xref: /openbmc/linux/drivers/soc/ti/knav_qmss_queue.c (revision 83268fa6b43cefb60ee188fd53ed49120d3ae4f4)
1 /*
2  * Keystone Queue Manager subsystem driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5  * Authors:	Sandeep Nair <sandeep_n@ti.com>
6  *		Cyril Chemparathy <cyril@ti.com>
7  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18 
19 #include <linux/debugfs.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/firmware.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/module.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_irq.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/soc/ti/knav_qmss.h>
31 
32 #include "knav_qmss.h"
33 
34 static struct knav_device *kdev;
35 static DEFINE_MUTEX(knav_dev_lock);
36 
37 /* Queue manager register indices in DTS */
38 #define KNAV_QUEUE_PEEK_REG_INDEX	0
39 #define KNAV_QUEUE_STATUS_REG_INDEX	1
40 #define KNAV_QUEUE_CONFIG_REG_INDEX	2
41 #define KNAV_QUEUE_REGION_REG_INDEX	3
42 #define KNAV_QUEUE_PUSH_REG_INDEX	4
43 #define KNAV_QUEUE_POP_REG_INDEX	5
44 
45 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
46  * There are no status and vbusm push registers on this version
47  * of QMSS. Push registers are same as pop, So all indices above 1
48  * are to be re-defined
49  */
50 #define KNAV_L_QUEUE_CONFIG_REG_INDEX	1
51 #define KNAV_L_QUEUE_REGION_REG_INDEX	2
52 #define KNAV_L_QUEUE_PUSH_REG_INDEX	3
53 
54 /* PDSP register indices in DTS */
55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
59 
60 #define knav_queue_idx_to_inst(kdev, idx)			\
61 	(kdev->instances + (idx << kdev->inst_shift))
62 
63 #define for_each_handle_rcu(qh, inst)			\
64 	list_for_each_entry_rcu(qh, &inst->handles, list)
65 
66 #define for_each_instance(idx, inst, kdev)		\
67 	for (idx = 0, inst = kdev->instances;		\
68 	     idx < (kdev)->num_queues_in_use;			\
69 	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
70 
71 /* All firmware file names end up here. List the firmware file names below.
72  * Newest followed by older ones. Search is done from start of the array
73  * until a firmware file is found.
74  */
75 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
76 
77 static bool device_ready;
78 bool knav_qmss_device_ready(void)
79 {
80 	return device_ready;
81 }
82 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
83 
84 /**
85  * knav_queue_notify: qmss queue notfier call
86  *
87  * @inst:		qmss queue instance like accumulator
88  */
89 void knav_queue_notify(struct knav_queue_inst *inst)
90 {
91 	struct knav_queue *qh;
92 
93 	if (!inst)
94 		return;
95 
96 	rcu_read_lock();
97 	for_each_handle_rcu(qh, inst) {
98 		if (atomic_read(&qh->notifier_enabled) <= 0)
99 			continue;
100 		if (WARN_ON(!qh->notifier_fn))
101 			continue;
102 		this_cpu_inc(qh->stats->notifies);
103 		qh->notifier_fn(qh->notifier_fn_arg);
104 	}
105 	rcu_read_unlock();
106 }
107 EXPORT_SYMBOL_GPL(knav_queue_notify);
108 
109 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
110 {
111 	struct knav_queue_inst *inst = _instdata;
112 
113 	knav_queue_notify(inst);
114 	return IRQ_HANDLED;
115 }
116 
117 static int knav_queue_setup_irq(struct knav_range_info *range,
118 			  struct knav_queue_inst *inst)
119 {
120 	unsigned queue = inst->id - range->queue_base;
121 	int ret = 0, irq;
122 
123 	if (range->flags & RANGE_HAS_IRQ) {
124 		irq = range->irqs[queue].irq;
125 		ret = request_irq(irq, knav_queue_int_handler, 0,
126 					inst->irq_name, inst);
127 		if (ret)
128 			return ret;
129 		disable_irq(irq);
130 		if (range->irqs[queue].cpu_mask) {
131 			ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
132 			if (ret) {
133 				dev_warn(range->kdev->dev,
134 					 "Failed to set IRQ affinity\n");
135 				return ret;
136 			}
137 		}
138 	}
139 	return ret;
140 }
141 
142 static void knav_queue_free_irq(struct knav_queue_inst *inst)
143 {
144 	struct knav_range_info *range = inst->range;
145 	unsigned queue = inst->id - inst->range->queue_base;
146 	int irq;
147 
148 	if (range->flags & RANGE_HAS_IRQ) {
149 		irq = range->irqs[queue].irq;
150 		irq_set_affinity_hint(irq, NULL);
151 		free_irq(irq, inst);
152 	}
153 }
154 
155 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
156 {
157 	return !list_empty(&inst->handles);
158 }
159 
160 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
161 {
162 	return inst->range->flags & RANGE_RESERVED;
163 }
164 
165 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
166 {
167 	struct knav_queue *tmp;
168 
169 	rcu_read_lock();
170 	for_each_handle_rcu(tmp, inst) {
171 		if (tmp->flags & KNAV_QUEUE_SHARED) {
172 			rcu_read_unlock();
173 			return true;
174 		}
175 	}
176 	rcu_read_unlock();
177 	return false;
178 }
179 
