xref: /openbmc/linux/drivers/soc/ti/knav_qmss_queue.c (revision 9cfc5c90)
1 /*
2  * Keystone Queue Manager subsystem driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5  * Authors:	Sandeep Nair <sandeep_n@ti.com>
6  *		Cyril Chemparathy <cyril@ti.com>
7  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/clk.h>
23 #include <linux/io.h>
24 #include <linux/interrupt.h>
25 #include <linux/bitops.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/platform_device.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_device.h>
33 #include <linux/of_address.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/firmware.h>
36 #include <linux/debugfs.h>
37 #include <linux/seq_file.h>
38 #include <linux/string.h>
39 #include <linux/soc/ti/knav_qmss.h>
40 
41 #include "knav_qmss.h"
42 
43 static struct knav_device *kdev;
44 static DEFINE_MUTEX(knav_dev_lock);
45 
46 /* Queue manager register indices in DTS */
47 #define KNAV_QUEUE_PEEK_REG_INDEX	0
48 #define KNAV_QUEUE_STATUS_REG_INDEX	1
49 #define KNAV_QUEUE_CONFIG_REG_INDEX	2
50 #define KNAV_QUEUE_REGION_REG_INDEX	3
51 #define KNAV_QUEUE_PUSH_REG_INDEX	4
52 #define KNAV_QUEUE_POP_REG_INDEX	5
53 
54 /* PDSP register indices in DTS */
55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
59 
60 #define knav_queue_idx_to_inst(kdev, idx)			\
61 	(kdev->instances + (idx << kdev->inst_shift))
62 
63 #define for_each_handle_rcu(qh, inst)			\
64 	list_for_each_entry_rcu(qh, &inst->handles, list)
65 
66 #define for_each_instance(idx, inst, kdev)		\
67 	for (idx = 0, inst = kdev->instances;		\
68 	     idx < (kdev)->num_queues_in_use;			\
69 	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
70 
71 /* All firmware file names end up here. List the firmware file names below.
72  * Newest followed by older ones. Search is done from start of the array
73  * until a firmware file is found.
74  */
75 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
76 
77 /**
78  * knav_queue_notify: qmss queue notfier call
79  *
80  * @inst:		qmss queue instance like accumulator
81  */
82 void knav_queue_notify(struct knav_queue_inst *inst)
83 {
84 	struct knav_queue *qh;
85 
86 	if (!inst)
87 		return;
88 
89 	rcu_read_lock();
90 	for_each_handle_rcu(qh, inst) {
91 		if (atomic_read(&qh->notifier_enabled) <= 0)
92 			continue;
93 		if (WARN_ON(!qh->notifier_fn))
94 			continue;
95 		atomic_inc(&qh->stats.notifies);
96 		qh->notifier_fn(qh->notifier_fn_arg);
97 	}
98 	rcu_read_unlock();
99 }
100 EXPORT_SYMBOL_GPL(knav_queue_notify);
101 
102 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
103 {
104 	struct knav_queue_inst *inst = _instdata;
105 
106 	knav_queue_notify(inst);
107 	return IRQ_HANDLED;
108 }
109 
110 static int knav_queue_setup_irq(struct knav_range_info *range,
111 			  struct knav_queue_inst *inst)
112 {
113 	unsigned queue = inst->id - range->queue_base;
114 	unsigned long cpu_map;
115 	int ret = 0, irq;
116 
117 	if (range->flags & RANGE_HAS_IRQ) {
118 		irq = range->irqs[queue].irq;
119 		cpu_map = range->irqs[queue].cpu_map;
120 		ret = request_irq(irq, knav_queue_int_handler, 0,
121 					inst->irq_name, inst);
122 		if (ret)
123 			return ret;
124 		disable_irq(irq);
125 		if (cpu_map) {
126 			ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
127 			if (ret) {
128 				dev_warn(range->kdev->dev,
129 					 "Failed to set IRQ affinity\n");
130 				return ret;
131 			}
132 		}
133 	}
134 	return ret;
135 }
136 
137 static void knav_queue_free_irq(struct knav_queue_inst *inst)
138 {
139 	struct knav_range_info *range = inst->range;
140 	unsigned queue = inst->id - inst->range->queue_base;
141 	int irq;
142 
143 	if (range->flags & RANGE_HAS_IRQ) {
144 		irq = range->irqs[queue].irq;
145 		irq_set_affinity_hint(irq, NULL);
146 		free_irq(irq, inst);
147 	}
148 }
149 
150 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
151 {
152 	return !list_empty(&inst->handles);
153 }
154 
155 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
156 {
157 	return inst->range->flags & RANGE_RESERVED;
158 }
159 
160 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
161 {
162 	struct knav_queue *tmp;
163 
164 	rcu_read_lock();
165 	for_each_handle_rcu(tmp, inst) {
166 		if (tmp->flags & KNAV_QUEUE_SHARED) {
167 			rcu_read_unlock();
168 			return true;
169 		}
170 	}
171 	rcu_read_unlock();
172 	return false;
173 }
174 
175 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
176 						unsigned type)
177 {
178 	if ((type == KNAV_QUEUE_QPEND) &&
179 	    (inst->range->flags & RANGE_HAS_IRQ)) {
180 		return true;
181 	} else if ((type == KNAV_QUEUE_ACC) &&
182 		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
183 		return true;
184 	} else if ((type == KNAV_QUEUE_GP) &&
185 		!(inst->range->flags &
186 			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
187 		return true;
188 	}
189 	return false;
190 }
191 
192 static inline struct knav_queue_inst *
193 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
194 {
195 	struct knav_queue_inst *inst;
196 	int idx;
197 
198 	for_each_instance(idx, inst, kdev) {
199 		if (inst->id == id)
200 			return inst;
201 	}
202 	return NULL;
203 }
204 
205 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
206 {
207 	if (kdev->base_id <= id &&
208 	    kdev->base_id + kdev->num_queues > id) {
209 		id -= kdev->base_id;
210 		return knav_queue_match_id_to_inst(kdev, id);
211 	}
212 	return NULL;
213 }
214 
215 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
216 				      const char *name, unsigned flags)
217 {
218 	struct knav_queue *qh;
219 	unsigned id;
220 	int ret = 0;
221 
222 	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
223 	if (!qh)
224 		return ERR_PTR(-ENOMEM);
225 
226 	qh->flags = flags;
227 	qh->inst = inst;
228 	id = inst->id - inst->qmgr->start_queue;
229 	qh->reg_push = &inst->qmgr->reg_push[id];
230 	qh->reg_pop = &inst->qmgr->reg_pop[id];
231 	qh->reg_peek = &inst->qmgr->reg_peek[id];
232 
233 	/* first opener? */
234 	if (!knav_queue_is_busy(inst)) {
235 		struct knav_range_info *range = inst->range;
236 
237 		inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
238 		if (range->ops && range->ops->open_queue)
239 			ret = range->ops->open_queue(range, inst, flags);
240 
241 		if (ret) {
242 			devm_kfree(inst->kdev->dev, qh);
243 			return ERR_PTR(ret);
244 		}
245 	}
246 	list_add_tail_rcu(&qh->list, &inst->handles);
247 	return qh;
248 }
249 
250 static struct knav_queue *
251 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
252 {
253 	struct knav_queue_inst *inst;
254 	struct knav_queue *qh;
255 
256 	mutex_lock(&knav_dev_lock);
257 
258 	qh = ERR_PTR(-ENODEV);
259 	inst = knav_queue_find_by_id(id);
260 	if (!inst)
261 		goto unlock_ret;
262 
