1 /* 2 * Keystone Queue Manager subsystem driver 3 * 4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com 5 * Authors: Sandeep Nair <sandeep_n@ti.com> 6 * Cyril Chemparathy <cyril@ti.com> 7 * Santosh Shilimkar <santosh.shilimkar@ti.com> 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * version 2 as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 */ 18 19 #include <linux/debugfs.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/firmware.h> 22 #include <linux/interrupt.h> 23 #include <linux/io.h> 24 #include <linux/module.h> 25 #include <linux/of_address.h> 26 #include <linux/of_device.h> 27 #include <linux/of_irq.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/slab.h> 30 #include <linux/soc/ti/knav_qmss.h> 31 32 #include "knav_qmss.h" 33 34 static struct knav_device *kdev; 35 static DEFINE_MUTEX(knav_dev_lock); 36 37 /* Queue manager register indices in DTS */ 38 #define KNAV_QUEUE_PEEK_REG_INDEX 0 39 #define KNAV_QUEUE_STATUS_REG_INDEX 1 40 #define KNAV_QUEUE_CONFIG_REG_INDEX 2 41 #define KNAV_QUEUE_REGION_REG_INDEX 3 42 #define KNAV_QUEUE_PUSH_REG_INDEX 4 43 #define KNAV_QUEUE_POP_REG_INDEX 5 44 45 /* Queue manager register indices in DTS for QMSS in K2G NAVSS. 46 * There are no status and vbusm push registers on this version 47 * of QMSS. Push registers are same as pop, So all indices above 1 48 * are to be re-defined 49 */ 50 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1 51 #define KNAV_L_QUEUE_REGION_REG_INDEX 2 52 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3 53 54 /* PDSP register indices in DTS */ 55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0 56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1 57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2 58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3 59 60 #define knav_queue_idx_to_inst(kdev, idx) \ 61 (kdev->instances + (idx << kdev->inst_shift)) 62 63 #define for_each_handle_rcu(qh, inst) \ 64 list_for_each_entry_rcu(qh, &inst->handles, list) 65 66 #define for_each_instance(idx, inst, kdev) \ 67 for (idx = 0, inst = kdev->instances; \ 68 idx < (kdev)->num_queues_in_use; \ 69 idx++, inst = knav_queue_idx_to_inst(kdev, idx)) 70 71 /* All firmware file names end up here. List the firmware file names below. 72 * Newest followed by older ones. Search is done from start of the array 73 * until a firmware file is found. 74 */ 75 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"}; 76 77 static bool device_ready; 78 bool knav_qmss_device_ready(void) 79 { 80 return device_ready; 81 } 82 EXPORT_SYMBOL_GPL(knav_qmss_device_ready); 83 84 /** 85 * knav_queue_notify: qmss queue notfier call 86 * 87 * @inst: qmss queue instance like accumulator 88 */ 89 void knav_queue_notify(struct knav_queue_inst *inst) 90 { 91 struct knav_queue *qh; 92 93 if (!inst) 94 return; 95 96 rcu_read_lock(); 97 for_each_handle_rcu(qh, inst) { 98 if (atomic_read(&qh->notifier_enabled) <= 0) 99 continue; 100 if (WARN_ON(!qh->notifier_fn)) 101 continue; 102 this_cpu_inc(qh->stats->notifies); 103 qh->notifier_fn(qh->notifier_fn_arg); 104 } 105 rcu_read_unlock(); 106 } 107 EXPORT_SYMBOL_GPL(knav_queue_notify); 108 109 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata) 110 { 111 struct knav_queue_inst *inst = _instdata; 112 113 knav_queue_notify(inst); 114 return IRQ_HANDLED; 115 } 116 117 static int knav_queue_setup_irq(struct knav_range_info *range, 118 struct knav_queue_inst *inst) 119 { 120 unsigned queue = inst->id - range->queue_base; 121 unsigned long cpu_map; 122 int ret = 0, irq; 123 124 if (range->flags & RANGE_HAS_IRQ) { 125 irq = range->irqs[queue].irq; 126 cpu_map = range->irqs[queue].cpu_map; 127 ret = request_irq(irq, knav_queue_int_handler, 0, 128 inst->irq_name, inst); 129 if (ret) 130 return ret; 131 disable_irq(irq); 132 if (cpu_map) { 133 ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map)); 134 if (ret) { 135 dev_warn(range->kdev->dev, 136 "Failed to set IRQ affinity\n"); 137 return ret; 138 } 139 } 140 } 141 return ret; 142 } 143 144 static void knav_queue_free_irq(struct knav_queue_inst *inst) 145 { 146 struct knav_range_info *range = inst->range; 147 unsigned queue = inst->id - inst->range->queue_base; 148 int irq; 149 150 if (range->flags & RANGE_HAS_IRQ) { 151 irq = range->irqs[queue].irq; 152 irq_set_affinity_hint(irq, NULL); 153 free_irq(irq, inst); 154 } 155 } 156 157 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst) 158 { 159 return !list_empty(&inst->handles); 160 } 161 162 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst) 163 { 164 return inst->range->flags & RANGE_RESERVED; 165 } 166 167 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst) 168 { 169 struct knav_queue *tmp; 170 171 rcu_read_lock(); 172 for_each_handle_rcu(tmp, inst) { 173 if (tmp->flags & KNAV_QUEUE_SHARED) { 174 rcu_read_unlock(); 175 return true; 176 } 177 } 178 rcu_read_unlock(); 179 return false; 180 } 181 182 static inline bool knav_queue_match_type(struct knav_queue_inst *inst, 183 unsigned type) 184 { 185 if ((type == KNAV_QUEUE_QPEND) && 186 (inst->range->flags & RANGE_HAS_IRQ)) { 187 return true; 188 } else if ((type == KNAV_QUEUE_ACC) && 189 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) { 190 return true; 191 } else if ((type == KNAV_QUEUE_GP) && 192 !(inst->range->flags & 193 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) { 194 return true; 195 } 196 return false; 197 } 198 199 static inline struct knav_queue_inst * 200 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id) 201 { 202 struct knav_queue_inst *inst; 203 int idx; 204 205 for_each_instance(idx, inst, kdev) { 206 if (inst->id == id) 207 return inst; 208 } 209 return NULL; 210 } 211 212 static inline struct knav_queue_inst *knav_queue_find_by_id(int id) 213 { 214 if (kdev->base_id <= id && 215 kdev->base_id + kdev->num_queues > id) { 216 id -= kdev->base_id; 217 return knav_queue_match_id_to_inst(kdev, id); 218 } 219 return NULL; 220 } 221 222 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst, 223 const char *name, unsigned flags) 224 { 225 struct knav_queue *qh; 226 unsigned id; 227 int ret = 0; 228 229 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL); 230 if (!qh) 231 return ERR_PTR(-ENOMEM); 232 233 qh->stats = alloc_percpu(struct knav_queue_stats); 234 if (!qh->stats) { 235 ret = -ENOMEM; 236 goto err; 237 } 238 239 qh->flags = flags; 240 qh->inst = inst; 241 id = inst->id - inst->qmgr->start_queue; 242 qh->reg_push = &inst->qmgr->reg_push[id]; 243 qh->reg_pop = &inst->qmgr->reg_pop[id]; 244 qh->reg_peek = &inst->qmgr->reg_peek[id]; 245 246 /* first