180 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
181 						unsigned type)
182 {
183 	if ((type == KNAV_QUEUE_QPEND) &&
184 	    (inst->range->flags & RANGE_HAS_IRQ)) {
185 		return true;
186 	} else if ((type == KNAV_QUEUE_ACC) &&
187 		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
188 		return true;
189 	} else if ((type == KNAV_QUEUE_GP) &&
190 		!(inst->range->flags &
191 			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
192 		return true;
193 	}
194 	return false;
195 }
196 
197 static inline struct knav_queue_inst *
198 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
199 {
200 	struct knav_queue_inst *inst;
201 	int idx;
202 
203 	for_each_instance(idx, inst, kdev) {
204 		if (inst->id == id)
205 			return inst;
206 	}
207 	return NULL;
208 }
209 
210 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
211 {
212 	if (kdev->base_id <= id &&
213 	    kdev->base_id + kdev->num_queues > id) {
214 		id -= kdev->base_id;
215 		return knav_queue_match_id_to_inst(kdev, id);
216 	}
217 	return NULL;
218 }
219 
220 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
221 				      const char *name, unsigned flags)
222 {
223 	struct knav_queue *qh;
224 	unsigned id;
225 	int ret = 0;
226 
227 	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
228 	if (!qh)
229 		return ERR_PTR(-ENOMEM);
230 
231 	qh->stats = alloc_percpu(struct knav_queue_stats);
232 	if (!qh->stats) {
233 		ret = -ENOMEM;
234 		goto err;
235 	}
236 
237 	qh->flags = flags;
238 	qh->inst = inst;
239 	id = inst->id - inst->qmgr->start_queue;
240 	qh->reg_push = &inst->qmgr->reg_push[id];
241 	qh->reg_pop = &inst->qmgr->reg_pop[id];
242 	qh->reg_peek = &inst->qmgr->reg_peek[id];
243 
244 	/* first opener? */
245 	if (!knav_queue_is_busy(inst)) {
246 		struct knav_range_info *range = inst->range;
247 
248 		inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
249 		if (range->ops && range->ops->open_queue)
250 			ret = range->ops->open_queue(range, inst, flags);
251 
252 		if (ret)
253 			goto err;
254 	}
255 	list_add_tail_rcu(&qh->list, &inst->handles);
256 	return qh;
257 
258 err:
259 	if (qh->stats)
260 		free_percpu(qh->stats);
261 	devm_kfree(inst->kdev->dev, qh);
262 	return ERR_PTR(ret);
263 }
264 
265 static struct knav_queue *
266 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
267 {
268 	struct knav_queue_inst *inst;
269 	struct knav_queue *qh;
270 
271 	mutex_lock(&knav_dev_lock);
272 
273 	qh = ERR_PTR(-ENODEV);
274 	inst = knav_queue_find_by_id(id);
275 	if (!inst)
276 		goto unlock_ret;
277 
278 	qh = ERR_PTR(-EEXIST);
279 	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
280 		goto unlock_ret;
281 
282 	qh = ERR_PTR(-EBUSY);
283 	if ((flags & KNAV_QUEUE_SHARED) &&
284 	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
285 		goto unlock_ret;
286 
287 	qh = __knav_queue_open(inst, name, flags);
288 
289 unlock_ret:
290 	mutex_unlock(&knav_dev_lock);
291 
292 	return qh;
293 }
294 
295 static struct knav_queue *knav_queue_open_by_type(const char *name,
296 						unsigned type, unsigned flags)
297 {
298 	struct knav_queue_inst *inst;
299 	struct knav_queue *qh = ERR_PTR(-EINVAL);
300 	int idx;
301 
302 	mutex_lock(&knav_dev_lock);
303 
304 	for_each_instance(idx, inst, kdev) {
305 		if (knav_queue_is_reserved(inst))
306 			continue;
307 		if (!knav_queue_match_type(inst, type))
308 			continue;
309 		if (knav_queue_is_busy(inst))
310 			continue;
311 		qh = __knav_queue_open(inst, name, flags);
312 		goto unlock_ret;
313 	}
314 
315 unlock_ret:
316 	mutex_unlock(&knav_dev_lock);
317 	return qh;
318 }
319 
320 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
321 {
322 	struct knav_range_info *range = inst->range;
323 
324 	if (range->ops && range->ops->set_notify)
325 		range->ops->set_notify(range, inst, enabled);
326 }
327 
328 static int knav_queue_enable_notifier(struct knav_queue *qh)
329 {
330 	struct knav_queue_inst *inst = qh->inst;
331 	bool first;
332 
333 	if (WARN_ON(!qh->notifier_fn))
334 		return -EINVAL;
335 
336 	/* Adjust the per handle notifier count */
337 	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
338 	if (!first)
339 		return 0; /* nothing to do */
340 
341 	/* Now adjust the per instance notifier count */
342 	first = (atomic_inc_return(&inst->num_notifiers) == 1);
343 	if (first)
344 		knav_queue_set_notify(inst, true);
345 
346 	return 0;
347 }
348 
349 static int knav_queue_disable_notifier(struct knav_queue *qh)
350 {
351 	struct knav_queue_inst *inst = qh->inst;
352 	bool last;
353 
354 	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
355 	if (!last)
356 		return 0; /* nothing to do */
357 
358 	last = (atomic_dec_return(&inst->num_notifiers) == 0);
359 	if (last)
