1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Keystone Queue Manager subsystem driver 4 * 5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com 6 * Authors: Sandeep Nair <sandeep_n@ti.com> 7 * Cyril Chemparathy <cyril@ti.com> 8 * Santosh Shilimkar <santosh.shilimkar@ti.com> 9 */ 10 11 #include <linux/debugfs.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/firmware.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/module.h> 17 #include <linux/of_address.h> 18 #include <linux/of_device.h> 19 #include <linux/of_irq.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/slab.h> 22 #include <linux/soc/ti/knav_qmss.h> 23 24 #include "knav_qmss.h" 25 26 static struct knav_device *kdev; 27 static DEFINE_MUTEX(knav_dev_lock); 28 29 /* Queue manager register indices in DTS */ 30 #define KNAV_QUEUE_PEEK_REG_INDEX 0 31 #define KNAV_QUEUE_STATUS_REG_INDEX 1 32 #define KNAV_QUEUE_CONFIG_REG_INDEX 2 33 #define KNAV_QUEUE_REGION_REG_INDEX 3 34 #define KNAV_QUEUE_PUSH_REG_INDEX 4 35 #define KNAV_QUEUE_POP_REG_INDEX 5 36 37 /* Queue manager register indices in DTS for QMSS in K2G NAVSS. 38 * There are no status and vbusm push registers on this version 39 * of QMSS. Push registers are same as pop, So all indices above 1 40 * are to be re-defined 41 */ 42 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1 43 #define KNAV_L_QUEUE_REGION_REG_INDEX 2 44 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3 45 46 /* PDSP register indices in DTS */ 47 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0 48 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1 49 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2 50 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3 51 52 #define knav_queue_idx_to_inst(kdev, idx) \ 53 (kdev->instances + (idx << kdev->inst_shift)) 54 55 #define for_each_handle_rcu(qh, inst) \ 56 list_for_each_entry_rcu(qh, &inst->handles, list) 57 58 #define for_each_instance(idx, inst, kdev) \ 59 for (idx = 0, inst = kdev->instances; \ 60 idx < (kdev)->num_queues_in_use; \ 61 idx++, inst = knav_queue_idx_to_inst(kdev, idx)) 62 63 /* All firmware file names end up here. List the firmware file names below. 64 * Newest followed by older ones. Search is done from start of the array 65 * until a firmware file is found. 66 */ 67 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"}; 68 69 static bool device_ready; 70 bool knav_qmss_device_ready(void) 71 { 72 return device_ready; 73 } 74 EXPORT_SYMBOL_GPL(knav_qmss_device_ready); 75 76 /** 77 * knav_queue_notify: qmss queue notfier call 78 * 79 * @inst: qmss queue instance like accumulator 80 */ 81 void knav_queue_notify(struct knav_queue_inst *inst) 82 { 83 struct knav_queue *qh; 84 85 if (!inst) 86 return; 87 88 rcu_read_lock(); 89 for_each_handle_rcu(qh, inst) { 90 if (atomic_read(&qh->notifier_enabled) <= 0) 91 continue; 92 if (WARN_ON(!qh->notifier_fn)) 93 continue; 94 this_cpu_inc(qh->stats->notifies); 95 qh->notifier_fn(qh->notifier_fn_arg); 96 } 97 rcu_read_unlock(); 98 } 99 EXPORT_SYMBOL_GPL(knav_queue_notify); 100 101 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata) 102 { 103 struct knav_queue_inst *inst = _instdata; 104 105 knav_queue_notify(inst); 106 return IRQ_HANDLED; 107 } 108 109 static int knav_queue_setup_irq(struct knav_range_info *range, 110 struct knav_queue_inst *inst) 111 { 112 unsigned queue = inst->id - range->queue_base; 113 int ret = 0, irq; 114 115 if (range->flags & RANGE_HAS_IRQ) { 116 irq = range->irqs[queue].irq; 117 ret = request_irq(irq, knav_queue_int_handler, 0, 118 inst->irq_name, inst); 119 if (ret) 120 return ret; 121 disable_irq(irq); 122 if (range->irqs[queue].cpu_mask) { 123 ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask); 124 if (ret) { 125 dev_warn(range->kdev->dev, 126 "Failed to set IRQ affinity\n"); 127 return ret; 128 } 129 } 130 } 131 return ret; 132 } 133 134 static void knav_queue_free_irq(struct knav_queue_inst *inst) 135 { 136 struct knav_range_info *range = inst->range; 137 unsigned queue = inst->id - inst->range->queue_base; 138 int irq; 139 140 if (range->flags & RANGE_HAS_IRQ) { 141 irq = range->irqs[queue].irq; 142 irq_set_affinity_hint(irq, NULL); 143 free_irq(irq, inst); 144 } 145 } 146 147 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst) 148 { 149 return !list_empty(&inst->handles); 150 } 151 152 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst) 153 { 154 return inst->range->flags & RANGE_RESERVED; 155 } 156 157 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst) 158 { 159 struct knav_queue *tmp; 160 161 rcu_read_lock(); 162 for_each_handle_rcu(tmp, inst) { 163 if (tmp->flags & KNAV_QUEUE_SHARED) { 164 rcu_read_unlock(); 165 return true; 166 } 167 } 168 rcu_read_unlock(); 169 return false; 170 } 171 172 static inline bool knav_queue_match_type(struct knav_queue_inst *inst, 173 unsigned type) 174 { 175 if ((type == KNAV_QUEUE_QPEND) && 176 (inst->range->flags & RANGE_HAS_IRQ)) { 177 return true; 178 } else if ((type == KNAV_QUEUE_ACC) && 179 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) { 180 return true; 181 } else if ((type == KNAV_QUEUE_GP) && 182 !(inst->range->flags & 183 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) { 184 return true; 185 } 186 return false; 187 } 188 189 static inline struct knav_queue_inst * 190 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id) 191 { 192 struct knav_queue_inst *inst; 193 int idx; 194 195 for_each_instance(idx, inst, kdev) { 196 if (inst->id == id) 197 return inst; 198 } 199 return NULL; 200 } 201 202 static inline struct knav_queue_inst *knav_queue_find_by_id(int id) 203 { 204 if (kdev->base_id <= id && 205 kdev->base_id + kdev->num_queues > id) { 206 id -= kdev->base_id; 207 return knav_queue_match_id_to_inst(kdev, id); 208 } 209 return NULL; 210 } 211 212 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst, 213 const char *name, unsigned flags) 214 { 215 struct knav_queue *qh; 216 unsigned id; 217 int ret = 0; 218 219 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL); 220 if (!qh) 221 return ERR_PTR(-ENOMEM); 222 223 qh->stats = alloc_percpu(struct knav_queue_stats); 224 if (!qh->stats) { 225 ret = -ENOMEM; 226 goto err; 227 } 228 229 qh->flags = flags; 230 qh->inst = inst; 231 id = inst->id - inst->qmgr->start_queue; 232 qh->reg_push = &inst->qmgr->reg_push[id]; 233 qh->reg_pop = &inst->qmgr->reg_pop[id]; 234 qh->reg_peek = &inst->qmgr->reg_peek[id]; 235 236 /* first opener? */ 237 if (!knav_queue_is_busy(inst)) { 238 struct knav_range_info *range = inst->range; 239 240 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 241 if (range->ops && range->ops->open_queue) 242 ret = range->ops->open_queue(range, inst, flags); 243 244 if (ret) 245 goto err; 246 } 247 list_add_tail_rcu(&qh->list, &inst->handles); 248 return qh; 249 250 err: 251 if (qh->stats) 252 free_percpu(qh->stats); 253 devm_kfree(inst->kdev->dev, qh); 254 return ERR_PTR(ret); 255 } 256 257 static struct knav_queue * 258 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags) 259 { 260 struct knav_queue_inst *inst; 261 struct knav_queue *qh; 262 263 mutex_lock(&knav_dev_lock); 264 265 qh = ERR_PTR(-ENODEV); 266 inst = knav_queue_find_by_id(id); 267 if (!inst) 268 goto unlock_ret; 269 270 qh = ERR_PTR(-EEXIST); 271 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst)) 272 goto unlock_ret; 273 274 qh = ERR_PTR(-EBUSY); 275 if ((flags & KNAV_QUEUE_SHARED) && 276 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst))) 277 goto unlock_ret; 278 279 qh = __knav_queue_open(inst, name, flags); 280 281 unlock_ret: 282 mutex_unlock(&knav_dev_lock); 283 284 return qh; 285 } 286 287 static struct knav_queue *knav_queue_open_by_type(const char *name, 288 unsigned type, unsigned flags) 289 { 290 struct knav_queue_inst *inst; 291 struct knav_queue *qh = ERR_PTR(-EINVAL); 292 int idx; 293 294 mutex_lock(&knav_dev_lock); 295 296 for_each_instance(idx, inst, kdev) { 297 if (knav_queue_is_reserved(inst)) 298 continue; 299 if (!knav_queue_match_type(inst, type)) 300 continue; 301 if (knav_queue_is_busy(inst)) 302 continue; 303 qh = __knav_queue_open(inst, name, flags); 304 goto unlock_ret; 305 } 306 307 unlock_ret: 308 mutex_unlock(&knav_dev_lock); 309 return qh; 310 } 311 312 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled) 313 { 314 struct knav_range_info *range = inst->range; 315 316 if (range->ops && range->ops->set_notify) 317 range->ops->set_notify(range, inst, enabled); 318 } 319 320 static int knav_queue_enable_notifier(struct knav_queue *qh) 321 { 322 struct knav_queue_inst *inst = qh->inst; 323 bool first; 324 325 if (WARN_ON(!qh->notifier_fn)) 326 return -EINVAL; 327 328 /* Adjust the per handle notifier count */ 329 first = (atomic_inc_return(&qh->notifier_enabled) == 1); 330 if (!first) 331 return 0; /* nothing to do */ 332 333 /* Now adjust the per instance notifier count */ 334 first = (atomic_inc_return(&inst->num_notifiers) == 1); 335 if (first) 336 knav_queue_set_notify(inst, true); 337 338 return 0; 339 } 340 341 static int knav_queue_disable_notifier(struct knav_queue *qh) 342 { 343 struct knav_queue_inst *inst = qh->inst; 344 bool last; 345 346 last = (atomic_dec_return(&qh->notifier_enabled) == 0); 347 if (!last) 348 return 0; /* nothing to do */ 349 350 last = (atomic_dec_return(&inst->num_notifiers) == 0); 351 if (last) 352 knav_queue_set_notify(inst, false); 353 354 return 0; 355 } 356 357 static int knav_queue_set_notifier(struct knav_queue *qh, 358 struct knav_queue_notify_config *cfg) 359 { 360 knav_queue_notify_fn old_fn = qh->notifier_fn; 361 362 if (!cfg) 363 return -EINVAL; 364 365 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) 366 return -ENOTSUPP; 367 368 if (!cfg->fn && old_fn) 369 knav_queue_disable_notifier(qh); 370 371 qh->notifier_fn = cfg->fn; 372 qh->notifier_fn_arg = cfg->fn_arg; 373 374 if (cfg->fn && !old_fn) 375 knav_queue_enable_notifier(qh); 376 377 return 0; 378 } 379 380 static int knav_gp_set_notify(struct knav_range_info *range, 381 struct knav_queue_inst *inst, 382 bool enabled) 383 { 384 unsigned queue; 385 386 if (range->flags & RANGE_HAS_IRQ) { 387 queue = inst->id - range->queue_base; 388 if (enabled) 389 enable_irq(range->irqs[queue].irq); 390 else 391 disable_irq_nosync(range->irqs[queue].irq); 392 } 393 return 0; 394 } 395 396 static int knav_gp_open_queue(struct knav_range_info *range, 397 struct knav_queue_inst *inst, unsigned flags) 398 { 399 return knav_queue_setup_irq(range, inst); 400 } 401 402 static int knav_gp_close_queue(struct knav_range_info *range, 403 struct knav_queue_inst *inst) 404 { 405 knav_queue_free_irq(inst); 406 return 0; 407 } 408 409 struct knav_range_ops knav_gp_range_ops = { 410 .set_notify = knav_gp_set_notify, 411 .open_queue = knav_gp_open_queue, 412 .close_queue = knav_gp_close_queue, 413 }; 414 415 416 static int knav_queue_get_count(void *qhandle) 417 { 418 struct knav_queue *qh = qhandle; 419 struct knav_queue_inst *inst = qh->inst; 420 421 return readl_relaxed(&qh->reg_peek[0].entry_count) + 422 atomic_read(&inst->desc_count); 423 } 424 425 static void knav_queue_debug_show_instance(struct seq_file *s, 426 struct knav_queue_inst *inst) 427 { 428 struct knav_device *kdev = inst->kdev; 429 struct knav_queue *qh; 430 int cpu = 0; 431 int pushes = 0; 432 int pops = 0; 433 int push_errors = 0; 434 int pop_errors = 0; 435 int notifies = 0; 436 437 if (!knav_queue_is_busy(inst)) 438 return; 439 440 seq_printf(s, "\tqueue id %d (%s)\n", 441 kdev->base_id + inst->id, inst->name); 442 for_each_handle_rcu(qh, inst) { 443 for_each_possible_cpu(cpu) { 444 pushes += per_cpu_ptr(qh->stats, cpu)->pushes; 445 pops += per_cpu_ptr(qh->stats, cpu)->pops; 446 push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors; 447 pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors; 448 notifies += per_cpu_ptr(qh->stats, cpu)->notifies; 449 } 450 451 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n", 452 qh, 453 pushes, 454 pops, 455 knav_queue_get_count(qh), 456 notifies, 457 push_errors, 458 pop_errors); 459 } 460 } 461 462 static int knav_queue_debug_show(struct seq_file *s, void *v) 463 { 464 struct knav_queue_inst *inst; 465 int idx; 466 467 mutex_lock(&knav_dev_lock); 468 seq_printf(s, "%s: %u-%u\n", 469 dev_name(kdev->dev), kdev->base_id, 470 kdev->base_id + kdev->num_queues - 1); 471 for_each_instance(idx, inst, kdev) 472 knav_queue_debug_show_instance(s, inst); 473 mutex_unlock(&knav_dev_lock); 474 475 return 0; 476 } 477 478 static int knav_queue_debug_open(struct inode *inode, struct file *file) 479 { 480 return single_open(file, knav_queue_debug_show, NULL); 481 } 482 483 static const struct file_operations knav_queue_debug_ops = { 484 .open = knav_queue_debug_open, 485 .read = seq_read, 486 .llseek = seq_lseek, 487 .release = single_release, 488 }; 489 490 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout, 491 u32 flags) 492 { 493 unsigned long end; 494 u32 val = 0; 495 496 end = jiffies + msecs_to_jiffies(timeout); 497 while (time_after(end, jiffies)) { 498 val = readl_relaxed(addr); 499 if (flags) 500 val &= flags; 501 if (!val) 502 break; 503 cpu_relax(); 504 } 505 return val ? -ETIMEDOUT : 0; 506 } 507 508 509 static int knav_queue_flush(struct knav_queue *qh) 510 { 511 struct knav_queue_inst *inst = qh->inst; 512 unsigned id = inst->id - inst->qmgr->start_queue; 513 514 atomic_set(&inst->desc_count, 0); 515 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh); 516 return 0; 517 } 518 519 /** 520 * knav_queue_open() - open a hardware queue 521 * @name - name to give the queue handle 522 * @id - desired queue number if any or specifes the type 523 * of queue 524 * @flags - the following flags are applicable to queues: 525 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are 526 * exclusive by default. 