opener? */ 247 if (!knav_queue_is_busy(inst)) { 248 struct knav_range_info *range = inst->range; 249 250 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 251 if (range->ops && range->ops->open_queue) 252 ret = range->ops->open_queue(range, inst, flags); 253 254 if (ret) 255 goto err; 256 } 257 list_add_tail_rcu(&qh->list, &inst->handles); 258 return qh; 259 260 err: 261 if (qh->stats) 262 free_percpu(qh->stats); 263 devm_kfree(inst->kdev->dev, qh); 264 return ERR_PTR(ret); 265 } 266 267 static struct knav_queue * 268 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags) 269 { 270 struct knav_queue_inst *inst; 271 struct knav_queue *qh; 272 273 mutex_lock(&knav_dev_lock); 274 275 qh = ERR_PTR(-ENODEV); 276 inst = knav_queue_find_by_id(id); 277 if (!inst) 278 goto unlock_ret; 279 280 qh = ERR_PTR(-EEXIST); 281 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst)) 282 goto unlock_ret; 283 284 qh = ERR_PTR(-EBUSY); 285 if ((flags & KNAV_QUEUE_SHARED) && 286 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst))) 287 goto unlock_ret; 288 289 qh = __knav_queue_open(inst, name, flags); 290 291 unlock_ret: 292 mutex_unlock(&knav_dev_lock); 293 294 return qh; 295 } 296 297 static struct knav_queue *knav_queue_open_by_type(const char *name, 298 unsigned type, unsigned flags) 299 { 300 struct knav_queue_inst *inst; 301 struct knav_queue *qh = ERR_PTR(-EINVAL); 302 int idx; 303 304 mutex_lock(&knav_dev_lock); 305 306 for_each_instance(idx, inst, kdev) { 307 if (knav_queue_is_reserved(inst)) 308 continue; 309 if (!knav_queue_match_type(inst, type)) 310 continue; 311 if (knav_queue_is_busy(inst)) 312 continue; 313 qh = __knav_queue_open(inst, name, flags); 314 goto unlock_ret; 315 } 316 317 unlock_ret: 318 mutex_unlock(&knav_dev_lock); 319 return qh; 320 } 321 322 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled) 323 { 324 struct knav_range_info *range = inst->range; 325 326 if (range->ops && range->ops->set_notify) 327 range->ops->set_notify(range, inst, enabled); 328 } 329 330 static int knav_queue_enable_notifier(struct knav_queue *qh) 331 { 332 struct knav_queue_inst *inst = qh->inst; 333 bool first; 334 335 if (WARN_ON(!qh->notifier_fn)) 336 return -EINVAL; 337 338 /* Adjust the per handle notifier count */ 339 first = (atomic_inc_return(&qh->notifier_enabled) == 1); 340 if (!first) 341 return 0; /* nothing to do */ 342 343 /* Now adjust the per instance notifier count */ 344 first = (atomic_inc_return(&inst->num_notifiers) == 1); 345 if (first) 346 knav_queue_set_notify(inst, true); 347 348 return 0; 349 } 350 351 static int knav_queue_disable_notifier(struct knav_queue *qh) 352 { 353 struct knav_queue_inst *inst = qh->inst; 354 bool last; 355 356 last = (atomic_dec_return(&qh->notifier_enabled) == 0); 357 if (!last) 358 return 0; /* nothing to do */ 359 360 last = (atomic_dec_return(&inst->num_notifiers) == 0); 361 if (last) 362 knav_queue_set_notify(inst, false); 363 364 return 0; 365 } 366 367 static int knav_queue_set_notifier(struct knav_queue *qh, 368 struct knav_queue_notify_config *cfg) 369 { 370 knav_queue_notify_fn old_fn = qh->notifier_fn; 371 372 if (!cfg) 373 return -EINVAL; 374 375 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) 376 return -ENOTSUPP; 377 378 if (!cfg->fn && old_fn) 379 knav_queue_disable_notifier(qh); 380 381 qh->notifier_fn = cfg->fn; 382 qh->notifier_fn_arg = cfg->fn_arg; 383 384 if (cfg->fn && !old_fn) 385 knav_queue_enable_notifier(qh); 386 387 return 0; 388 } 389 390 static int knav_gp_set_notify(struct knav_range_info *range, 391 struct knav_queue_inst *inst, 392 bool enabled) 393 { 394 unsigned queue; 395 396 if (range->flags & RANGE_HAS_IRQ) { 397 queue = inst->id - range->queue_base; 398 if (enabled) 399 enable_irq(range->irqs[queue].irq); 400 else 401 disable_irq_nosync(range->irqs[queue].irq); 402 } 403 return 0; 404 } 405 406 static int knav_gp_open_queue(struct knav_range_info *range, 407 struct knav_queue_inst *inst, unsigned flags) 408 { 409 return knav_queue_setup_irq(range, inst); 410 } 411 412 static int knav_gp_close_queue(struct knav_range_info *range, 413 struct knav_queue_inst *inst) 414 { 415 knav_queue_free_irq(inst); 416 return 0; 417 } 418 419 struct knav_range_ops knav_gp_range_ops = { 420 .set_notify = knav_gp_set_notify, 421 .open_queue = knav_gp_open_queue, 422 .close_queue = knav_gp_close_queue, 423 }; 424 425 426 static int knav_queue_get_count(void *qhandle) 427 { 428 struct knav_queue *qh = qhandle; 429 struct knav_queue_inst *inst = qh->inst; 430 431 return readl_relaxed(&qh->reg_peek[0].entry_count) + 432 atomic_read(&inst->desc_count); 433 } 434 435 static void knav_queue_debug_show_instance(struct seq_file *s, 436 struct knav_queue_inst *inst) 437 { 438 struct knav_device *kdev = inst->kdev; 439 struct knav_queue *qh; 440 int cpu = 0; 441 int pushes = 0; 442 int pops = 0; 443 int push_errors = 0; 444 int pop_errors = 0; 445 int notifies = 0; 446 447 if (!knav_queue_is_busy(inst)) 448 return; 449 450 seq_printf(s, "\tqueue id %d (%s)\n", 451 kdev->base_id + inst->id, inst->name); 452 for_each_handle_rcu(qh, inst) { 453 for_each_possible_cpu(cpu) { 454 pushes += per_cpu_ptr(qh->stats, cpu)->pushes; 455 pops += per_cpu_ptr(qh->stats, cpu)->pops; 456 push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors; 457 pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors; 458 notifies += per_cpu_ptr(qh->stats, cpu)->notifies; 459 } 460 461 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n", 462 qh, 463 pushes, 464 pops, 465 knav_queue_get_count(qh), 466 notifies, 467 push_errors, 468 pop_errors); 469 } 470 } 471 472 static int knav_queue_debug_show(struct seq_file *s, void *v) 473 { 474 struct knav_queue_inst *inst; 475 int idx; 476 477 mutex_lock(&knav_dev_lock); 478 seq_printf(s, "%s: %u-%u\n", 479 dev_name(kdev->dev), kdev->base_id, 480 kdev->base_id + kdev->num_queues - 1); 481 for_each_instance(idx, inst, kdev) 482 knav_queue_debug_show_instance(s, inst); 483 mutex_unlock(&knav_dev_lock); 484 485 return 0; 486 } 487 488 static int knav_queue_debug_open(struct inode *inode, struct file *file) 489 { 490 return single_open(file, knav_queue_debug_show, NULL); 491 } 492 493 static const struct file_operations knav_queue_debug_ops = { 494 .open = knav_queue_debug_open, 495 .read = seq_read, 496 .llseek = seq_lseek, 497 .release = single_release, 498 }; 499 500 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout, 501 u32 flags) 502 { 503 unsigned long end; 504 u32 val = 0; 505 506 end = jiffies + msecs_to_jiffies(timeout); 507 while (time_after(end, jiffies)) { 508 val = readl_relaxed(addr); 509 if (flags) 510 val &= flags; 511 if (!val) 512 break; 513 cpu_relax(); 514 } 515 return val ? -ETIMEDOUT : 0; 516 } 517 518 519 static int knav_queue_flush(struct knav_queue *qh) 520 { 521 struct knav_queue_inst *inst = qh->inst; 522 unsigned id = inst->id - inst->qmgr->start_queue; 523 524 atomic_set(&inst->desc_count, 0); 525 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh); 526 return 0; 527 } 528 529 /** 530 * knav_queue_open() - open a hardware queue 531 * @name - name to give the queue handle 532 * @id - desired queue number if any or specifes the type 533 * of queue 534 * @flags - the following flags are applicable to queues: 535 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are 536 * exclusive by default. 