1 /* 2 * Keystone Queue Manager subsystem driver 3 * 4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com 5 * Authors: Sandeep Nair <sandeep_n@ti.com> 6 * Cyril Chemparathy <cyril@ti.com> 7 * Santosh Shilimkar <santosh.shilimkar@ti.com> 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * version 2 as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 */ 18 19 #include <linux/debugfs.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/firmware.h> 22 #include <linux/interrupt.h> 23 #include <linux/io.h> 24 #include <linux/module.h> 25 #include <linux/of_address.h> 26 #include <linux/of_device.h> 27 #include <linux/of_irq.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/slab.h> 30 #include <linux/soc/ti/knav_qmss.h> 31 32 #include "knav_qmss.h" 33 34 static struct knav_device *kdev; 35 static DEFINE_MUTEX(knav_dev_lock); 36 37 /* Queue manager register indices in DTS */ 38 #define KNAV_QUEUE_PEEK_REG_INDEX 0 39 #define KNAV_QUEUE_STATUS_REG_INDEX 1 40 #define KNAV_QUEUE_CONFIG_REG_INDEX 2 41 #define KNAV_QUEUE_REGION_REG_INDEX 3 42 #define KNAV_QUEUE_PUSH_REG_INDEX 4 43 #define KNAV_QUEUE_POP_REG_INDEX 5 44 45 /* Queue manager register indices in DTS for QMSS in K2G NAVSS. 46 * There are no status and vbusm push registers on this version 47 * of QMSS. Push registers are same as pop, So all indices above 1 48 * are to be re-defined 49 */ 50 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1 51 #define KNAV_L_QUEUE_REGION_REG_INDEX 2 52 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3 53 54 /* PDSP register indices in DTS */ 55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0 56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1 57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2 58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3 59 60 #define knav_queue_idx_to_inst(kdev, idx) \ 61 (kdev->instances + (idx << kdev->inst_shift)) 62 63 #define for_each_handle_rcu(qh, inst) \ 64 list_for_each_entry_rcu(qh, &inst->handles, list) 65 66 #define for_each_instance(idx, inst, kdev) \ 67 for (idx = 0, inst = kdev->instances; \ 68 idx < (kdev)->num_queues_in_use; \ 69 idx++, inst = knav_queue_idx_to_inst(kdev, idx)) 70 71 /* All firmware file names end up here. List the firmware file names below. 72 * Newest followed by older ones. Search is done from start of the array 73 * until a firmware file is found. 74 */ 75 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"}; 76 77 static bool device_ready; 78 bool knav_qmss_device_ready(void) 79 { 80 return device_ready; 81 } 82 EXPORT_SYMBOL_GPL(knav_qmss_device_ready); 83 84 /** 85 * knav_queue_notify: qmss queue notfier call 86 * 87 * @inst: qmss queue instance like accumulator 88 */ 89 void knav_queue_notify(struct knav_queue_inst *inst) 90 { 91 struct knav_queue *qh; 92 93 if (!inst) 94 return; 95 96 rcu_read_lock(); 97 for_each_handle_rcu(qh, inst) { 98 if (atomic_read(&qh->notifier_enabled) <= 0) 99 continue; 100 if (WARN_ON(!qh->notifier_fn)) 101 continue; 102 this_cpu_inc(qh->stats->notifies); 103 qh->notifier_fn(qh->notifier_fn_arg); 104 } 105 rcu_read_unlock(); 106 } 107 EXPORT_SYMBOL_GPL(knav_queue_notify); 108 109 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata) 110 { 111 struct knav_queue_inst *inst = _instdata; 112 113 knav_queue_notify(inst); 114 return IRQ_HANDLED; 115 } 116 117 static int knav_queue_setup_irq(struct knav_range_info *range, 118 struct knav_queue_inst *inst) 119 { 120 unsigned queue = inst->id - range->queue_base; 121 int ret = 0, irq; 122 123 if (range->flags & RANGE_HAS_IRQ) { 124 irq = range->irqs[queue].irq; 125 ret = request_irq(irq, knav_queue_int_handler, 0, 126 inst->irq_name, inst); 127 if (ret) 128 return ret; 129 disable_irq(irq); 130 if (range->irqs[queue].cpu_mask) { 131 ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask); 132 if (ret) { 133 dev_warn(range->kdev->dev, 134 "Failed to set IRQ affinity\n"); 135 return ret; 136 } 137 } 138 } 139 return ret; 140 } 141 142 static void knav_queue_free_irq(struct knav_queue_inst *inst) 143 { 144 struct knav_range_info *range = inst->range; 145 unsigned queue = inst->id - inst->range->queue_base; 146 int irq; 147 148 if (range->flags & RANGE_HAS_IRQ) { 149 irq = range->irqs[queue].irq; 150 irq_set_affinity_hint(irq, NULL); 151 free_irq(irq, inst); 152 } 153 } 154 155 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst) 156 { 157 return !list_empty(&inst->handles); 158 } 159 160 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst) 161 { 162 return inst->range->flags & RANGE_RESERVED; 163 } 164 165 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst) 166 { 167 struct knav_queue *tmp; 168 169 rcu_read_lock(); 170 for_each_handle_rcu(tmp, inst) { 171 if (tmp->flags & KNAV_QUEUE_SHARED) { 172 rcu_read_unlock(); 173 return true; 174 } 175 } 176 rcu_read_unlock(); 177 return false; 178 } 179 180 static inline bool knav_queue_match_type(struct knav_queue_inst *inst, 181 unsigned type) 182 { 183 if ((type == KNAV_QUEUE_QPEND) && 184 (inst->range->flags & RANGE_HAS_IRQ)) { 185 return true; 186 } else if ((type == KNAV_QUEUE_ACC) && 187 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) { 188 return true; 189 } else if ((type == KNAV_QUEUE_GP) && 190 !(inst->range->flags & 191 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) { 192 return true; 193 } 194 return false; 195 } 196 197 static inline struct knav_queue_inst * 198 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id) 199 { 200 struct knav_queue_inst *inst; 201 int idx; 202 203 for_each_instance(idx, inst, kdev) { 204 if (inst->id == id) 205 return inst; 206 } 207 return NULL; 208 } 209 210 static inline struct knav_queue_inst *knav_queue_find_by_id(int id) 211 { 212 if (kdev->base_id <= id && 213 kdev->base_id + kdev->num_queues > id) { 214 id -= kdev->base_id; 215 return knav_queue_match_id_to_inst(kdev, id); 216 } 217 return NULL; 218 } 219 220 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst, 221 const char *name, unsigned flags) 222 { 223 struct knav_queue *qh; 224 unsigned id; 225 int ret = 0; 226 227 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL); 228 if (!qh) 229 return ERR_PTR(-ENOMEM); 230 231 qh->stats = alloc_percpu(struct knav_queue_stats); 232 if (!qh->stats) { 233 ret = -ENOMEM; 234 goto err; 235 } 236 237 qh->flags = flags; 238 qh->inst = inst; 239 id = inst->id - inst->qmgr->start_queue; 240 qh->reg_push = &inst->qmgr->reg_push[id]; 241 qh->reg_pop = &inst->qmgr->reg_pop[id]; 242 qh->reg_peek = &inst->qmgr->reg_peek[id]; 243 244 /* first opener? */ 245 if (!knav_queue_is_busy(inst)) { 246 struct knav_range_info *range = inst->range; 247 248 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 249 if (range->ops && range->ops->open_queue) 250 ret = range->ops->open_queue(range, inst, flags); 251 252 if (ret) 253 goto err; 254 } 255 list_add_tail_rcu(&qh->list, &inst->handles); 256 return qh; 257 258 err: 259 if (qh->stats) 260 free_percpu(qh->stats); 261 devm_kfree(inst->kdev->dev, qh); 262 return ERR_PTR(ret); 263 } 264 265 static struct knav_queue * 266 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags) 267 { 268 struct knav_queue_inst *inst; 269 struct knav_queue *qh; 270 271 mutex_lock(&knav_dev_lock); 272 273 qh = ERR_PTR(-ENODEV); 274 inst = knav_queue_find_by_id(id); 275 if (!inst) 276 goto unlock_ret; 277 278 qh = ERR_PTR(-EEXIST); 279 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst)) 280 goto unlock_ret; 281 282 qh = ERR_PTR(-EBUSY); 283 if ((flags & KNAV_QUEUE_SHARED) && 284 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst))) 285 goto unlock_ret; 286 287 qh = __knav_queue_open(inst, name, flags); 288 289 unlock_ret: 290 mutex_unlock(&knav_dev_lock); 291 292 return qh; 293 } 294 295 static struct knav_queue *knav_queue_open_by_type(const char *name, 296 unsigned type, unsigned flags) 297 { 298 struct knav_queue_inst *inst; 299 struct knav_queue *qh = ERR_PTR(-EINVAL); 300 int idx; 301 302 mutex_lock(&knav_dev_lock); 303 304 for_each_instance(idx, inst, kdev) { 305 if (knav_queue_is_reserved(inst)) 306 continue; 307 if (!knav_queue_match_type(inst, type)) 308 continue; 309 if (knav_queue_is_busy(inst)) 310 continue; 311 qh = __knav_queue_open(inst, name, flags); 312 goto unlock_ret; 313 } 314 315 unlock_ret: 316 mutex_unlock(&knav_dev_lock); 317 return qh; 318 } 319 320 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled) 321 { 322 struct knav_range_info *range = inst->range; 323 324 if (range->ops && range->ops->set_notify) 325 range->ops->set_notify(range, inst, enabled); 326 } 327 328 static int knav_queue_enable_notifier(struct knav_queue *qh) 329 { 330 struct knav_queue_inst *inst = qh->inst; 331 bool first; 332 333 if (WARN_ON(!qh->notifier_fn)) 334 return -EINVAL; 335 336 /* Adjust the per handle notifier count */ 337 first = (atomic_inc_return(&qh->notifier_enabled) == 1); 338 if (!first) 339 return 0; /* nothing to do */ 340 341 /* Now adjust the per instance notifier count */ 342 first = (atomic_inc_return(&inst->num_notifiers) == 1); 343 if (first) 344 knav_queue_set_notify(inst, true); 345 346 return 0; 347 } 348 349 static int knav_queue_disable_notifier(struct knav_queue *qh) 350 { 351 struct knav_queue_inst *inst = qh->inst; 352 bool last; 353 354 last = (atomic_dec_return(&qh->notifier_enabled) == 0); 355 if (!last) 356 return 0; /* nothing to do */ 357 358 last = (atomic_dec_return(&inst->num_notifiers) == 0); 359 if (last) 360 knav_queue_set_notify(inst, false); 361 362 return 0; 363 } 364 365 static int knav_queue_set_notifier(struct knav_queue *qh, 366 struct knav_queue_notify_config *cfg) 367 { 368 knav_queue_notify_fn old_fn = qh->notifier_fn; 369 370 if (!cfg) 371 return -EINVAL; 372 373 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) 374 return -ENOTSUPP; 375 376 if (!cfg->fn && old_fn) 377 knav_queue_disable_notifier(qh); 378 379 qh->notifier_fn = cfg->fn; 380 qh->notifier_fn_arg = cfg->fn_arg; 381 382 if (cfg->fn && !old_fn) 383 knav_queue_enable_notifier(qh); 384 385 return 0; 386 } 387 388 static int knav_gp_set_notify(struct knav_range_info *range, 389 struct knav_queue_inst *inst, 390 bool enabled) 391 { 392 unsigned queue; 393 394 if (range->flags & RANGE_HAS_IRQ) { 395 queue = inst->id - range->queue_base; 396 if (enabled) 397 enable_irq(range->irqs[queue].irq); 398 else 399 disable_irq_nosync(range->irqs[queue].irq); 400 } 401 return 0; 402 } 403 404 static int knav_gp_open_queue(struct knav_range_info *range, 405 struct knav_queue_inst *inst, unsigned flags) 406 { 407 return knav_queue_setup_irq(range, inst); 408 } 409 410 static int knav_gp_close_queue(struct knav_range_info *range, 411 struct knav_queue_inst *inst) 412 { 413 knav_queue_free_irq(inst); 414 return 0; 415 } 416 417 struct knav_range_ops knav_gp_range_ops = { 418 .set_notify = knav_gp_set_notify, 419 .open_queue = knav_gp_open_queue, 420 .close_queue = knav_gp_close_queue, 421 }; 422 423 424 static int knav_queue_get_count(void *qhandle) 425 { 426 struct knav_queue *qh = qhandle; 427 struct knav_queue_inst *inst = qh->inst; 428 429 return readl_relaxed(&qh->reg_peek[0].entry_count) + 430 atomic_read(&inst->desc_count); 431 } 432 433 static void knav_queue_debug_show_instance(struct seq_file *s, 434 struct knav_queue_inst *inst) 435 { 436 struct knav_device *kdev = inst->kdev; 437 struct knav_queue *qh; 438 int cpu = 0; 439 int pushes = 0; 440 int pops = 0; 441 int push_errors = 0; 442 int pop_errors = 0; 443 int notifies = 0; 444 445 if (!knav_queue_is_busy(inst)) 446 return; 447 448 seq_printf(s, "\tqueue id %d (%s)\n", 449 kdev->base_id + inst->id, inst->name); 450 for_each_handle_rcu(qh, inst) { 451 for_each_possible_cpu(cpu) { 452 pushes += per_cpu_ptr(qh->stats, cpu)->pushes; 453 pops += per_cpu_ptr(qh->stats, cpu)->pops; 454 push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors; 455 pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors; 456 notifies += per_cpu_ptr(qh->stats, cpu)->notifies; 457 } 458 459 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n", 460 qh, 461 pushes, 462 pops, 463 knav_queue_get_count(qh), 464 notifies, 465 push_errors, 466 pop_errors); 467 } 468 } 469 470 static int knav_queue_debug_show(struct seq_file *s, void *v) 471 { 472 struct knav_queue_inst *inst; 473 int idx; 474 475 mutex_lock(&knav_dev_lock); 476 seq_printf(s, "%s: %u-%u\n", 477 dev_name(kdev->dev), kdev->base_id, 478 kdev->base_id + kdev->num_queues - 1); 479 for_each_instance(idx, inst, kdev) 480 knav_queue_debug_show_instance(s, inst); 481 mutex_unlock(&knav_dev_lock); 482 483 return 0; 484 } 485 486 static int knav_queue_debug_open(struct inode *inode, struct file *file) 487 { 488 return single_open(file, knav_queue_debug_show, NULL); 489 } 490 491 static const struct file_operations knav_queue_debug_ops = { 492 .open = knav_queue_debug_open, 493 .read = seq_read, 494 .llseek = seq_lseek, 495 .release = single_release, 496 }; 497 498 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout, 499 u32 flags) 500 { 501 unsigned long end; 502 u32 val = 0; 503 504 end = jiffies + msecs_to_jiffies(timeout); 505 while (time_after(end, jiffies)) { 506 val = readl_relaxed(addr); 507 if (flags) 508 val &= flags; 509 if (!val) 510 break; 511 cpu_relax(); 512 } 513 return val ? -ETIMEDOUT : 0; 514 } 515 516 517 static int knav_queue_flush(struct knav_queue *qh) 518 { 519 struct knav_queue_inst *inst = qh->inst; 520 unsigned id = inst->id - inst->qmgr->start_queue; 521 522 atomic_set(&inst->desc_count, 0); 523 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh); 524 return 0; 525 } 526 527 /** 528 * knav_queue_open() - open a hardware queue 529 * @name - name to give the queue handle 530 * @id - desired queue number if any or specifes the type 531 * of queue 532 * @flags - the following flags are applicable to queues: 533 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are 534 * exclusive by default. 