xref: /openbmc/linux/drivers/soc/ti/knav_qmss_queue.c (revision bc3acbb8)
1 /*
2  * Keystone Queue Manager subsystem driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5  * Authors:	Sandeep Nair <sandeep_n@ti.com>
6  *		Cyril Chemparathy <cyril@ti.com>
7  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18 
19 #include <linux/debugfs.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/firmware.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/module.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_irq.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/soc/ti/knav_qmss.h>
31 
32 #include "knav_qmss.h"
33 
34 static struct knav_device *kdev;
35 static DEFINE_MUTEX(knav_dev_lock);
36 
37 /* Queue manager register indices in DTS */
38 #define KNAV_QUEUE_PEEK_REG_INDEX	0
39 #define KNAV_QUEUE_STATUS_REG_INDEX	1
40 #define KNAV_QUEUE_CONFIG_REG_INDEX	2
41 #define KNAV_QUEUE_REGION_REG_INDEX	3
42 #define KNAV_QUEUE_PUSH_REG_INDEX	4
43 #define KNAV_QUEUE_POP_REG_INDEX	5
44 
45 /* PDSP register indices in DTS */
46 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
47 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
48 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
49 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
50 
51 #define knav_queue_idx_to_inst(kdev, idx)			\
52 	(kdev->instances + (idx << kdev->inst_shift))
53 
54 #define for_each_handle_rcu(qh, inst)			\
55 	list_for_each_entry_rcu(qh, &inst->handles, list)
56 
57 #define for_each_instance(idx, inst, kdev)		\
58 	for (idx = 0, inst = kdev->instances;		\
59 	     idx < (kdev)->num_queues_in_use;			\
60 	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
61 
62 /* All firmware file names end up here. List the firmware file names below.
63  * Newest followed by older ones. Search is done from start of the array
64  * until a firmware file is found.
65  */
66 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
67 
68 /**
69  * knav_queue_notify: qmss queue notfier call
70  *
71  * @inst:		qmss queue instance like accumulator
72  */
73 void knav_queue_notify(struct knav_queue_inst *inst)
74 {
75 	struct knav_queue *qh;
76 
77 	if (!inst)
78 		return;
79 
80 	rcu_read_lock();
81 	for_each_handle_rcu(qh, inst) {
82 		if (atomic_read(&qh->notifier_enabled) <= 0)
83 			continue;
84 		if (WARN_ON(!qh->notifier_fn))
85 			continue;
86 		this_cpu_inc(qh->stats->notifies);
87 		qh->notifier_fn(qh->notifier_fn_arg);
88 	}
89 	rcu_read_unlock();
90 }
91 EXPORT_SYMBOL_GPL(knav_queue_notify);
92 
93 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
94 {
95 	struct knav_queue_inst *inst = _instdata;
96 
97 	knav_queue_notify(inst);
98 	return IRQ_HANDLED;
99 }
100 
101 static int knav_queue_setup_irq(struct knav_range_info *range,
102 			  struct knav_queue_inst *inst)
103 {
104 	unsigned queue = inst->id - range->queue_base;
105 	unsigned long cpu_map;
106 	int ret = 0, irq;
107 
108 	if (range->flags & RANGE_HAS_IRQ) {
109 		irq = range->irqs[queue].irq;
110 		cpu_map = range->irqs[queue].cpu_map;
111 		ret = request_irq(irq, knav_queue_int_handler, 0,
112 					inst->irq_name, inst);
113 		if (ret)
114 			return ret;
115 		disable_irq(irq);
116 		if (cpu_map) {
117 			ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
118 			if (ret) {
119 				dev_warn(range->kdev->dev,
120 					 "Failed to set IRQ affinity\n");
121 				return ret;
122 			}
123 		}
124 	}
125 	return ret;
126 }
127 
128 static void knav_queue_free_irq(struct knav_queue_inst *inst)
129 {
130 	struct knav_range_info *range = inst->range;
131 	unsigned queue = inst->id - inst->range->queue_base;
132 	int irq;
133 
134 	if (range->flags & RANGE_HAS_IRQ) {
135 		irq = range->irqs[queue].irq;
136 		irq_set_affinity_hint(irq, NULL);
137 		free_irq(irq, inst);
138 	}
139 }
140 
141 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
142 {
143 	return !list_empty(&inst->handles);
144 }
145 
146 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
147 {
148 	return inst->range->flags & RANGE_RESERVED;
149 }
150 
151 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
152 {
153 	struct knav_queue *tmp;
154 
155 	rcu_read_lock();
156 	for_each_handle_rcu(tmp, inst) {
157 		if (tmp->flags & KNAV_QUEUE_SHARED) {
158 			rcu_read_unlock();
159 			return true;
160 		}
161 	}
162 	rcu_read_unlock();
163 	return false;
164 }
165 
166 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
167 						unsigned type)
168 {
169 	if ((type == KNAV_QUEUE_QPEND) &&
170 	    (inst->range->flags & RANGE_HAS_IRQ)) {
171 		return true;
172 	} else if ((type == KNAV_QUEUE_ACC) &&
173 		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
174 		return true;
175 	} else if ((type == KNAV_QUEUE_GP) &&
176 		!(inst->range->flags &
177 			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
178 		return true;
179 	}
180 	return false;
181 }
182 
183 static inline struct knav_queue_inst *
184 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
185 {
186 	struct knav_queue_inst *inst;
187 	int idx;
188 
189 	for_each_instance(idx, inst, kdev) {
190 		if (inst->id == id)
191 			return inst;
192 	}
193 	return NULL;
194 }
195 
196 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
197 {
198 	if (kdev->base_id <= id &&
199 	    kdev->base_id + kdev->num_queues > id) {
200 		id -= kdev->base_id;
201 		return knav_queue_match_id_to_inst(kdev, id);
202 	}
203 	return NULL;
204 }
205 
206 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
207 				      const char *name, unsigned flags)
208 {
209 	struct knav_queue *qh;
210 	unsigned id;
211 	int ret = 0;
212 
213 	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
214 	if (!qh)
215 		return ERR_PTR(-ENOMEM);
216 
217 	qh->stats = alloc_percpu(struct knav_queue_stats);
218 	if (!qh->stats) {
219 		ret = -ENOMEM;
220 		goto err;
221 	}
222 
223 	qh->flags = flags;
224 	qh->inst = inst;
225 	id = inst->id - inst->qmgr->start_queue;
226 	qh->reg_push = &inst->qmgr->reg_push[id];
227 	qh->reg_pop = &inst->qmgr->reg_pop[id];
228 	qh->reg_peek = &inst->qmgr->reg_peek[id];
229 
230 	/* first opener? */
231 	if (!knav_queue_is_busy(inst)) {
232 		struct knav_range_info *range = inst->range;
233 
234 		inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
235 		if (range->ops && range->ops->open_queue)
236 			ret = range->ops->open_queue(range, inst, flags);
237 
238 		if (ret)
239 			goto err;
240 	}
241 	list_add_tail_rcu(&qh->list, &inst->handles);
242 	return qh;
243 
244 err:
245 	if (qh->stats)
246 		free_percpu(qh->stats);
247 	devm_kfree(inst->kdev->dev, qh);
248 	return ERR_PTR(ret);
249 }
250 
251 static struct knav_queue *
252 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
253 {
254 	struct knav_queue_inst *inst;
255 	struct knav_queue *qh;
256 
257 	mutex_lock(&knav_dev_lock);
258 
259 	qh = ERR_PTR(-ENODEV);
260 	inst = knav_queue_find_by_id(id);
261 	if (!inst)
262 		goto unlock_ret;