537 * Subsequent attempts to open a shared queue should 538 * also have this flag. 539 * 540 * Returns a handle to the open hardware queue if successful. Use IS_ERR() 541 * to check the returned value for error codes. 542 */ 543 void *knav_queue_open(const char *name, unsigned id, 544 unsigned flags) 545 { 546 struct knav_queue *qh = ERR_PTR(-EINVAL); 547 548 switch (id) { 549 case KNAV_QUEUE_QPEND: 550 case KNAV_QUEUE_ACC: 551 case KNAV_QUEUE_GP: 552 qh = knav_queue_open_by_type(name, id, flags); 553 break; 554 555 default: 556 qh = knav_queue_open_by_id(name, id, flags); 557 break; 558 } 559 return qh; 560 } 561 EXPORT_SYMBOL_GPL(knav_queue_open); 562 563 /** 564 * knav_queue_close() - close a hardware queue handle 565 * @qh - handle to close 566 */ 567 void knav_queue_close(void *qhandle) 568 { 569 struct knav_queue *qh = qhandle; 570 struct knav_queue_inst *inst = qh->inst; 571 572 while (atomic_read(&qh->notifier_enabled) > 0) 573 knav_queue_disable_notifier(qh); 574 575 mutex_lock(&knav_dev_lock); 576 list_del_rcu(&qh->list); 577 mutex_unlock(&knav_dev_lock); 578 synchronize_rcu(); 579 if (!knav_queue_is_busy(inst)) { 580 struct knav_range_info *range = inst->range; 581 582 if (range->ops && range->ops->close_queue) 583 range->ops->close_queue(range, inst); 584 } 585 free_percpu(qh->stats); 586 devm_kfree(inst->kdev->dev, qh); 587 } 588 EXPORT_SYMBOL_GPL(knav_queue_close); 589 590 /** 591 * knav_queue_device_control() - Perform control operations on a queue 592 * @qh - queue handle 593 * @cmd - control commands 594 * @arg - command argument 595 * 596 * Returns 0 on success, errno otherwise. 597 */ 598 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd, 599 unsigned long arg) 600 { 601 struct knav_queue *qh = qhandle; 602 struct knav_queue_notify_config *cfg; 603 int ret; 604 605 switch ((int)cmd) { 606 case KNAV_QUEUE_GET_ID: 607 ret = qh->inst->kdev->base_id + qh->inst->id; 608 break; 609 610 case KNAV_QUEUE_FLUSH: 611 ret = knav_queue_flush(qh); 612 break; 613 614 case KNAV_QUEUE_SET_NOTIFIER: 615 cfg = (void *)arg; 616 ret = knav_queue_set_notifier(qh, cfg); 617 break; 618 619 case KNAV_QUEUE_ENABLE_NOTIFY: 620 ret = knav_queue_enable_notifier(qh); 621 break; 622 623 case KNAV_QUEUE_DISABLE_NOTIFY: 624 ret = knav_queue_disable_notifier(qh); 625 break; 626 627 case KNAV_QUEUE_GET_COUNT: 628 ret = knav_queue_get_count(qh); 629 break; 630 631 default: 632 ret = -ENOTSUPP; 633 break; 634 } 635 return ret; 636 } 637 EXPORT_SYMBOL_GPL(knav_queue_device_control); 638 639 640 641 /** 642 * knav_queue_push() - push data (or descriptor) to the tail of a queue 643 * @qh - hardware queue handle 644 * @data - data to push 645 * @size - size of data to push 646 * @flags - can be used to pass additional information 647 * 648 * Returns 0 on success, errno otherwise. 649 */ 650 int knav_queue_push(void *qhandle, dma_addr_t dma, 651 unsigned size, unsigned flags) 652 { 653 struct knav_queue *qh = qhandle; 654 u32 val; 655 656 val = (u32)dma | ((size / 16) - 1); 657 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh); 658 659 this_cpu_inc(qh->stats->pushes); 660 return 0; 661 } 662 EXPORT_SYMBOL_GPL(knav_queue_push); 663 664 /** 665 * knav_queue_pop() - pop data (or descriptor) from the head of a queue 666 * @qh - hardware queue handle 667 * @size - (optional) size of the data pop'ed. 668 * 669 * Returns a DMA address on success, 0 on failure. 670 */ 671 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size) 672 { 673 struct knav_queue *qh = qhandle; 674 struct knav_queue_inst *inst = qh->inst; 675 dma_addr_t dma; 676 u32 val, idx; 677 678 /* are we accumulated? */ 679 if (inst->descs) { 680 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) { 681 atomic_inc(&inst->desc_count); 682 return 0; 683 } 684 idx = atomic_inc_return(&inst->desc_head); 685 idx &= ACC_DESCS_MASK; 686 val = inst->descs[idx]; 687 } else { 688 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh); 689 if (unlikely(!val)) 690 return 0; 691 } 692 693 dma = val & DESC_PTR_MASK; 694 if (size) 695 *size = ((val & DESC_SIZE_MASK) + 1) * 16; 696 697 this_cpu_inc(qh->stats->pops); 698 return dma; 699 } 700 EXPORT_SYMBOL_GPL(knav_queue_pop); 701 702 /* carve out descriptors and push into queue */ 703 static void kdesc_fill_pool(struct knav_pool *pool) 704 { 705 struct knav_region *region; 706 int i; 707 708 region = pool->region; 709 pool->desc_size = region->desc_size; 710 for (i = 0; i < pool->num_desc; i++) { 711 int index = pool->region_offset + i; 712 dma_addr_t dma_addr; 713 unsigned dma_size; 714 dma_addr = region->dma_start + (region->desc_size * index); 715 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES); 716 dma_sync_single_for_device(pool->dev, dma_addr, dma_size, 717 DMA_TO_DEVICE); 718 knav_queue_push(pool->queue, dma_addr, dma_size, 0); 719 } 720 } 721 722 /* pop out descriptors and close the queue */ 723 static void kdesc_empty_pool(struct knav_pool *pool) 724 { 725 dma_addr_t dma; 726 unsigned size; 727 void *desc; 728 int i; 729 730 if (!pool->queue) 731 return; 732 733 for (i = 0;; i++) { 734 dma = knav_queue_pop(pool->queue, &size); 735 if (!dma) 736 break; 737 desc = knav_pool_desc_dma_to_virt(pool, dma); 738 if (!desc) { 739 dev_dbg(pool->kdev->dev, 740 "couldn't unmap desc, continuing\n"); 741 continue; 742 } 743 } 744 WARN_ON(i != pool->num_desc); 745 knav_queue_close(pool->queue); 746 } 747 748 749 /* Get the DMA address of a descriptor */ 750 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt) 751 { 752 struct knav_pool *pool = ph; 753 return pool->region->dma_start + (virt - pool->region->virt_start); 754 } 755 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma); 756 757 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma) 758 { 759 struct knav_pool *pool = ph; 760 return pool->region->virt_start + (dma - pool->region->dma_start); 761 } 762 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt); 763 764 /** 765 * knav_pool_create() - Create a pool of descriptors 766 * @name - name to give the pool handle 767 * @num_desc - numbers of descriptors in the pool 768 * @region_id - QMSS region id from which the descriptors are to be 769 * allocated. 