360 		knav_queue_set_notify(inst, false);
361 
362 	return 0;
363 }
364 
365 static int knav_queue_set_notifier(struct knav_queue *qh,
366 				struct knav_queue_notify_config *cfg)
367 {
368 	knav_queue_notify_fn old_fn = qh->notifier_fn;
369 
370 	if (!cfg)
371 		return -EINVAL;
372 
373 	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
374 		return -ENOTSUPP;
375 
376 	if (!cfg->fn && old_fn)
377 		knav_queue_disable_notifier(qh);
378 
379 	qh->notifier_fn = cfg->fn;
380 	qh->notifier_fn_arg = cfg->fn_arg;
381 
382 	if (cfg->fn && !old_fn)
383 		knav_queue_enable_notifier(qh);
384 
385 	return 0;
386 }
387 
388 static int knav_gp_set_notify(struct knav_range_info *range,
389 			       struct knav_queue_inst *inst,
390 			       bool enabled)
391 {
392 	unsigned queue;
393 
394 	if (range->flags & RANGE_HAS_IRQ) {
395 		queue = inst->id - range->queue_base;
396 		if (enabled)
397 			enable_irq(range->irqs[queue].irq);
398 		else
399 			disable_irq_nosync(range->irqs[queue].irq);
400 	}
401 	return 0;
402 }
403 
404 static int knav_gp_open_queue(struct knav_range_info *range,
405 				struct knav_queue_inst *inst, unsigned flags)
406 {
407 	return knav_queue_setup_irq(range, inst);
408 }
409 
410 static int knav_gp_close_queue(struct knav_range_info *range,
411 				struct knav_queue_inst *inst)
412 {
413 	knav_queue_free_irq(inst);
414 	return 0;
415 }
416 
417 struct knav_range_ops knav_gp_range_ops = {
418 	.set_notify	= knav_gp_set_notify,
419 	.open_queue	= knav_gp_open_queue,
420 	.close_queue	= knav_gp_close_queue,
421 };
422 
423 
424 static int knav_queue_get_count(void *qhandle)
425 {
426 	struct knav_queue *qh = qhandle;
427 	struct knav_queue_inst *inst = qh->inst;
428 
429 	return readl_relaxed(&qh->reg_peek[0].entry_count) +
430 		atomic_read(&inst->desc_count);
431 }
432 
433 static void knav_queue_debug_show_instance(struct seq_file *s,
434 					struct knav_queue_inst *inst)
435 {
436 	struct knav_device *kdev = inst->kdev;
437 	struct knav_queue *qh;
438 	int cpu = 0;
439 	int pushes = 0;
440 	int pops = 0;
441 	int push_errors = 0;
442 	int pop_errors = 0;
443 	int notifies = 0;
444 
445 	if (!knav_queue_is_busy(inst))
446 		return;
447 
448 	seq_printf(s, "\tqueue id %d (%s)\n",
449 		   kdev->base_id + inst->id, inst->name);
450 	for_each_handle_rcu(qh, inst) {
451 		for_each_possible_cpu(cpu) {
452 			pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
453 			pops += per_cpu_ptr(qh->stats, cpu)->pops;
454 			push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
455 			pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
456 			notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
457 		}
458 
459 		seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
460 				qh,
461 				pushes,
462 				pops,
463 				knav_queue_get_count(qh),
464 				notifies,
465 				push_errors,
466 				pop_errors);
467 	}
468 }
469 
470 static int knav_queue_debug_show(struct seq_file *s, void *v)
471 {
472 	struct knav_queue_inst *inst;
473 	int idx;
474 
475 	mutex_lock(&knav_dev_lock);
476 	seq_printf(s, "%s: %u-%u\n",
477 		   dev_name(kdev->dev), kdev->base_id,
478 		   kdev->base_id + kdev->num_queues - 1);
479 	for_each_instance(idx, inst, kdev)
480 		knav_queue_debug_show_instance(s, inst);
481 	mutex_unlock(&knav_dev_lock);
482 
483 	return 0;
484 }
485 
486 static int knav_queue_debug_open(struct inode *inode, struct file *file)
487 {
488 	return single_open(file, knav_queue_debug_show, NULL);
489 }
490 
491 static const struct file_operations knav_queue_debug_ops = {
492 	.open		= knav_queue_debug_open,
493 	.read		= seq_read,
494 	.llseek		= seq_lseek,
495 	.release	= single_release,
496 };
497 
498 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
499 					u32 flags)
500 {
501 	unsigned long end;
502 	u32 val = 0;
503 
504 	end = jiffies + msecs_to_jiffies(timeout);
505 	while (time_after(end, jiffies)) {
506 		val = readl_relaxed(addr);
507 		if (flags)
508 			val &= flags;
509 		if (!val)
510 			break;
511 		cpu_relax();
512 	}
513 	return val ? -ETIMEDOUT : 0;
514 }
515 
516 
517 static int knav_queue_flush(struct knav_queue *qh)
518 {
519 	struct knav_queue_inst *inst = qh->inst;
520 	unsigned id = inst->id - inst->qmgr->start_queue;
521 
522 	atomic_set(&inst->desc_count, 0);
523 	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
524 	return 0;
525 }
526 
527 /**
528  * knav_queue_open()	- open a hardware queue
529  * @name		- name to give the queue handle
530  * @id			- desired queue number if any or specifes the type
531  *			  of queue
532  * @flags		- the following flags are applicable to queues:
533  *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
534  *			     exclusive by default.