263 	qh = ERR_PTR(-EEXIST);
264 	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
265 		goto unlock_ret;
266 
267 	qh = ERR_PTR(-EBUSY);
268 	if ((flags & KNAV_QUEUE_SHARED) &&
269 	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
270 		goto unlock_ret;
271 
272 	qh = __knav_queue_open(inst, name, flags);
273 
274 unlock_ret:
275 	mutex_unlock(&knav_dev_lock);
276 
277 	return qh;
278 }
279 
280 static struct knav_queue *knav_queue_open_by_type(const char *name,
281 						unsigned type, unsigned flags)
282 {
283 	struct knav_queue_inst *inst;
284 	struct knav_queue *qh = ERR_PTR(-EINVAL);
285 	int idx;
286 
287 	mutex_lock(&knav_dev_lock);
288 
289 	for_each_instance(idx, inst, kdev) {
290 		if (knav_queue_is_reserved(inst))
291 			continue;
292 		if (!knav_queue_match_type(inst, type))
293 			continue;
294 		if (knav_queue_is_busy(inst))
295 			continue;
296 		qh = __knav_queue_open(inst, name, flags);
297 		goto unlock_ret;
298 	}
299 
300 unlock_ret:
301 	mutex_unlock(&knav_dev_lock);
302 	return qh;
303 }
304 
305 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
306 {
307 	struct knav_range_info *range = inst->range;
308 
309 	if (range->ops && range->ops->set_notify)
310 		range->ops->set_notify(range, inst, enabled);
311 }
312 
313 static int knav_queue_enable_notifier(struct knav_queue *qh)
314 {
315 	struct knav_queue_inst *inst = qh->inst;
316 	bool first;
317 
318 	if (WARN_ON(!qh->notifier_fn))
319 		return -EINVAL;
320 
321 	/* Adjust the per handle notifier count */
322 	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
323 	if (!first)
324 		return 0; /* nothing to do */
325 
326 	/* Now adjust the per instance notifier count */
327 	first = (atomic_inc_return(&inst->num_notifiers) == 1);
328 	if (first)
329 		knav_queue_set_notify(inst, true);
330 
331 	return 0;
332 }
333 
334 static int knav_queue_disable_notifier(struct knav_queue *qh)
335 {
336 	struct knav_queue_inst *inst = qh->inst;
337 	bool last;
338 
339 	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
340 	if (!last)
341 		return 0; /* nothing to do */
342 
343 	last = (atomic_dec_return(&inst->num_notifiers) == 0);
344 	if (last)
345 		knav_queue_set_notify(inst, false);
346 
347 	return 0;
348 }
349 
350 static int knav_queue_set_notifier(struct knav_queue *qh,
351 				struct knav_queue_notify_config *cfg)
352 {
353 	knav_queue_notify_fn old_fn = qh->notifier_fn;
354 
355 	if (!cfg)
356 		return -EINVAL;
357 
358 	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
359 		return -ENOTSUPP;
360 
361 	if (!cfg->fn && old_fn)
362 		knav_queue_disable_notifier(qh);
363 
364 	qh->notifier_fn = cfg->fn;
365 	qh->notifier_fn_arg = cfg->fn_arg;
366 
367 	if (cfg->fn && !old_fn)
368 		knav_queue_enable_notifier(qh);
369 
370 	return 0;
371 }
372 
373 static int knav_gp_set_notify(struct knav_range_info *range,
374 			       struct knav_queue_inst *inst,
375 			       bool enabled)
376 {
377 	unsigned queue;
378 
379 	if (range->flags & RANGE_HAS_IRQ) {
380 		queue = inst->id - range->queue_base;
381 		if (enabled)
382 			enable_irq(range->irqs[queue].irq);
383 		else
384 			disable_irq_nosync(range->irqs[queue].irq);
385 	}
386 	return 0;
387 }
388 
389 static int knav_gp_open_queue(struct knav_range_info *range,
390 				struct knav_queue_inst *inst, unsigned flags)
391 {
392 	return knav_queue_setup_irq(range, inst);
393 }
394 
395 static int knav_gp_close_queue(struct knav_range_info *range,
396 				struct knav_queue_inst *inst)
397 {
398 	knav_queue_free_irq(inst);
399 	return 0;
400 }
401 
402 struct knav_range_ops knav_gp_range_ops = {
403 	.set_notify	= knav_gp_set_notify,
404 	.open_queue	= knav_gp_open_queue,
405 	.close_queue	= knav_gp_close_queue,
406 };
407 
408 
409 static int knav_queue_get_count(void *qhandle)
410 {
411 	struct knav_queue *qh = qhandle;
412 	struct knav_queue_inst *inst = qh->inst;
413 
414 	return readl_relaxed(&qh->reg_peek[0].entry_count) +
415 		atomic_read(&inst->desc_count);
416 }
417 
418 static void knav_queue_debug_show_instance(struct seq_file *s,
419 					struct knav_queue_inst *inst)
420 {
421 	struct knav_device *kdev = inst->kdev;
422 	struct knav_queue *qh;
423 
424 	if (!knav_queue_is_busy(inst))
425 		return;
426 
427 	seq_printf(s, "\tqueue id %d (%s)\n",
428 		   kdev->base_id + inst->id, inst->name);
429 	for_each_handle_rcu(qh, inst) {
430 		seq_printf(s, "\t\thandle %p: ", qh);
431 		seq_printf(s, "pushes %8d, ",
432 			   atomic_read(&qh->stats.pushes));
433 		seq_printf(s, "pops %8d, ",
434 			   atomic_read(&qh->stats.pops));
435 		seq_printf(s, "count %8d, ",
436 			   knav_queue_get_count(qh));
437 		seq_printf(s, "notifies %8d, ",
438 			   atomic_read(&qh->stats.notifies));
439 		seq_printf(s, "push errors %8d, ",
440 			   atomic_read(&qh->stats.push_errors));
441 		seq_printf(s, "pop errors %8d\n",
442 			   atomic_read(&qh->stats.pop_errors));
443 	}
444 }
445 
446 static int knav_queue_debug_show(struct seq_file *s, void *v)
447 {
448 	struct knav_queue_inst *inst;
449 	int idx;
450 
451 	mutex_lock(&knav_dev_lock);
452 	seq_printf(s, "%s: %u-%u\n",
453 		   dev_name(kdev->dev), kdev->base_id,
454 		   kdev->base_id + kdev->num_queues - 1);
455 	for_each_instance(idx, inst, kdev)
456 		knav_queue_debug_show_instance(s, inst);
457 	mutex_unlock(&knav_dev_lock);
458 
459 	return 0;
460 }
461 
462 static int knav_queue_debug_open(struct inode *inode, struct file *file)
463 {
464 	return single_open(file, knav_queue_debug_show, NULL);
465 }
466 
467 static const struct file_operations knav_queue_debug_ops = {
468 	.open		= knav_queue_debug_open,
469 	.read		= seq_read,
470 	.llseek		= seq_lseek,
471 	.release	= single_release,
472 };
473 
474 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
475 					u32 flags)
476 {
477 	unsigned long end;
478 	u32 val = 0;
479 
480 	end = jiffies + msecs_to_jiffies(timeout);
481 	while (time_after(end, jiffies)) {
482 		val = readl_relaxed(addr);
483 		if (flags)
484 			val &= flags;
485 		if (!val)
486 			break;
487 		cpu_relax();
488 	}
489 	return val ? -ETIMEDOUT : 0;
490 }
491 
492 
493 static int knav_queue_flush(struct knav_queue *qh)
494 {
495 	struct knav_queue_inst *inst = qh->inst;
496 	unsigned id = inst->id - inst->qmgr->start_queue;
497 
498 	atomic_set(&inst->desc_count, 0);
499 	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
500 	return 0;
501 }
502 
503 /**
504  * knav_queue_open()	- open a hardware queue
505  * @name		- name to give the queue handle
506  * @id			- desired queue number if any or specifes the type
507  *			  of queue
508  * @flags		- the following flags are applicable to queues:
509  *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
510  *			     exclusive by default.