770 * 771 * Returns a pool handle on success. 772 * Use IS_ERR_OR_NULL() to identify error values on return. 773 */ 774 void *knav_pool_create(const char *name, 775 int num_desc, int region_id) 776 { 777 struct knav_region *reg_itr, *region = NULL; 778 struct knav_pool *pool, *pi; 779 struct list_head *node; 780 unsigned last_offset; 781 bool slot_found; 782 int ret; 783 784 if (!kdev) 785 return ERR_PTR(-EPROBE_DEFER); 786 787 if (!kdev->dev) 788 return ERR_PTR(-ENODEV); 789 790 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 791 if (!pool) { 792 dev_err(kdev->dev, "out of memory allocating pool\n"); 793 return ERR_PTR(-ENOMEM); 794 } 795 796 for_each_region(kdev, reg_itr) { 797 if (reg_itr->id != region_id) 798 continue; 799 region = reg_itr; 800 break; 801 } 802 803 if (!region) { 804 dev_err(kdev->dev, "region-id(%d) not found\n", region_id); 805 ret = -EINVAL; 806 goto err; 807 } 808 809 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0); 810 if (IS_ERR_OR_NULL(pool->queue)) { 811 dev_err(kdev->dev, 812 "failed to open queue for pool(%s), error %ld\n", 813 name, PTR_ERR(pool->queue)); 814 ret = PTR_ERR(pool->queue); 815 goto err; 816 } 817 818 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 819 pool->kdev = kdev; 820 pool->dev = kdev->dev; 821 822 mutex_lock(&knav_dev_lock); 823 824 if (num_desc > (region->num_desc - region->used_desc)) { 825 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n", 826 region_id, name); 827 ret = -ENOMEM; 828 goto err_unlock; 829 } 830 831 /* Region maintains a sorted (by region offset) list of pools 832 * use the first free slot which is large enough to accomodate 833 * the request 834 */ 835 last_offset = 0; 836 slot_found = false; 837 node = ®ion->pools; 838 list_for_each_entry(pi, ®ion->pools, region_inst) { 839 if ((pi->region_offset - last_offset) >= num_desc) { 840 slot_found = true; 841 break; 842 } 843 last_offset = pi->region_offset + pi->num_desc; 844 } 845 node = &pi->region_inst; 846 847 if (slot_found) { 848 pool->region = region; 849 pool->num_desc = num_desc; 850 pool->region_offset = last_offset; 851 region->used_desc += num_desc; 852 list_add_tail(&pool->list, &kdev->pools); 853 list_add_tail(&pool->region_inst, node); 854 } else { 855 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n", 856 name, region_id); 857 ret = -ENOMEM; 858 goto err_unlock; 859 } 860 861 mutex_unlock(&knav_dev_lock); 862 kdesc_fill_pool(pool); 863 return pool; 864 865 err_unlock: 866 mutex_unlock(&knav_dev_lock); 867 err: 868 kfree(pool->name); 869 devm_kfree(kdev->dev, pool); 870 return ERR_PTR(ret); 871 } 872 EXPORT_SYMBOL_GPL(knav_pool_create); 873 874 /** 875 * knav_pool_destroy() - Free a pool of descriptors 876 * @pool - pool handle 877 */ 878 void knav_pool_destroy(void *ph) 879 { 880 struct knav_pool *pool = ph; 881 882 if (!pool) 883 return; 884 885 if (!pool->region) 886 return; 887 888 kdesc_empty_pool(pool); 889 mutex_lock(&knav_dev_lock); 890 891 pool->region->used_desc -= pool->num_desc; 892 list_del(&pool->region_inst); 893 list_del(&pool->list); 894 895 mutex_unlock(&knav_dev_lock); 896 kfree(pool->name); 897 devm_kfree(kdev->dev, pool); 898 } 899 EXPORT_SYMBOL_GPL(knav_pool_destroy); 900 901 902 /** 903 * knav_pool_desc_get() - Get a descriptor from the pool 904 * @pool - pool handle 905 * 906 * Returns descriptor from the pool. 907 */ 908 void *knav_pool_desc_get(void *ph) 909 { 910 struct knav_pool *pool = ph; 911 dma_addr_t dma; 912 unsigned size; 913 void *data; 914 915 dma = knav_queue_pop(pool->queue, &size); 916 if (unlikely(!dma)) 917 return ERR_PTR(-ENOMEM); 918 data = knav_pool_desc_dma_to_virt(pool, dma); 919 return data; 920 } 921 EXPORT_SYMBOL_GPL(knav_pool_desc_get); 922 923 /** 924 * knav_pool_desc_put() - return a descriptor to the pool 925 * @pool - pool handle 926 */ 927 void knav_pool_desc_put(void *ph, void *desc) 928 { 929 struct knav_pool *pool = ph; 930 dma_addr_t dma; 931 dma = knav_pool_desc_virt_to_dma(pool, desc); 932 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0); 933 } 934 EXPORT_SYMBOL_GPL(knav_pool_desc_put); 935 936 /** 937 * knav_pool_desc_map() - Map descriptor for DMA transfer 938 * @pool - pool handle 939 * @desc - address of descriptor to map 940 * @size - size of descriptor to map 941 * @dma - DMA address return pointer 942 * @dma_sz - adjusted return pointer 943 * 944 * Returns 0 on success, errno otherwise. 945 */ 946 int knav_pool_desc_map(void *ph, void *desc, unsigned size, 947 dma_addr_t *dma, unsigned *dma_sz) 948 { 949 struct knav_pool *pool = ph; 950 *dma = knav_pool_desc_virt_to_dma(pool, desc); 951 size = min(size, pool->region->desc_size); 952 size = ALIGN(size, SMP_CACHE_BYTES); 953 *dma_sz = size; 954 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE); 955 956 /* Ensure the descriptor reaches to the memory */ 957 __iowmb(); 958 959 return 0; 960 } 961 EXPORT_SYMBOL_GPL(knav_pool_desc_map); 962 963 /** 964 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer 965 * @pool - pool handle 966 * @dma - DMA address of descriptor to unmap 967 * @dma_sz - size of descriptor to unmap 968 * 969 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify 970 * error values on return. 971 */ 972 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz) 973 { 974 struct knav_pool *pool = ph; 975 unsigned desc_sz; 976 void *desc; 977 978 desc_sz = min(dma_sz, pool->region->desc_size); 979 desc = knav_pool_desc_dma_to_virt(pool, dma); 980 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE); 981 prefetch(desc); 982 return desc; 983 } 984 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap); 985 986 /** 987 * knav_pool_count() - Get the number of descriptors in pool. 988 * @pool - pool handle 989 * Returns number of elements in the pool. 990 */ 991 int knav_pool_count(void *ph) 992 { 993 struct knav_pool *pool = ph; 994 return knav_queue_get_count(pool->queue); 995 } 996 EXPORT_SYMBOL_GPL(knav_pool_count); 997 998 static void knav_queue_setup_region(struct knav_device *kdev, 999 struct knav_region *region) 1000 { 1001 unsigned hw_num_desc, hw_desc_size, size; 1002 struct knav_reg_region __iomem *regs; 1003 struct knav_qmgr_info *qmgr; 1004 struct knav_pool *pool; 1005 int id = region->id; 1006 struct page *page; 