263 
264 	qh = ERR_PTR(-EEXIST);
265 	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
266 		goto unlock_ret;
267 
268 	qh = ERR_PTR(-EBUSY);
269 	if ((flags & KNAV_QUEUE_SHARED) &&
270 	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
271 		goto unlock_ret;
272 
273 	qh = __knav_queue_open(inst, name, flags);
274 
275 unlock_ret:
276 	mutex_unlock(&knav_dev_lock);
277 
278 	return qh;
279 }
280 
281 static struct knav_queue *knav_queue_open_by_type(const char *name,
282 						unsigned type, unsigned flags)
283 {
284 	struct knav_queue_inst *inst;
285 	struct knav_queue *qh = ERR_PTR(-EINVAL);
286 	int idx;
287 
288 	mutex_lock(&knav_dev_lock);
289 
290 	for_each_instance(idx, inst, kdev) {
291 		if (knav_queue_is_reserved(inst))
292 			continue;
293 		if (!knav_queue_match_type(inst, type))
294 			continue;
295 		if (knav_queue_is_busy(inst))
296 			continue;
297 		qh = __knav_queue_open(inst, name, flags);
298 		goto unlock_ret;
299 	}
300 
301 unlock_ret:
302 	mutex_unlock(&knav_dev_lock);
303 	return qh;
304 }
305 
306 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
307 {
308 	struct knav_range_info *range = inst->range;
309 
310 	if (range->ops && range->ops->set_notify)
311 		range->ops->set_notify(range, inst, enabled);
312 }
313 
314 static int knav_queue_enable_notifier(struct knav_queue *qh)
315 {
316 	struct knav_queue_inst *inst = qh->inst;
317 	bool first;
318 
319 	if (WARN_ON(!qh->notifier_fn))
320 		return -EINVAL;
321 
322 	/* Adjust the per handle notifier count */
323 	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
324 	if (!first)
325 		return 0; /* nothing to do */
326 
327 	/* Now adjust the per instance notifier count */
328 	first = (atomic_inc_return(&inst->num_notifiers) == 1);
329 	if (first)
330 		knav_queue_set_notify(inst, true);
331 
332 	return 0;
333 }
334 
335 static int knav_queue_disable_notifier(struct knav_queue *qh)
336 {
337 	struct knav_queue_inst *inst = qh->inst;
338 	bool last;
339 
340 	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
341 	if (!last)
342 		return 0; /* nothing to do */
343 
344 	last = (atomic_dec_return(&inst->num_notifiers) == 0);
345 	if (last)
346 		knav_queue_set_notify(inst, false);
347 
348 	return 0;
349 }
350 
351 static int knav_queue_set_notifier(struct knav_queue *qh,
352 				struct knav_queue_notify_config *cfg)
353 {
354 	knav_queue_notify_fn old_fn = qh->notifier_fn;
355 
356 	if (!cfg)
357 		return -EINVAL;
358 
359 	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
360 		return -ENOTSUPP;
361 
362 	if (!cfg->fn && old_fn)
363 		knav_queue_disable_notifier(qh);
364 
365 	qh->notifier_fn = cfg->fn;
366 	qh->notifier_fn_arg = cfg->fn_arg;
367 
368 	if (cfg->fn && !old_fn)
369 		knav_queue_enable_notifier(qh);
370 
371 	return 0;
372 }
373 
374 static int knav_gp_set_notify(struct knav_range_info *range,
375 			       struct knav_queue_inst *inst,
376 			       bool enabled)
377 {
378 	unsigned queue;
379 
380 	if (range->flags & RANGE_HAS_IRQ) {
381 		queue = inst->id - range->queue_base;
382 		if (enabled)
383 			enable_irq(range->irqs[queue].irq);
384 		else
385 			disable_irq_nosync(range->irqs[queue].irq);
386 	}
387 	return 0;
388 }
389 
390 static int knav_gp_open_queue(struct knav_range_info *range,
391 				struct knav_queue_inst *inst, unsigned flags)
392 {
393 	return knav_queue_setup_irq(range, inst);
394 }
395 
396 static int knav_gp_close_queue(struct knav_range_info *range,
397 				struct knav_queue_inst *inst)
398 {
399 	knav_queue_free_irq(inst);
400 	return 0;
401 }
402 
403 struct knav_range_ops knav_gp_range_ops = {
404 	.set_notify	= knav_gp_set_notify,
405 	.open_queue	= knav_gp_open_queue,
406 	.close_queue	= knav_gp_close_queue,
407 };
408 
409 
410 static int knav_queue_get_count(void *qhandle)
411 {
412 	struct knav_queue *qh = qhandle;
413 	struct knav_queue_inst *inst = qh->inst;
414 
415 	return readl_relaxed(&qh->reg_peek[0].entry_count) +
416 		atomic_read(&inst->desc_count);
417 }
418 
419 static void knav_queue_debug_show_instance(struct seq_file *s,
420 					struct knav_queue_inst *inst)
421 {
422 	struct knav_device *kdev = inst->kdev;
423 	struct knav_queue *qh;
424 	int cpu = 0;
425 	int pushes = 0;
426 	int pops = 0;
427 	int push_errors = 0;
428 	int pop_errors = 0;
429 	int notifies = 0;
430 
431 	if (!knav_queue_is_busy(inst))
432 		return;
433 
434 	seq_printf(s, "\tqueue id %d (%s)\n",
435 		   kdev->base_id + inst->id, inst->name);
436 	for_each_handle_rcu(qh, inst) {
437 		for_each_possible_cpu(cpu) {
438 			pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
439 			pops += per_cpu_ptr(qh->stats, cpu)->pops;
440 			push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
441 			pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
442 			notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
443 		}
444 
445 		seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
446 				qh,
447 				pushes,
448 				pops,
449 				knav_queue_get_count(qh),
450 				notifies,
451 				push_errors,
452 				pop_errors);
453 	}
454 }
455 
456 static int knav_queue_debug_show(struct seq_file *s, void *v)
457 {
458 	struct knav_queue_inst *inst;
459 	int idx;
460 
461 	mutex_lock(&knav_dev_lock);
462 	seq_printf(s, "%s: %u-%u\n",
463 		   dev_name(kdev->dev), kdev->base_id,
464 		   kdev->base_id + kdev->num_queues - 1);
465 	for_each_instance(idx, inst, kdev)
466 		knav_queue_debug_show_instance(s, inst);
467 	mutex_unlock(&knav_dev_lock);
468 
469 	return 0;
470 }
471 
472 static int knav_queue_debug_open(struct inode *inode, struct file *file)
473 {
474 	return single_open(file, knav_queue_debug_show, NULL);
475 }
476 
477 static const struct file_operations knav_queue_debug_ops = {
478 	.open		= knav_queue_debug_open,
479 	.read		= seq_read,
480 	.llseek		= seq_lseek,
481 	.release	= single_release,
482 };
483 
484 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
485 					u32 flags)
486 {
487 	unsigned long end;
488 	u32 val = 0;
489 
490 	end = jiffies + msecs_to_jiffies(timeout);
491 	while (time_after(end, jiffies)) {
492 		val = readl_relaxed(addr);
493 		if (flags)
494 			val &= flags;
495 		if (!val)
496 			break;
497 		cpu_relax();
498 	}
499 	return val ? -ETIMEDOUT : 0;
500 }
501 
502 
503 static int knav_queue_flush(struct knav_queue *qh)
504 {
505 	struct knav_queue_inst *inst = qh->inst;
506 	unsigned id = inst->id - inst->qmgr->start_queue;
507 
508 	atomic_set(&inst->desc_count, 0);
509 	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
510 	return 0;
511 }
512 
513 /**
514  * knav_queue_open()	- open a hardware queue
515  * @name		- name to give the queue handle
516  * @id			- desired queue number if any or specifes the type
517  *			  of queue
518  * @flags		- the following flags are applicable to queues:
519  *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
520  *			     exclusive by default.