511  *			     Subsequent attempts to open a shared queue should
512  *			     also have this flag.
513  *
514  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
515  * to check the returned value for error codes.
516  */
517 void *knav_queue_open(const char *name, unsigned id,
518 					unsigned flags)
519 {
520 	struct knav_queue *qh = ERR_PTR(-EINVAL);
521 
522 	switch (id) {
523 	case KNAV_QUEUE_QPEND:
524 	case KNAV_QUEUE_ACC:
525 	case KNAV_QUEUE_GP:
526 		qh = knav_queue_open_by_type(name, id, flags);
527 		break;
528 
529 	default:
530 		qh = knav_queue_open_by_id(name, id, flags);
531 		break;
532 	}
533 	return qh;
534 }
535 EXPORT_SYMBOL_GPL(knav_queue_open);
536 
537 /**
538  * knav_queue_close()	- close a hardware queue handle
539  * @qh			- handle to close
540  */
541 void knav_queue_close(void *qhandle)
542 {
543 	struct knav_queue *qh = qhandle;
544 	struct knav_queue_inst *inst = qh->inst;
545 
546 	while (atomic_read(&qh->notifier_enabled) > 0)
547 		knav_queue_disable_notifier(qh);
548 
549 	mutex_lock(&knav_dev_lock);
550 	list_del_rcu(&qh->list);
551 	mutex_unlock(&knav_dev_lock);
552 	synchronize_rcu();
553 	if (!knav_queue_is_busy(inst)) {
554 		struct knav_range_info *range = inst->range;
555 
556 		if (range->ops && range->ops->close_queue)
557 			range->ops->close_queue(range, inst);
558 	}
559 	devm_kfree(inst->kdev->dev, qh);
560 }
561 EXPORT_SYMBOL_GPL(knav_queue_close);
562 
563 /**
564  * knav_queue_device_control()	- Perform control operations on a queue
565  * @qh				- queue handle
566  * @cmd				- control commands
567  * @arg				- command argument
568  *
569  * Returns 0 on success, errno otherwise.
570  */
571 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
572 				unsigned long arg)
573 {
574 	struct knav_queue *qh = qhandle;
575 	struct knav_queue_notify_config *cfg;
576 	int ret;
577 
578 	switch ((int)cmd) {
579 	case KNAV_QUEUE_GET_ID:
580 		ret = qh->inst->kdev->base_id + qh->inst->id;
581 		break;
582 
583 	case KNAV_QUEUE_FLUSH:
584 		ret = knav_queue_flush(qh);
585 		break;
586 
587 	case KNAV_QUEUE_SET_NOTIFIER:
588 		cfg = (void *)arg;
589 		ret = knav_queue_set_notifier(qh, cfg);
590 		break;
591 
592 	case KNAV_QUEUE_ENABLE_NOTIFY:
593 		ret = knav_queue_enable_notifier(qh);
594 		break;
595 
596 	case KNAV_QUEUE_DISABLE_NOTIFY:
597 		ret = knav_queue_disable_notifier(qh);
598 		break;
599 
600 	case KNAV_QUEUE_GET_COUNT:
601 		ret = knav_queue_get_count(qh);
602 		break;
603 
604 	default:
605 		ret = -ENOTSUPP;
606 		break;
607 	}
608 	return ret;
609 }
610 EXPORT_SYMBOL_GPL(knav_queue_device_control);
611 
612 
613 
614 /**
615  * knav_queue_push()	- push data (or descriptor) to the tail of a queue
616  * @qh			- hardware queue handle
617  * @data		- data to push
618  * @size		- size of data to push
619  * @flags		- can be used to pass additional information
620  *
621  * Returns 0 on success, errno otherwise.
622  */
623 int knav_queue_push(void *qhandle, dma_addr_t dma,
624 					unsigned size, unsigned flags)
625 {
626 	struct knav_queue *qh = qhandle;
627 	u32 val;
628 
629 	val = (u32)dma | ((size / 16) - 1);
630 	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
631 
632 	atomic_inc(&qh->stats.pushes);
633 	return 0;
634 }
635 EXPORT_SYMBOL_GPL(knav_queue_push);
636 
637 /**
638  * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
639  * @qh			- hardware queue handle
640  * @size		- (optional) size of the data pop'ed.
641  *
642  * Returns a DMA address on success, 0 on failure.
643  */
644 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
645 {
646 	struct knav_queue *qh = qhandle;
647 	struct knav_queue_inst *inst = qh->inst;
648 	dma_addr_t dma;
649 	u32 val, idx;
650 
651 	/* are we accumulated? */
652 	if (inst->descs) {
653 		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
654 			atomic_inc(&inst->desc_count);
655 			return 0;
656 		}
657 		idx  = atomic_inc_return(&inst->desc_head);
658 		idx &= ACC_DESCS_MASK;
659 		val = inst->descs[idx];
660 	} else {
661 		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
662 		if (unlikely(!val))
663 			return 0;
664 	}
665 
666 	dma = val & DESC_PTR_MASK;
667 	if (size)
668 		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
669 
670 	atomic_inc(&qh->stats.pops);
671 	return dma;
672 }
673 EXPORT_SYMBOL_GPL(knav_queue_pop);
674 
675 /* carve out descriptors and push into queue */
676 static void kdesc_fill_pool(struct knav_pool *pool)
677 {
678 	struct knav_region *region;
679 	int i;
680 
681 	region = pool->region;
682 	pool->desc_size = region->desc_size;
683 	for (i = 0; i < pool->num_desc; i++) {
684 		int index = pool->region_offset + i;
685 		dma_addr_t dma_addr;
686 		unsigned dma_size;
687 		dma_addr = region->dma_start + (region->desc_size * index);
688 		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
689 		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
690 					   DMA_TO_DEVICE);
691 		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
692 	}
693 }
694 
695 /* pop out descriptors and close the queue */
696 static void kdesc_empty_pool(struct knav_pool *pool)
697 {
698 	dma_addr_t dma;
699 	unsigned size;
700 	void *desc;
701 	int i;
702 
703 	if (!pool->queue)
704 		return;
705 
706 	for (i = 0;; i++) {
707 		dma = knav_queue_pop(pool->queue, &size);
708 		if (!dma)
709 			break;
710 		desc = knav_pool_desc_dma_to_virt(pool, dma);
711 		if (!desc) {
712 			dev_dbg(pool->kdev->dev,
713 				"couldn't unmap desc, continuing\n");
714 			continue;
715 		}
716 	}
717 	WARN_ON(i != pool->num_desc);
718 	knav_queue_close(pool->queue);
719 }
720 
721 
722 /* Get the DMA address of a descriptor */
723 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
724 {
725 	struct knav_pool *pool = ph;
726 	return pool->region->dma_start + (virt - pool->region->virt_start);
727 }
728 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
729 
730 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
731 {
732 	struct knav_pool *pool = ph;
733 	return pool->region->virt_start + (dma - pool->region->dma_start);
734 }
735 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
736 
737 /**
738  * knav_pool_create()	- Create a pool of descriptors
739  * @name		- name to give the pool handle
740  * @num_desc		- numbers of descriptors in the pool
741  * @region_id		- QMSS region id from which the descriptors are to be
742  *			  allocated.