1007 1008 /* unused region? */ 1009 if (!region->num_desc) { 1010 dev_warn(kdev->dev, "unused region %s\n", region->name); 1011 return; 1012 } 1013 1014 /* get hardware descriptor value */ 1015 hw_num_desc = ilog2(region->num_desc - 1) + 1; 1016 1017 /* did we force fit ourselves into nothingness? */ 1018 if (region->num_desc < 32) { 1019 region->num_desc = 0; 1020 dev_warn(kdev->dev, "too few descriptors in region %s\n", 1021 region->name); 1022 return; 1023 } 1024 1025 size = region->num_desc * region->desc_size; 1026 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA | 1027 GFP_DMA32); 1028 if (!region->virt_start) { 1029 region->num_desc = 0; 1030 dev_err(kdev->dev, "memory alloc failed for region %s\n", 1031 region->name); 1032 return; 1033 } 1034 region->virt_end = region->virt_start + size; 1035 page = virt_to_page(region->virt_start); 1036 1037 region->dma_start = dma_map_page(kdev->dev, page, 0, size, 1038 DMA_BIDIRECTIONAL); 1039 if (dma_mapping_error(kdev->dev, region->dma_start)) { 1040 dev_err(kdev->dev, "dma map failed for region %s\n", 1041 region->name); 1042 goto fail; 1043 } 1044 region->dma_end = region->dma_start + size; 1045 1046 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 1047 if (!pool) { 1048 dev_err(kdev->dev, "out of memory allocating dummy pool\n"); 1049 goto fail; 1050 } 1051 pool->num_desc = 0; 1052 pool->region_offset = region->num_desc; 1053 list_add(&pool->region_inst, ®ion->pools); 1054 1055 dev_dbg(kdev->dev, 1056 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n", 1057 region->name, id, region->desc_size, region->num_desc, 1058 region->link_index, ®ion->dma_start, ®ion->dma_end, 1059 region->virt_start, region->virt_end); 1060 1061 hw_desc_size = (region->desc_size / 16) - 1; 1062 hw_num_desc -= 5; 1063 1064 for_each_qmgr(kdev, qmgr) { 1065 regs = qmgr->reg_region + id; 1066 writel_relaxed((u32)region->dma_start, ®s->base); 1067 writel_relaxed(region->link_index, ®s->start_index); 1068 writel_relaxed(hw_desc_size << 16 | hw_num_desc, 1069 ®s->size_count); 1070 } 1071 return; 1072 1073 fail: 1074 if (region->dma_start) 1075 dma_unmap_page(kdev->dev, region->dma_start, size, 1076 DMA_BIDIRECTIONAL); 1077 if (region->virt_start) 1078 free_pages_exact(region->virt_start, size); 1079 region->num_desc = 0; 1080 return; 1081 } 1082 1083 static const char *knav_queue_find_name(struct device_node *node) 1084 { 1085 const char *name; 1086 1087 if (of_property_read_string(node, "label", &name) < 0) 1088 name = node->name; 1089 if (!name) 1090 name = "unknown"; 1091 return name; 1092 } 1093 1094 static int knav_queue_setup_regions(struct knav_device *kdev, 1095 struct device_node *regions) 1096 { 1097 struct device *dev = kdev->dev; 1098 struct knav_region *region; 1099 struct device_node *child; 1100 u32 temp[2]; 1101 int ret; 1102 1103 for_each_child_of_node(regions, child) { 1104 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL); 1105 if (!region) { 1106 dev_err(dev, "out of memory allocating region\n"); 1107 return -ENOMEM; 1108 } 1109 1110 region->name = knav_queue_find_name(child); 1111 of_property_read_u32(child, "id", ®ion->id); 1112 ret = of_property_read_u32_array(child, "region-spec", temp, 2); 1113 if (!ret) { 1114 region->num_desc = temp[0]; 1115 region->desc_size = temp[1]; 1116 } else { 1117 dev_err(dev, "invalid region info %s\n", region->name); 1118 devm_kfree(dev, region); 1119 continue; 1120 } 1121 1122 if (!of_get_property(child, "link-index", NULL)) { 1123 dev_err(dev, "No link info for %s\n", region->name); 1124 devm_kfree(dev, region); 1125 continue; 1126 } 1127 ret = of_property_read_u32(child, "link-index", 1128 ®ion->link_index); 1129 if (ret) { 1130 dev_err(dev, "link index not found for %s\n", 1131 region->name); 1132 devm_kfree(dev, region); 1133 continue; 1134 } 1135 1136 INIT_LIST_HEAD(®ion->pools); 1137 list_add_tail(®ion->list, &kdev->regions); 1138 } 1139 if (list_empty(&kdev->regions)) { 1140 dev_err(dev, "no valid region information found\n"); 1141 return -ENODEV; 1142 } 1143 1144 /* Next, we run through the regions and set things up */ 1145 for_each_region(kdev, region) 1146 knav_queue_setup_region(kdev, region); 1147 1148 return 0; 1149 } 1150 1151 static int knav_get_link_ram(struct knav_device *kdev, 1152 const char *name, 1153 struct knav_link_ram_block *block) 1154 { 1155 struct platform_device *pdev = to_platform_device(kdev->dev); 1156 struct device_node *node = pdev->dev.of_node; 1157 u32 temp[2]; 1158 1159 /* 1160 * Note: link ram resources are specified in "entry" sized units. In 1161 * reality, although entries are ~40bits in hardware, we treat them as 1162 * 64-bit entities here. 1163 * 1164 * For example, to specify the internal link ram for Keystone-I class 1165 * devices, we would set the linkram0 resource to 0x80000-0x83fff. 1166 * 1167 * This gets a bit weird when other link rams are used. For example, 1168 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries 1169 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000, 1170 * which accounts for 64-bits per entry, for 16K entries. 1171 */ 1172 if (!of_property_read_u32_array(node, name , temp, 2)) { 1173 if (temp[0]) { 1174 /* 1175 * queue_base specified => using internal or onchip 1176 * link ram WARNING - we do not "reserve" this block 1177 */ 1178 block->dma = (dma_addr_t)temp[0]; 1179 block->virt = NULL; 1180 block->size = temp[1]; 1181 } else { 1182 block->size = temp[1]; 1183 /* queue_base not specific => allocate requested size */ 1184 block->virt = dmam_alloc_coherent(kdev->dev, 1185 8 * block->size, &block->dma, 1186 GFP_KERNEL); 1187 if (!block->virt) { 1188 dev_err(kdev->dev, "failed to alloc linkram\n"); 1189 return -ENOMEM; 1190 } 1191 } 1192 } else { 1193 return -ENODEV; 1194 } 1195 return 0; 1196 } 1197 1198 static int knav_queue_setup_link_ram(struct knav_device *kdev) 1199 { 1200 struct knav_link_ram_block *block; 1201 struct knav_qmgr_info *qmgr; 1202 1203 for_each_qmgr(kdev, qmgr) { 1204 block = &kdev->link_rams[0]; 1205 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n", 1206 &block->dma, block->virt, block->size); 1207 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0); 1208 if (kdev->version == QMSS_66AK2G) 1209 writel_relaxed(block->size, 1210 &qmgr->reg_config->link_ram_size0); 1211 else 1212 writel_relaxed(block->size - 1, 1213 &qmgr->reg_config->link_ram_size0); 1214 block++; 1215 if (!block->size) 1216 continue; 1217 1218 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n", 1219 &block->dma, block->virt, block->size); 1220 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1); 