527 * Subsequent attempts to open a shared queue should 528 * also have this flag. 529 * 530 * Returns a handle to the open hardware queue if successful. Use IS_ERR() 531 * to check the returned value for error codes. 532 */ 533 void *knav_queue_open(const char *name, unsigned id, 534 unsigned flags) 535 { 536 struct knav_queue *qh = ERR_PTR(-EINVAL); 537 538 switch (id) { 539 case KNAV_QUEUE_QPEND: 540 case KNAV_QUEUE_ACC: 541 case KNAV_QUEUE_GP: 542 qh = knav_queue_open_by_type(name, id, flags); 543 break; 544 545 default: 546 qh = knav_queue_open_by_id(name, id, flags); 547 break; 548 } 549 return qh; 550 } 551 EXPORT_SYMBOL_GPL(knav_queue_open); 552 553 /** 554 * knav_queue_close() - close a hardware queue handle 555 * @qh - handle to close 556 */ 557 void knav_queue_close(void *qhandle) 558 { 559 struct knav_queue *qh = qhandle; 560 struct knav_queue_inst *inst = qh->inst; 561 562 while (atomic_read(&qh->notifier_enabled) > 0) 563 knav_queue_disable_notifier(qh); 564 565 mutex_lock(&knav_dev_lock); 566 list_del_rcu(&qh->list); 567 mutex_unlock(&knav_dev_lock); 568 synchronize_rcu(); 569 if (!knav_queue_is_busy(inst)) { 570 struct knav_range_info *range = inst->range; 571 572 if (range->ops && range->ops->close_queue) 573 range->ops->close_queue(range, inst); 574 } 575 free_percpu(qh->stats); 576 devm_kfree(inst->kdev->dev, qh); 577 } 578 EXPORT_SYMBOL_GPL(knav_queue_close); 579 580 /** 581 * knav_queue_device_control() - Perform control operations on a queue 582 * @qh - queue handle 583 * @cmd - control commands 584 * @arg - command argument 585 * 586 * Returns 0 on success, errno otherwise. 587 */ 588 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd, 589 unsigned long arg) 590 { 591 struct knav_queue *qh = qhandle; 592 struct knav_queue_notify_config *cfg; 593 int ret; 594 595 switch ((int)cmd) { 596 case KNAV_QUEUE_GET_ID: 597 ret = qh->inst->kdev->base_id + qh->inst->id; 598 break; 599 600 case KNAV_QUEUE_FLUSH: 601 ret = knav_queue_flush(qh); 602 break; 603 604 case KNAV_QUEUE_SET_NOTIFIER: 605 cfg = (void *)arg; 606 ret = knav_queue_set_notifier(qh, cfg); 607 break; 608 609 case KNAV_QUEUE_ENABLE_NOTIFY: 610 ret = knav_queue_enable_notifier(qh); 611 break; 612 613 case KNAV_QUEUE_DISABLE_NOTIFY: 614 ret = knav_queue_disable_notifier(qh); 615 break; 616 617 case KNAV_QUEUE_GET_COUNT: 618 ret = knav_queue_get_count(qh); 619 break; 620 621 default: 622 ret = -ENOTSUPP; 623 break; 624 } 625 return ret; 626 } 627 EXPORT_SYMBOL_GPL(knav_queue_device_control); 628 629 630 631 /** 632 * knav_queue_push() - push data (or descriptor) to the tail of a queue 633 * @qh - hardware queue handle 634 * @data - data to push 635 * @size - size of data to push 636 * @flags - can be used to pass additional information 637 * 638 * Returns 0 on success, errno otherwise. 639 */ 640 int knav_queue_push(void *qhandle, dma_addr_t dma, 641 unsigned size, unsigned flags) 642 { 643 struct knav_queue *qh = qhandle; 644 u32 val; 645 646 val = (u32)dma | ((size / 16) - 1); 647 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh); 648 649 this_cpu_inc(qh->stats->pushes); 650 return 0; 651 } 652 EXPORT_SYMBOL_GPL(knav_queue_push); 653 654 /** 655 * knav_queue_pop() - pop data (or descriptor) from the head of a queue 656 * @qh - hardware queue handle 657 * @size - (optional) size of the data pop'ed. 658 * 659 * Returns a DMA address on success, 0 on failure. 660 */ 661 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size) 662 { 663 struct knav_queue *qh = qhandle; 664 struct knav_queue_inst *inst = qh->inst; 665 dma_addr_t dma; 666 u32 val, idx; 667 668 /* are we accumulated? */ 669 if (inst->descs) { 670 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) { 671 atomic_inc(&inst->desc_count); 672 return 0; 673 } 674 idx = atomic_inc_return(&inst->desc_head); 675 idx &= ACC_DESCS_MASK; 676 val = inst->descs[idx]; 677 } else { 678 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh); 679 if (unlikely(!val)) 680 return 0; 681 } 682 683 dma = val & DESC_PTR_MASK; 684 if (size) 685 *size = ((val & DESC_SIZE_MASK) + 1) * 16; 686 687 this_cpu_inc(qh->stats->pops); 688 return dma; 689 } 690 EXPORT_SYMBOL_GPL(knav_queue_pop); 691 692 /* carve out descriptors and push into queue */ 693 static void kdesc_fill_pool(struct knav_pool *pool) 694 { 695 struct knav_region *region; 696 int i; 697 698 region = pool->region; 699 pool->desc_size = region->desc_size; 700 for (i = 0; i < pool->num_desc; i++) { 701 int index = pool->region_offset + i; 702 dma_addr_t dma_addr; 703 unsigned dma_size; 704 dma_addr = region->dma_start + (region->desc_size * index); 705 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES); 706 dma_sync_single_for_device(pool->dev, dma_addr, dma_size, 707 DMA_TO_DEVICE); 708 knav_queue_push(pool->queue, dma_addr, dma_size, 0); 709 } 710 } 711 712 /* pop out descriptors and close the queue */ 713 static void kdesc_empty_pool(struct knav_pool *pool) 714 { 715 dma_addr_t dma; 716 unsigned size; 717 void *desc; 718 int i; 719 720 if (!pool->queue) 721 return; 722 723 for (i = 0;; i++) { 724 dma = knav_queue_pop(pool->queue, &size); 725 if (!dma) 726 break; 727 desc = knav_pool_desc_dma_to_virt(pool, dma); 728 if (!desc) { 729 dev_dbg(pool->kdev->dev, 730 "couldn't unmap desc, continuing\n"); 731 continue; 732 } 733 } 734 WARN_ON(i != pool->num_desc); 735 knav_queue_close(pool->queue); 736 } 737 738 739 /* Get the DMA address of a descriptor */ 740 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt) 741 { 742 struct knav_pool *pool = ph; 743 return pool->region->dma_start + (virt - pool->region->virt_start); 744 } 745 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma); 746 747 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma) 748 { 749 struct knav_pool *pool = ph; 750 return pool->region->virt_start + (dma - pool->region->dma_start); 751 } 752 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt); 753 754 /** 755 * knav_pool_create() - Create a pool of descriptors 756 * @name - name to give the pool handle 757 * @num_desc - numbers of descriptors in the pool 758 * @region_id - QMSS region id from which the descriptors are to be 759 * allocated. 