535 * Subsequent attempts to open a shared queue should 536 * also have this flag. 537 * 538 * Returns a handle to the open hardware queue if successful. Use IS_ERR() 539 * to check the returned value for error codes. 540 */ 541 void *knav_queue_open(const char *name, unsigned id, 542 unsigned flags) 543 { 544 struct knav_queue *qh = ERR_PTR(-EINVAL); 545 546 switch (id) { 547 case KNAV_QUEUE_QPEND: 548 case KNAV_QUEUE_ACC: 549 case KNAV_QUEUE_GP: 550 qh = knav_queue_open_by_type(name, id, flags); 551 break; 552 553 default: 554 qh = knav_queue_open_by_id(name, id, flags); 555 break; 556 } 557 return qh; 558 } 559 EXPORT_SYMBOL_GPL(knav_queue_open); 560 561 /** 562 * knav_queue_close() - close a hardware queue handle 563 * @qh - handle to close 564 */ 565 void knav_queue_close(void *qhandle) 566 { 567 struct knav_queue *qh = qhandle; 568 struct knav_queue_inst *inst = qh->inst; 569 570 while (atomic_read(&qh->notifier_enabled) > 0) 571 knav_queue_disable_notifier(qh); 572 573 mutex_lock(&knav_dev_lock); 574 list_del_rcu(&qh->list); 575 mutex_unlock(&knav_dev_lock); 576 synchronize_rcu(); 577 if (!knav_queue_is_busy(inst)) { 578 struct knav_range_info *range = inst->range; 579 580 if (range->ops && range->ops->close_queue) 581 range->ops->close_queue(range, inst); 582 } 583 free_percpu(qh->stats); 584 devm_kfree(inst->kdev->dev, qh); 585 } 586 EXPORT_SYMBOL_GPL(knav_queue_close); 587 588 /** 589 * knav_queue_device_control() - Perform control operations on a queue 590 * @qh - queue handle 591 * @cmd - control commands 592 * @arg - command argument 593 * 594 * Returns 0 on success, errno otherwise. 595 */ 596 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd, 597 unsigned long arg) 598 { 599 struct knav_queue *qh = qhandle; 600 struct knav_queue_notify_config *cfg; 601 int ret; 602 603 switch ((int)cmd) { 604 case KNAV_QUEUE_GET_ID: 605 ret = qh->inst->kdev->base_id + qh->inst->id; 606 break; 607 608 case KNAV_QUEUE_FLUSH: 609 ret = knav_queue_flush(qh); 610 break; 611 612 case KNAV_QUEUE_SET_NOTIFIER: 613 cfg = (void *)arg; 614 ret = knav_queue_set_notifier(qh, cfg); 615 break; 616 617 case KNAV_QUEUE_ENABLE_NOTIFY: 618 ret = knav_queue_enable_notifier(qh); 619 break; 620 621 case KNAV_QUEUE_DISABLE_NOTIFY: 622 ret = knav_queue_disable_notifier(qh); 623 break; 624 625 case KNAV_QUEUE_GET_COUNT: 626 ret = knav_queue_get_count(qh); 627 break; 628 629 default: 630 ret = -ENOTSUPP; 631 break; 632 } 633 return ret; 634 } 635 EXPORT_SYMBOL_GPL(knav_queue_device_control); 636 637 638 639 /** 640 * knav_queue_push() - push data (or descriptor) to the tail of a queue 641 * @qh - hardware queue handle 642 * @data - data to push 643 * @size - size of data to push 644 * @flags - can be used to pass additional information 645 * 646 * Returns 0 on success, errno otherwise. 647 */ 648 int knav_queue_push(void *qhandle, dma_addr_t dma, 649 unsigned size, unsigned flags) 650 { 651 struct knav_queue *qh = qhandle; 652 u32 val; 653 654 val = (u32)dma | ((size / 16) - 1); 655 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh); 656 657 this_cpu_inc(qh->stats->pushes); 658 return 0; 659 } 660 EXPORT_SYMBOL_GPL(knav_queue_push); 661 662 /** 663 * knav_queue_pop() - pop data (or descriptor) from the head of a queue 664 * @qh - hardware queue handle 665 * @size - (optional) size of the data pop'ed. 666 * 667 * Returns a DMA address on success, 0 on failure. 668 */ 669 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size) 670 { 671 struct knav_queue *qh = qhandle; 672 struct knav_queue_inst *inst = qh->inst; 673 dma_addr_t dma; 674 u32 val, idx; 675 676 /* are we accumulated? */ 677 if (inst->descs) { 678 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) { 679 atomic_inc(&inst->desc_count); 680 return 0; 681 } 682 idx = atomic_inc_return(&inst->desc_head); 683 idx &= ACC_DESCS_MASK; 684 val = inst->descs[idx]; 685 } else { 686 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh); 687 if (unlikely(!val)) 688 return 0; 689 } 690 691 dma = val & DESC_PTR_MASK; 692 if (size) 693 *size = ((val & DESC_SIZE_MASK) + 1) * 16; 694 695 this_cpu_inc(qh->stats->pops); 696 return dma; 697 } 698 EXPORT_SYMBOL_GPL(knav_queue_pop); 699 700 /* carve out descriptors and push into queue */ 701 static void kdesc_fill_pool(struct knav_pool *pool) 702 { 703 struct knav_region *region; 704 int i; 705 706 region = pool->region; 707 pool->desc_size = region->desc_size; 708 for (i = 0; i < pool->num_desc; i++) { 709 int index = pool->region_offset + i; 710 dma_addr_t dma_addr; 711 unsigned dma_size; 712 dma_addr = region->dma_start + (region->desc_size * index); 713 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES); 714 dma_sync_single_for_device(pool->dev, dma_addr, dma_size, 715 DMA_TO_DEVICE); 716 knav_queue_push(pool->queue, dma_addr, dma_size, 0); 717 } 718 } 719 720 /* pop out descriptors and close the queue */ 721 static void kdesc_empty_pool(struct knav_pool *pool) 722 { 723 dma_addr_t dma; 724 unsigned size; 725 void *desc; 726 int i; 727 728 if (!pool->queue) 729 return; 730 731 for (i = 0;; i++) { 732 dma = knav_queue_pop(pool->queue, &size); 733 if (!dma) 734 break; 735 desc = knav_pool_desc_dma_to_virt(pool, dma); 736 if (!desc) { 737 dev_dbg(pool->kdev->dev, 738 "couldn't unmap desc, continuing\n"); 739 continue; 740 } 741 } 742 WARN_ON(i != pool->num_desc); 743 knav_queue_close(pool->queue); 744 } 745 746 747 /* Get the DMA address of a descriptor */ 748 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt) 749 { 750 struct knav_pool *pool = ph; 751 return pool->region->dma_start + (virt - pool->region->virt_start); 752 } 753 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma); 754 755 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma) 756 { 757 struct knav_pool *pool = ph; 758 return pool->region->virt_start + (dma - pool->region->dma_start); 759 } 760 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt); 761 762 /** 763 * knav_pool_create() - Create a pool of descriptors 764 * @name - name to give the pool handle 765 * @num_desc - numbers of descriptors in the pool 766 * @region_id - QMSS region id from which the descriptors are to be 767 * allocated. 