521  *			     Subsequent attempts to open a shared queue should
522  *			     also have this flag.
523  *
524  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
525  * to check the returned value for error codes.
526  */
527 void *knav_queue_open(const char *name, unsigned id,
528 					unsigned flags)
529 {
530 	struct knav_queue *qh = ERR_PTR(-EINVAL);
531 
532 	switch (id) {
533 	case KNAV_QUEUE_QPEND:
534 	case KNAV_QUEUE_ACC:
535 	case KNAV_QUEUE_GP:
536 		qh = knav_queue_open_by_type(name, id, flags);
537 		break;
538 
539 	default:
540 		qh = knav_queue_open_by_id(name, id, flags);
541 		break;
542 	}
543 	return qh;
544 }
545 EXPORT_SYMBOL_GPL(knav_queue_open);
546 
547 /**
548  * knav_queue_close()	- close a hardware queue handle
549  * @qh			- handle to close
550  */
551 void knav_queue_close(void *qhandle)
552 {
553 	struct knav_queue *qh = qhandle;
554 	struct knav_queue_inst *inst = qh->inst;
555 
556 	while (atomic_read(&qh->notifier_enabled) > 0)
557 		knav_queue_disable_notifier(qh);
558 
559 	mutex_lock(&knav_dev_lock);
560 	list_del_rcu(&qh->list);
561 	mutex_unlock(&knav_dev_lock);
562 	synchronize_rcu();
563 	if (!knav_queue_is_busy(inst)) {
564 		struct knav_range_info *range = inst->range;
565 
566 		if (range->ops && range->ops->close_queue)
567 			range->ops->close_queue(range, inst);
568 	}
569 	free_percpu(qh->stats);
570 	devm_kfree(inst->kdev->dev, qh);
571 }
572 EXPORT_SYMBOL_GPL(knav_queue_close);
573 
574 /**
575  * knav_queue_device_control()	- Perform control operations on a queue
576  * @qh				- queue handle
577  * @cmd				- control commands
578  * @arg				- command argument
579  *
580  * Returns 0 on success, errno otherwise.
581  */
582 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
583 				unsigned long arg)
584 {
585 	struct knav_queue *qh = qhandle;
586 	struct knav_queue_notify_config *cfg;
587 	int ret;
588 
589 	switch ((int)cmd) {
590 	case KNAV_QUEUE_GET_ID:
591 		ret = qh->inst->kdev->base_id + qh->inst->id;
592 		break;
593 
594 	case KNAV_QUEUE_FLUSH:
595 		ret = knav_queue_flush(qh);
596 		break;
597 
598 	case KNAV_QUEUE_SET_NOTIFIER:
599 		cfg = (void *)arg;
600 		ret = knav_queue_set_notifier(qh, cfg);
601 		break;
602 
603 	case KNAV_QUEUE_ENABLE_NOTIFY:
604 		ret = knav_queue_enable_notifier(qh);
605 		break;
606 
607 	case KNAV_QUEUE_DISABLE_NOTIFY:
608 		ret = knav_queue_disable_notifier(qh);
609 		break;
610 
611 	case KNAV_QUEUE_GET_COUNT:
612 		ret = knav_queue_get_count(qh);
613 		break;
614 
615 	default:
616 		ret = -ENOTSUPP;
617 		break;
618 	}
619 	return ret;
620 }
621 EXPORT_SYMBOL_GPL(knav_queue_device_control);
622 
623 
624 
625 /**
626  * knav_queue_push()	- push data (or descriptor) to the tail of a queue
627  * @qh			- hardware queue handle
628  * @data		- data to push
629  * @size		- size of data to push
630  * @flags		- can be used to pass additional information
631  *
632  * Returns 0 on success, errno otherwise.
633  */
634 int knav_queue_push(void *qhandle, dma_addr_t dma,
635 					unsigned size, unsigned flags)
636 {
637 	struct knav_queue *qh = qhandle;
638 	u32 val;
639 
640 	val = (u32)dma | ((size / 16) - 1);
641 	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
642 
643 	this_cpu_inc(qh->stats->pushes);
644 	return 0;
645 }
646 EXPORT_SYMBOL_GPL(knav_queue_push);
647 
648 /**
649  * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
650  * @qh			- hardware queue handle
651  * @size		- (optional) size of the data pop'ed.
652  *
653  * Returns a DMA address on success, 0 on failure.
654  */
655 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
656 {
657 	struct knav_queue *qh = qhandle;
658 	struct knav_queue_inst *inst = qh->inst;
659 	dma_addr_t dma;
660 	u32 val, idx;
661 
662 	/* are we accumulated? */
663 	if (inst->descs) {
664 		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
665 			atomic_inc(&inst->desc_count);
666 			return 0;
667 		}
668 		idx  = atomic_inc_return(&inst->desc_head);
669 		idx &= ACC_DESCS_MASK;
670 		val = inst->descs[idx];
671 	} else {
672 		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
673 		if (unlikely(!val))
674 			return 0;
675 	}
676 
677 	dma = val & DESC_PTR_MASK;
678 	if (size)
679 		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
680 
681 	this_cpu_inc(qh->stats->pops);
682 	return dma;
683 }
684 EXPORT_SYMBOL_GPL(knav_queue_pop);
685 
686 /* carve out descriptors and push into queue */
687 static void kdesc_fill_pool(struct knav_pool *pool)
688 {
689 	struct knav_region *region;
690 	int i;
691 
692 	region = pool->region;
693 	pool->desc_size = region->desc_size;
694 	for (i = 0; i < pool->num_desc; i++) {
695 		int index = pool->region_offset + i;
696 		dma_addr_t dma_addr;
697 		unsigned dma_size;
698 		dma_addr = region->dma_start + (region->desc_size * index);
699 		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
700 		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
701 					   DMA_TO_DEVICE);
702 		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
703 	}
704 }
705 
706 /* pop out descriptors and close the queue */
707 static void kdesc_empty_pool(struct knav_pool *pool)
708 {
709 	dma_addr_t dma;
710 	unsigned size;
711 	void *desc;
712 	int i;
713 
714 	if (!pool->queue)
715 		return;
716 
717 	for (i = 0;; i++) {
718 		dma = knav_queue_pop(pool->queue, &size);
719 		if (!dma)
720 			break;
721 		desc = knav_pool_desc_dma_to_virt(pool, dma);
722 		if (!desc) {
723 			dev_dbg(pool->kdev->dev,
724 				"couldn't unmap desc, continuing\n");
725 			continue;
726 		}
727 	}
728 	WARN_ON(i != pool->num_desc);
729 	knav_queue_close(pool->queue);
730 }
731 
732 
733 /* Get the DMA address of a descriptor */
734 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
735 {
736 	struct knav_pool *pool = ph;
737 	return pool->region->dma_start + (virt - pool->region->virt_start);
738 }
739 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
740 
741 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
742 {
743 	struct knav_pool *pool = ph;
744 	return pool->region->virt_start + (dma - pool->region->dma_start);
745 }
746 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
747 
748 /**
749  * knav_pool_create()	- Create a pool of descriptors
750  * @name		- name to give the pool handle
751  * @num_desc		- numbers of descriptors in the pool
752  * @region_id		- QMSS region id from which the descriptors are to be
753  *			  allocated.