535  *			     Subsequent attempts to open a shared queue should
536  *			     also have this flag.
537  *
538  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
539  * to check the returned value for error codes.
540  */
541 void *knav_queue_open(const char *name, unsigned id,
542 					unsigned flags)
543 {
544 	struct knav_queue *qh = ERR_PTR(-EINVAL);
545 
546 	switch (id) {
547 	case KNAV_QUEUE_QPEND:
548 	case KNAV_QUEUE_ACC:
549 	case KNAV_QUEUE_GP:
550 		qh = knav_queue_open_by_type(name, id, flags);
551 		break;
552 
553 	default:
554 		qh = knav_queue_open_by_id(name, id, flags);
555 		break;
556 	}
557 	return qh;
558 }
559 EXPORT_SYMBOL_GPL(knav_queue_open);
560 
561 /**
562  * knav_queue_close()	- close a hardware queue handle
563  * @qh			- handle to close
564  */
565 void knav_queue_close(void *qhandle)
566 {
567 	struct knav_queue *qh = qhandle;
568 	struct knav_queue_inst *inst = qh->inst;
569 
570 	while (atomic_read(&qh->notifier_enabled) > 0)
571 		knav_queue_disable_notifier(qh);
572 
573 	mutex_lock(&knav_dev_lock);
574 	list_del_rcu(&qh->list);
575 	mutex_unlock(&knav_dev_lock);
576 	synchronize_rcu();
577 	if (!knav_queue_is_busy(inst)) {
578 		struct knav_range_info *range = inst->range;
579 
580 		if (range->ops && range->ops->close_queue)
581 			range->ops->close_queue(range, inst);
582 	}
583 	free_percpu(qh->stats);
584 	devm_kfree(inst->kdev->dev, qh);
585 }
586 EXPORT_SYMBOL_GPL(knav_queue_close);
587 
588 /**
589  * knav_queue_device_control()	- Perform control operations on a queue
590  * @qh				- queue handle
591  * @cmd				- control commands
592  * @arg				- command argument
593  *
594  * Returns 0 on success, errno otherwise.
595  */
596 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
597 				unsigned long arg)
598 {
599 	struct knav_queue *qh = qhandle;
600 	struct knav_queue_notify_config *cfg;
601 	int ret;
602 
603 	switch ((int)cmd) {
604 	case KNAV_QUEUE_GET_ID:
605 		ret = qh->inst->kdev->base_id + qh->inst->id;
606 		break;
607 
608 	case KNAV_QUEUE_FLUSH:
609 		ret = knav_queue_flush(qh);
610 		break;
611 
612 	case KNAV_QUEUE_SET_NOTIFIER:
613 		cfg = (void *)arg;
614 		ret = knav_queue_set_notifier(qh, cfg);
615 		break;
616 
617 	case KNAV_QUEUE_ENABLE_NOTIFY:
618 		ret = knav_queue_enable_notifier(qh);
619 		break;
620 
621 	case KNAV_QUEUE_DISABLE_NOTIFY:
622 		ret = knav_queue_disable_notifier(qh);
623 		break;
624 
625 	case KNAV_QUEUE_GET_COUNT:
626 		ret = knav_queue_get_count(qh);
627 		break;
628 
629 	default:
630 		ret = -ENOTSUPP;
631 		break;
632 	}
633 	return ret;
634 }
635 EXPORT_SYMBOL_GPL(knav_queue_device_control);
636 
637 
638 
639 /**
640  * knav_queue_push()	- push data (or descriptor) to the tail of a queue
641  * @qh			- hardware queue handle
642  * @data		- data to push
643  * @size		- size of data to push
644  * @flags		- can be used to pass additional information
645  *
646  * Returns 0 on success, errno otherwise.
647  */
648 int knav_queue_push(void *qhandle, dma_addr_t dma,
649 					unsigned size, unsigned flags)
650 {
651 	struct knav_queue *qh = qhandle;
652 	u32 val;
653 
654 	val = (u32)dma | ((size / 16) - 1);
655 	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
656 
657 	this_cpu_inc(qh->stats->pushes);
658 	return 0;
659 }
660 EXPORT_SYMBOL_GPL(knav_queue_push);
661 
662 /**
663  * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
664  * @qh			- hardware queue handle
665  * @size		- (optional) size of the data pop'ed.
666  *
667  * Returns a DMA address on success, 0 on failure.