768 * 769 * Returns a pool handle on success. 770 * Use IS_ERR_OR_NULL() to identify error values on return. 771 */ 772 void *knav_pool_create(const char *name, 773 int num_desc, int region_id) 774 { 775 struct knav_region *reg_itr, *region = NULL; 776 struct knav_pool *pool, *pi; 777 struct list_head *node; 778 unsigned last_offset; 779 bool slot_found; 780 int ret; 781 782 if (!kdev) 783 return ERR_PTR(-EPROBE_DEFER); 784 785 if (!kdev->dev) 786 return ERR_PTR(-ENODEV); 787 788 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 789 if (!pool) { 790 dev_err(kdev->dev, "out of memory allocating pool\n"); 791 return ERR_PTR(-ENOMEM); 792 } 793 794 for_each_region(kdev, reg_itr) { 795 if (reg_itr->id != region_id) 796 continue; 797 region = reg_itr; 798 break; 799 } 800 801 if (!region) { 802 dev_err(kdev->dev, "region-id(%d) not found\n", region_id); 803 ret = -EINVAL; 804 goto err; 805 } 806 807 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0); 808 if (IS_ERR_OR_NULL(pool->queue)) { 809 dev_err(kdev->dev, 810 "failed to open queue for pool(%s), error %ld\n", 811 name, PTR_ERR(pool->queue)); 812 ret = PTR_ERR(pool->queue); 813 goto err; 814 } 815 816 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 817 pool->kdev = kdev; 818 pool->dev = kdev->dev; 819 820 mutex_lock(&knav_dev_lock); 821 822 if (num_desc > (region->num_desc - region->used_desc)) { 823 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n", 824 region_id, name); 825 ret = -ENOMEM; 826 goto err_unlock; 827 } 828 829 /* Region maintains a sorted (by region offset) list of pools 830 * use the first free slot which is large enough to accomodate 831 * the request 832 */ 833 last_offset = 0; 834 slot_found = false; 835 node = ®ion->pools; 836 list_for_each_entry(pi, ®ion->pools, region_inst) { 837 if ((pi->region_offset - last_offset) >= num_desc) { 838 slot_found = true; 839 break; 840 } 841 last_offset = pi->region_offset + pi->num_desc; 842 } 843 node = &pi->region_inst; 844 845 if (slot_found) { 846 pool->region = region; 847 pool->num_desc = num_desc; 848 pool->region_offset = last_offset; 849 region->used_desc += num_desc; 850 list_add_tail(&pool->list, &kdev->pools); 851 list_add_tail(&pool->region_inst, node); 852 } else { 853 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n", 854 name, region_id); 855 ret = -ENOMEM; 856 goto err_unlock; 857 } 858 859 mutex_unlock(&knav_dev_lock); 860 kdesc_fill_pool(pool); 861 return pool; 862 863 err_unlock: 864 mutex_unlock(&knav_dev_lock); 865 err: 866 kfree(pool->name); 867 devm_kfree(kdev->dev, pool); 868 return ERR_PTR(ret); 869 } 870 EXPORT_SYMBOL_GPL(knav_pool_create); 871 872 /** 873 * knav_pool_destroy() - Free a pool of descriptors 874 * @pool - pool handle 875 */ 876 void knav_pool_destroy(void *ph) 877 { 878 struct knav_pool *pool = ph; 879 880 if (!pool) 881 return; 882 883 if (!pool->region) 884 return; 885 886 kdesc_empty_pool(pool); 887 mutex_lock(&knav_dev_lock); 888 889 pool->region->used_desc -= pool->num_desc; 890 list_del(&pool->region_inst); 891 list_del(&pool->list); 892 893 mutex_unlock(&knav_dev_lock); 894 kfree(pool->name); 895 devm_kfree(kdev->dev, pool); 896 } 897 EXPORT_SYMBOL_GPL(knav_pool_destroy); 898 899 900 /** 901 * knav_pool_desc_get() - Get a descriptor from the pool 902 * @pool - pool handle 903 * 904 * Returns descriptor from the pool. 905 */ 906 void *knav_pool_desc_get(void *ph) 907 { 908 struct knav_pool *pool = ph; 909 dma_addr_t dma; 910 unsigned size; 911 void *data; 912 913 dma = knav_queue_pop(pool->queue, &size); 914 if (unlikely(!dma)) 915 return ERR_PTR(-ENOMEM); 916 data = knav_pool_desc_dma_to_virt(pool, dma); 917 return data; 918 } 919 EXPORT_SYMBOL_GPL(knav_pool_desc_get); 920 921 /** 922 * knav_pool_desc_put() - return a descriptor to the pool 923 * @pool - pool handle 924 */ 925 void knav_pool_desc_put(void *ph, void *desc) 926 { 927 struct knav_pool *pool = ph; 928 dma_addr_t dma; 929 dma = knav_pool_desc_virt_to_dma(pool, desc); 930 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0); 931 } 932 EXPORT_SYMBOL_GPL(knav_pool_desc_put); 933 934 /** 935 * knav_pool_desc_map() - Map descriptor for DMA transfer 936 * @pool - pool handle 937 * @desc - address of descriptor to map 938 * @size - size of descriptor to map 939 * @dma - DMA address return pointer 940 * @dma_sz - adjusted return pointer 941 * 942 * Returns 0 on success, errno otherwise. 943 */ 944 int knav_pool_desc_map(void *ph, void *desc, unsigned size, 945 dma_addr_t *dma, unsigned *dma_sz) 946 { 947 struct knav_pool *pool = ph; 948 *dma = knav_pool_desc_virt_to_dma(pool, desc); 949 size = min(size, pool->region->desc_size); 950 size = ALIGN(size, SMP_CACHE_BYTES); 951 *dma_sz = size; 952 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE); 953 954 /* Ensure the descriptor reaches to the memory */ 955 __iowmb(); 956 957 return 0; 958 } 959 EXPORT_SYMBOL_GPL(knav_pool_desc_map); 960 961 /** 962 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer 963 * @pool - pool handle 964 * @dma - DMA address of descriptor to unmap 965 * @dma_sz - size of descriptor to unmap 966 * 967 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify 968 * error values on return. 969 */ 970 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz) 971 { 972 struct knav_pool *pool = ph; 973 unsigned desc_sz; 974 void *desc; 975 976 desc_sz = min(dma_sz, pool->region->desc_size); 977 desc = knav_pool_desc_dma_to_virt(pool, dma); 978 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE); 979 prefetch(desc); 980 return desc; 981 } 982 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap); 983 984 /** 985 * knav_pool_count() - Get the number of descriptors in pool. 986 * @pool - pool handle 987 * Returns number of elements in the pool. 988 */ 989 int knav_pool_count(void *ph) 990 { 991 struct knav_pool *pool = ph; 992 return knav_queue_get_count(pool->queue); 993 } 994 EXPORT_SYMBOL_GPL(knav_pool_count); 995 996 static void knav_queue_setup_region(struct knav_device *kdev, 997 struct knav_region *region) 998 { 999 unsigned hw_num_desc, hw_desc_size, size; 1000 struct knav_reg_region __iomem *regs; 1001 struct knav_qmgr_info *qmgr; 1002 struct knav_pool *pool; 1003 int id = region->id; 1004 struct page *page; 1005 1006 /* unused region? */ 1007 if (!region->num_desc) { 1008 dev_warn(kdev->dev, "unused region %s\n", region->name); 1009 return; 1010 } 1011 1012 /* get hardware descriptor value */ 1013 hw_num_desc = ilog2(region->num_desc - 1) + 1; 1014 1015 /* did we force fit ourselves into nothingness? */ 1016 if (region->num_desc < 32) { 1017 region->num_desc = 0; 1018 dev_warn(kdev->dev, "too few descriptors in region %s\n", 1019 region->name); 1020 return; 1021 } 1022 1023 size = region->num_desc * region->desc_size; 1024 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA | 1025 GFP_DMA32); 1026 if (!region->virt_start) { 1027 region->num_desc = 0; 1028 dev_err(kdev->dev, "memory alloc failed for region %s\n", 1029 region->name); 1030 return; 1031 } 1032 region->virt_end = region->virt_start + size; 1033 page = virt_to_page(region->virt_start); 1034 1035 region->dma_start = dma_map_page(kdev->dev, page, 0, size, 1036 DMA_BIDIRECTIONAL); 1037 if (dma_mapping_error(kdev->dev, region->dma_start)) { 1038 dev_err(kdev->dev, "dma map failed for region %s\n", 1039 region->name); 1040 goto fail; 1041 } 1042 region->dma_end = region->dma_start + size; 1043 1044 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 1045 if (!pool) { 1046 dev_err(kdev->dev, "out of memory allocating dummy pool\n"); 1047 goto fail; 1048 } 1049 pool->num_desc = 0; 1050 pool->region_offset = region->num_desc; 1051 list_add(&pool->region_inst, ®ion->pools); 1052 1053 dev_dbg(kdev->dev, 1054 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n", 1055 region->name, id, region->desc_size, region->num_desc, 1056 region->link_index, ®ion->dma_start, ®ion->dma_end, 1057 region->virt_start, region->virt_end); 1058 1059 hw_desc_size = (region->desc_size / 16) - 1; 1060 hw_num_desc -= 5; 1061 1062 for_each_qmgr(kdev, qmgr) { 1063 regs = qmgr->reg_region + id; 1064 writel_relaxed((u32)region->dma_start, ®s->base); 1065 writel_relaxed(region->link_index, ®s->start_index); 1066 writel_relaxed(hw_desc_size << 16 | hw_num_desc, 1067 ®s->size_count); 1068 } 1069 return; 1070 1071 fail: 1072 if (region->dma_start) 1073 dma_unmap_page(kdev->dev, region->dma_start, size, 1074 DMA_BIDIRECTIONAL); 1075 if (region->virt_start) 1076 free_pages_exact(region->virt_start, size); 1077 region->num_desc = 0; 1078 return; 1079 } 1080 1081 static const char *knav_queue_find_name(struct device_node *node) 1082 { 1083 const char *name; 1084 1085 if (of_property_read_string(node, "label", &name) < 0) 1086 name = node->name; 1087 if (!name) 1088 name = "unknown"; 1089 return name; 1090 } 1091 1092 static int knav_queue_setup_regions(struct knav_device *kdev, 1093 struct device_node *regions) 1094 { 1095 struct device *dev = kdev->dev; 1096 struct knav_region *region; 1097 struct device_node *child; 1098 u32 temp[2]; 1099 int ret; 1100 1101 for_each_child_of_node(regions, child) { 1102 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL); 1103 if (!region) { 1104 dev_err(dev, "out of memory allocating region\n"); 1105 return -ENOMEM; 1106 } 1107 1108 region->name = knav_queue_find_name(child); 1109 of_property_read_u32(child, "id", ®ion->id); 1110 ret = of_property_read_u32_array(child, "region-spec", temp, 2); 1111 if (!ret) { 1112 region->num_desc = temp[0]; 1113 region->desc_size = temp[1]; 1114 } else { 1115 dev_err(dev, "invalid region info %s\n", region->name); 1116 devm_kfree(dev, region); 1117 continue; 1118 } 1119 1120 if (!of_get_property(child, "link-index", NULL)) { 1121 dev_err(dev, "No link info for %s\n", region->name); 1122 devm_kfree(dev, region); 1123 continue; 1124 } 1125 ret = of_property_read_u32(child, "link-index", 1126 ®ion->link_index); 1127 if (ret) { 1128 dev_err(dev, "link index not found for %s\n", 1129 region->name); 1130 devm_kfree(dev, region); 1131 continue; 1132 } 1133 1134 INIT_LIST_HEAD(®ion->pools); 1135 list_add_tail(®ion->list, &kdev->regions); 1136 } 1137 if (list_empty(&kdev->regions)) { 1138 dev_err(dev, "no valid region information found\n"); 1139 return -ENODEV; 1140 } 1141 1142 /* Next, we run through the regions and set things up */ 1143 for_each_region(kdev, region) 1144 knav_queue_setup_region(kdev, region); 1145 1146 return 0; 1147 } 1148 1149 static int knav_get_link_ram(struct knav_device *kdev, 1150 const char *name, 1151 struct knav_link_ram_block *block) 1152 { 1153 struct platform_device *pdev = to_platform_device(kdev->dev); 1154 struct device_node *node = pdev->dev.of_node; 1155 u32 temp[2]; 1156 1157 /* 1158 * Note: link ram resources are specified in "entry" sized units. In 1159 * reality, although entries are ~40bits in hardware, we treat them as 1160 * 64-bit entities here. 1161 * 1162 * For example, to specify the internal link ram for Keystone-I class 1163 * devices, we would set the linkram0 resource to 0x80000-0x83fff. 1164 * 1165 * This gets a bit weird when other link rams are used. For example, 1166 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries 1167 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000, 1168 * which accounts for 64-bits per entry, for 16K entries. 1169 */ 1170 if (!of_property_read_u32_array(node, name , temp, 2)) { 1171 if (temp[0]) { 1172 /* 1173 * queue_base specified => using internal or onchip 1174 * link ram WARNING - we do not "reserve" this block 1175 */ 1176 block->dma = (dma_addr_t)temp[0]; 1177 block->virt = NULL; 1178 block->size = temp[1]; 1179 } else { 1180 block->size = temp[1]; 1181 /* queue_base not specific => allocate requested size */ 1182 block->virt = dmam_alloc_coherent(kdev->dev, 1183 8 * block->size, &block->dma, 1184 GFP_KERNEL); 1185 if (!block->virt) { 1186 dev_err(kdev->dev, "failed to alloc linkram\n"); 1187 return -ENOMEM; 1188 } 1189 } 1190 } else { 1191 return -ENODEV; 1192 } 1193 return 0; 1194 } 1195 1196 static int knav_queue_setup_link_ram(struct knav_device *kdev) 1197 { 1198 struct knav_link_ram_block *block; 1199 struct knav_qmgr_info *qmgr; 1200 1201 for_each_qmgr(kdev, qmgr) { 1202 block = &kdev->link_rams[0]; 1203 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n", 1204 &block->dma, block->virt, block->size); 1205 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0); 1206 if (kdev->version == QMSS_66AK2G) 1207 writel_relaxed(block->size, 1208 &qmgr->reg_config->link_ram_size0); 1209 else 1210 writel_relaxed(block->size - 1, 1211 &qmgr->reg_config->link_ram_size0); 1212 block++; 1213 if (!block->size) 1214 continue; 1215 1216 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n", 1217 &block->dma, block->virt, block->size); 1218 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1); 1219 } 1220 1221 return 0; 1222 } 1223 1224 static int knav_setup_queue_range(struct knav_device *kdev, 1225 struct device_node *node) 1226 { 1227 struct device *dev = kdev->dev; 