743  *
744  * Returns a pool handle on success.
745  * Use IS_ERR_OR_NULL() to identify error values on return.
746  */
747 void *knav_pool_create(const char *name,
748 					int num_desc, int region_id)
749 {
750 	struct knav_region *reg_itr, *region = NULL;
751 	struct knav_pool *pool, *pi;
752 	struct list_head *node;
753 	unsigned last_offset;
754 	bool slot_found;
755 	int ret;
756 
757 	if (!kdev->dev)
758 		return ERR_PTR(-ENODEV);
759 
760 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
761 	if (!pool) {
762 		dev_err(kdev->dev, "out of memory allocating pool\n");
763 		return ERR_PTR(-ENOMEM);
764 	}
765 
766 	for_each_region(kdev, reg_itr) {
767 		if (reg_itr->id != region_id)
768 			continue;
769 		region = reg_itr;
770 		break;
771 	}
772 
773 	if (!region) {
774 		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
775 		ret = -EINVAL;
776 		goto err;
777 	}
778 
779 	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
780 	if (IS_ERR_OR_NULL(pool->queue)) {
781 		dev_err(kdev->dev,
782 			"failed to open queue for pool(%s), error %ld\n",
783 			name, PTR_ERR(pool->queue));
784 		ret = PTR_ERR(pool->queue);
785 		goto err;
786 	}
787 
788 	pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
789 	pool->kdev = kdev;
790 	pool->dev = kdev->dev;
791 
792 	mutex_lock(&knav_dev_lock);
793 
794 	if (num_desc > (region->num_desc - region->used_desc)) {
795 		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
796 			region_id, name);
797 		ret = -ENOMEM;
798 		goto err_unlock;
799 	}
800 
801 	/* Region maintains a sorted (by region offset) list of pools
802 	 * use the first free slot which is large enough to accomodate
803 	 * the request
804 	 */
805 	last_offset = 0;
806 	slot_found = false;
807 	node = &region->pools;
808 	list_for_each_entry(pi, &region->pools, region_inst) {
809 		if ((pi->region_offset - last_offset) >= num_desc) {
810 			slot_found = true;
811 			break;
812 		}
813 		last_offset = pi->region_offset + pi->num_desc;
814 	}
815 	node = &pi->region_inst;
816 
817 	if (slot_found) {
818 		pool->region = region;
819 		pool->num_desc = num_desc;
820 		pool->region_offset = last_offset;
821 		region->used_desc += num_desc;
822 		list_add_tail(&pool->list, &kdev->pools);
823 		list_add_tail(&pool->region_inst, node);
824 	} else {
825 		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
826 			name, region_id);
827 		ret = -ENOMEM;
828 		goto err_unlock;
829 	}
830 
831 	mutex_unlock(&knav_dev_lock);
832 	kdesc_fill_pool(pool);
833 	return pool;
834 
835 err_unlock:
836 	mutex_unlock(&knav_dev_lock);
837 err:
838 	kfree(pool->name);
839 	devm_kfree(kdev->dev, pool);
840 	return ERR_PTR(ret);
841 }
842 EXPORT_SYMBOL_GPL(knav_pool_create);
843 
844 /**
845  * knav_pool_destroy()	- Free a pool of descriptors
846  * @pool		- pool handle
847  */
848 void knav_pool_destroy(void *ph)
849 {
850 	struct knav_pool *pool = ph;
851 
852 	if (!pool)
853 		return;
854 
855 	if (!pool->region)
856 		return;
857 
858 	kdesc_empty_pool(pool);
859 	mutex_lock(&knav_dev_lock);
860 
861 	pool->region->used_desc -= pool->num_desc;
862 	list_del(&pool->region_inst);
863 	list_del(&pool->list);
864 
865 	mutex_unlock(&knav_dev_lock);
866 	kfree(pool->name);
867 	devm_kfree(kdev->dev, pool);
868 }
869 EXPORT_SYMBOL_GPL(knav_pool_destroy);
870 
871 
872 /**
873  * knav_pool_desc_get()	- Get a descriptor from the pool
874  * @pool			- pool handle
875  *
876  * Returns descriptor from the pool.
877  */
878 void *knav_pool_desc_get(void *ph)
879 {
880 	struct knav_pool *pool = ph;
881 	dma_addr_t dma;
882 	unsigned size;
883 	void *data;
884 
885 	dma = knav_queue_pop(pool->queue, &size);
886 	if (unlikely(!dma))
887 		return ERR_PTR(-ENOMEM);
888 	data = knav_pool_desc_dma_to_virt(pool, dma);
889 	return data;
890 }
891 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
892 
893 /**
894  * knav_pool_desc_put()	- return a descriptor to the pool
895  * @pool			- pool handle
896  */
897 void knav_pool_desc_put(void *ph, void *desc)
898 {
899 	struct knav_pool *pool = ph;
900 	dma_addr_t dma;
901 	dma = knav_pool_desc_virt_to_dma(pool, desc);
902 	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
903 }
904 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
905 
906 /**
907  * knav_pool_desc_map()	- Map descriptor for DMA transfer
908  * @pool			- pool handle
909  * @desc			- address of descriptor to map
910  * @size			- size of descriptor to map
911  * @dma				- DMA address return pointer
912  * @dma_sz			- adjusted return pointer
913  *
914  * Returns 0 on success, errno otherwise.
915  */
916 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
917 					dma_addr_t *dma, unsigned *dma_sz)
918 {
919 	struct knav_pool *pool = ph;
920 	*dma = knav_pool_desc_virt_to_dma(pool, desc);
921 	size = min(size, pool->region->desc_size);
922 	size = ALIGN(size, SMP_CACHE_BYTES);
923 	*dma_sz = size;
924 	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
925 
926 	/* Ensure the descriptor reaches to the memory */
927 	__iowmb();
928 
929 	return 0;
930 }
931 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
932 
933 /**
934  * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
935  * @pool			- pool handle
936  * @dma				- DMA address of descriptor to unmap
937  * @dma_sz			- size of descriptor to unmap
938  *
939  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
940  * error values on return.
941  */
942 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
943 {
944 	struct knav_pool *pool = ph;
945 	unsigned desc_sz;
946 	void *desc;
947 
948 	desc_sz = min(dma_sz, pool->region->desc_size);
949 	desc = knav_pool_desc_dma_to_virt(pool, dma);
950 	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
951 	prefetch(desc);
952 	return desc;
953 }
954 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
955 
956 /**
957  * knav_pool_count()	- Get the number of descriptors in pool.
958  * @pool		- pool handle
959  * Returns number of elements in the pool.