668  */
669 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
670 {
671 	struct knav_queue *qh = qhandle;
672 	struct knav_queue_inst *inst = qh->inst;
673 	dma_addr_t dma;
674 	u32 val, idx;
675 
676 	/* are we accumulated? */
677 	if (inst->descs) {
678 		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
679 			atomic_inc(&inst->desc_count);
680 			return 0;
681 		}
682 		idx  = atomic_inc_return(&inst->desc_head);
683 		idx &= ACC_DESCS_MASK;
684 		val = inst->descs[idx];
685 	} else {
686 		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
687 		if (unlikely(!val))
688 			return 0;
689 	}
690 
691 	dma = val & DESC_PTR_MASK;
692 	if (size)
693 		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
694 
695 	this_cpu_inc(qh->stats->pops);
696 	return dma;
697 }
698 EXPORT_SYMBOL_GPL(knav_queue_pop);
699 
700 /* carve out descriptors and push into queue */
701 static void kdesc_fill_pool(struct knav_pool *pool)
702 {
703 	struct knav_region *region;
704 	int i;
705 
706 	region = pool->region;
707 	pool->desc_size = region->desc_size;
708 	for (i = 0; i < pool->num_desc; i++) {
709 		int index = pool->region_offset + i;
710 		dma_addr_t dma_addr;
711 		unsigned dma_size;
712 		dma_addr = region->dma_start + (region->desc_size * index);
713 		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
714 		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
715 					   DMA_TO_DEVICE);
716 		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
717 	}
718 }
719 
720 /* pop out descriptors and close the queue */
721 static void kdesc_empty_pool(struct knav_pool *pool)
722 {
723 	dma_addr_t dma;
724 	unsigned size;
725 	void *desc;
726 	int i;
727 
728 	if (!pool->queue)
729 		return;
730 
731 	for (i = 0;; i++) {
732 		dma = knav_queue_pop(pool->queue, &size);
733 		if (!dma)
734 			break;
735 		desc = knav_pool_desc_dma_to_virt(pool, dma);
736 		if (!desc) {
737 			dev_dbg(pool->kdev->dev,
738 				"couldn't unmap desc, continuing\n");
739 			continue;
740 		}
741 	}
742 	WARN_ON(i != pool->num_desc);
743 	knav_queue_close(pool->queue);
744 }
745 
746 
747 /* Get the DMA address of a descriptor */
748 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
749 {
750 	struct knav_pool *pool = ph;
751 	return pool->region->dma_start + (virt - pool->region->virt_start);
752 }
753 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
754 
755 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
756 {
757 	struct knav_pool *pool = ph;
758 	return pool->region->virt_start + (dma - pool->region->dma_start);
759 }
760 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
761 
762 /**
763  * knav_pool_create()	- Create a pool of descriptors
764  * @name		- name to give the pool handle
765  * @num_desc		- numbers of descriptors in the pool
766  * @region_id		- QMSS region id from which the descriptors are to be
767  *			  allocated.
768  *
769  * Returns a pool handle on success.
770  * Use IS_ERR_OR_NULL() to identify error values on return.
771  */
772 void *knav_pool_create(const char *name,
773 					int num_desc, int region_id)
774 {
775 	struct knav_region *reg_itr, *region = NULL;
776 	struct knav_pool *pool, *pi;
777 	struct list_head *node;
778 	unsigned last_offset;
779 	bool slot_found;
780 	int ret;
781 
782 	if (!kdev)
783 		return ERR_PTR(-EPROBE_DEFER);
784 
785 	if (!kdev->dev)
786 		return ERR_PTR(-ENODEV);
787 
788 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
789 	if (!pool) {
790 		dev_err(kdev->dev, "out of memory allocating pool\n");
791 		return ERR_PTR(-ENOMEM);
792 	}
793 
794 	for_each_region(kdev, reg_itr) {
795 		if (reg_itr->id != region_id)
796 			continue;
797 		region = reg_itr;
798 		break;
799 	}
800 
801 	if (!region) {
802 		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
803 		ret = -EINVAL;
804 		goto err;
805 	}
806 
807 	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
808 	if (IS_ERR_OR_NULL(pool->queue)) {
809 		dev_err(kdev->dev,
810 			"failed to open queue for pool(%s), error %ld\n",
811 			name, PTR_ERR(pool->queue));
812 		ret = PTR_ERR(pool->queue);
813 		goto err;
814 	}
815 
816 	pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
817 	pool->kdev = kdev;
818 	pool->dev = kdev->dev;
819 
820 	mutex_lock(&knav_dev_lock);
821 
822 	if (num_desc > (region->num_desc - region->used_desc)) {
823 		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
824 			region_id, name);
825 		ret = -ENOMEM;
826 		goto err_unlock;
827 	}
828 
829 	/* Region maintains a sorted (by region offset) list of pools
830 	 * use the first free slot which is large enough to accomodate
831 	 * the request
832 	 */
833 	last_offset = 0;
834 	slot_found = false;
835 	node = &region->pools;
836 	list_for_each_entry(pi, &region->pools, region_inst) {
837 		if ((pi->region_offset - last_offset) >= num_desc) {
838 			slot_found = true;
839 			break;
840 		}
841 		last_offset = pi->region_offset + pi->num_desc;
842 	}
843 	node = &pi->region_inst;
844 
845 	if (slot_found) {
846 		pool->region = region;
847 		pool->num_desc = num_desc;
848 		pool->region_offset = last_offset;
849 		region->used_desc += num_desc;
850 		list_add_tail(&pool->list, &kdev->pools);
851 		list_add_tail(&pool->region_inst, node);
852 	} else {
853 		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
854 			name, region_id);
855 		ret = -ENOMEM;
856 		goto err_unlock;
857 	}
858 
859 	mutex_unlock(&knav_dev_lock);
860 	kdesc_fill_pool(pool);
861 	return pool;
862 
863 err_unlock:
864 	mutex_unlock(&knav_dev_lock);
865 err:
866 	kfree(pool->name);
867 	devm_kfree(kdev->dev, pool);
868 	return ERR_PTR(ret);
869 }
870 EXPORT_SYMBOL_GPL(knav_pool_create);
871 
872 /**
873  * knav_pool_destroy()	- Free a pool of descriptors
874  * @pool		- pool handle
875  */
876 void knav_pool_destroy(void *ph)
877 {
878 	struct knav_pool *pool = ph;
879 
880 	if (!pool)
881 		return;
882 
883 	if (!pool->region)
884 		return;
885 
886 	kdesc_empty_pool(pool);
887 	mutex_lock(&knav_dev_lock);
888 
889 	pool->region->used_desc -= pool->num_desc;
890 	list_del(&pool->region_inst);
891 	list_del(&pool->list);
892 
893 	mutex_unlock(&knav_dev_lock);
894 	kfree(pool->name);
895 	devm_kfree(kdev->dev, pool);
896 }
897 EXPORT_SYMBOL_GPL(knav_pool_destroy);
898 
899 
900 /**
901  * knav_pool_desc_get()	- Get a descriptor from the pool
902  * @pool			- pool handle
903  *
904  * Returns descriptor from the pool.