754  *
755  * Returns a pool handle on success.
756  * Use IS_ERR_OR_NULL() to identify error values on return.
757  */
758 void *knav_pool_create(const char *name,
759 					int num_desc, int region_id)
760 {
761 	struct knav_region *reg_itr, *region = NULL;
762 	struct knav_pool *pool, *pi;
763 	struct list_head *node;
764 	unsigned last_offset;
765 	bool slot_found;
766 	int ret;
767 
768 	if (!kdev)
769 		return ERR_PTR(-EPROBE_DEFER);
770 
771 	if (!kdev->dev)
772 		return ERR_PTR(-ENODEV);
773 
774 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
775 	if (!pool) {
776 		dev_err(kdev->dev, "out of memory allocating pool\n");
777 		return ERR_PTR(-ENOMEM);
778 	}
779 
780 	for_each_region(kdev, reg_itr) {
781 		if (reg_itr->id != region_id)
782 			continue;
783 		region = reg_itr;
784 		break;
785 	}
786 
787 	if (!region) {
788 		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
789 		ret = -EINVAL;
790 		goto err;
791 	}
792 
793 	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
794 	if (IS_ERR_OR_NULL(pool->queue)) {
795 		dev_err(kdev->dev,
796 			"failed to open queue for pool(%s), error %ld\n",
797 			name, PTR_ERR(pool->queue));
798 		ret = PTR_ERR(pool->queue);
799 		goto err;
800 	}
801 
802 	pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
803 	pool->kdev = kdev;
804 	pool->dev = kdev->dev;
805 
806 	mutex_lock(&knav_dev_lock);
807 
808 	if (num_desc > (region->num_desc - region->used_desc)) {
809 		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
810 			region_id, name);
811 		ret = -ENOMEM;
812 		goto err_unlock;
813 	}
814 
815 	/* Region maintains a sorted (by region offset) list of pools
816 	 * use the first free slot which is large enough to accomodate
817 	 * the request
818 	 */
819 	last_offset = 0;
820 	slot_found = false;
821 	node = &region->pools;
822 	list_for_each_entry(pi, &region->pools, region_inst) {
823 		if ((pi->region_offset - last_offset) >= num_desc) {
824 			slot_found = true;
825 			break;
826 		}
827 		last_offset = pi->region_offset + pi->num_desc;
828 	}
829 	node = &pi->region_inst;
830 
831 	if (slot_found) {
832 		pool->region = region;
833 		pool->num_desc = num_desc;
834 		pool->region_offset = last_offset;
835 		region->used_desc += num_desc;
836 		list_add_tail(&pool->list, &kdev->pools);
837 		list_add_tail(&pool->region_inst, node);
838 	} else {
839 		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
840 			name, region_id);
841 		ret = -ENOMEM;
842 		goto err_unlock;
843 	}
844 
845 	mutex_unlock(&knav_dev_lock);
846 	kdesc_fill_pool(pool);
847 	return pool;
848 
849 err_unlock:
850 	mutex_unlock(&knav_dev_lock);
851 err:
852 	kfree(pool->name);
853 	devm_kfree(kdev->dev, pool);
854 	return ERR_PTR(ret);
855 }
856 EXPORT_SYMBOL_GPL(knav_pool_create);
857 
858 /**
859  * knav_pool_destroy()	- Free a pool of descriptors
860  * @pool		- pool handle
861  */
862 void knav_pool_destroy(void *ph)
863 {
864 	struct knav_pool *pool = ph;
865 
866 	if (!pool)
867 		return;
868 
869 	if (!pool->region)
870 		return;
871 
872 	kdesc_empty_pool(pool);
873 	mutex_lock(&knav_dev_lock);
874 
875 	pool->region->used_desc -= pool->num_desc;
876 	list_del(&pool->region_inst);
877 	list_del(&pool->list);
878 
879 	mutex_unlock(&knav_dev_lock);
880 	kfree(pool->name);
881 	devm_kfree(kdev->dev, pool);
882 }
883 EXPORT_SYMBOL_GPL(knav_pool_destroy);
884 
885 
886 /**
887  * knav_pool_desc_get()	- Get a descriptor from the pool
888  * @pool			- pool handle
889  *
890  * Returns descriptor from the pool.
891  */
892 void *knav_pool_desc_get(void *ph)
893 {
894 	struct knav_pool *pool = ph;
895 	dma_addr_t dma;
896 	unsigned size;
897 	void *data;
898 
899 	dma = knav_queue_pop(pool->queue, &size);
900 	if (unlikely(!dma))
901 		return ERR_PTR(-ENOMEM);
902 	data = knav_pool_desc_dma_to_virt(pool, dma);
903 	return data;
904 }
905 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
906 
907 /**
908  * knav_pool_desc_put()	- return a descriptor to the pool
909  * @pool			- pool handle
910  */
911 void knav_pool_desc_put(void *ph, void *desc)
912 {
913 	struct knav_pool *pool = ph;
914 	dma_addr_t dma;
915 	dma = knav_pool_desc_virt_to_dma(pool, desc);
916 	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
917 }
918 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
919 
920 /**
921  * knav_pool_desc_map()	- Map descriptor for DMA transfer
922  * @pool			- pool handle
923  * @desc			- address of descriptor to map
924  * @size			- size of descriptor to map
925  * @dma				- DMA address return pointer
926  * @dma_sz			- adjusted return pointer
927  *
928  * Returns 0 on success, errno otherwise.
929  */
930 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
931 					dma_addr_t *dma, unsigned *dma_sz)
932 {
933 	struct knav_pool *pool = ph;
934 	*dma = knav_pool_desc_virt_to_dma(pool, desc);
935 	size = min(size, pool->region->desc_size);
936 	size = ALIGN(size, SMP_CACHE_BYTES);
937 	*dma_sz = size;
938 	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
939 
940 	/* Ensure the descriptor reaches to the memory */
941 	__iowmb();
942 
943 	return 0;
944 }
945 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
946 
947 /**
948  * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
949  * @pool			- pool handle
950  * @dma				- DMA address of descriptor to unmap
951  * @dma_sz			- size of descriptor to unmap
952  *
953  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
954  * error values on return.
955  */
956 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
957 {
958 	struct knav_pool *pool = ph;
959 	unsigned desc_sz;
960 	void *desc;
961 
962 	desc_sz = min(dma_sz, pool->region->desc_size);
963 	desc = knav_pool_desc_dma_to_virt(pool, dma);
964 	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
965 	prefetch(desc);
966 	return desc;
967 }
968 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
969 
970 /**
971  * knav_pool_count()	- Get the number of descriptors in pool.
972  * @pool		- pool handle
973  * Returns number of elements in the pool.