760 * 761 * Returns a pool handle on success. 762 * Use IS_ERR_OR_NULL() to identify error values on return. 763 */ 764 void *knav_pool_create(const char *name, 765 int num_desc, int region_id) 766 { 767 struct knav_region *reg_itr, *region = NULL; 768 struct knav_pool *pool, *pi; 769 struct list_head *node; 770 unsigned last_offset; 771 bool slot_found; 772 int ret; 773 774 if (!kdev) 775 return ERR_PTR(-EPROBE_DEFER); 776 777 if (!kdev->dev) 778 return ERR_PTR(-ENODEV); 779 780 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 781 if (!pool) { 782 dev_err(kdev->dev, "out of memory allocating pool\n"); 783 return ERR_PTR(-ENOMEM); 784 } 785 786 for_each_region(kdev, reg_itr) { 787 if (reg_itr->id != region_id) 788 continue; 789 region = reg_itr; 790 break; 791 } 792 793 if (!region) { 794 dev_err(kdev->dev, "region-id(%d) not found\n", region_id); 795 ret = -EINVAL; 796 goto err; 797 } 798 799 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0); 800 if (IS_ERR_OR_NULL(pool->queue)) { 801 dev_err(kdev->dev, 802 "failed to open queue for pool(%s), error %ld\n", 803 name, PTR_ERR(pool->queue)); 804 ret = PTR_ERR(pool->queue); 805 goto err; 806 } 807 808 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 809 pool->kdev = kdev; 810 pool->dev = kdev->dev; 811 812 mutex_lock(&knav_dev_lock); 813 814 if (num_desc > (region->num_desc - region->used_desc)) { 815 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n", 816 region_id, name); 817 ret = -ENOMEM; 818 goto err_unlock; 819 } 820 821 /* Region maintains a sorted (by region offset) list of pools 822 * use the first free slot which is large enough to accomodate 823 * the request 824 */ 825 last_offset = 0; 826 slot_found = false; 827 node = ®ion->pools; 828 list_for_each_entry(pi, ®ion->pools, region_inst) { 829 if ((pi->region_offset - last_offset) >= num_desc) { 830 slot_found = true; 831 break; 832 } 833 last_offset = pi->region_offset + pi->num_desc; 834 } 835 node = &pi->region_inst; 836 837 if (slot_found) { 838 pool->region = region; 839 pool->num_desc = num_desc; 840 pool->region_offset = last_offset; 841 region->used_desc += num_desc; 842 list_add_tail(&pool->list, &kdev->pools); 843 list_add_tail(&pool->region_inst, node); 844 } else { 845 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n", 846 name, region_id); 847 ret = -ENOMEM; 848 goto err_unlock; 849 } 850 851 mutex_unlock(&knav_dev_lock); 852 kdesc_fill_pool(pool); 853 return pool; 854 855 err_unlock: 856 mutex_unlock(&knav_dev_lock); 857 err: 858 kfree(pool->name); 859 devm_kfree(kdev->dev, pool); 860 return ERR_PTR(ret); 861 } 862 EXPORT_SYMBOL_GPL(knav_pool_create); 863 864 /** 865 * knav_pool_destroy() - Free a pool of descriptors 866 * @pool - pool handle 867 */ 868 void knav_pool_destroy(void *ph) 869 { 870 struct knav_pool *pool = ph; 871 872 if (!pool) 873 return; 874 875 if (!pool->region) 876 return; 877 878 kdesc_empty_pool(pool); 879 mutex_lock(&knav_dev_lock); 880 881 pool->region->used_desc -= pool->num_desc; 882 list_del(&pool->region_inst); 883 list_del(&pool->list); 884 885 mutex_unlock(&knav_dev_lock); 886 kfree(pool->name); 887 devm_kfree(kdev->dev, pool); 888 } 889 EXPORT_SYMBOL_GPL(knav_pool_destroy); 890 891 892 /** 893 * knav_pool_desc_get() - Get a descriptor from the pool 894 * @pool - pool handle 895 * 896 * Returns descriptor from the pool. 897 */ 898 void *knav_pool_desc_get(void *ph) 899 { 900 struct knav_pool *pool = ph; 901 dma_addr_t dma; 902 unsigned size; 903 void *data; 904 905 dma = knav_queue_pop(pool->queue, &size); 906 if (unlikely(!dma)) 907 return ERR_PTR(-ENOMEM); 908 data = knav_pool_desc_dma_to_virt(pool, dma); 909 return data; 910 } 911 EXPORT_SYMBOL_GPL(knav_pool_desc_get); 912 913 /** 914 * knav_pool_desc_put() - return a descriptor to the pool 915 * @pool - pool handle 916 */ 917 void knav_pool_desc_put(void *ph, void *desc) 918 { 919 struct knav_pool *pool = ph; 920 dma_addr_t dma; 921 dma = knav_pool_desc_virt_to_dma(pool, desc); 922 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0); 923 } 924 EXPORT_SYMBOL_GPL(knav_pool_desc_put); 925 926 /** 927 * knav_pool_desc_map() - Map descriptor for DMA transfer 928 * @pool - pool handle 929 * @desc - address of descriptor to map 930 * @size - size of descriptor to map 931 * @dma - DMA address return pointer 932 * @dma_sz - adjusted return pointer 933 * 934 * Returns 0 on success, errno otherwise. 935 */ 936 int knav_pool_desc_map(void *ph, void *desc, unsigned size, 937 dma_addr_t *dma, unsigned *dma_sz) 938 { 939 struct knav_pool *pool = ph; 940 *dma = knav_pool_desc_virt_to_dma(pool, desc); 941 size = min(size, pool->region->desc_size); 942 size = ALIGN(size, SMP_CACHE_BYTES); 943 *dma_sz = size; 944 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE); 945 946 /* Ensure the descriptor reaches to the memory */ 947 __iowmb(); 948 949 return 0; 950 } 951 EXPORT_SYMBOL_GPL(knav_pool_desc_map); 952 953 /** 954 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer 955 * @pool - pool handle 956 * @dma - DMA address of descriptor to unmap 957 * @dma_sz - size of descriptor to unmap 958 * 959 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify 960 * error values on return. 961 */ 962 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz) 963 { 964 struct knav_pool *pool = ph; 965 unsigned desc_sz; 966 void *desc; 967 968 desc_sz = min(dma_sz, pool->region->desc_size); 969 desc = knav_pool_desc_dma_to_virt(pool, dma); 970 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE); 971 prefetch(desc); 972 return desc; 973 } 974 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap); 975 976 /** 977 * knav_pool_count() - Get the number of descriptors in pool. 978 * @pool - pool handle 979 * Returns number of elements in the pool. 980 */ 981 int knav_pool_count(void *ph) 982 { 983 struct knav_pool *pool = ph; 984 return knav_queue_get_count(pool->queue); 985 } 986 EXPORT_SYMBOL_GPL(knav_pool_count); 987 988 static void knav_queue_setup_region(struct knav_device *kdev, 989 struct knav_region *region) 990 { 991 unsigned hw_num_desc, hw_desc_size, size; 992 struct knav_reg_region __iomem *regs; 993 struct knav_qmgr_info *qmgr; 994 struct knav_pool *pool; 995 int id = region->id; 996 struct page *page; 997 998 /* unused region? */ 999 if (!region->num_desc) { 1000 dev_warn(kdev->dev, "unused region %s\n", region->name); 1001 return; 1002 } 1003 1004 /* get hardware descriptor value */ 1005 hw_num_desc = ilog2(region->num_desc - 1) + 1; 1006 1007 /* did we force fit ourselves into nothingness? */ 1008 if (region->num_desc < 32) { 1009 region->num_desc = 0; 1010 dev_warn(kdev->dev, "too few descriptors in region %s\n", 1011 region->name); 1012 return; 1013 } 1014 1015 size = region->num_desc * region->desc_size; 1016 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA | 1017 GFP_DMA32); 1018 if (!region->virt_start) { 1019 region->num_desc = 0; 1020 dev_err(kdev->dev, "memory alloc failed for region %s\n", 1021 region->name); 1022 return; 1023 } 1024 region->virt_end = region->virt_start + size; 1025 page = virt_to_page(region->virt_start); 1026 1027 region->dma_start = dma_map_page(kdev->dev, page, 0, size, 1028 DMA_BIDIRECTIONAL); 1029 if (dma_mapping_error(kdev->dev, region->dma_start)) { 1030 dev_err(kdev->dev, "dma map failed for region %s\n", 1031 region->name); 1032 goto fail; 1033 } 1034 region->dma_end = region->dma_start + size; 1035 1036 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 1037 if (!pool) { 1038 dev_err(kdev->dev, "out of memory allocating dummy pool\n"); 1039 goto fail; 1040 } 1041 pool->num_desc = 0; 1042 pool->region_offset = region->num_desc; 1043 list_add(&pool->region_inst, ®ion->pools); 1044 1045 dev_dbg(kdev->dev, 1046 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n", 1047 region->name, id, region->desc_size, region->num_desc, 1048 region->link_index, ®ion->dma_start, ®ion->dma_end, 1049 region->virt_start, region->virt_end); 1050 1051 hw_desc_size = (region->desc_size / 16) - 1; 1052 hw_num_desc -= 5; 1053 1054 for_each_qmgr(kdev, qmgr) { 1055 regs = qmgr->reg_region + id; 1056 writel_relaxed((u32)region->dma_start, ®s->base); 1057 writel_relaxed(region->link_index, ®s->start_index); 1058 writel_relaxed(hw_desc_size << 16 | hw_num_desc, 1059 ®s->size_count); 1060 } 1061 return; 1062 1063 fail: 1064 if (region->dma_start) 1065 dma_unmap_page(kdev->dev, region->dma_start, size, 1066 DMA_BIDIRECTIONAL); 1067 if (region->virt_start) 1068 free_pages_exact(region->virt_start, size); 1069 region->num_desc = 0; 1070 return; 1071 } 1072 1073 static const char *knav_queue_find_name(struct device_node *node) 1074 { 1075 const char *name; 1076 1077 if (of_property_read_string(node, "label", &name) < 0) 1078 name = node->name; 1079 if (!name) 1080 name = "unknown"; 1081 return name; 1082 } 1083 1084 static int knav_queue_setup_regions(struct knav_device *kdev, 1085 struct device_node *regions) 1086 { 1087 struct device *dev = kdev->dev; 1088 struct knav_region *region; 1089 struct device_node *child; 1090 u32 temp[2]; 1091 int ret; 1092 1093 for_each_child_of_node(regions, child) { 1094 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL); 1095 if (!region) { 1096 dev_err(dev, "out of memory allocating region\n"); 1097 return -ENOMEM; 1098 } 1099 1100 region->name = knav_queue_find_name(child); 1101 of_property_read_u32(child, "id", ®ion->id); 1102 ret = of_property_read_u32_array(child, "region-spec", temp, 2); 1103 if (!ret) { 1104 region->num_desc = temp[0]; 1105 region->desc_size = temp[1]; 1106 } else { 1107 dev_err(dev, "invalid region info %s\n", region->name); 1108 devm_kfree(dev, region); 1109 continue; 1110 } 1111 1112 if (!of_get_property(child, "link-index", NULL)) { 1113 dev_err(dev, "No link info for %s\n", region->name); 1114 devm_kfree(dev, region); 1115 continue; 1116 } 1117 ret = of_property_read_u32(child, "link-index", 1118 ®ion->link_index); 1119 if (ret) { 1120 dev_err(dev, "link index not found for %s\n", 1121 region->name); 1122 devm_kfree(dev, region); 1123 continue; 1124 } 1125 1126 INIT_LIST_HEAD(®ion->pools); 1127 list_add_tail(®ion->list, &kdev->regions); 1128 } 1129 if (list_empty(&kdev->regions)) { 1130 dev_err(dev, "no valid region information found\n"); 1131 return -ENODEV; 1132 } 1133 1134 /* Next, we run through the regions and set things up */ 1135 for_each_region(kdev, region) 1136 knav_queue_setup_region(kdev, region); 1137 1138 return 0; 1139 } 1140 1141 static int knav_get_link_ram(struct knav_device *kdev, 1142 const char *name, 1143 struct knav_link_ram_block *block) 1144 { 1145 struct platform_device *pdev = to_platform_device(kdev->dev); 1146 struct device_node *node = pdev->dev.of_node; 1147 u32 temp[2]; 1148 1149 /* 1150 * Note: link ram resources are specified in "entry" sized units. In 1151 * reality, although entries are ~40bits in hardware, we treat them as 1152 * 64-bit entities here. 1153 * 1154 * For example, to specify the internal link ram for Keystone-I class 1155 * devices, we would set the linkram0 resource to 0x80000-0x83fff. 1156 * 1157 * This gets a bit weird when other link rams are used. For example, 1158 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries 1159 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000, 1160 * which accounts for 64-bits per entry, for 16K entries. 1161 */ 1162 if (!of_property_read_u32_array(node, name , temp, 2)) { 1163 if (temp[0]) { 1164 /* 1165 * queue_base specified => using internal or onchip 1166 * link ram WARNING - we do not "reserve" this block 1167 */ 1168 block->dma = (dma_addr_t)temp[0]; 1169 block->virt = NULL; 1170 block->size = temp[1]; 1171 } else { 1172 block->size = temp[1]; 1173 /* queue_base not specific => allocate requested size */ 1174 block->virt = dmam_alloc_coherent(kdev->dev, 1175 8 * block->size, &block->dma, 1176 GFP_KERNEL); 1177 if (!block->virt) { 1178 dev_err(kdev->dev, "failed to alloc linkram\n"); 1179 return -ENOMEM; 1180 } 1181 } 1182 } else { 1183 return -ENODEV; 1184 } 1185 return 0; 1186 } 1187 1188 static int knav_queue_setup_link_ram(struct knav_device *kdev) 1189 { 1190 struct knav_link_ram_block *block; 1191 struct knav_qmgr_info *qmgr; 1192 1193 for_each_qmgr(kdev, qmgr) { 1194 block = &kdev->link_rams[0]; 1195 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n", 1196 &block->dma, block->virt, block->size); 1197 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0); 1198 if (kdev->version == QMSS_66AK2G) 1199 writel_relaxed(block->size, 1200 &qmgr->reg_config->link_ram_size0); 1201 else 1202 writel_relaxed(block->size - 1, 1203 &qmgr->reg_config->link_ram_size0); 1204 block++; 1205 if (!block->size) 1206 continue; 1207 1208 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n", 1209 &block->dma, block->virt, block->size); 1210 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1); 1211 } 1212 1213 return 0; 1214 } 1215 1216 static int knav_setup_queue_range(struct knav_device *kdev, 1217 struct device_node *node) 1218 { 1219 struct device *dev = kdev->dev; 1220 struct knav_range_info *range; 