960  */
961 int knav_pool_count(void *ph)
962 {
963 	struct knav_pool *pool = ph;
964 	return knav_queue_get_count(pool->queue);
965 }
966 EXPORT_SYMBOL_GPL(knav_pool_count);
967 
968 static void knav_queue_setup_region(struct knav_device *kdev,
969 					struct knav_region *region)
970 {
971 	unsigned hw_num_desc, hw_desc_size, size;
972 	struct knav_reg_region __iomem  *regs;
973 	struct knav_qmgr_info *qmgr;
974 	struct knav_pool *pool;
975 	int id = region->id;
976 	struct page *page;
977 
978 	/* unused region? */
979 	if (!region->num_desc) {
980 		dev_warn(kdev->dev, "unused region %s\n", region->name);
981 		return;
982 	}
983 
984 	/* get hardware descriptor value */
985 	hw_num_desc = ilog2(region->num_desc - 1) + 1;
986 
987 	/* did we force fit ourselves into nothingness? */
988 	if (region->num_desc < 32) {
989 		region->num_desc = 0;
990 		dev_warn(kdev->dev, "too few descriptors in region %s\n",
991 			 region->name);
992 		return;
993 	}
994 
995 	size = region->num_desc * region->desc_size;
996 	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
997 						GFP_DMA32);
998 	if (!region->virt_start) {
999 		region->num_desc = 0;
1000 		dev_err(kdev->dev, "memory alloc failed for region %s\n",
1001 			region->name);
1002 		return;
1003 	}
1004 	region->virt_end = region->virt_start + size;
1005 	page = virt_to_page(region->virt_start);
1006 
1007 	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1008 					 DMA_BIDIRECTIONAL);
1009 	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1010 		dev_err(kdev->dev, "dma map failed for region %s\n",
1011 			region->name);
1012 		goto fail;
1013 	}
1014 	region->dma_end = region->dma_start + size;
1015 
1016 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1017 	if (!pool) {
1018 		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1019 		goto fail;
1020 	}
1021 	pool->num_desc = 0;
1022 	pool->region_offset = region->num_desc;
1023 	list_add(&pool->region_inst, &region->pools);
1024 
1025 	dev_dbg(kdev->dev,
1026 		"region %s (%d): size:%d, link:%d@%d, phys:%08x-%08x, virt:%p-%p\n",
1027 		region->name, id, region->desc_size, region->num_desc,
1028 		region->link_index, region->dma_start, region->dma_end,
1029 		region->virt_start, region->virt_end);
1030 
1031 	hw_desc_size = (region->desc_size / 16) - 1;
1032 	hw_num_desc -= 5;
1033 
1034 	for_each_qmgr(kdev, qmgr) {
1035 		regs = qmgr->reg_region + id;
1036 		writel_relaxed(region->dma_start, &regs->base);
1037 		writel_relaxed(region->link_index, &regs->start_index);
1038 		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1039 			       &regs->size_count);
1040 	}
1041 	return;
1042 
1043 fail:
1044 	if (region->dma_start)
1045 		dma_unmap_page(kdev->dev, region->dma_start, size,
1046 				DMA_BIDIRECTIONAL);
1047 	if (region->virt_start)
1048 		free_pages_exact(region->virt_start, size);
1049 	region->num_desc = 0;
1050 	return;
1051 }
1052 
1053 static const char *knav_queue_find_name(struct device_node *node)
1054 {
1055 	const char *name;
1056 
1057 	if (of_property_read_string(node, "label", &name) < 0)
1058 		name = node->name;
1059 	if (!name)
1060 		name = "unknown";
1061 	return name;
1062 }
1063 
1064 static int knav_queue_setup_regions(struct knav_device *kdev,
1065 					struct device_node *regions)
1066 {
1067 	struct device *dev = kdev->dev;
1068 	struct knav_region *region;
1069 	struct device_node *child;
1070 	u32 temp[2];
1071 	int ret;
1072 
1073 	for_each_child_of_node(regions, child) {
1074 		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1075 		if (!region) {
1076 			dev_err(dev, "out of memory allocating region\n");
1077 			return -ENOMEM;
1078 		}
1079 
1080 		region->name = knav_queue_find_name(child);
1081 		of_property_read_u32(child, "id", &region->id);
1082 		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1083 		if (!ret) {
1084 			region->num_desc  = temp[0];
1085 			region->desc_size = temp[1];
1086 		} else {
1087 			dev_err(dev, "invalid region info %s\n", region->name);
1088 			devm_kfree(dev, region);
1089 			continue;
1090 		}
1091 
1092 		if (!of_get_property(child, "link-index", NULL)) {
1093 			dev_err(dev, "No link info for %s\n", region->name);
1094 			devm_kfree(dev, region);
1095 			continue;
1096 		}
1097 		ret = of_property_read_u32(child, "link-index",
1098 					   &region->link_index);
1099 		if (ret) {
1100 			dev_err(dev, "link index not found for %s\n",
1101 				region->name);
1102 			devm_kfree(dev, region);
1103 			continue;
1104 		}
1105 
1106 		INIT_LIST_HEAD(&region->pools);
1107 		list_add_tail(&region->list, &kdev->regions);
1108 	}
1109 	if (list_empty(&kdev->regions)) {
1110 		dev_err(dev, "no valid region information found\n");
1111 		return -ENODEV;
1112 	}
1113 
1114 	/* Next, we run through the regions and set things up */
1115 	for_each_region(kdev, region)
1116 		knav_queue_setup_region(kdev, region);
1117 
1118 	return 0;
1119 }
1120 
1121 static int knav_get_link_ram(struct knav_device *kdev,
1122 				       const char *name,
1123 				       struct knav_link_ram_block *block)
1124 {
1125 	struct platform_device *pdev = to_platform_device(kdev->dev);
1126 	struct device_node *node = pdev->dev.of_node;
1127 	u32 temp[2];
1128 
1129 	/*
1130 	 * Note: link ram resources are specified in "entry" sized units. In
1131 	 * reality, although entries are ~40bits in hardware, we treat them as
1132 	 * 64-bit entities here.
1133 	 *
1134 	 * For example, to specify the internal link ram for Keystone-I class
1135 	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1136 	 *
1137 	 * This gets a bit weird when other link rams are used.  For example,
1138 	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1139 	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1140 	 * which accounts for 64-bits per entry, for 16K entries.