974  */
975 int knav_pool_count(void *ph)
976 {
977 	struct knav_pool *pool = ph;
978 	return knav_queue_get_count(pool->queue);
979 }
980 EXPORT_SYMBOL_GPL(knav_pool_count);
981 
982 static void knav_queue_setup_region(struct knav_device *kdev,
983 					struct knav_region *region)
984 {
985 	unsigned hw_num_desc, hw_desc_size, size;
986 	struct knav_reg_region __iomem  *regs;
987 	struct knav_qmgr_info *qmgr;
988 	struct knav_pool *pool;
989 	int id = region->id;
990 	struct page *page;
991 
992 	/* unused region? */
993 	if (!region->num_desc) {
994 		dev_warn(kdev->dev, "unused region %s\n", region->name);
995 		return;
996 	}
997 
998 	/* get hardware descriptor value */
999 	hw_num_desc = ilog2(region->num_desc - 1) + 1;
1000 
1001 	/* did we force fit ourselves into nothingness? */
1002 	if (region->num_desc < 32) {
1003 		region->num_desc = 0;
1004 		dev_warn(kdev->dev, "too few descriptors in region %s\n",
1005 			 region->name);
1006 		return;
1007 	}
1008 
1009 	size = region->num_desc * region->desc_size;
1010 	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1011 						GFP_DMA32);
1012 	if (!region->virt_start) {
1013 		region->num_desc = 0;
1014 		dev_err(kdev->dev, "memory alloc failed for region %s\n",
1015 			region->name);
1016 		return;
1017 	}
1018 	region->virt_end = region->virt_start + size;
1019 	page = virt_to_page(region->virt_start);
1020 
1021 	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1022 					 DMA_BIDIRECTIONAL);
1023 	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1024 		dev_err(kdev->dev, "dma map failed for region %s\n",
1025 			region->name);
1026 		goto fail;
1027 	}
1028 	region->dma_end = region->dma_start + size;
1029 
1030 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1031 	if (!pool) {
1032 		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1033 		goto fail;
1034 	}
1035 	pool->num_desc = 0;
1036 	pool->region_offset = region->num_desc;
1037 	list_add(&pool->region_inst, &region->pools);
1038 
1039 	dev_dbg(kdev->dev,
1040 		"region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1041 		region->name, id, region->desc_size, region->num_desc,
1042 		region->link_index, &region->dma_start, &region->dma_end,
1043 		region->virt_start, region->virt_end);
1044 
1045 	hw_desc_size = (region->desc_size / 16) - 1;
1046 	hw_num_desc -= 5;
1047 
1048 	for_each_qmgr(kdev, qmgr) {
1049 		regs = qmgr->reg_region + id;
1050 		writel_relaxed((u32)region->dma_start, &regs->base);
1051 		writel_relaxed(region->link_index, &regs->start_index);
1052 		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1053 			       &regs->size_count);
1054 	}
1055 	return;
1056 
1057 fail:
1058 	if (region->dma_start)
1059 		dma_unmap_page(kdev->dev, region->dma_start, size,
1060 				DMA_BIDIRECTIONAL);
1061 	if (region->virt_start)
1062 		free_pages_exact(region->virt_start, size);
1063 	region->num_desc = 0;
1064 	return;
1065 }
1066 
1067 static const char *knav_queue_find_name(struct device_node *node)
1068 {
1069 	const char *name;
1070 
1071 	if (of_property_read_string(node, "label", &name) < 0)
1072 		name = node->name;
1073 	if (!name)
1074 		name = "unknown";
1075 	return name;
1076 }
1077 
1078 static int knav_queue_setup_regions(struct knav_device *kdev,
1079 					struct device_node *regions)
1080 {
1081 	struct device *dev = kdev->dev;
1082 	struct knav_region *region;
1083 	struct device_node *child;
1084 	u32 temp[2];
1085 	int ret;
1086 
1087 	for_each_child_of_node(regions, child) {
1088 		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1089 		if (!region) {
1090 			dev_err(dev, "out of memory allocating region\n");
1091 			return -ENOMEM;
1092 		}
1093 
1094 		region->name = knav_queue_find_name(child);
1095 		of_property_read_u32(child, "id", &region->id);
1096 		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1097 		if (!ret) {
1098 			region->num_desc  = temp[0];
1099 			region->desc_size = temp[1];
1100 		} else {
1101 			dev_err(dev, "invalid region info %s\n", region->name);
1102 			devm_kfree(dev, region);
1103 			continue;
1104 		}
1105 
1106 		if (!of_get_property(child, "link-index", NULL)) {
1107 			dev_err(dev, "No link info for %s\n", region->name);
1108 			devm_kfree(dev, region);
1109 			continue;
1110 		}
1111 		ret = of_property_read_u32(child, "link-index",
1112 					   &region->link_index);
1113 		if (ret) {
1114 			dev_err(dev, "link index not found for %s\n",
1115 				region->name);
1116 			devm_kfree(dev, region);
1117 			continue;
1118 		}
1119 
1120 		INIT_LIST_HEAD(&region->pools);
1121 		list_add_tail(&region->list, &kdev->regions);
1122 	}
1123 	if (list_empty(&kdev->regions)) {
1124 		dev_err(dev, "no valid region information found\n");
1125 		return -ENODEV;
1126 	}
1127 
1128 	/* Next, we run through the regions and set things up */
1129 	for_each_region(kdev, region)
1130 		knav_queue_setup_region(kdev, region);
1131 
1132 	return 0;
1133 }
1134 
1135 static int knav_get_link_ram(struct knav_device *kdev,
1136 				       const char *name,
1137 				       struct knav_link_ram_block *block)
1138 {
1139 	struct platform_device *pdev = to_platform_device(kdev->dev);
1140 	struct device_node *node = pdev->dev.of_node;
1141 	u32 temp[2];
1142 
1143 	/*
1144 	 * Note: link ram resources are specified in "entry" sized units. In
1145 	 * reality, although entries are ~40bits in hardware, we treat them as
1146 	 * 64-bit entities here.
1147 	 *
1148 	 * For example, to specify the internal link ram for Keystone-I class
1149 	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1150 	 *
1151 	 * This gets a bit weird when other link rams are used.  For example,
1152 	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1153 	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1154 	 * which accounts for 64-bits per entry, for 16K entries.