1221 struct knav_qmgr_info *qmgr; 1222 u32 temp[2], start, end, id, index; 1223 int ret, i; 1224 1225 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL); 1226 if (!range) { 1227 dev_err(dev, "out of memory allocating range\n"); 1228 return -ENOMEM; 1229 } 1230 1231 range->kdev = kdev; 1232 range->name = knav_queue_find_name(node); 1233 ret = of_property_read_u32_array(node, "qrange", temp, 2); 1234 if (!ret) { 1235 range->queue_base = temp[0] - kdev->base_id; 1236 range->num_queues = temp[1]; 1237 } else { 1238 dev_err(dev, "invalid queue range %s\n", range->name); 1239 devm_kfree(dev, range); 1240 return -EINVAL; 1241 } 1242 1243 for (i = 0; i < RANGE_MAX_IRQS; i++) { 1244 struct of_phandle_args oirq; 1245 1246 if (of_irq_parse_one(node, i, &oirq)) 1247 break; 1248 1249 range->irqs[i].irq = irq_create_of_mapping(&oirq); 1250 if (range->irqs[i].irq == IRQ_NONE) 1251 break; 1252 1253 range->num_irqs++; 1254 1255 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) { 1256 unsigned long mask; 1257 int bit; 1258 1259 range->irqs[i].cpu_mask = devm_kzalloc(dev, 1260 cpumask_size(), GFP_KERNEL); 1261 if (!range->irqs[i].cpu_mask) 1262 return -ENOMEM; 1263 1264 mask = (oirq.args[2] & 0x0000ff00) >> 8; 1265 for_each_set_bit(bit, &mask, BITS_PER_LONG) 1266 cpumask_set_cpu(bit, range->irqs[i].cpu_mask); 1267 } 1268 } 1269 1270 range->num_irqs = min(range->num_irqs, range->num_queues); 1271 if (range->num_irqs) 1272 range->flags |= RANGE_HAS_IRQ; 1273 1274 if (of_get_property(node, "qalloc-by-id", NULL)) 1275 range->flags |= RANGE_RESERVED; 1276 1277 if (of_get_property(node, "accumulator", NULL)) { 1278 ret = knav_init_acc_range(kdev, node, range); 1279 if (ret < 0) { 1280 devm_kfree(dev, range); 1281 return ret; 1282 } 1283 } else { 1284 range->ops = &knav_gp_range_ops; 1285 } 1286 1287 /* set threshold to 1, and flush out the queues */ 1288 for_each_qmgr(kdev, qmgr) { 1289 start = max(qmgr->start_queue, range->queue_base); 1290 end = min(qmgr->start_queue + qmgr->num_queues, 1291 range->queue_base + range->num_queues); 1292 for (id = start; id < end; id++) { 1293 index = id - qmgr->start_queue; 1294 writel_relaxed(THRESH_GTE | 1, 1295 &qmgr->reg_peek[index].ptr_size_thresh); 1296 writel_relaxed(0, 1297 &qmgr->reg_push[index].ptr_size_thresh); 1298 } 1299 } 1300 1301 list_add_tail(&range->list, &kdev->queue_ranges); 1302 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n", 1303 range->name, range->queue_base, 1304 range->queue_base + range->num_queues - 1, 1305 range->num_irqs, 1306 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "", 1307 (range->flags & RANGE_RESERVED) ? ", reserved" : "", 1308 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : ""); 1309 kdev->num_queues_in_use += range->num_queues; 1310 return 0; 1311 } 1312 1313 static int knav_setup_queue_pools(struct knav_device *kdev, 1314 struct device_node *queue_pools) 1315 { 1316 struct device_node *type, *range; 1317 int ret; 1318 1319 for_each_child_of_node(queue_pools, type) { 1320 for_each_child_of_node(type, range) { 1321 ret = knav_setup_queue_range(kdev, range); 1322 /* return value ignored, we init the rest... */ 1323 } 1324 } 1325 1326 /* ... and barf if they all failed! */ 1327 if (list_empty(&kdev->queue_ranges)) { 1328 dev_err(kdev->dev, "no valid queue range found\n"); 1329 return -ENODEV; 1330 } 1331 return 0; 1332 } 1333 1334 static void knav_free_queue_range(struct knav_device *kdev, 1335 struct knav_range_info *range) 1336 { 1337 if (range->ops && range->ops->free_range) 1338 range->ops->free_range(range); 1339 list_del(&range->list); 1340 devm_kfree(kdev->dev, range); 1341 } 1342 1343 static void knav_free_queue_ranges(struct knav_device *kdev) 1344 { 1345 struct knav_range_info *range; 1346 1347 for (;;) { 1348 range = first_queue_range(kdev); 1349 if (!range) 1350 break; 1351 knav_free_queue_range(kdev, range); 1352 } 1353 } 1354 1355 static void knav_queue_free_regions(struct knav_device *kdev) 1356 { 1357 struct knav_region *region; 1358 struct knav_pool *pool, *tmp; 1359 unsigned size; 1360 1361 for (;;) { 1362 region = first_region(kdev); 1363 if (!region) 1364 break; 1365 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst) 1366 knav_pool_destroy(pool); 1367 1368 size = region->virt_end - region->virt_start; 1369 if (size) 1370 free_pages_exact(region->virt_start, size); 1371 list_del(®ion->list); 1372 devm_kfree(kdev->dev, region); 1373 } 1374 } 1375 1376 static void __iomem *knav_queue_map_reg(struct knav_device *kdev, 1377 struct device_node *node, int index) 1378 { 1379 struct resource res; 1380 void __iomem *regs; 1381 int ret; 1382 1383 ret = of_address_to_resource(node, index, &res); 1384 if (ret) { 1385 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n", 1386 node, index); 1387 return ERR_PTR(ret); 1388 } 1389 1390 regs = devm_ioremap_resource(kdev->dev, &res); 1391 if (IS_ERR(regs)) 1392 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n", 1393 index, node); 1394 return regs; 1395 } 1396 1397 static int knav_queue_init_qmgrs(struct knav_device *kdev, 1398 struct device_node *qmgrs) 1399 { 1400 struct device *dev = kdev->dev; 1401 struct knav_qmgr_info *qmgr; 1402 struct device_node *child; 1403 u32 temp[2]; 1404 int ret; 1405 1406 for_each_child_of_node(qmgrs, child) { 1407 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL); 1408 if (!qmgr) { 1409 dev_err(dev, "out of memory allocating qmgr\n"); 1410 return -ENOMEM; 1411 } 1412 1413 ret = of_property_read_u32_array(child, "managed-queues", 1414 temp, 2); 1415 if (!ret) { 1416 qmgr->start_queue = temp[0]; 1417 qmgr->num_queues = temp[1]; 1418 } else { 1419 dev_err(dev, "invalid qmgr queue range\n"); 1420 devm_kfree(dev, qmgr); 1421 continue; 1422 } 1423 1424 dev_info(dev, "qmgr start queue %d, number of queues %d\n", 1425 qmgr->start_queue, qmgr->num_queues); 1426 1427 qmgr->reg_peek = 1428 knav_queue_map_reg(kdev, child, 1429 KNAV_QUEUE_PEEK_REG_INDEX); 1430 1431 if (kdev->version == QMSS) { 1432 qmgr->reg_status = 1433 knav_queue_map_reg(kdev, child, 1434 KNAV_QUEUE_STATUS_REG_INDEX); 1435 } 1436 1437 qmgr->reg_config = 1438 knav_queue_map_reg(kdev, child, 1439 (kdev->version == QMSS_66AK2G) ? 1440 KNAV_L_QUEUE_CONFIG_REG_INDEX : 1441 KNAV_QUEUE_CONFIG_REG_INDEX); 1442 qmgr->reg_region = 1443 knav_queue_map_reg(kdev, child, 1444 (kdev->version == QMSS_66AK2G) ? 1445 KNAV_L_QUEUE_REGION_REG_INDEX : 1446 KNAV_QUEUE_REGION_REG_INDEX); 1447 1448 qmgr->reg_push = 1449 knav_queue_map_reg(kdev, child, 1450 (kdev->version == QMSS_66AK2G) ? 