1228 struct knav_range_info *range; 1229 struct knav_qmgr_info *qmgr; 1230 u32 temp[2], start, end, id, index; 1231 int ret, i; 1232 1233 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL); 1234 if (!range) { 1235 dev_err(dev, "out of memory allocating range\n"); 1236 return -ENOMEM; 1237 } 1238 1239 range->kdev = kdev; 1240 range->name = knav_queue_find_name(node); 1241 ret = of_property_read_u32_array(node, "qrange", temp, 2); 1242 if (!ret) { 1243 range->queue_base = temp[0] - kdev->base_id; 1244 range->num_queues = temp[1]; 1245 } else { 1246 dev_err(dev, "invalid queue range %s\n", range->name); 1247 devm_kfree(dev, range); 1248 return -EINVAL; 1249 } 1250 1251 for (i = 0; i < RANGE_MAX_IRQS; i++) { 1252 struct of_phandle_args oirq; 1253 1254 if (of_irq_parse_one(node, i, &oirq)) 1255 break; 1256 1257 range->irqs[i].irq = irq_create_of_mapping(&oirq); 1258 if (range->irqs[i].irq == IRQ_NONE) 1259 break; 1260 1261 range->num_irqs++; 1262 1263 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) { 1264 unsigned long mask; 1265 int bit; 1266 1267 range->irqs[i].cpu_mask = devm_kzalloc(dev, 1268 cpumask_size(), GFP_KERNEL); 1269 if (!range->irqs[i].cpu_mask) 1270 return -ENOMEM; 1271 1272 mask = (oirq.args[2] & 0x0000ff00) >> 8; 1273 for_each_set_bit(bit, &mask, BITS_PER_LONG) 1274 cpumask_set_cpu(bit, range->irqs[i].cpu_mask); 1275 } 1276 } 1277 1278 range->num_irqs = min(range->num_irqs, range->num_queues); 1279 if (range->num_irqs) 1280 range->flags |= RANGE_HAS_IRQ; 1281 1282 if (of_get_property(node, "qalloc-by-id", NULL)) 1283 range->flags |= RANGE_RESERVED; 1284 1285 if (of_get_property(node, "accumulator", NULL)) { 1286 ret = knav_init_acc_range(kdev, node, range); 1287 if (ret < 0) { 1288 devm_kfree(dev, range); 1289 return ret; 1290 } 1291 } else { 1292 range->ops = &knav_gp_range_ops; 1293 } 1294 1295 /* set threshold to 1, and flush out the queues */ 1296 for_each_qmgr(kdev, qmgr) { 1297 start = max(qmgr->start_queue, range->queue_base); 1298 end = min(qmgr->start_queue + qmgr->num_queues, 1299 range->queue_base + range->num_queues); 1300 for (id = start; id < end; id++) { 1301 index = id - qmgr->start_queue; 1302 writel_relaxed(THRESH_GTE | 1, 1303 &qmgr->reg_peek[index].ptr_size_thresh); 1304 writel_relaxed(0, 1305 &qmgr->reg_push[index].ptr_size_thresh); 1306 } 1307 } 1308 1309 list_add_tail(&range->list, &kdev->queue_ranges); 1310 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n", 1311 range->name, range->queue_base, 1312 range->queue_base + range->num_queues - 1, 1313 range->num_irqs, 1314 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "", 1315 (range->flags & RANGE_RESERVED) ? ", reserved" : "", 1316 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : ""); 1317 kdev->num_queues_in_use += range->num_queues; 1318 return 0; 1319 } 1320 1321 static int knav_setup_queue_pools(struct knav_device *kdev, 1322 struct device_node *queue_pools) 1323 { 1324 struct device_node *type, *range; 1325 int ret; 1326 1327 for_each_child_of_node(queue_pools, type) { 1328 for_each_child_of_node(type, range) { 1329 ret = knav_setup_queue_range(kdev, range); 1330 /* return value ignored, we init the rest... */ 1331 } 1332 } 1333 1334 /* ... and barf if they all failed! */ 1335 if (list_empty(&kdev->queue_ranges)) { 1336 dev_err(kdev->dev, "no valid queue range found\n"); 1337 return -ENODEV; 1338 } 1339 return 0; 1340 } 1341 1342 static void knav_free_queue_range(struct knav_device *kdev, 1343 struct knav_range_info *range) 1344 { 1345 if (range->ops && range->ops->free_range) 1346 range->ops->free_range(range); 1347 list_del(&range->list); 1348 devm_kfree(kdev->dev, range); 1349 } 1350 1351 static void knav_free_queue_ranges(struct knav_device *kdev) 1352 { 1353 struct knav_range_info *range; 1354 1355 for (;;) { 1356 range = first_queue_range(kdev); 1357 if (!range) 1358 break; 1359 knav_free_queue_range(kdev, range); 1360 } 1361 } 1362 1363 static void knav_queue_free_regions(struct knav_device *kdev) 1364 { 1365 struct knav_region *region; 1366 struct knav_pool *pool, *tmp; 1367 unsigned size; 1368 1369 for (;;) { 1370 region = first_region(kdev); 1371 if (!region) 1372 break; 1373 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst) 1374 knav_pool_destroy(pool); 1375 1376 size = region->virt_end - region->virt_start; 1377 if (size) 1378 free_pages_exact(region->virt_start, size); 1379 list_del(®ion->list); 1380 devm_kfree(kdev->dev, region); 1381 } 1382 } 1383 1384 static void __iomem *knav_queue_map_reg(struct knav_device *kdev, 1385 struct device_node *node, int index) 1386 { 1387 struct resource res; 1388 void __iomem *regs; 1389 int ret; 1390 1391 ret = of_address_to_resource(node, index, &res); 1392 if (ret) { 1393 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n", 1394 node, index); 1395 return ERR_PTR(ret); 1396 } 1397 1398 regs = devm_ioremap_resource(kdev->dev, &res); 1399 if (IS_ERR(regs)) 1400 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n", 1401 index, node); 1402 return regs; 1403 } 1404 1405 static int knav_queue_init_qmgrs(struct knav_device *kdev, 1406 struct device_node *qmgrs) 1407 { 1408 struct device *dev = kdev->dev; 1409 struct knav_qmgr_info *qmgr; 1410 struct device_node *child; 1411 u32 temp[2]; 1412 int ret; 1413 1414 for_each_child_of_node(qmgrs, child) { 1415 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL); 1416 if (!qmgr) { 1417 dev_err(dev, "out of memory allocating qmgr\n"); 1418 return -ENOMEM; 1419 } 1420 1421 ret = of_property_read_u32_array(child, "managed-queues", 1422 temp, 2); 1423 if (!ret) { 1424 qmgr->start_queue = temp[0]; 1425 qmgr->num_queues = temp[1]; 1426 } else { 1427 dev_err(dev, "invalid qmgr queue range\n"); 1428 devm_kfree(dev, qmgr); 1429 continue; 1430 } 1431 1432 dev_info(dev, "qmgr start queue %d, number of queues %d\n", 1433 qmgr->start_queue, qmgr->num_queues); 1434 1435 qmgr->reg_peek = 1436 knav_queue_map_reg(kdev, child, 1437 KNAV_QUEUE_PEEK_REG_INDEX); 1438 1439 if (kdev->version == QMSS) { 1440 qmgr->reg_status = 1441 knav_queue_map_reg(kdev, child, 1442 KNAV_QUEUE_STATUS_REG_INDEX); 1443 } 1444 1445 qmgr->reg_config = 1446 knav_queue_map_reg(kdev, child, 1447 (kdev->version == QMSS_66AK2G) ? 1448 KNAV_L_QUEUE_CONFIG_REG_INDEX : 1449 KNAV_QUEUE_CONFIG_REG_INDEX); 1450 qmgr->reg_region = 1451 knav_queue_map_reg(kdev, child, 1452 (kdev->version == QMSS_66AK2G) ? 1453 KNAV_L_QUEUE_REGION_REG_INDEX : 1454 KNAV_QUEUE_REGION_REG_INDEX); 1455 1456 qmgr->reg_push = 1457 knav_queue_map_reg(kdev, child, 1458 (kdev->version == QMSS_66AK2G) ? 