1155 	 */
1156 	if (!of_property_read_u32_array(node, name , temp, 2)) {
1157 		if (temp[0]) {
1158 			/*
1159 			 * queue_base specified => using internal or onchip
1160 			 * link ram WARNING - we do not "reserve" this block
1161 			 */
1162 			block->dma = (dma_addr_t)temp[0];
1163 			block->virt = NULL;
1164 			block->size = temp[1];
1165 		} else {
1166 			block->size = temp[1];
1167 			/* queue_base not specific => allocate requested size */
1168 			block->virt = dmam_alloc_coherent(kdev->dev,
1169 						  8 * block->size, &block->dma,
1170 						  GFP_KERNEL);
1171 			if (!block->virt) {
1172 				dev_err(kdev->dev, "failed to alloc linkram\n");
1173 				return -ENOMEM;
1174 			}
1175 		}
1176 	} else {
1177 		return -ENODEV;
1178 	}
1179 	return 0;
1180 }
1181 
1182 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1183 {
1184 	struct knav_link_ram_block *block;
1185 	struct knav_qmgr_info *qmgr;
1186 
1187 	for_each_qmgr(kdev, qmgr) {
1188 		block = &kdev->link_rams[0];
1189 		dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1190 			&block->dma, block->virt, block->size);
1191 		writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1192 		writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1193 
1194 		block++;
1195 		if (!block->size)
1196 			continue;
1197 
1198 		dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1199 			&block->dma, block->virt, block->size);
1200 		writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1201 	}
1202 
1203 	return 0;
1204 }
1205 
1206 static int knav_setup_queue_range(struct knav_device *kdev,
1207 					struct device_node *node)
1208 {
1209 	struct device *dev = kdev->dev;
1210 	struct knav_range_info *range;
1211 	struct knav_qmgr_info *qmgr;
1212 	u32 temp[2], start, end, id, index;
1213 	int ret, i;
1214 
1215 	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1216 	if (!range) {
1217 		dev_err(dev, "out of memory allocating range\n");
1218 		return -ENOMEM;
1219 	}
1220 
1221 	range->kdev = kdev;
1222 	range->name = knav_queue_find_name(node);
1223 	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1224 	if (!ret) {
1225 		range->queue_base = temp[0] - kdev->base_id;
1226 		range->num_queues = temp[1];
1227 	} else {
1228 		dev_err(dev, "invalid queue range %s\n", range->name);
1229 		devm_kfree(dev, range);
1230 		return -EINVAL;
1231 	}
1232 
1233 	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1234 		struct of_phandle_args oirq;
1235 
1236 		if (of_irq_parse_one(node, i, &oirq))
1237 			break;
1238 
1239 		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1240 		if (range->irqs[i].irq == IRQ_NONE)
1241 			break;
1242 
1243 		range->num_irqs++;
1244 
1245 		if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3)
1246 			range->irqs[i].cpu_map =
1247 				(oirq.args[2] & 0x0000ff00) >> 8;
1248 	}
1249 
1250 	range->num_irqs = min(range->num_irqs, range->num_queues);
1251 	if (range->num_irqs)
1252 		range->flags |= RANGE_HAS_IRQ;
1253 
1254 	if (of_get_property(node, "qalloc-by-id", NULL))
1255 		range->flags |= RANGE_RESERVED;
1256 
1257 	if (of_get_property(node, "accumulator", NULL)) {
1258 		ret = knav_init_acc_range(kdev, node, range);
1259 		if (ret < 0) {
1260 			devm_kfree(dev, range);
1261 			return ret;
1262 		}
1263 	} else {
1264 		range->ops = &knav_gp_range_ops;
1265 	}
1266 
1267 	/* set threshold to 1, and flush out the queues */
1268 	for_each_qmgr(kdev, qmgr) {
1269 		start = max(qmgr->start_queue, range->queue_base);
1270 		end   = min(qmgr->start_queue + qmgr->num_queues,
1271 			    range->queue_base + range->num_queues);
1272 		for (id = start; id < end; id++) {
1273 			index = id - qmgr->start_queue;
1274 			writel_relaxed(THRESH_GTE | 1,
1275 				       &qmgr->reg_peek[index].ptr_size_thresh);
1276 			writel_relaxed(0,
1277 				       &qmgr->reg_push[index].ptr_size_thresh);
1278 		}
1279 	}
1280 
1281 	list_add_tail(&range->list, &kdev->queue_ranges);
1282 	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1283 		range->name, range->queue_base,
1284 		range->queue_base + range->num_queues - 1,
1285 		range->num_irqs,
1286 		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1287 		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1288 		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1289 	kdev->num_queues_in_use += range->num_queues;
1290 	return 0;
1291 }
1292 
1293 static int knav_setup_queue_pools(struct knav_device *kdev,
1294 				   struct device_node *queue_pools)
1295 {
1296 	struct device_node *type, *range;
1297 	int ret;
1298 
1299 	for_each_child_of_node(queue_pools, type) {
1300 		for_each_child_of_node(type, range) {
1301 			ret = knav_setup_queue_range(kdev, range);
1302 			/* return value ignored, we init the rest... */
1303 		}
1304 	}
1305 
1306 	/* ... and barf if they all failed! */
1307 	if (list_empty(&kdev->queue_ranges)) {
1308 		dev_err(kdev->dev, "no valid queue range found\n");
1309 		return -ENODEV;
1310 	}
1311 	return 0;
1312 }
1313 
1314 static void knav_free_queue_range(struct knav_device *kdev,
1315 				  struct knav_range_info *range)
1316 {
1317 	if (range->ops && range->ops->free_range)
1318 		range->ops->free_range(range);
1319 	list_del(&range->list);
1320 	devm_kfree(kdev->dev, range);
1321 }
1322 
1323 static void knav_free_queue_ranges(struct knav_device *kdev)
1324 {
1325 	struct knav_range_info *range;
1326 
1327 	for (;;) {
1328 		range = first_queue_range(kdev);
1329 		if (!range)
1330 			break;
1331 		knav_free_queue_range(kdev, range);
1332 	}
1333 }
1334 
1335 static void knav_queue_free_regions(struct knav_device *kdev)
1336 {
1337 	struct knav_region *region;
1338 	struct knav_pool *pool, *tmp;
1339 	unsigned size;
1340 
1341 	for (;;) {
1342 		region = first_region(kdev);
1343 		if (!region)
1344 			break;
1345 		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1346 			knav_pool_destroy(pool);
1347 
1348 		size = region->virt_end - region->virt_start;
1349 		if (size)
1350 			free_pages_exact(region->virt_start, size);
1351 		list_del(&region->list);
1352 		devm_kfree(kdev->dev, region);
1353 	}
1354 }
1355 
1356 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1357 					struct device_node *node, int index)
1358 {
1359 	struct resource res;
1360 	void __iomem *regs;
1361 	int ret;
1362 
1363 	ret = of_address_to_resource(node, index, &res);
1364 	if (ret) {
1365 		dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1366 			node->name, index);
1367 		return ERR_PTR(ret);
1368 	}
1369 
1370 	regs = devm_ioremap_resource(kdev->dev, &res);
1371 	if (IS_ERR(regs))
1372 		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1373 			index, node->name);
1374 	return regs;
1375 }
1376 
1377 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1378 					struct device_node *qmgrs)
1379 {
1380 	struct device *dev = kdev->dev;
1381 	struct knav_qmgr_info *qmgr;
1382 	struct device_node *child;
1383 	u32 temp[2];
1384 	int ret;
1385 
1386 	for_each_child_of_node(qmgrs, child) {
1387 		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1388 		if (!qmgr) {
1389 			dev_err(dev, "out of memory allocating qmgr\n");
1390 			return -ENOMEM;
1391 		}
1392 
1393 		ret = of_property_read_u32_array(child, "managed-queues",