1221 } 1222 1223 return 0; 1224 } 1225 1226 static int knav_setup_queue_range(struct knav_device *kdev, 1227 struct device_node *node) 1228 { 1229 struct device *dev = kdev->dev; 1230 struct knav_range_info *range; 1231 struct knav_qmgr_info *qmgr; 1232 u32 temp[2], start, end, id, index; 1233 int ret, i; 1234 1235 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL); 1236 if (!range) { 1237 dev_err(dev, "out of memory allocating range\n"); 1238 return -ENOMEM; 1239 } 1240 1241 range->kdev = kdev; 1242 range->name = knav_queue_find_name(node); 1243 ret = of_property_read_u32_array(node, "qrange", temp, 2); 1244 if (!ret) { 1245 range->queue_base = temp[0] - kdev->base_id; 1246 range->num_queues = temp[1]; 1247 } else { 1248 dev_err(dev, "invalid queue range %s\n", range->name); 1249 devm_kfree(dev, range); 1250 return -EINVAL; 1251 } 1252 1253 for (i = 0; i < RANGE_MAX_IRQS; i++) { 1254 struct of_phandle_args oirq; 1255 1256 if (of_irq_parse_one(node, i, &oirq)) 1257 break; 1258 1259 range->irqs[i].irq = irq_create_of_mapping(&oirq); 1260 if (range->irqs[i].irq == IRQ_NONE) 1261 break; 1262 1263 range->num_irqs++; 1264 1265 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) 1266 range->irqs[i].cpu_map = 1267 (oirq.args[2] & 0x0000ff00) >> 8; 1268 } 1269 1270 range->num_irqs = min(range->num_irqs, range->num_queues); 1271 if (range->num_irqs) 1272 range->flags |= RANGE_HAS_IRQ; 1273 1274 if (of_get_property(node, "qalloc-by-id", NULL)) 1275 range->flags |= RANGE_RESERVED; 1276 1277 if (of_get_property(node, "accumulator", NULL)) { 1278 ret = knav_init_acc_range(kdev, node, range); 1279 if (ret < 0) { 1280 devm_kfree(dev, range); 1281 return ret; 1282 } 1283 } else { 1284 range->ops = &knav_gp_range_ops; 1285 } 1286 1287 /* set threshold to 1, and flush out the queues */ 1288 for_each_qmgr(kdev, qmgr) { 1289 start = max(qmgr->start_queue, range->queue_base); 1290 end = min(qmgr->start_queue + qmgr->num_queues, 1291 range->queue_base + range->num_queues); 1292 for (id = start; id < end; id++) { 1293 index = id - qmgr->start_queue; 1294 writel_relaxed(THRESH_GTE | 1, 1295 &qmgr->reg_peek[index].ptr_size_thresh); 1296 writel_relaxed(0, 1297 &qmgr->reg_push[index].ptr_size_thresh); 1298 } 1299 } 1300 1301 list_add_tail(&range->list, &kdev->queue_ranges); 1302 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n", 1303 range->name, range->queue_base, 1304 range->queue_base + range->num_queues - 1, 1305 range->num_irqs, 1306 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "", 1307 (range->flags & RANGE_RESERVED) ? ", reserved" : "", 1308 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : ""); 1309 kdev->num_queues_in_use += range->num_queues; 1310 return 0; 1311 } 1312 1313 static int knav_setup_queue_pools(struct knav_device *kdev, 1314 struct device_node *queue_pools) 1315 { 1316 struct device_node *type, *range; 1317 int ret; 1318 1319 for_each_child_of_node(queue_pools, type) { 1320 for_each_child_of_node(type, range) { 1321 ret = knav_setup_queue_range(kdev, range); 1322 /* return value ignored, we init the rest... */ 1323 } 1324 } 1325 1326 /* ... and barf if they all failed! */ 1327 if (list_empty(&kdev->queue_ranges)) { 1328 dev_err(kdev->dev, "no valid queue range found\n"); 1329 return -ENODEV; 1330 } 1331 return 0; 1332 } 1333 1334 static void knav_free_queue_range(struct knav_device *kdev, 1335 struct knav_range_info *range) 1336 { 1337 if (range->ops && range->ops->free_range) 1338 range->ops->free_range(range); 1339 list_del(&range->list); 1340 devm_kfree(kdev->dev, range); 1341 } 1342 1343 static void knav_free_queue_ranges(struct knav_device *kdev) 1344 { 1345 struct knav_range_info *range; 1346 1347 for (;;) { 1348 range = first_queue_range(kdev); 1349 if (!range) 1350 break; 1351 knav_free_queue_range(kdev, range); 1352 } 1353 } 1354 1355 static void knav_queue_free_regions(struct knav_device *kdev) 1356 { 1357 struct knav_region *region; 1358 struct knav_pool *pool, *tmp; 1359 unsigned size; 1360 1361 for (;;) { 1362 region = first_region(kdev); 1363 if (!region) 1364 break; 1365 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst) 1366 knav_pool_destroy(pool); 1367 1368 size = region->virt_end - region->virt_start; 1369 if (size) 1370 free_pages_exact(region->virt_start, size); 1371 list_del(®ion->list); 1372 devm_kfree(kdev->dev, region); 1373 } 1374 } 1375 1376 static void __iomem *knav_queue_map_reg(struct knav_device *kdev, 1377 struct device_node *node, int index) 1378 { 1379 struct resource res; 1380 void __iomem *regs; 1381 int ret; 1382 1383 ret = of_address_to_resource(node, index, &res); 1384 if (ret) { 1385 dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n", 1386 node->name, index); 1387 return ERR_PTR(ret); 1388 } 1389 1390 regs = devm_ioremap_resource(kdev->dev, &res); 1391 if (IS_ERR(regs)) 1392 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n", 1393 index, node->name); 1394 return regs; 1395 } 1396 1397 static int knav_queue_init_qmgrs(struct knav_device *kdev, 1398 struct device_node *qmgrs) 1399 { 1400 struct device *dev = kdev->dev; 1401 struct knav_qmgr_info *qmgr; 1402 struct device_node *child; 1403 u32 temp[2]; 1404 int ret; 1405 1406 for_each_child_of_node(qmgrs, child) { 1407 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL); 1408 if (!qmgr) { 1409 dev_err(dev, "out of memory allocating qmgr\n"); 1410 return -ENOMEM; 1411 } 1412 1413 ret = of_property_read_u32_array(child, "managed-queues", 1414 temp, 2); 1415 if (!ret) { 1416 qmgr->start_queue = temp[0]; 1417 qmgr->num_queues = temp[1]; 1418 } else { 1419 dev_err(dev, "invalid qmgr queue range\n"); 1420 devm_kfree(dev, qmgr); 1421 continue; 1422 } 1423 1424 dev_info(dev, "qmgr start queue %d, number of queues %d\n", 1425 qmgr->start_queue, qmgr->num_queues); 1426 1427 qmgr->reg_peek = 1428 knav_queue_map_reg(kdev, child, 1429 KNAV_QUEUE_PEEK_REG_INDEX); 1430 1431 if (kdev->version == QMSS) { 1432 qmgr->reg_status = 1433 knav_queue_map_reg(kdev, child, 1434 KNAV_QUEUE_STATUS_REG_INDEX); 1435 } 1436 1437 qmgr->reg_config = 1438 knav_queue_map_reg(kdev, child, 1439 (kdev->version == QMSS_66AK2G) ? 1440 KNAV_L_QUEUE_CONFIG_REG_INDEX : 1441 KNAV_QUEUE_CONFIG_REG_INDEX); 1442 qmgr->reg_region = 1443 knav_queue_map_reg(kdev, child, 1444 (kdev->version == QMSS_66AK2G) ? 1445 KNAV_L_QUEUE_REGION_REG_INDEX : 1446 KNAV_QUEUE_REGION_REG_INDEX); 1447 1448 qmgr->reg_push = 1449 knav_queue_map_reg(kdev, child, 1450 (kdev->version == QMSS_66AK2G) ? 