1451 KNAV_L_QUEUE_PUSH_REG_INDEX : 1452 KNAV_QUEUE_PUSH_REG_INDEX); 1453 1454 if (kdev->version == QMSS) { 1455 qmgr->reg_pop = 1456 knav_queue_map_reg(kdev, child, 1457 KNAV_QUEUE_POP_REG_INDEX); 1458 } 1459 1460 if (IS_ERR(qmgr->reg_peek) || 1461 ((kdev->version == QMSS) && 1462 (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) || 1463 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) || 1464 IS_ERR(qmgr->reg_push)) { 1465 dev_err(dev, "failed to map qmgr regs\n"); 1466 if (kdev->version == QMSS) { 1467 if (!IS_ERR(qmgr->reg_status)) 1468 devm_iounmap(dev, qmgr->reg_status); 1469 if (!IS_ERR(qmgr->reg_pop)) 1470 devm_iounmap(dev, qmgr->reg_pop); 1471 } 1472 if (!IS_ERR(qmgr->reg_peek)) 1473 devm_iounmap(dev, qmgr->reg_peek); 1474 if (!IS_ERR(qmgr->reg_config)) 1475 devm_iounmap(dev, qmgr->reg_config); 1476 if (!IS_ERR(qmgr->reg_region)) 1477 devm_iounmap(dev, qmgr->reg_region); 1478 if (!IS_ERR(qmgr->reg_push)) 1479 devm_iounmap(dev, qmgr->reg_push); 1480 devm_kfree(dev, qmgr); 1481 continue; 1482 } 1483 1484 /* Use same push register for pop as well */ 1485 if (kdev->version == QMSS_66AK2G) 1486 qmgr->reg_pop = qmgr->reg_push; 1487 1488 list_add_tail(&qmgr->list, &kdev->qmgrs); 1489 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n", 1490 qmgr->start_queue, qmgr->num_queues, 1491 qmgr->reg_peek, qmgr->reg_status, 1492 qmgr->reg_config, qmgr->reg_region, 1493 qmgr->reg_push, qmgr->reg_pop); 1494 } 1495 return 0; 1496 } 1497 1498 static int knav_queue_init_pdsps(struct knav_device *kdev, 1499 struct device_node *pdsps) 1500 { 1501 struct device *dev = kdev->dev; 1502 struct knav_pdsp_info *pdsp; 1503 struct device_node *child; 1504 1505 for_each_child_of_node(pdsps, child) { 1506 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL); 1507 if (!pdsp) { 1508 dev_err(dev, "out of memory allocating pdsp\n"); 1509 return -ENOMEM; 1510 } 1511 pdsp->name = knav_queue_find_name(child); 1512 pdsp->iram = 1513 knav_queue_map_reg(kdev, child, 1514 KNAV_QUEUE_PDSP_IRAM_REG_INDEX); 1515 pdsp->regs = 1516 knav_queue_map_reg(kdev, child, 1517 KNAV_QUEUE_PDSP_REGS_REG_INDEX); 1518 pdsp->intd = 1519 knav_queue_map_reg(kdev, child, 1520 KNAV_QUEUE_PDSP_INTD_REG_INDEX); 1521 pdsp->command = 1522 knav_queue_map_reg(kdev, child, 1523 KNAV_QUEUE_PDSP_CMD_REG_INDEX); 1524 1525 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) || 1526 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) { 1527 dev_err(dev, "failed to map pdsp %s regs\n", 1528 pdsp->name); 1529 if (!IS_ERR(pdsp->command)) 1530 devm_iounmap(dev, pdsp->command); 1531 if (!IS_ERR(pdsp->iram)) 1532 devm_iounmap(dev, pdsp->iram); 1533 if (!IS_ERR(pdsp->regs)) 1534 devm_iounmap(dev, pdsp->regs); 1535 if (!IS_ERR(pdsp->intd)) 1536 devm_iounmap(dev, pdsp->intd); 1537 devm_kfree(dev, pdsp); 1538 continue; 1539 } 1540 of_property_read_u32(child, "id", &pdsp->id); 1541 list_add_tail(&pdsp->list, &kdev->pdsps); 1542 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n", 1543 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs, 1544 pdsp->intd); 1545 } 1546 return 0; 1547 } 1548 1549 static int knav_queue_stop_pdsp(struct knav_device *kdev, 1550 struct knav_pdsp_info *pdsp) 1551 { 1552 u32 val, timeout = 1000; 1553 int ret; 1554 1555 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE; 1556 writel_relaxed(val, &pdsp->regs->control); 1557 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout, 1558 PDSP_CTRL_RUNNING); 1559 if (ret < 0) { 1560 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name); 1561 return ret; 1562 } 1563 pdsp->loaded = false; 1564 pdsp->started = false; 1565 return 0; 1566 } 1567 1568 static int knav_queue_load_pdsp(struct knav_device *kdev, 1569 struct knav_pdsp_info *pdsp) 1570 { 1571 int i, ret, fwlen; 1572 const struct firmware *fw; 1573 bool found = false; 1574 u32 *fwdata; 1575 1576 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) { 1577 if (knav_acc_firmwares[i]) { 1578 ret = request_firmware_direct(&fw, 1579 knav_acc_firmwares[i], 1580 kdev->dev); 1581 if (!ret) { 1582 found = true; 1583 break; 1584 } 1585 } 1586 } 1587 1588 if (!found) { 1589 dev_err(kdev->dev, "failed to get firmware for pdsp\n"); 1590 return -ENODEV; 1591 } 1592 1593 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n", 1594 knav_acc_firmwares[i]); 1595 1596 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18); 1597 /* download the firmware */ 1598 fwdata = (u32 *)fw->data; 1599 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32); 1600 for (i = 0; i < fwlen; i++) 1601 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i); 1602 1603 release_firmware(fw); 1604 return 0; 1605 } 1606 1607 static int knav_queue_start_pdsp(struct knav_device *kdev, 1608 struct knav_pdsp_info *pdsp) 1609 { 1610 u32 val, timeout = 1000; 1611 int ret; 1612 1613 /* write a command for sync */ 1614 writel_relaxed(0xffffffff, pdsp->command); 1615 while (readl_relaxed(pdsp->command) != 0xffffffff) 1616 cpu_relax(); 1617 1618 /* soft reset the PDSP */ 1619 val = readl_relaxed(&pdsp->regs->control); 1620 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET); 1621 writel_relaxed(val, &pdsp->regs->control); 1622 1623 /* enable pdsp */ 1624 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE; 1625 writel_relaxed(val, &pdsp->regs->control); 1626 1627 /* wait for command register to clear */ 1628 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0); 1629 if (ret < 0) { 1630 dev_err(kdev->dev, 1631 "timed out on pdsp %s command register wait\n", 1632 pdsp->name); 1633 return ret; 1634 } 1635 return 0; 1636 } 1637 1638 static void knav_queue_stop_pdsps(struct knav_device *kdev) 1639 { 1640 struct knav_pdsp_info *pdsp; 1641 1642 /* disable all pdsps */ 1643 for_each_pdsp(kdev, pdsp) 1644 knav_queue_stop_pdsp(kdev, pdsp); 1645 } 1646 1647 static int knav_queue_start_pdsps(struct knav_device *kdev) 1648 { 1649 struct knav_pdsp_info *pdsp; 1650 int ret; 1651 1652 knav_queue_stop_pdsps(kdev); 1653 /* now load them all. We return success even if pdsp 1654 * is not loaded as acc channels are optional on having 1655 * firmware availability in the system. We set the loaded 1656 * and stated flag and when initialize the acc range, check 1657 * it and init the range only if pdsp is started. 