905  */
906 void *knav_pool_desc_get(void *ph)
907 {
908 	struct knav_pool *pool = ph;
909 	dma_addr_t dma;
910 	unsigned size;
911 	void *data;
912 
913 	dma = knav_queue_pop(pool->queue, &size);
914 	if (unlikely(!dma))
915 		return ERR_PTR(-ENOMEM);
916 	data = knav_pool_desc_dma_to_virt(pool, dma);
917 	return data;
918 }
919 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
920 
921 /**
922  * knav_pool_desc_put()	- return a descriptor to the pool
923  * @pool			- pool handle
924  */
925 void knav_pool_desc_put(void *ph, void *desc)
926 {
927 	struct knav_pool *pool = ph;
928 	dma_addr_t dma;
929 	dma = knav_pool_desc_virt_to_dma(pool, desc);
930 	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
931 }
932 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
933 
934 /**
935  * knav_pool_desc_map()	- Map descriptor for DMA transfer
936  * @pool			- pool handle
937  * @desc			- address of descriptor to map
938  * @size			- size of descriptor to map
939  * @dma				- DMA address return pointer
940  * @dma_sz			- adjusted return pointer
941  *
942  * Returns 0 on success, errno otherwise.
943  */
944 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
945 					dma_addr_t *dma, unsigned *dma_sz)
946 {
947 	struct knav_pool *pool = ph;
948 	*dma = knav_pool_desc_virt_to_dma(pool, desc);
949 	size = min(size, pool->region->desc_size);
950 	size = ALIGN(size, SMP_CACHE_BYTES);
951 	*dma_sz = size;
952 	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
953 
954 	/* Ensure the descriptor reaches to the memory */
955 	__iowmb();
956 
957 	return 0;
958 }
959 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
960 
961 /**
962  * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
963  * @pool			- pool handle
964  * @dma				- DMA address of descriptor to unmap
965  * @dma_sz			- size of descriptor to unmap
966  *
967  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
968  * error values on return.
969  */
970 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
971 {
972 	struct knav_pool *pool = ph;
973 	unsigned desc_sz;
974 	void *desc;
975 
976 	desc_sz = min(dma_sz, pool->region->desc_size);
977 	desc = knav_pool_desc_dma_to_virt(pool, dma);
978 	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
979 	prefetch(desc);
980 	return desc;
981 }
982 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
983 
984 /**
985  * knav_pool_count()	- Get the number of descriptors in pool.
986  * @pool		- pool handle
987  * Returns number of elements in the pool.