1459 KNAV_L_QUEUE_PUSH_REG_INDEX : 1460 KNAV_QUEUE_PUSH_REG_INDEX); 1461 1462 if (kdev->version == QMSS) { 1463 qmgr->reg_pop = 1464 knav_queue_map_reg(kdev, child, 1465 KNAV_QUEUE_POP_REG_INDEX); 1466 } 1467 1468 if (IS_ERR(qmgr->reg_peek) || 1469 ((kdev->version == QMSS) && 1470 (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) || 1471 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) || 1472 IS_ERR(qmgr->reg_push)) { 1473 dev_err(dev, "failed to map qmgr regs\n"); 1474 if (kdev->version == QMSS) { 1475 if (!IS_ERR(qmgr->reg_status)) 1476 devm_iounmap(dev, qmgr->reg_status); 1477 if (!IS_ERR(qmgr->reg_pop)) 1478 devm_iounmap(dev, qmgr->reg_pop); 1479 } 1480 if (!IS_ERR(qmgr->reg_peek)) 1481 devm_iounmap(dev, qmgr->reg_peek); 1482 if (!IS_ERR(qmgr->reg_config)) 1483 devm_iounmap(dev, qmgr->reg_config); 1484 if (!IS_ERR(qmgr->reg_region)) 1485 devm_iounmap(dev, qmgr->reg_region); 1486 if (!IS_ERR(qmgr->reg_push)) 1487 devm_iounmap(dev, qmgr->reg_push); 1488 devm_kfree(dev, qmgr); 1489 continue; 1490 } 1491 1492 /* Use same push register for pop as well */ 1493 if (kdev->version == QMSS_66AK2G) 1494 qmgr->reg_pop = qmgr->reg_push; 1495 1496 list_add_tail(&qmgr->list, &kdev->qmgrs); 1497 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n", 1498 qmgr->start_queue, qmgr->num_queues, 1499 qmgr->reg_peek, qmgr->reg_status, 1500 qmgr->reg_config, qmgr->reg_region, 1501 qmgr->reg_push, qmgr->reg_pop); 1502 } 1503 return 0; 1504 } 1505 1506 static int knav_queue_init_pdsps(struct knav_device *kdev, 1507 struct device_node *pdsps) 1508 { 1509 struct device *dev = kdev->dev; 1510 struct knav_pdsp_info *pdsp; 1511 struct device_node *child; 1512 1513 for_each_child_of_node(pdsps, child) { 1514 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL); 1515 if (!pdsp) { 1516 dev_err(dev, "out of memory allocating pdsp\n"); 1517 return -ENOMEM; 1518 } 1519 pdsp->name = knav_queue_find_name(child); 1520 pdsp->iram = 1521 knav_queue_map_reg(kdev, child, 1522 KNAV_QUEUE_PDSP_IRAM_REG_INDEX); 1523 pdsp->regs = 1524 knav_queue_map_reg(kdev, child, 1525 KNAV_QUEUE_PDSP_REGS_REG_INDEX); 1526 pdsp->intd = 1527 knav_queue_map_reg(kdev, child, 1528 KNAV_QUEUE_PDSP_INTD_REG_INDEX); 1529 pdsp->command = 1530 knav_queue_map_reg(kdev, child, 1531 KNAV_QUEUE_PDSP_CMD_REG_INDEX); 1532 1533 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) || 1534 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) { 1535 dev_err(dev, "failed to map pdsp %s regs\n", 1536 pdsp->name); 1537 if (!IS_ERR(pdsp->command)) 1538 devm_iounmap(dev, pdsp->command); 1539 if (!IS_ERR(pdsp->iram)) 1540 devm_iounmap(dev, pdsp->iram); 1541 if (!IS_ERR(pdsp->regs)) 1542 devm_iounmap(dev, pdsp->regs); 1543 if (!IS_ERR(pdsp->intd)) 1544 devm_iounmap(dev, pdsp->intd); 1545 devm_kfree(dev, pdsp); 1546 continue; 1547 } 1548 of_property_read_u32(child, "id", &pdsp->id); 1549 list_add_tail(&pdsp->list, &kdev->pdsps); 1550 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n", 1551 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs, 1552 pdsp->intd); 1553 } 1554 return 0; 1555 } 1556 1557 static int knav_queue_stop_pdsp(struct knav_device *kdev, 1558 struct knav_pdsp_info *pdsp) 1559 { 1560 u32 val, timeout = 1000; 1561 int ret; 1562 1563 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE; 1564 writel_relaxed(val, &pdsp->regs->control); 1565 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout, 1566 PDSP_CTRL_RUNNING); 1567 if (ret < 0) { 1568 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name); 1569 return ret; 1570 } 1571 pdsp->loaded = false; 1572 pdsp->started = false; 1573 return 0; 1574 } 1575 1576 static int knav_queue_load_pdsp(struct knav_device *kdev, 1577 struct knav_pdsp_info *pdsp) 1578 { 1579 int i, ret, fwlen; 1580 const struct firmware *fw; 1581 bool found = false; 1582 u32 *fwdata; 1583 1584 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) { 1585 if (knav_acc_firmwares[i]) { 1586 ret = request_firmware_direct(&fw, 1587 knav_acc_firmwares[i], 1588 kdev->dev); 1589 if (!ret) { 1590 found = true; 1591 break; 1592 } 1593 } 1594 } 1595 1596 if (!found) { 1597 dev_err(kdev->dev, "failed to get firmware for pdsp\n"); 1598 return -ENODEV; 1599 } 1600 1601 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n", 1602 knav_acc_firmwares[i]); 1603 1604 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18); 1605 /* download the firmware */ 1606 fwdata = (u32 *)fw->data; 1607 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32); 1608 for (i = 0; i < fwlen; i++) 1609 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i); 1610 1611 release_firmware(fw); 1612 return 0; 1613 } 1614 1615 static int knav_queue_start_pdsp(struct knav_device *kdev, 1616 struct knav_pdsp_info *pdsp) 1617 { 1618 u32 val, timeout = 1000; 1619 int ret; 1620 1621 /* write a command for sync */ 1622 writel_relaxed(0xffffffff, pdsp->command); 1623 while (readl_relaxed(pdsp->command) != 0xffffffff) 1624 cpu_relax(); 1625 1626 /* soft reset the PDSP */ 1627 val = readl_relaxed(&pdsp->regs->control); 1628 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET); 1629 writel_relaxed(val, &pdsp->regs->control); 1630 1631 /* enable pdsp */ 1632 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE; 1633 writel_relaxed(val, &pdsp->regs->control); 1634 1635 /* wait for command register to clear */ 1636 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0); 1637 if (ret < 0) { 1638 dev_err(kdev->dev, 1639 "timed out on pdsp %s command register wait\n", 1640 pdsp->name); 1641 return ret; 1642 } 1643 return 0; 1644 } 1645 1646 static void knav_queue_stop_pdsps(struct knav_device *kdev) 1647 { 1648 struct knav_pdsp_info *pdsp; 1649 1650 /* disable all pdsps */ 1651 for_each_pdsp(kdev, pdsp) 1652 knav_queue_stop_pdsp(kdev, pdsp); 1653 } 1654 1655 static int knav_queue_start_pdsps(struct knav_device *kdev) 1656 { 1657 struct knav_pdsp_info *pdsp; 1658 int ret; 1659 1660 knav_queue_stop_pdsps(kdev); 1661 /* now load them all. We return success even if pdsp 1662 * is not loaded as acc channels are optional on having 1663 * firmware availability in the system. We set the loaded 1664 * and stated flag and when initialize the acc range, check 1665 * it and init the range only if pdsp is started. 