
1810 };
1811 module_platform_driver(keystone_qmss_driver);
1812 
1813 MODULE_LICENSE("GPL v2");
1814 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1815 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1816 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1817