1394 						 temp, 2);
1395 		if (!ret) {
1396 			qmgr->start_queue = temp[0];
1397 			qmgr->num_queues = temp[1];
1398 		} else {
1399 			dev_err(dev, "invalid qmgr queue range\n");
1400 			devm_kfree(dev, qmgr);
1401 			continue;
1402 		}
1403 
1404 		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1405 			 qmgr->start_queue, qmgr->num_queues);
1406 
1407 		qmgr->reg_peek =
1408 			knav_queue_map_reg(kdev, child,
1409 					   KNAV_QUEUE_PEEK_REG_INDEX);
1410 		qmgr->reg_status =
1411 			knav_queue_map_reg(kdev, child,
1412 					   KNAV_QUEUE_STATUS_REG_INDEX);
1413 		qmgr->reg_config =
1414 			knav_queue_map_reg(kdev, child,
1415 					   KNAV_QUEUE_CONFIG_REG_INDEX);
1416 		qmgr->reg_region =
1417 			knav_queue_map_reg(kdev, child,
1418 					   KNAV_QUEUE_REGION_REG_INDEX);
1419 		qmgr->reg_push =
1420 			knav_queue_map_reg(kdev, child,
1421 					   KNAV_QUEUE_PUSH_REG_INDEX);
1422 		qmgr->reg_pop =
1423 			knav_queue_map_reg(kdev, child,
1424 					   KNAV_QUEUE_POP_REG_INDEX);
1425 
1426 		if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1427 		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1428 		    IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1429 			dev_err(dev, "failed to map qmgr regs\n");
1430 			if (!IS_ERR(qmgr->reg_peek))
1431 				devm_iounmap(dev, qmgr->reg_peek);
1432 			if (!IS_ERR(qmgr->reg_status))
1433 				devm_iounmap(dev, qmgr->reg_status);
1434 			if (!IS_ERR(qmgr->reg_config))
1435 				devm_iounmap(dev, qmgr->reg_config);
1436 			if (!IS_ERR(qmgr->reg_region))
1437 				devm_iounmap(dev, qmgr->reg_region);
1438 			if (!IS_ERR(qmgr->reg_push))
1439 				devm_iounmap(dev, qmgr->reg_push);
1440 			if (!IS_ERR(qmgr->reg_pop))
1441 				devm_iounmap(dev, qmgr->reg_pop);
1442 			devm_kfree(dev, qmgr);
1443 			continue;
1444 		}
1445 
1446 		list_add_tail(&qmgr->list, &kdev->qmgrs);
1447 		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1448 			 qmgr->start_queue, qmgr->num_queues,
1449 			 qmgr->reg_peek, qmgr->reg_status,
1450 			 qmgr->reg_config, qmgr->reg_region,
1451 			 qmgr->reg_push, qmgr->reg_pop);
1452 	}
1453 	return 0;
1454 }
1455 
1456 static int knav_queue_init_pdsps(struct knav_device *kdev,
1457 					struct device_node *pdsps)
1458 {
1459 	struct device *dev = kdev->dev;
1460 	struct knav_pdsp_info *pdsp;
1461 	struct device_node *child;
1462 
1463 	for_each_child_of_node(pdsps, child) {
1464 		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1465 		if (!pdsp) {
1466 			dev_err(dev, "out of memory allocating pdsp\n");
1467 			return -ENOMEM;
1468 		}
1469 		pdsp->name = knav_queue_find_name(child);
1470 		pdsp->iram =
1471 			knav_queue_map_reg(kdev, child,
1472 					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1473 		pdsp->regs =
1474 			knav_queue_map_reg(kdev, child,
1475 					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1476 		pdsp->intd =
1477 			knav_queue_map_reg(kdev, child,
1478 					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1479 		pdsp->command =
1480 			knav_queue_map_reg(kdev, child,
1481 					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1482 
1483 		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1484 		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1485 			dev_err(dev, "failed to map pdsp %s regs\n",
1486 				pdsp->name);
1487 			if (!IS_ERR(pdsp->command))
1488 				devm_iounmap(dev, pdsp->command);
1489 			if (!IS_ERR(pdsp->iram))
1490 				devm_iounmap(dev, pdsp->iram);
1491 			if (!IS_ERR(pdsp->regs))
1492 				devm_iounmap(dev, pdsp->regs);
1493 			if (!IS_ERR(pdsp->intd))
1494 				devm_iounmap(dev, pdsp->intd);
1495 			devm_kfree(dev, pdsp);
1496 			continue;
1497 		}
1498 		of_property_read_u32(child, "id", &pdsp->id);
1499 		list_add_tail(&pdsp->list, &kdev->pdsps);
1500 		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1501 			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1502 			pdsp->intd);
1503 	}
1504 	return 0;
1505 }
1506 
1507 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1508 			  struct knav_pdsp_info *pdsp)
1509 {
1510 	u32 val, timeout = 1000;
1511 	int ret;
1512 
1513 	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1514 	writel_relaxed(val, &pdsp->regs->control);
1515 	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1516 					PDSP_CTRL_RUNNING);
1517 	if (ret < 0) {
1518 		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1519 		return ret;
1520 	}
1521 	pdsp->loaded = false;
1522 	pdsp->started = false;
1523 	return 0;
1524 }
1525 
1526 static int knav_queue_load_pdsp(struct knav_device *kdev,
1527 			  struct knav_pdsp_info *pdsp)
1528 {
1529 	int i, ret, fwlen;
1530 	const struct firmware *fw;
1531 	bool found = false;
1532 	u32 *fwdata;
1533 
1534 	for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1535 		if (knav_acc_firmwares[i]) {
1536 			ret = request_firmware_direct(&fw,
1537 						      knav_acc_firmwares[i],
1538 						      kdev->dev);
1539 			if (!ret) {
1540 				found = true;
1541 				break;
1542 			}
1543 		}
1544 	}
1545 
1546 	if (!found) {
1547 		dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1548 		return -ENODEV;
1549 	}
1550 
1551 	dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1552 		 knav_acc_firmwares[i]);
1553 
1554 	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1555 	/* download the firmware */
1556 	fwdata = (u32 *)fw->data;
1557 	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1558 	for (i = 0; i < fwlen; i++)
1559 		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1560 
1561 	release_firmware(fw);
1562 	return 0;
1563 }
1564 
1565 static int knav_queue_start_pdsp(struct knav_device *kdev,
1566 			   struct knav_pdsp_info *pdsp)
1567 {
1568 	u32 val, timeout = 1000;
1569 	int ret;
1570 
1571 	/* write a command for sync */
1572 	writel_relaxed(0xffffffff, pdsp->command);
1573 	while (readl_relaxed(pdsp->command) != 0xffffffff)
1574 		cpu_relax();
1575 
1576 	/* soft reset the PDSP */
1577 	val  = readl_relaxed(&pdsp->regs->control);
1578 	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1579 	writel_relaxed(val, &pdsp->regs->control);
1580 
1581 	/* enable pdsp */
1582 	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1583 	writel_relaxed(val, &pdsp->regs->control);
1584 
1585 	/* wait for command register to clear */
1586 	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1587 	if (ret < 0) {
1588 		dev_err(kdev->dev,
1589 			"timed out on pdsp %s command register wait\n",
1590 			pdsp->name);
1591 		return ret;
1592 	}
1593 	return 0;
1594 }
1595 
1596 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1597 {
1598 	struct knav_pdsp_info *pdsp;
1599 
1600 	/* disable all pdsps */
1601 	for_each_pdsp(kdev, pdsp)
1602 		knav_queue_stop_pdsp(kdev, pdsp);
1603 }
1604 
1605 static int knav_queue_start_pdsps(struct knav_device *kdev)
1606 {
1607 	struct knav_pdsp_info *pdsp;
1608 	int ret;
1609 
1610 	knav_queue_stop_pdsps(kdev);
1611 	/* now load them all. We return success even if pdsp
1612 	 * is not loaded as acc channels are optional on having
1613 	 * firmware availability in the system. We set the loaded
1614 	 * and stated flag and when initialize the acc range, check
1615 	 * it and init the range only if pdsp is started.