1451 KNAV_L_QUEUE_PUSH_REG_INDEX : 1452 KNAV_QUEUE_PUSH_REG_INDEX); 1453 1454 if (kdev->version == QMSS) { 1455 qmgr->reg_pop = 1456 knav_queue_map_reg(kdev, child, 1457 KNAV_QUEUE_POP_REG_INDEX); 1458 } 1459 1460 if (IS_ERR(qmgr->reg_peek) || 1461 ((kdev->version == QMSS) && 1462 (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) || 1463 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) || 1464 IS_ERR(qmgr->reg_push)) { 1465 dev_err(dev, "failed to map qmgr regs\n"); 1466 if (kdev->version == QMSS) { 1467 if (!IS_ERR(qmgr->reg_status)) 1468 devm_iounmap(dev, qmgr->reg_status); 1469 if (!IS_ERR(qmgr->reg_pop)) 1470 devm_iounmap(dev, qmgr->reg_pop); 1471 } 1472 if (!IS_ERR(qmgr->reg_peek)) 1473 devm_iounmap(dev, qmgr->reg_peek); 1474 if (!IS_ERR(qmgr->reg_config)) 1475 devm_iounmap(dev, qmgr->reg_config); 1476 if (!IS_ERR(qmgr->reg_region)) 1477 devm_iounmap(dev, qmgr->reg_region); 1478 if (!IS_ERR(qmgr->reg_push)) 1479 devm_iounmap(dev, qmgr->reg_push); 1480 devm_kfree(dev, qmgr); 1481 continue; 1482 } 1483 1484 /* Use same push register for pop as well */ 1485 if (kdev->version == QMSS_66AK2G) 1486 qmgr->reg_pop = qmgr->reg_push; 1487 1488 list_add_tail(&qmgr->list, &kdev->qmgrs); 1489 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n", 1490 qmgr->start_queue, qmgr->num_queues, 1491 qmgr->reg_peek, qmgr->reg_status, 1492 qmgr->reg_config, qmgr->reg_region, 1493 qmgr->reg_push, qmgr->reg_pop); 1494 } 1495 return 0; 1496 } 1497 1498 static int knav_queue_init_pdsps(struct knav_device *kdev, 1499 struct device_node *pdsps) 1500 { 1501 struct device *dev = kdev->dev; 1502 struct knav_pdsp_info *pdsp; 1503 struct device_node *child; 1504 1505 for_each_child_of_node(pdsps, child) { 1506 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL); 1507 if (!pdsp) { 1508 dev_err(dev, "out of memory allocating pdsp\n"); 1509 return -ENOMEM; 1510 } 1511 pdsp->name = knav_queue_find_name(child); 1512 pdsp->iram = 1513 knav_queue_map_reg(kdev, child, 1514 KNAV_QUEUE_PDSP_IRAM_REG_INDEX); 1515 pdsp->regs = 1516 knav_queue_map_reg(kdev, child, 1517 KNAV_QUEUE_PDSP_REGS_REG_INDEX); 1518 pdsp->intd = 1519 knav_queue_map_reg(kdev, child, 1520 KNAV_QUEUE_PDSP_INTD_REG_INDEX); 1521 pdsp->command = 1522 knav_queue_map_reg(kdev, child, 1523 KNAV_QUEUE_PDSP_CMD_REG_INDEX); 1524 1525 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) || 1526 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) { 1527 dev_err(dev, "failed to map pdsp %s regs\n", 1528 pdsp->name); 1529 if (!IS_ERR(pdsp->command)) 1530 devm_iounmap(dev, pdsp->command); 1531 if (!IS_ERR(pdsp->iram)) 1532 devm_iounmap(dev, pdsp->iram); 1533 if (!IS_ERR(pdsp->regs)) 1534 devm_iounmap(dev, pdsp->regs); 1535 if (!IS_ERR(pdsp->intd)) 1536 devm_iounmap(dev, pdsp->intd); 1537 devm_kfree(dev, pdsp); 1538 continue; 1539 } 1540 of_property_read_u32(child, "id", &pdsp->id); 1541 list_add_tail(&pdsp->list, &kdev->pdsps); 1542 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n", 1543 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs, 1544 pdsp->intd); 1545 } 1546 return 0; 1547 } 1548 1549 static int knav_queue_stop_pdsp(struct knav_device *kdev, 1550 struct knav_pdsp_info *pdsp) 1551 { 1552 u32 val, timeout = 1000; 1553 int ret; 1554 1555 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE; 1556 writel_relaxed(val, &pdsp->regs->control); 1557 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout, 1558 PDSP_CTRL_RUNNING); 1559 if (ret < 0) { 1560 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name); 1561 return ret; 1562 } 1563 pdsp->loaded = false; 1564 pdsp->started = false; 1565 return 0; 1566 } 1567 1568 static int knav_queue_load_pdsp(struct knav_device *kdev, 1569 struct knav_pdsp_info *pdsp) 1570 { 1571 int i, ret, fwlen; 1572 const struct firmware *fw; 1573 bool found = false; 1574 u32 *fwdata; 1575 1576 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) { 1577 if (knav_acc_firmwares[i]) { 1578 ret = request_firmware_direct(&fw, 1579 knav_acc_firmwares[i], 1580 kdev->dev); 1581 if (!ret) { 1582 found = true; 1583 break; 1584 } 1585 } 1586 } 1587 1588 if (!found) { 1589 dev_err(kdev->dev, "failed to get firmware for pdsp\n"); 1590 return -ENODEV; 1591 } 1592 1593 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n", 1594 knav_acc_firmwares[i]); 1595 1596 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18); 1597 /* download the firmware */ 1598 fwdata = (u32 *)fw->data; 1599 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32); 1600 for (i = 0; i < fwlen; i++) 1601 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i); 1602 1603 release_firmware(fw); 1604 return 0; 1605 } 1606 1607 static int knav_queue_start_pdsp(struct knav_device *kdev, 1608 struct knav_pdsp_info *pdsp) 1609 { 1610 u32 val, timeout = 1000; 1611 int ret; 1612 1613 /* write a command for sync */ 1614 writel_relaxed(0xffffffff, pdsp->command); 1615 while (readl_relaxed(pdsp->command) != 0xffffffff) 1616 cpu_relax(); 1617 1618 /* soft reset the PDSP */ 1619 val = readl_relaxed(&pdsp->regs->control); 1620 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET); 1621 writel_relaxed(val, &pdsp->regs->control); 1622 1623 /* enable pdsp */ 1624 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE; 1625 writel_relaxed(val, &pdsp->regs->control); 1626 1627 /* wait for command register to clear */ 1628 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0); 1629 if (ret < 0) { 1630 dev_err(kdev->dev, 1631 "timed out on pdsp %s command register wait\n", 1632 pdsp->name); 1633 return ret; 1634 } 1635 return 0; 1636 } 1637 1638 static void knav_queue_stop_pdsps(struct knav_device *kdev) 1639 { 1640 struct knav_pdsp_info *pdsp; 1641 1642 /* disable all pdsps */ 1643 for_each_pdsp(kdev, pdsp) 1644 knav_queue_stop_pdsp(kdev, pdsp); 1645 } 1646 1647 static int knav_queue_start_pdsps(struct knav_device *kdev) 1648 { 1649 struct knav_pdsp_info *pdsp; 1650 int ret; 1651 1652 knav_queue_stop_pdsps(kdev); 1653 /* now load them all. We return success even if pdsp 1654 * is not loaded as acc channels are optional on having 1655 * firmware availability in the system. We set the loaded 1656 * and stated flag and when initialize the acc range, check 1657 * it and init the range only if pdsp is started. 