1141 	 */
1142 	if (!of_property_read_u32_array(node, name , temp, 2)) {
1143 		if (temp[0]) {
1144 			/*
1145 			 * queue_base specified => using internal or onchip
1146 			 * link ram WARNING - we do not "reserve" this block
1147 			 */
1148 			block->phys = (dma_addr_t)temp[0];
1149 			block->virt = NULL;
1150 			block->size = temp[1];
1151 		} else {
1152 			block->size = temp[1];
1153 			/* queue_base not specific => allocate requested size */
1154 			block->virt = dmam_alloc_coherent(kdev->dev,
1155 						  8 * block->size, &block->phys,
1156 						  GFP_KERNEL);
1157 			if (!block->virt) {
1158 				dev_err(kdev->dev, "failed to alloc linkram\n");
1159 				return -ENOMEM;
1160 			}
1161 		}
1162 	} else {
1163 		return -ENODEV;
1164 	}
1165 	return 0;
1166 }
1167 
1168 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1169 {
1170 	struct knav_link_ram_block *block;
1171 	struct knav_qmgr_info *qmgr;
1172 
1173 	for_each_qmgr(kdev, qmgr) {
1174 		block = &kdev->link_rams[0];
1175 		dev_dbg(kdev->dev, "linkram0: phys:%x, virt:%p, size:%x\n",
1176 			block->phys, block->virt, block->size);
1177 		writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base0);
1178 		writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1179 
1180 		block++;
1181 		if (!block->size)
1182 			return 0;
1183 
1184 		dev_dbg(kdev->dev, "linkram1: phys:%x, virt:%p, size:%x\n",
1185 			block->phys, block->virt, block->size);
1186 		writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base1);
1187 	}
1188 
1189 	return 0;
1190 }
1191 
1192 static int knav_setup_queue_range(struct knav_device *kdev,
1193 					struct device_node *node)
1194 {
1195 	struct device *dev = kdev->dev;
1196 	struct knav_range_info *range;
1197 	struct knav_qmgr_info *qmgr;
1198 	u32 temp[2], start, end, id, index;
1199 	int ret, i;
1200 
1201 	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1202 	if (!range) {
1203 		dev_err(dev, "out of memory allocating range\n");
1204 		return -ENOMEM;
1205 	}
1206 
1207 	range->kdev = kdev;
1208 	range->name = knav_queue_find_name(node);
1209 	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1210 	if (!ret) {
1211 		range->queue_base = temp[0] - kdev->base_id;
1212 		range->num_queues = temp[1];
1213 	} else {
1214 		dev_err(dev, "invalid queue range %s\n", range->name);
1215 		devm_kfree(dev, range);
1216 		return -EINVAL;
1217 	}
1218 
1219 	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1220 		struct of_phandle_args oirq;
1221 
1222 		if (of_irq_parse_one(node, i, &oirq))
1223 			break;
1224 
1225 		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1226 		if (range->irqs[i].irq == IRQ_NONE)
1227 			break;
1228 
1229 		range->num_irqs++;
1230 
1231 		if (oirq.args_count == 3)
1232 			range->irqs[i].cpu_map =
1233 				(oirq.args[2] & 0x0000ff00) >> 8;
1234 	}
1235 
1236 	range->num_irqs = min(range->num_irqs, range->num_queues);
1237 	if (range->num_irqs)
1238 		range->flags |= RANGE_HAS_IRQ;
1239 
1240 	if (of_get_property(node, "qalloc-by-id", NULL))
1241 		range->flags |= RANGE_RESERVED;
1242 
1243 	if (of_get_property(node, "accumulator", NULL)) {
1244 		ret = knav_init_acc_range(kdev, node, range);
1245 		if (ret < 0) {
1246 			devm_kfree(dev, range);
1247 			return ret;
1248 		}
1249 	} else {
1250 		range->ops = &knav_gp_range_ops;
1251 	}
1252 
1253 	/* set threshold to 1, and flush out the queues */
1254 	for_each_qmgr(kdev, qmgr) {
1255 		start = max(qmgr->start_queue, range->queue_base);
1256 		end   = min(qmgr->start_queue + qmgr->num_queues,
1257 			    range->queue_base + range->num_queues);
1258 		for (id = start; id < end; id++) {
1259 			index = id - qmgr->start_queue;
1260 			writel_relaxed(THRESH_GTE | 1,
1261 				       &qmgr->reg_peek[index].ptr_size_thresh);
1262 			writel_relaxed(0,
1263 				       &qmgr->reg_push[index].ptr_size_thresh);
1264 		}
1265 	}
1266 
1267 	list_add_tail(&range->list, &kdev->queue_ranges);
1268 	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1269 		range->name, range->queue_base,
1270 		range->queue_base + range->num_queues - 1,
1271 		range->num_irqs,
1272 		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1273 		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1274 		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1275 	kdev->num_queues_in_use += range->num_queues;
1276 	return 0;
1277 }
1278 
1279 static int knav_setup_queue_pools(struct knav_device *kdev,
1280 				   struct device_node *queue_pools)
1281 {
1282 	struct device_node *type, *range;
1283 	int ret;
1284 
1285 	for_each_child_of_node(queue_pools, type) {
1286 		for_each_child_of_node(type, range) {
1287 			ret = knav_setup_queue_range(kdev, range);
1288 			/* return value ignored, we init the rest... */
1289 		}
1290 	}
1291 
1292 	/* ... and barf if they all failed! */
1293 	if (list_empty(&kdev->queue_ranges)) {
1294 		dev_err(kdev->dev, "no valid queue range found\n");
1295 		return -ENODEV;
1296 	}
1297 	return 0;
1298 }
1299 
1300 static void knav_free_queue_range(struct knav_device *kdev,
1301 				  struct knav_range_info *range)
1302 {
1303 	if (range->ops && range->ops->free_range)
1304 		range->ops->free_range(range);
1305 	list_del(&range->list);
1306 	devm_kfree(kdev->dev, range);
1307 }
1308 
1309 static void knav_free_queue_ranges(struct knav_device *kdev)
1310 {
1311 	struct knav_range_info *range;
1312 
1313 	for (;;) {
1314 		range = first_queue_range(kdev);
1315 		if (!range)
1316 			break;
1317 		knav_free_queue_range(kdev, range);
1318 	}
1319 }
1320 
1321 static void knav_queue_free_regions(struct knav_device *kdev)
1322 {
1323 	struct knav_region *region;
1324 	struct knav_pool *pool, *tmp;
1325 	unsigned size;
1326 
1327 	for (;;) {
1328 		region = first_region(kdev);
1329 		if (!region)
1330 			break;
1331 		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1332 			knav_pool_destroy(pool);
1333 
1334 		size = region->virt_end - region->virt_start;
1335 		if (size)
1336 			free_pages_exact(region->virt_start, size);
1337 		list_del(&region->list);
1338 		devm_kfree(kdev->dev, region);
1339 	}
1340 }
1341 
1342 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1343 					struct device_node *node, int index)
1344 {
1345 	struct resource res;
1346 	void __iomem *regs;
1347 	int ret;
1348 
1349 	ret = of_address_to_resource(node, index, &res);
1350 	if (ret) {
1351 		dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1352 			node->name, index);
1353 		return ERR_PTR(ret);
1354 	}
1355 
1356 	regs = devm_ioremap_resource(kdev->dev, &res);
1357 	if (IS_ERR(regs))
1358 		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1359 			index, node->name);
1360 	return regs;
1361 }
1362 
1363 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1364 					struct device_node *qmgrs)
1365 {
1366 	struct device *dev = kdev->dev;
1367 	struct knav_qmgr_info *qmgr;
1368 	struct device_node *child;
1369 	u32 temp[2];
1370 	int ret;
1371 
1372 	for_each_child_of_node(qmgrs, child) {
1373 		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1374 		if (!qmgr) {
1375 			dev_err(dev, "out of memory allocating qmgr\n");
1376 			return -ENOMEM;
1377 		}
1378 
1379 		ret = of_property_read_u32_array(child, "managed-queues",