988  */
989 int knav_pool_count(void *ph)
990 {
991 	struct knav_pool *pool = ph;
992 	return knav_queue_get_count(pool->queue);
993 }
994 EXPORT_SYMBOL_GPL(knav_pool_count);
995 
996 static void knav_queue_setup_region(struct knav_device *kdev,
997 					struct knav_region *region)
998 {
999 	unsigned hw_num_desc, hw_desc_size, size;
1000 	struct knav_reg_region __iomem  *regs;
1001 	struct knav_qmgr_info *qmgr;
1002 	struct knav_pool *pool;
1003 	int id = region->id;
1004 	struct page *page;
1005 
1006 	/* unused region? */
1007 	if (!region->num_desc) {
1008 		dev_warn(kdev->dev, "unused region %s\n", region->name);
1009 		return;
1010 	}
1011 
1012 	/* get hardware descriptor value */
1013 	hw_num_desc = ilog2(region->num_desc - 1) + 1;
1014 
1015 	/* did we force fit ourselves into nothingness? */
1016 	if (region->num_desc < 32) {
1017 		region->num_desc = 0;
1018 		dev_warn(kdev->dev, "too few descriptors in region %s\n",
1019 			 region->name);
1020 		return;
1021 	}
1022 
1023 	size = region->num_desc * region->desc_size;
1024 	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1025 						GFP_DMA32);
1026 	if (!region->virt_start) {
1027 		region->num_desc = 0;
1028 		dev_err(kdev->dev, "memory alloc failed for region %s\n",
1029 			region->name);
1030 		return;
1031 	}
1032 	region->virt_end = region->virt_start + size;
1033 	page = virt_to_page(region->virt_start);
1034 
1035 	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1036 					 DMA_BIDIRECTIONAL);
1037 	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1038 		dev_err(kdev->dev, "dma map failed for region %s\n",
1039 			region->name);
1040 		goto fail;
1041 	}
1042 	region->dma_end = region->dma_start + size;
1043 
1044 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1045 	if (!pool) {
1046 		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1047 		goto fail;
1048 	}
1049 	pool->num_desc = 0;
1050 	pool->region_offset = region->num_desc;
1051 	list_add(&pool->region_inst, &region->pools);
1052 
1053 	dev_dbg(kdev->dev,
1054 		"region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1055 		region->name, id, region->desc_size, region->num_desc,
1056 		region->link_index, &region->dma_start, &region->dma_end,
1057 		region->virt_start, region->virt_end);
1058 
1059 	hw_desc_size = (region->desc_size / 16) - 1;
1060 	hw_num_desc -= 5;
1061 
1062 	for_each_qmgr(kdev, qmgr) {
1063 		regs = qmgr->reg_region + id;
1064 		writel_relaxed((u32)region->dma_start, &regs->base);
1065 		writel_relaxed(region->link_index, &regs->start_index);
1066 		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1067 			       &regs->size_count);
1068 	}
1069 	return;
1070 
1071 fail:
1072 	if (region->dma_start)
1073 		dma_unmap_page(kdev->dev, region->dma_start, size,
1074 				DMA_BIDIRECTIONAL);
1075 	if (region->virt_start)
1076 		free_pages_exact(region->virt_start, size);
1077 	region->num_desc = 0;
1078 	return;
1079 }
1080 
1081 static const char *knav_queue_find_name(struct device_node *node)
1082 {
1083 	const char *name;
1084 
1085 	if (of_property_read_string(node, "label", &name) < 0)
1086 		name = node->name;
1087 	if (!name)
1088 		name = "unknown";
1089 	return name;
1090 }
1091 
1092 static int knav_queue_setup_regions(struct knav_device *kdev,
1093 					struct device_node *regions)
1094 {
1095 	struct device *dev = kdev->dev;
1096 	struct knav_region *region;
1097 	struct device_node *child;
1098 	u32 temp[2];
1099 	int ret;
1100 
1101 	for_each_child_of_node(regions, child) {
1102 		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1103 		if (!region) {
1104 			dev_err(dev, "out of memory allocating region\n");
1105 			return -ENOMEM;
1106 		}
1107 
1108 		region->name = knav_queue_find_name(child);
1109 		of_property_read_u32(child, "id", &region->id);
1110 		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1111 		if (!ret) {
1112 			region->num_desc  = temp[0];
1113 			region->desc_size = temp[1];
1114 		} else {
1115 			dev_err(dev, "invalid region info %s\n", region->name);
1116 			devm_kfree(dev, region);
1117 			continue;
1118 		}
1119 
1120 		if (!of_get_property(child, "link-index", NULL)) {
1121 			dev_err(dev, "No link info for %s\n", region->name);
1122 			devm_kfree(dev, region);
1123 			continue;
1124 		}
1125 		ret = of_property_read_u32(child, "link-index",
1126 					   &region->link_index);
1127 		if (ret) {
1128 			dev_err(dev, "link index not found for %s\n",
1129 				region->name);
1130 			devm_kfree(dev, region);
1131 			continue;
1132 		}
1133 
1134 		INIT_LIST_HEAD(&region->pools);
1135 		list_add_tail(&region->list, &kdev->regions);
1136 	}
1137 	if (list_empty(&kdev->regions)) {
1138 		dev_err(dev, "no valid region information found\n");
1139 		return -ENODEV;
1140 	}
1141 
1142 	/* Next, we run through the regions and set things up */
1143 	for_each_region(kdev, region)
1144 		knav_queue_setup_region(kdev, region);
1145 
1146 	return 0;
1147 }
1148 
1149 static int knav_get_link_ram(struct knav_device *kdev,
1150 				       const char *name,
1151 				       struct knav_link_ram_block *block)
1152 {
1153 	struct platform_device *pdev = to_platform_device(kdev->dev);
1154 	struct device_node *node = pdev->dev.of_node;
1155 	u32 temp[2];
1156 
1157 	/*
1158 	 * Note: link ram resources are specified in "entry" sized units. In
1159 	 * reality, although entries are ~40bits in hardware, we treat them as
1160 	 * 64-bit entities here.
1161 	 *
1162 	 * For example, to specify the internal link ram for Keystone-I class
1163 	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1164 	 *
1165 	 * This gets a bit weird when other link rams are used.  For example,
1166 	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1167 	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1168 	 * which accounts for 64-bits per entry, for 16K entries.