1666 */ 1667 for_each_pdsp(kdev, pdsp) { 1668 ret = knav_queue_load_pdsp(kdev, pdsp); 1669 if (!ret) 1670 pdsp->loaded = true; 1671 } 1672 1673 for_each_pdsp(kdev, pdsp) { 1674 if (pdsp->loaded) { 1675 ret = knav_queue_start_pdsp(kdev, pdsp); 1676 if (!ret) 1677 pdsp->started = true; 1678 } 1679 } 1680 return 0; 1681 } 1682 1683 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id) 1684 { 1685 struct knav_qmgr_info *qmgr; 1686 1687 for_each_qmgr(kdev, qmgr) { 1688 if ((id >= qmgr->start_queue) && 1689 (id < qmgr->start_queue + qmgr->num_queues)) 1690 return qmgr; 1691 } 1692 return NULL; 1693 } 1694 1695 static int knav_queue_init_queue(struct knav_device *kdev, 1696 struct knav_range_info *range, 1697 struct knav_queue_inst *inst, 1698 unsigned id) 1699 { 1700 char irq_name[KNAV_NAME_SIZE]; 1701 inst->qmgr = knav_find_qmgr(id); 1702 if (!inst->qmgr) 1703 return -1; 1704 1705 INIT_LIST_HEAD(&inst->handles); 1706 inst->kdev = kdev; 1707 inst->range = range; 1708 inst->irq_num = -1; 1709 inst->id = id; 1710 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id); 1711 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL); 1712 1713 if (range->ops && range->ops->init_queue) 1714 return range->ops->init_queue(range, inst); 1715 else 1716 return 0; 1717 } 1718 1719 static int knav_queue_init_queues(struct knav_device *kdev) 1720 { 1721 struct knav_range_info *range; 1722 int size, id, base_idx; 1723 int idx = 0, ret = 0; 1724 1725 /* how much do we need for instance data? */ 1726 size = sizeof(struct knav_queue_inst); 1727 1728 /* round this up to a power of 2, keep the index to instance 1729 * arithmetic fast. 1730 * */ 1731 kdev->inst_shift = order_base_2(size); 1732 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use; 1733 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL); 1734 if (!kdev->instances) 1735 return -ENOMEM; 1736 1737 for_each_queue_range(kdev, range) { 1738 if (range->ops && range->ops->init_range) 1739 range->ops->init_range(range); 1740 base_idx = idx; 1741 for (id = range->queue_base; 1742 id < range->queue_base + range->num_queues; id++, idx++) { 1743 ret = knav_queue_init_queue(kdev, range, 1744 knav_queue_idx_to_inst(kdev, idx), id); 1745 if (ret < 0) 1746 return ret; 1747 } 1748 range->queue_base_inst = 1749 knav_queue_idx_to_inst(kdev, base_idx); 1750 } 1751 return 0; 1752 } 1753 1754 /* Match table for of_platform binding */ 1755 static const struct of_device_id keystone_qmss_of_match[] = { 1756 { 1757 .compatible = "ti,keystone-navigator-qmss", 1758 }, 1759 { 1760 .compatible = "ti,66ak2g-navss-qm", 1761 .data = (void *)QMSS_66AK2G, 1762 }, 1763 {}, 1764 }; 1765 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match); 1766 1767 static int knav_queue_probe(struct platform_device *pdev) 1768 { 1769 struct device_node *node = pdev->dev.of_node; 1770 struct device_node *qmgrs, *queue_pools, *regions, *pdsps; 1771 const struct of_device_id *match; 1772 struct device *dev = &pdev->dev; 1773 u32 temp[2]; 1774 int ret; 1775 1776 if (!node) { 1777 dev_err(dev, "device tree info unavailable\n"); 1778 return -ENODEV; 1779 } 1780 1781 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL); 1782 if (!kdev) { 1783 dev_err(dev, "memory allocation failed\n"); 1784 return -ENOMEM; 1785 } 1786 1787 match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev); 1788 if (match && match->data) 1789 kdev->version = QMSS_66AK2G; 1790 1791 platform_set_drvdata(pdev, kdev); 1792 kdev->dev = dev; 1793 INIT_LIST_HEAD(&kdev->queue_ranges); 1794 INIT_LIST_HEAD(&kdev->qmgrs); 1795 INIT_LIST_HEAD(&kdev->pools); 1796 INIT_LIST_HEAD(&kdev->regions); 1797 INIT_LIST_HEAD(&kdev->pdsps); 1798 1799 pm_runtime_enable(&pdev->dev); 1800 ret = pm_runtime_get_sync(&pdev->dev); 1801 if (ret < 0) { 1802 dev_err(dev, "Failed to enable QMSS\n"); 1803 return ret; 1804 } 1805 1806 if (of_property_read_u32_array(node, "queue-range", temp, 2)) { 1807 dev_err(dev, "queue-range not specified\n"); 1808 ret = -ENODEV; 1809 goto err; 1810 } 1811 kdev->base_id = temp[0]; 1812 kdev->num_queues = temp[1]; 1813 1814 /* Initialize queue managers using device tree configuration */ 1815 qmgrs = of_get_child_by_name(node, "qmgrs"); 1816 if (!qmgrs) { 1817 dev_err(dev, "queue manager info not specified\n"); 1818 ret = -ENODEV; 1819 goto err; 1820 } 1821 ret = knav_queue_init_qmgrs(kdev, qmgrs); 1822 of_node_put(qmgrs); 1823 if (ret) 1824 goto err; 1825 1826 /* get pdsp configuration values from device tree */ 1827 pdsps = of_get_child_by_name(node, "pdsps"); 1828 if (pdsps) { 1829 ret = knav_queue_init_pdsps(kdev, pdsps); 1830 if (ret) 1831 goto err; 1832 1833 ret = knav_queue_start_pdsps(kdev); 1834 if (ret) 1835 goto err; 1836 } 1837 of_node_put(pdsps); 1838 1839 /* get usable queue range values from device tree */ 1840 queue_pools = of_get_child_by_name(node, "queue-pools"); 1841 if (!queue_pools) { 1842 dev_err(dev, "queue-pools not specified\n"); 1843 ret = -ENODEV; 1844 goto err; 1845 } 1846 ret = knav_setup_queue_pools(kdev, queue_pools); 1847 of_node_put(queue_pools); 1848 if (ret) 1849 goto err; 1850 1851 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]); 1852 if (ret) { 1853 dev_err(kdev->dev, "could not setup linking ram\n"); 1854 goto err; 1855 } 1856 1857 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]); 1858 if (ret) { 1859 /* 1860 * nothing really, we have one linking ram already, so we just 1861 * live within our means 1862 */ 1863 } 1864 1865 ret = knav_queue_setup_link_ram(kdev); 1866 if (ret) 1867 goto err; 1868 1869 regions = of_get_child_by_name(node, "descriptor-regions"); 1870 if (!regions) { 1871 dev_err(dev, "descriptor-regions not specified\n"); 1872 goto err; 1873 } 1874 ret = knav_queue_setup_regions(kdev, regions); 1875 of_node_put(regions); 1876 if (ret) 1877 goto err; 1878 1879 ret = knav_queue_init_queues(kdev); 1880 if (ret < 0) { 1881 dev_err(dev, "hwqueue initialization failed\n"); 1882 goto err; 1883 } 1884 1885 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL, 1886 &knav_queue_debug_ops); 1887 device_ready = true; 1888 return 0; 1889 1890 err: 1891 knav_queue_stop_pdsps(kdev); 1892 knav_queue_free_regions(kdev); 1893 knav_free_queue_ranges(kdev); 1894 pm_runtime_put_sync(&pdev->dev); 1895 pm_runtime_disable(&pdev->dev); 1896 return ret; 1897 } 1898 1899 static int knav_queue_remove(struct platform_device *pdev) 1900 { 1901 /* TODO: Free resources */ 1902 pm_runtime_put_sync(&pdev->dev); 1903 pm_runtime_disable(&pdev->dev); 1904 return 0; 1905 } 1906 1907 static struct platform_driver keystone_qmss_driver = { 1908 .probe = knav_queue_probe, 1909 .remove = knav_queue_remove, 1910 .driver = { 1911 .name = "keystone-navigator-qmss", 1912 .of_match_table = keystone_qmss_of_match, 1913 }, 1914 }; 1915 module_platform_driver(keystone_qmss_driver); 1916 1917 MODULE_LICENSE("GPL v2"); 1918 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs"); 1919 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>"); 1920 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>"); 1921