1380 						 temp, 2);
1381 		if (!ret) {
1382 			qmgr->start_queue = temp[0];
1383 			qmgr->num_queues = temp[1];
1384 		} else {
1385 			dev_err(dev, "invalid qmgr queue range\n");
1386 			devm_kfree(dev, qmgr);
1387 			continue;
1388 		}
1389 
1390 		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1391 			 qmgr->start_queue, qmgr->num_queues);
1392 
1393 		qmgr->reg_peek =
1394 			knav_queue_map_reg(kdev, child,
1395 					   KNAV_QUEUE_PEEK_REG_INDEX);
1396 		qmgr->reg_status =
1397 			knav_queue_map_reg(kdev, child,
1398 					   KNAV_QUEUE_STATUS_REG_INDEX);
1399 		qmgr->reg_config =
1400 			knav_queue_map_reg(kdev, child,
1401 					   KNAV_QUEUE_CONFIG_REG_INDEX);
1402 		qmgr->reg_region =
1403 			knav_queue_map_reg(kdev, child,
1404 					   KNAV_QUEUE_REGION_REG_INDEX);
1405 		qmgr->reg_push =
1406 			knav_queue_map_reg(kdev, child,
1407 					   KNAV_QUEUE_PUSH_REG_INDEX);
1408 		qmgr->reg_pop =
1409 			knav_queue_map_reg(kdev, child,
1410 					   KNAV_QUEUE_POP_REG_INDEX);
1411 
1412 		if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1413 		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1414 		    IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1415 			dev_err(dev, "failed to map qmgr regs\n");
1416 			if (!IS_ERR(qmgr->reg_peek))
1417 				devm_iounmap(dev, qmgr->reg_peek);
1418 			if (!IS_ERR(qmgr->reg_status))
1419 				devm_iounmap(dev, qmgr->reg_status);
1420 			if (!IS_ERR(qmgr->reg_config))
1421 				devm_iounmap(dev, qmgr->reg_config);
1422 			if (!IS_ERR(qmgr->reg_region))
1423 				devm_iounmap(dev, qmgr->reg_region);
1424 			if (!IS_ERR(qmgr->reg_push))
1425 				devm_iounmap(dev, qmgr->reg_push);
1426 			if (!IS_ERR(qmgr->reg_pop))
1427 				devm_iounmap(dev, qmgr->reg_pop);
1428 			devm_kfree(dev, qmgr);
1429 			continue;
1430 		}
1431 
1432 		list_add_tail(&qmgr->list, &kdev->qmgrs);
1433 		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1434 			 qmgr->start_queue, qmgr->num_queues,
1435 			 qmgr->reg_peek, qmgr->reg_status,
1436 			 qmgr->reg_config, qmgr->reg_region,
1437 			 qmgr->reg_push, qmgr->reg_pop);
1438 	}
1439 	return 0;
1440 }
1441 
1442 static int knav_queue_init_pdsps(struct knav_device *kdev,
1443 					struct device_node *pdsps)
1444 {
1445 	struct device *dev = kdev->dev;
1446 	struct knav_pdsp_info *pdsp;
1447 	struct device_node *child;
1448 
1449 	for_each_child_of_node(pdsps, child) {
1450 		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1451 		if (!pdsp) {
1452 			dev_err(dev, "out of memory allocating pdsp\n");
1453 			return -ENOMEM;
1454 		}
1455 		pdsp->name = knav_queue_find_name(child);
1456 		pdsp->iram =
1457 			knav_queue_map_reg(kdev, child,
1458 					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1459 		pdsp->regs =
1460 			knav_queue_map_reg(kdev, child,
1461 					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1462 		pdsp->intd =
1463 			knav_queue_map_reg(kdev, child,
1464 					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1465 		pdsp->command =
1466 			knav_queue_map_reg(kdev, child,
1467 					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1468 
1469 		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1470 		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1471 			dev_err(dev, "failed to map pdsp %s regs\n",
1472 				pdsp->name);
1473 			if (!IS_ERR(pdsp->command))
1474 				devm_iounmap(dev, pdsp->command);
1475 			if (!IS_ERR(pdsp->iram))
1476 				devm_iounmap(dev, pdsp->iram);
1477 			if (!IS_ERR(pdsp->regs))
1478 				devm_iounmap(dev, pdsp->regs);
1479 			if (!IS_ERR(pdsp->intd))
1480 				devm_iounmap(dev, pdsp->intd);
1481 			devm_kfree(dev, pdsp);
1482 			continue;
1483 		}
1484 		of_property_read_u32(child, "id", &pdsp->id);
1485 		list_add_tail(&pdsp->list, &kdev->pdsps);
1486 		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1487 			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1488 			pdsp->intd);
1489 	}
1490 	return 0;
1491 }
1492 
1493 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1494 			  struct knav_pdsp_info *pdsp)
1495 {
1496 	u32 val, timeout = 1000;
1497 	int ret;
1498 
1499 	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1500 	writel_relaxed(val, &pdsp->regs->control);
1501 	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1502 					PDSP_CTRL_RUNNING);
1503 	if (ret < 0) {
1504 		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1505 		return ret;
1506 	}
1507 	pdsp->loaded = false;
1508 	pdsp->started = false;
1509 	return 0;
1510 }
1511 
1512 static int knav_queue_load_pdsp(struct knav_device *kdev,
1513 			  struct knav_pdsp_info *pdsp)
1514 {
1515 	int i, ret, fwlen;
1516 	const struct firmware *fw;
1517 	bool found = false;
1518 	u32 *fwdata;
1519 
1520 	for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1521 		if (knav_acc_firmwares[i]) {
1522 			ret = request_firmware(&fw,
1523 					       knav_acc_firmwares[i],
1524 					       kdev->dev);
1525 			if (!ret) {
1526 				found = true;
1527 				break;
1528 			}
1529 		}
1530 	}
1531 
1532 	if (!found) {
1533 		dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1534 		return -ENODEV;
1535 	}
1536 
1537 	dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1538 		 knav_acc_firmwares[i]);
1539 
1540 	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1541 	/* download the firmware */
1542 	fwdata = (u32 *)fw->data;
1543 	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1544 	for (i = 0; i < fwlen; i++)
1545 		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1546 
1547 	release_firmware(fw);
1548 	return 0;
1549 }
1550 
1551 static int knav_queue_start_pdsp(struct knav_device *kdev,
1552 			   struct knav_pdsp_info *pdsp)
1553 {
1554 	u32 val, timeout = 1000;
1555 	int ret;
1556 
1557 	/* write a command for sync */
1558 	writel_relaxed(0xffffffff, pdsp->command);
1559 	while (readl_relaxed(pdsp->command) != 0xffffffff)
1560 		cpu_relax();
1561 
1562 	/* soft reset the PDSP */
1563 	val  = readl_relaxed(&pdsp->regs->control);
1564 	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1565 	writel_relaxed(val, &pdsp->regs->control);
1566 
1567 	/* enable pdsp */
1568 	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1569 	writel_relaxed(val, &pdsp->regs->control);
1570 
1571 	/* wait for command register to clear */
1572 	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1573 	if (ret < 0) {
1574 		dev_err(kdev->dev,
1575 			"timed out on pdsp %s command register wait\n",
1576 			pdsp->name);
1577 		return ret;
1578 	}
1579 	return 0;
1580 }
1581 
1582 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1583 {
1584 	struct knav_pdsp_info *pdsp;
1585 
1586 	/* disable all pdsps */
1587 	for_each_pdsp(kdev, pdsp)
1588 		knav_queue_stop_pdsp(kdev, pdsp);
1589 }
1590 
1591 static int knav_queue_start_pdsps(struct knav_device *kdev)
1592 {
1593 	struct knav_pdsp_info *pdsp;
1594 	int ret;
1595 
1596 	knav_queue_stop_pdsps(kdev);
1597 	/* now load them all. We return success even if pdsp
1598 	 * is not loaded as acc channels are optional on having
1599 	 * firmware availability in the system. We set the loaded
1600 	 * and stated flag and when initialize the acc range, check
1601 	 * it and init the range only if pdsp is started.