1658 */ 1659 for_each_pdsp(kdev, pdsp) { 1660 ret = knav_queue_load_pdsp(kdev, pdsp); 1661 if (!ret) 1662 pdsp->loaded = true; 1663 } 1664 1665 for_each_pdsp(kdev, pdsp) { 1666 if (pdsp->loaded) { 1667 ret = knav_queue_start_pdsp(kdev, pdsp); 1668 if (!ret) 1669 pdsp->started = true; 1670 } 1671 } 1672 return 0; 1673 } 1674 1675 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id) 1676 { 1677 struct knav_qmgr_info *qmgr; 1678 1679 for_each_qmgr(kdev, qmgr) { 1680 if ((id >= qmgr->start_queue) && 1681 (id < qmgr->start_queue + qmgr->num_queues)) 1682 return qmgr; 1683 } 1684 return NULL; 1685 } 1686 1687 static int knav_queue_init_queue(struct knav_device *kdev, 1688 struct knav_range_info *range, 1689 struct knav_queue_inst *inst, 1690 unsigned id) 1691 { 1692 char irq_name[KNAV_NAME_SIZE]; 1693 inst->qmgr = knav_find_qmgr(id); 1694 if (!inst->qmgr) 1695 return -1; 1696 1697 INIT_LIST_HEAD(&inst->handles); 1698 inst->kdev = kdev; 1699 inst->range = range; 1700 inst->irq_num = -1; 1701 inst->id = id; 1702 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id); 1703 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL); 1704 1705 if (range->ops && range->ops->init_queue) 1706 return range->ops->init_queue(range, inst); 1707 else 1708 return 0; 1709 } 1710 1711 static int knav_queue_init_queues(struct knav_device *kdev) 1712 { 1713 struct knav_range_info *range; 1714 int size, id, base_idx; 1715 int idx = 0, ret = 0; 1716 1717 /* how much do we need for instance data? */ 1718 size = sizeof(struct knav_queue_inst); 1719 1720 /* round this up to a power of 2, keep the index to instance 1721 * arithmetic fast. 1722 * */ 1723 kdev->inst_shift = order_base_2(size); 1724 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use; 1725 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL); 1726 if (!kdev->instances) 1727 return -ENOMEM; 1728 1729 for_each_queue_range(kdev, range) { 1730 if (range->ops && range->ops->init_range) 1731 range->ops->init_range(range); 1732 base_idx = idx; 1733 for (id = range->queue_base; 1734 id < range->queue_base + range->num_queues; id++, idx++) { 1735 ret = knav_queue_init_queue(kdev, range, 1736 knav_queue_idx_to_inst(kdev, idx), id); 1737 if (ret < 0) 1738 return ret; 1739 } 1740 range->queue_base_inst = 1741 knav_queue_idx_to_inst(kdev, base_idx); 1742 } 1743 return 0; 1744 } 1745 1746 /* Match table for of_platform binding */ 1747 static const struct of_device_id keystone_qmss_of_match[] = { 1748 { 1749 .compatible = "ti,keystone-navigator-qmss", 1750 }, 1751 { 1752 .compatible = "ti,66ak2g-navss-qm", 1753 .data = (void *)QMSS_66AK2G, 1754 }, 1755 {}, 1756 }; 1757 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match); 1758 1759 static int knav_queue_probe(struct platform_device *pdev) 1760 { 1761 struct device_node *node = pdev->dev.of_node; 1762 struct device_node *qmgrs, *queue_pools, *regions, *pdsps; 1763 const struct of_device_id *match; 1764 struct device *dev = &pdev->dev; 1765 u32 temp[2]; 1766 int ret; 1767 1768 if (!node) { 1769 dev_err(dev, "device tree info unavailable\n"); 1770 return -ENODEV; 1771 } 1772 1773 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL); 1774 if (!kdev) { 1775 dev_err(dev, "memory allocation failed\n"); 1776 return -ENOMEM; 1777 } 1778 1779 match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev); 1780 if (match && match->data) 1781 kdev->version = QMSS_66AK2G; 1782 1783 platform_set_drvdata(pdev, kdev); 1784 kdev->dev = dev; 1785 INIT_LIST_HEAD(&kdev->queue_ranges); 1786 INIT_LIST_HEAD(&kdev->qmgrs); 1787 INIT_LIST_HEAD(&kdev->pools); 1788 INIT_LIST_HEAD(&kdev->regions); 1789 INIT_LIST_HEAD(&kdev->pdsps); 1790 1791 pm_runtime_enable(&pdev->dev); 1792 ret = pm_runtime_get_sync(&pdev->dev); 1793 if (ret < 0) { 1794 dev_err(dev, "Failed to enable QMSS\n"); 1795 return ret; 1796 } 1797 1798 if (of_property_read_u32_array(node, "queue-range", temp, 2)) { 1799 dev_err(dev, "queue-range not specified\n"); 1800 ret = -ENODEV; 1801 goto err; 1802 } 1803 kdev->base_id = temp[0]; 1804 kdev->num_queues = temp[1]; 1805 1806 /* Initialize queue managers using device tree configuration */ 1807 qmgrs = of_get_child_by_name(node, "qmgrs"); 1808 if (!qmgrs) { 1809 dev_err(dev, "queue manager info not specified\n"); 1810 ret = -ENODEV; 1811 goto err; 1812 } 1813 ret = knav_queue_init_qmgrs(kdev, qmgrs); 1814 of_node_put(qmgrs); 1815 if (ret) 1816 goto err; 1817 1818 /* get pdsp configuration values from device tree */ 1819 pdsps = of_get_child_by_name(node, "pdsps"); 1820 if (pdsps) { 1821 ret = knav_queue_init_pdsps(kdev, pdsps); 1822 if (ret) 1823 goto err; 1824 1825 ret = knav_queue_start_pdsps(kdev); 1826 if (ret) 1827 goto err; 1828 } 1829 of_node_put(pdsps); 1830 1831 /* get usable queue range values from device tree */ 1832 queue_pools = of_get_child_by_name(node, "queue-pools"); 1833 if (!queue_pools) { 1834 dev_err(dev, "queue-pools not specified\n"); 1835 ret = -ENODEV; 1836 goto err; 1837 } 1838 ret = knav_setup_queue_pools(kdev, queue_pools); 1839 of_node_put(queue_pools); 1840 if (ret) 1841 goto err; 1842 1843 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]); 1844 if (ret) { 1845 dev_err(kdev->dev, "could not setup linking ram\n"); 1846 goto err; 1847 } 1848 1849 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]); 1850 if (ret) { 1851 /* 1852 * nothing really, we have one linking ram already, so we just 1853 * live within our means 1854 */ 1855 } 1856 1857 ret = knav_queue_setup_link_ram(kdev); 1858 if (ret) 1859 goto err; 1860 1861 regions = of_get_child_by_name(node, "descriptor-regions"); 1862 if (!regions) { 1863 dev_err(dev, "descriptor-regions not specified\n"); 1864 goto err; 1865 } 1866 ret = knav_queue_setup_regions(kdev, regions); 1867 of_node_put(regions); 1868 if (ret) 1869 goto err; 1870 1871 ret = knav_queue_init_queues(kdev); 1872 if (ret < 0) { 1873 dev_err(dev, "hwqueue initialization failed\n"); 1874 goto err; 1875 } 1876 1877 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL, 1878 &knav_queue_debug_ops); 1879 device_ready = true; 1880 return 0; 1881 1882 err: 1883 knav_queue_stop_pdsps(kdev); 1884 knav_queue_free_regions(kdev); 1885 knav_free_queue_ranges(kdev); 1886 pm_runtime_put_sync(&pdev->dev); 1887 pm_runtime_disable(&pdev->dev); 1888 return ret; 1889 } 1890 1891 static int knav_queue_remove(struct platform_device *pdev) 1892 { 1893 /* TODO: Free resources */ 1894 pm_runtime_put_sync(&pdev->dev); 1895 pm_runtime_disable(&pdev->dev); 1896 return 0; 1897 } 1898 1899 static struct platform_driver keystone_qmss_driver = { 1900 .probe = knav_queue_probe, 1901 .remove = knav_queue_remove, 1902 .driver = { 1903 .name = "keystone-navigator-qmss", 1904 .of_match_table = keystone_qmss_of_match, 1905 }, 1906 }; 1907 module_platform_driver(keystone_qmss_driver); 1908 1909 MODULE_LICENSE("GPL v2"); 1910 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs"); 1911 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>"); 1912 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>"); 1913