1616 	 */
1617 	for_each_pdsp(kdev, pdsp) {
1618 		ret = knav_queue_load_pdsp(kdev, pdsp);
1619 		if (!ret)
1620 			pdsp->loaded = true;
1621 	}
1622 
1623 	for_each_pdsp(kdev, pdsp) {
1624 		if (pdsp->loaded) {
1625 			ret = knav_queue_start_pdsp(kdev, pdsp);
1626 			if (!ret)
1627 				pdsp->started = true;
1628 		}
1629 	}
1630 	return 0;
1631 }
1632 
1633 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1634 {
1635 	struct knav_qmgr_info *qmgr;
1636 
1637 	for_each_qmgr(kdev, qmgr) {
1638 		if ((id >= qmgr->start_queue) &&
1639 		    (id < qmgr->start_queue + qmgr->num_queues))
1640 			return qmgr;
1641 	}
1642 	return NULL;
1643 }
1644 
1645 static int knav_queue_init_queue(struct knav_device *kdev,
1646 					struct knav_range_info *range,
1647 					struct knav_queue_inst *inst,
1648 					unsigned id)
1649 {
1650 	char irq_name[KNAV_NAME_SIZE];
1651 	inst->qmgr = knav_find_qmgr(id);
1652 	if (!inst->qmgr)
1653 		return -1;
1654 
1655 	INIT_LIST_HEAD(&inst->handles);
1656 	inst->kdev = kdev;
1657 	inst->range = range;
1658 	inst->irq_num = -1;
1659 	inst->id = id;
1660 	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1661 	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1662 
1663 	if (range->ops && range->ops->init_queue)
1664 		return range->ops->init_queue(range, inst);
1665 	else
1666 		return 0;
1667 }
1668 
1669 static int knav_queue_init_queues(struct knav_device *kdev)
1670 {
1671 	struct knav_range_info *range;
1672 	int size, id, base_idx;
1673 	int idx = 0, ret = 0;
1674 
1675 	/* how much do we need for instance data? */
1676 	size = sizeof(struct knav_queue_inst);
1677 
1678 	/* round this up to a power of 2, keep the index to instance
1679 	 * arithmetic fast.
1680 	 * */
1681 	kdev->inst_shift = order_base_2(size);
1682 	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1683 	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1684 	if (!kdev->instances)
1685 		return -ENOMEM;
1686 
1687 	for_each_queue_range(kdev, range) {
1688 		if (range->ops && range->ops->init_range)
1689 			range->ops->init_range(range);
1690 		base_idx = idx;
1691 		for (id = range->queue_base;
1692 		     id < range->queue_base + range->num_queues; id++, idx++) {
1693 			ret = knav_queue_init_queue(kdev, range,
1694 					knav_queue_idx_to_inst(kdev, idx), id);
1695 			if (ret < 0)
1696 				return ret;
1697 		}
1698 		range->queue_base_inst =
1699 			knav_queue_idx_to_inst(kdev, base_idx);
1700 	}
1701 	return 0;
1702 }
1703 
1704 static int knav_queue_probe(struct platform_device *pdev)
1705 {
1706 	struct device_node *node = pdev->dev.of_node;
1707 	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1708 	struct device *dev = &pdev->dev;
1709 	u32 temp[2];
1710 	int ret;
1711 
1712 	if (!node) {
1713 		dev_err(dev, "device tree info unavailable\n");
1714 		return -ENODEV;
1715 	}
1716 
1717 	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1718 	if (!kdev) {
1719 		dev_err(dev, "memory allocation failed\n");
1720 		return -ENOMEM;
1721 	}
1722 
1723 	platform_set_drvdata(pdev, kdev);
1724 	kdev->dev = dev;
1725 	INIT_LIST_HEAD(&kdev->queue_ranges);
1726 	INIT_LIST_HEAD(&kdev->qmgrs);
1727 	INIT_LIST_HEAD(&kdev->pools);
1728 	INIT_LIST_HEAD(&kdev->regions);
1729 	INIT_LIST_HEAD(&kdev->pdsps);
1730 
1731 	pm_runtime_enable(&pdev->dev);
1732 	ret = pm_runtime_get_sync(&pdev->dev);
1733 	if (ret < 0) {
1734 		dev_err(dev, "Failed to enable QMSS\n");
1735 		return ret;
1736 	}
1737 
1738 	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1739 		dev_err(dev, "queue-range not specified\n");
1740 		ret = -ENODEV;
1741 		goto err;
1742 	}
1743 	kdev->base_id    = temp[0];
1744 	kdev->num_queues = temp[1];
1745 
1746 	/* Initialize queue managers using device tree configuration */
1747 	qmgrs =  of_get_child_by_name(node, "qmgrs");
1748 	if (!qmgrs) {
1749 		dev_err(dev, "queue manager info not specified\n");
1750 		ret = -ENODEV;
1751 		goto err;
1752 	}
1753 	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1754 	of_node_put(qmgrs);
1755 	if (ret)
1756 		goto err;
1757 
1758 	/* get pdsp configuration values from device tree */
1759 	pdsps =  of_get_child_by_name(node, "pdsps");
1760 	if (pdsps) {
1761 		ret = knav_queue_init_pdsps(kdev, pdsps);
1762 		if (ret)
1763 			goto err;
1764 
1765 		ret = knav_queue_start_pdsps(kdev);
1766 		if (ret)
1767 			goto err;
1768 	}
1769 	of_node_put(pdsps);
1770 
1771 	/* get usable queue range values from device tree */
1772 	queue_pools = of_get_child_by_name(node, "queue-pools");
1773 	if (!queue_pools) {
1774 		dev_err(dev, "queue-pools not specified\n");
1775 		ret = -ENODEV;
1776 		goto err;
1777 	}
1778 	ret = knav_setup_queue_pools(kdev, queue_pools);
1779 	of_node_put(queue_pools);
1780 	if (ret)
1781 		goto err;
1782 
1783 	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1784 	if (ret) {
1785 		dev_err(kdev->dev, "could not setup linking ram\n");
1786 		goto err;
1787 	}
1788 
1789 	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1790 	if (ret) {
1791 		/*
1792 		 * nothing really, we have one linking ram already, so we just
1793 		 * live within our means
1794 		 */
1795 	}
1796 
1797 	ret = knav_queue_setup_link_ram(kdev);
1798 	if (ret)
1799 		goto err;
1800 
1801 	regions =  of_get_child_by_name(node, "descriptor-regions");
1802 	if (!regions) {
1803 		dev_err(dev, "descriptor-regions not specified\n");
1804 		goto err;
1805 	}
1806 	ret = knav_queue_setup_regions(kdev, regions);
1807 	of_node_put(regions);
1808 	if (ret)
1809 		goto err;
1810 
1811 	ret = knav_queue_init_queues(kdev);
1812 	if (ret < 0) {
1813 		dev_err(dev, "hwqueue initialization failed\n");
1814 		goto err;
1815 	}
1816 
1817 	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1818 			    &knav_queue_debug_ops);
1819 	return 0;
1820 
1821 err:
1822 	knav_queue_stop_pdsps(kdev);
1823 	knav_queue_free_regions(kdev);
1824 	knav_free_queue_ranges(kdev);
1825 	pm_runtime_put_sync(&pdev->dev);
1826 	pm_runtime_disable(&pdev->dev);
1827 	return ret;
1828 }
1829 
1830 static int knav_queue_remove(struct platform_device *pdev)
1831 {
1832 	/* TODO: Free resources */
1833 	pm_runtime_put_sync(&pdev->dev);
1834 	pm_runtime_disable(&pdev->dev);
1835 	return 0;
1836 }
1837 
1838 /* Match table for of_platform binding */
1839 static struct of_device_id keystone_qmss_of_match[] = {
1840 	{ .compatible = "ti,keystone-navigator-qmss", },
1841 	{},
1842 };
1843 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1844 
1845 static struct platform_driver keystone_qmss_driver = {
1846 	.probe		= knav_queue_probe,
1847 	.remove		= knav_queue_remove,
1848 	.driver		= {
1849 		.name	= "keystone-navigator-qmss",
1850 		.of_match_table = keystone_qmss_of_match,
1851 	},
1852 };
1853 module_platform_driver(keystone_qmss_driver);
1854 
1855 MODULE_LICENSE("GPL v2");
1856 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1857 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1858 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1859