1602 	 */
1603 	for_each_pdsp(kdev, pdsp) {
1604 		ret = knav_queue_load_pdsp(kdev, pdsp);
1605 		if (!ret)
1606 			pdsp->loaded = true;
1607 	}
1608 
1609 	for_each_pdsp(kdev, pdsp) {
1610 		if (pdsp->loaded) {
1611 			ret = knav_queue_start_pdsp(kdev, pdsp);
1612 			if (!ret)
1613 				pdsp->started = true;
1614 		}
1615 	}
1616 	return 0;
1617 }
1618 
1619 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1620 {
1621 	struct knav_qmgr_info *qmgr;
1622 
1623 	for_each_qmgr(kdev, qmgr) {
1624 		if ((id >= qmgr->start_queue) &&
1625 		    (id < qmgr->start_queue + qmgr->num_queues))
1626 			return qmgr;
1627 	}
1628 	return NULL;
1629 }
1630 
1631 static int knav_queue_init_queue(struct knav_device *kdev,
1632 					struct knav_range_info *range,
1633 					struct knav_queue_inst *inst,
1634 					unsigned id)
1635 {
1636 	char irq_name[KNAV_NAME_SIZE];
1637 	inst->qmgr = knav_find_qmgr(id);
1638 	if (!inst->qmgr)
1639 		return -1;
1640 
1641 	INIT_LIST_HEAD(&inst->handles);
1642 	inst->kdev = kdev;
1643 	inst->range = range;
1644 	inst->irq_num = -1;
1645 	inst->id = id;
1646 	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1647 	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1648 
1649 	if (range->ops && range->ops->init_queue)
1650 		return range->ops->init_queue(range, inst);
1651 	else
1652 		return 0;
1653 }
1654 
1655 static int knav_queue_init_queues(struct knav_device *kdev)
1656 {
1657 	struct knav_range_info *range;
1658 	int size, id, base_idx;
1659 	int idx = 0, ret = 0;
1660 
1661 	/* how much do we need for instance data? */
1662 	size = sizeof(struct knav_queue_inst);
1663 
1664 	/* round this up to a power of 2, keep the index to instance
1665 	 * arithmetic fast.
1666 	 * */
1667 	kdev->inst_shift = order_base_2(size);
1668 	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1669 	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1670 	if (!kdev->instances)
1671 		return -ENOMEM;
1672 
1673 	for_each_queue_range(kdev, range) {
1674 		if (range->ops && range->ops->init_range)
1675 			range->ops->init_range(range);
1676 		base_idx = idx;
1677 		for (id = range->queue_base;
1678 		     id < range->queue_base + range->num_queues; id++, idx++) {
1679 			ret = knav_queue_init_queue(kdev, range,
1680 					knav_queue_idx_to_inst(kdev, idx), id);
1681 			if (ret < 0)
1682 				return ret;
1683 		}
1684 		range->queue_base_inst =
1685 			knav_queue_idx_to_inst(kdev, base_idx);
1686 	}
1687 	return 0;
1688 }
1689 
1690 static int knav_queue_probe(struct platform_device *pdev)
1691 {
1692 	struct device_node *node = pdev->dev.of_node;
1693 	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1694 	struct device *dev = &pdev->dev;
1695 	u32 temp[2];
1696 	int ret;
1697 
1698 	if (!node) {
1699 		dev_err(dev, "device tree info unavailable\n");
1700 		return -ENODEV;
1701 	}
1702 
1703 	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1704 	if (!kdev) {
1705 		dev_err(dev, "memory allocation failed\n");
1706 		return -ENOMEM;
1707 	}
1708 
1709 	platform_set_drvdata(pdev, kdev);
1710 	kdev->dev = dev;
1711 	INIT_LIST_HEAD(&kdev->queue_ranges);
1712 	INIT_LIST_HEAD(&kdev->qmgrs);
1713 	INIT_LIST_HEAD(&kdev->pools);
1714 	INIT_LIST_HEAD(&kdev->regions);
1715 	INIT_LIST_HEAD(&kdev->pdsps);
1716 
1717 	pm_runtime_enable(&pdev->dev);
1718 	ret = pm_runtime_get_sync(&pdev->dev);
1719 	if (ret < 0) {
1720 		dev_err(dev, "Failed to enable QMSS\n");
1721 		return ret;
1722 	}
1723 
1724 	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1725 		dev_err(dev, "queue-range not specified\n");
1726 		ret = -ENODEV;
1727 		goto err;
1728 	}
1729 	kdev->base_id    = temp[0];
1730 	kdev->num_queues = temp[1];
1731 
1732 	/* Initialize queue managers using device tree configuration */
1733 	qmgrs =  of_get_child_by_name(node, "qmgrs");
1734 	if (!qmgrs) {
1735 		dev_err(dev, "queue manager info not specified\n");
1736 		ret = -ENODEV;
1737 		goto err;
1738 	}
1739 	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1740 	of_node_put(qmgrs);
1741 	if (ret)
1742 		goto err;
1743 
1744 	/* get pdsp configuration values from device tree */
1745 	pdsps =  of_get_child_by_name(node, "pdsps");
1746 	if (pdsps) {
1747 		ret = knav_queue_init_pdsps(kdev, pdsps);
1748 		if (ret)
1749 			goto err;
1750 
1751 		ret = knav_queue_start_pdsps(kdev);
1752 		if (ret)
1753 			goto err;
1754 	}
1755 	of_node_put(pdsps);
1756 
1757 	/* get usable queue range values from device tree */
1758 	queue_pools = of_get_child_by_name(node, "queue-pools");
1759 	if (!queue_pools) {
1760 		dev_err(dev, "queue-pools not specified\n");
1761 		ret = -ENODEV;
1762 		goto err;
1763 	}
1764 	ret = knav_setup_queue_pools(kdev, queue_pools);
1765 	of_node_put(queue_pools);
1766 	if (ret)
1767 		goto err;
1768 
1769 	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1770 	if (ret) {
1771 		dev_err(kdev->dev, "could not setup linking ram\n");
1772 		goto err;
1773 	}
1774 
1775 	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1776 	if (ret) {
1777 		/*
1778 		 * nothing really, we have one linking ram already, so we just
1779 		 * live within our means
1780 		 */
1781 	}
1782 
1783 	ret = knav_queue_setup_link_ram(kdev);
1784 	if (ret)
1785 		goto err;
1786 
1787 	regions =  of_get_child_by_name(node, "descriptor-regions");
1788 	if (!regions) {
1789 		dev_err(dev, "descriptor-regions not specified\n");
1790 		goto err;
1791 	}
1792 	ret = knav_queue_setup_regions(kdev, regions);
1793 	of_node_put(regions);
1794 	if (ret)
1795 		goto err;
1796 
1797 	ret = knav_queue_init_queues(kdev);
1798 	if (ret < 0) {
1799 		dev_err(dev, "hwqueue initialization failed\n");
1800 		goto err;
1801 	}
1802 
1803 	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1804 			    &knav_queue_debug_ops);
1805 	return 0;
1806 
1807 err:
1808 	knav_queue_stop_pdsps(kdev);
1809 	knav_queue_free_regions(kdev);
1810 	knav_free_queue_ranges(kdev);
1811 	pm_runtime_put_sync(&pdev->dev);
1812 	pm_runtime_disable(&pdev->dev);
1813 	return ret;
1814 }
1815 
1816 static int knav_queue_remove(struct platform_device *pdev)
1817 {
1818 	/* TODO: Free resources */
1819 	pm_runtime_put_sync(&pdev->dev);
1820 	pm_runtime_disable(&pdev->dev);
1821 	return 0;
1822 }
1823 
1824 /* Match table for of_platform binding */
1825 static struct of_device_id keystone_qmss_of_match[] = {
1826 	{ .compatible = "ti,keystone-navigator-qmss", },
1827 	{},
1828 };
1829 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1830 
1831 static struct platform_driver keystone_qmss_driver = {
1832 	.probe		= knav_queue_probe,
1833 	.remove		= knav_queue_remove,
1834 	.driver		= {
1835 		.name	= "keystone-navigator-qmss",
1836 		.of_match_table = keystone_qmss_of_match,
1837 	},
1838 };
1839 module_platform_driver(keystone_qmss_driver);
1840 
1841 MODULE_LICENSE("GPL v2");
1842 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1843 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1844 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1845