1658 */ 1659 for_each_pdsp(kdev, pdsp) { 1660 ret = knav_queue_load_pdsp(kdev, pdsp); 1661 if (!ret) 1662 pdsp->loaded = true; 1663 } 1664 1665 for_each_pdsp(kdev, pdsp) { 1666 if (pdsp->loaded) { 1667 ret = knav_queue_start_pdsp(kdev, pdsp); 1668 if (!ret) 1669 pdsp->started = true; 1670 } 1671 } 1672 return 0; 1673 } 1674 1675 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id) 1676 { 1677 struct knav_qmgr_info *qmgr; 1678 1679 for_each_qmgr(kdev, qmgr) { 1680 if ((id >= qmgr->start_queue) && 1681 (id < qmgr->start_queue + qmgr->num_queues)) 1682 return qmgr; 1683 } 1684 return NULL; 1685 } 1686 1687 static int knav_queue_init_queue(struct knav_device *kdev, 1688 struct knav_range_info *range, 1689 struct knav_queue_inst *inst, 1690 unsigned id) 1691 { 1692 char irq_name[KNAV_NAME_SIZE]; 1693 inst->qmgr = knav_find_qmgr(id); 1694 if (!inst->qmgr) 1695 return -1; 1696 1697 INIT_LIST_HEAD(&inst->handles); 1698 inst->kdev = kdev; 1699 inst->range = range; 1700 inst->irq_num = -1; 1701 inst->id = id; 1702 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id); 1703 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL); 1704 1705 if (range->ops && range->ops->init_queue) 1706 return range->ops->init_queue(range, inst); 1707 else 1708 return 0; 1709 } 1710 1711 static int knav_queue_init_queues(struct knav_device *kdev) 1712 { 1713 struct knav_range_info *range; 1714 int size, id, base_idx; 1715 int idx = 0, ret = 0; 1716 1717 /* how much do we need for instance data? */ 1718 size = sizeof(struct knav_queue_inst); 1719 1720 /* round this up to a power of 2, keep the index to instance 1721 * arithmetic fast. 1722 * */ 1723 kdev->inst_shift = order_base_2(size); 1724 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use; 1725 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL); 1726 if (!kdev->instances) 1727 return -ENOMEM; 1728 1729 for_each_queue_range(kdev, range) { 1730 if (range->ops && range->ops->init_range) 1731 range->ops->init_range(range); 1732 base_idx = idx; 1733 for (id = range->queue_base; 1734 id < range->queue_base + range->num_queues; id++, idx++) { 1735 ret = knav_queue_init_queue(kdev, range, 1736 knav_queue_idx_to_inst(kdev, idx), id); 1737 if (ret < 0) 1738 return ret; 1739 } 1740 range->queue_base_inst = 1741 knav_queue_idx_to_inst(kdev, base_idx); 1742 } 1743 return 0; 1744 } 1745 1746 /* Match table for of_platform binding */ 1747 static const struct of_device_id keystone_qmss_of_match[] = { 1748 { 1749 .compatible = "ti,keystone-navigator-qmss", 1750 }, 1751 { 1752 .compatible = "ti,66ak2g-navss-qm", 1753 .data = (void *)QMSS_66AK2G, 1754 }, 1755 {}, 1756 }; 1757 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match); 1758 1759 static int knav_queue_probe(struct platform_device *pdev) 1760 { 1761 struct device_node *node = pdev->dev.of_node; 1762 struct device_node *qmgrs, *queue_pools, *regions, *pdsps; 1763 const struct of_device_id *match; 1764 struct device *dev = &pdev->dev; 1765 u32 temp[2]; 1766 int ret; 1767 1768 if (!node) { 1769 dev_err(dev, "device tree info unavailable\n"); 1770 return -ENODEV; 1771 } 1772 1773 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL); 1774 if (!kdev) { 1775 dev_err(dev, "memory allocation failed\n"); 1776 return -ENOMEM; 1777 } 1778 1779 match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev); 1780 if (match && match->data) 1781 kdev->version = QMSS_66AK2G; 1782 1783 platform_set_drvdata(pdev, kdev); 1784 kdev->dev = dev; 1785 INIT_LIST_HEAD(&kdev->queue_ranges); 1786 INIT_LIST_HEAD(&kdev->qmgrs); 1787 INIT_LIST_HEAD(&kdev->pools); 1788 INIT_LIST_HEAD(&kdev->regions); 1789 INIT_LIST_HEAD(&kdev->pdsps); 1790 1791 pm_runtime_enable(&pdev->dev); 1792 ret = pm_runtime_get_sync(&pdev->dev); 1793 if (ret < 0) { 1794 dev_err(dev, "Failed to enable QMSS\n"); 1795 return ret; 1796 } 1797 1798 if (of_property_read_u32_array(node, "queue-range", temp, 2)) { 1799 dev_err(dev, "queue-range not specified\n"); 1800 ret = -ENODEV; 1801 goto err; 1802 } 1803 kdev->base_id = temp[0]; 1804 kdev->num_queues = temp[1]; 1805 1806 /* Initialize queue managers using device tree configuration */ 1807 qmgrs = of_get_child_by_name(node, "qmgrs"); 1808 if (!qmgrs) { 1809 dev_err(dev, "queue manager info not specified\n"); 1810 ret = -ENODEV; 1811 goto err; 1812 } 1813 ret = knav_queue_init_qmgrs(kdev, qmgrs); 1814 of_node_put(qmgrs); 1815 if (ret) 1816 goto err; 1817 1818 /* get pdsp configuration values from device tree */ 1819 pdsps = of_get_child_by_name(node, "pdsps"); 1820 if (pdsps) { 1821 ret = knav_queue_init_pdsps(kdev, pdsps); 1822 if (ret) 1823 goto err; 1824 1825 ret = knav_queue_start_pdsps(kdev); 1826 if (ret) 1827 goto err; 1828 } 1829 of_node_put(pdsps); 1830 1831 /* get usable queue range values from device tree */ 1832 queue_pools = of_get_child_by_name(node, "queue-pools"); 1833 if (!queue_pools) { 1834 dev_err(dev, "queue-pools not specified\n"); 1835 ret = -ENODEV; 1836 goto err; 1837 } 1838 ret = knav_setup_queue_pools(kdev, queue_pools); 1839 of_node_put(queue_pools); 1840 if (ret) 1841 goto err; 1842 1843 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]); 1844 if (ret) { 1845 dev_err(kdev->dev, "could not setup linking ram\n"); 1846 goto err; 1847 } 1848 1849 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]); 1850 if (ret) { 1851 /* 1852 * nothing really, we have one linking ram already, so we just 1853 * live within our means 1854 */ 1855 } 1856 1857 ret = knav_queue_setup_link_ram(kdev); 1858 if (ret) 1859 goto err; 1860 1861 regions = of_get_child_by_name(node, "descriptor-regions"); 1862 if (!regions) { 1863 dev_err(dev, "descriptor-regions not specified\n"); 1864 goto err; 1865 } 1866 ret = knav_queue_setup_regions(kdev, regions); 1867 of_node_put(regions); 1868 if (ret) 1869 goto err; 1870 1871 ret = knav_queue_init_queues(kdev); 1872 if (ret < 0) { 1873 dev_err(dev, "hwqueue initialization failed\n"); 1874 goto err; 1875 } 1876 1877 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL, 1878 &knav_queue_debug_ops); 1879 device_ready = true; 1880 return 0; 1881 1882 err: 1883 knav_queue_stop_pdsps(kdev); 1884 knav_queue_free_regions(kdev); 1885 knav_free_queue_ranges(kdev); 1886 pm_runtime_put_sync(&pdev->dev); 1887 pm_runtime_disable(&pdev->dev); 1888 return ret; 1889 } 1890 1891 static int knav_queue_remove(struct platform_device *pdev) 1892 { 1893 /* TODO: Free resources */ 1894 pm_runtime_put_sync(&pdev->dev); 1895 pm_runtime_disable(&pdev->dev); 1896 return 0; 1897 } 1898 1899 static struct platform_driver keystone_qmss_driver = { 1900 .probe = knav_queue_probe, 1901 .remove = knav_queue_remove, 1902 .driver = { 1903 .name = "keystone-navigator-qmss", 1904 .of_match_table = keystone_qmss_of_match, 1905 }, 1906 }; 1907 module_platform_driver(keystone_qmss_driver); 1908 1909 MODULE_LICENSE("GPL v2"); 1910 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs"); 1911 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>"); 1912 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>"); 1913