1169 	 */
1170 	if (!of_property_read_u32_array(node, name , temp, 2)) {
1171 		if (temp[0]) {
1172 			/*
1173 			 * queue_base specified => using internal or onchip
1174 			 * link ram WARNING - we do not "reserve" this block
1175 			 */
1176 			block->dma = (dma_addr_t)temp[0];
1177 			block->virt = NULL;
1178 			block->size = temp[1];
1179 		} else {
1180 			block->size = temp[1];
1181 			/* queue_base not specific => allocate requested size */
1182 			block->virt = dmam_alloc_coherent(kdev->dev,
1183 						  8 * block->size, &block->dma,
1184 						  GFP_KERNEL);
1185 			if (!block->virt) {
1186 				dev_err(kdev->dev, "failed to alloc linkram\n");
1187 				return -ENOMEM;
1188 			}
1189 		}
1190 	} else {
1191 		return -ENODEV;
1192 	}
1193 	return 0;
1194 }
1195 
1196 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1197 {
1198 	struct knav_link_ram_block *block;
1199 	struct knav_qmgr_info *qmgr;
1200 
1201 	for_each_qmgr(kdev, qmgr) {
1202 		block = &kdev->link_rams[0];
1203 		dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1204 			&block->dma, block->virt, block->size);
1205 		writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1206 		if (kdev->version == QMSS_66AK2G)
1207 			writel_relaxed(block->size,
1208 				       &qmgr->reg_config->link_ram_size0);
1209 		else
1210 			writel_relaxed(block->size - 1,
1211 				       &qmgr->reg_config->link_ram_size0);
1212 		block++;
1213 		if (!block->size)
1214 			continue;
1215 
1216 		dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1217 			&block->dma, block->virt, block->size);
1218 		writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1219 	}
1220 
1221 	return 0;
1222 }
1223 
1224 static int knav_setup_queue_range(struct knav_device *kdev,
1225 					struct device_node *node)
1226 {
1227 	struct device *dev = kdev->dev;
1228 	struct knav_range_info *range;
1229 	struct knav_qmgr_info *qmgr;
1230 	u32 temp[2], start, end, id, index;
1231 	int ret, i;
1232 
1233 	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1234 	if (!range) {
1235 		dev_err(dev, "out of memory allocating range\n");
1236 		return -ENOMEM;
1237 	}
1238 
1239 	range->kdev = kdev;
1240 	range->name = knav_queue_find_name(node);
1241 	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1242 	if (!ret) {
1243 		range->queue_base = temp[0] - kdev->base_id;
1244 		range->num_queues = temp[1];
1245 	} else {
1246 		dev_err(dev, "invalid queue range %s\n", range->name);
1247 		devm_kfree(dev, range);
1248 		return -EINVAL;
1249 	}
1250 
1251 	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1252 		struct of_phandle_args oirq;
1253 
1254 		if (of_irq_parse_one(node, i, &oirq))
1255 			break;
1256 
1257 		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1258 		if (range->irqs[i].irq == IRQ_NONE)
1259 			break;
1260 
1261 		range->num_irqs++;
1262 
1263 		if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1264 			unsigned long mask;
1265 			int bit;
1266 
1267 			range->irqs[i].cpu_mask = devm_kzalloc(dev,
1268 							       cpumask_size(), GFP_KERNEL);
1269 			if (!range->irqs[i].cpu_mask)
1270 				return -ENOMEM;
1271 
1272 			mask = (oirq.args[2] & 0x0000ff00) >> 8;
1273 			for_each_set_bit(bit, &mask, BITS_PER_LONG)
1274 				cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1275 		}
1276 	}
1277 
1278 	range->num_irqs = min(range->num_irqs, range->num_queues);
1279 	if (range->num_irqs)
1280 		range->flags |= RANGE_HAS_IRQ;
1281 
1282 	if (of_get_property(node, "qalloc-by-id", NULL))
1283 		range->flags |= RANGE_RESERVED;
1284 
1285 	if (of_get_property(node, "accumulator", NULL)) {
1286 		ret = knav_init_acc_range(kdev, node, range);
1287 		if (ret < 0) {
1288 			devm_kfree(dev, range);
1289 			return ret;
1290 		}
1291 	} else {
1292 		range->ops = &knav_gp_range_ops;
1293 	}
1294 
1295 	/* set threshold to 1, and flush out the queues */
1296 	for_each_qmgr(kdev, qmgr) {
1297 		start = max(qmgr->start_queue, range->queue_base);
1298 		end   = min(qmgr->start_queue + qmgr->num_queues,
1299 			    range->queue_base + range->num_queues);
1300 		for (id = start; id < end; id++) {
1301 			index = id - qmgr->start_queue;
1302 			writel_relaxed(THRESH_GTE | 1,
1303 				       &qmgr->reg_peek[index].ptr_size_thresh);
1304 			writel_relaxed(0,
1305 				       &qmgr->reg_push[index].ptr_size_thresh);
1306 		}
1307 	}
1308 
1309 	list_add_tail(&range->list, &kdev->queue_ranges);
1310 	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1311 		range->name, range->queue_base,
1312 		range->queue_base + range->num_queues - 1,
1313 		range->num_irqs,
1314 		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1315 		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1316 		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1317 	kdev->num_queues_in_use += range->num_queues;
1318 	return 0;
1319 }
1320 
1321 static int knav_setup_queue_pools(struct knav_device *kdev,
1322 				   struct device_node *queue_pools)
1323 {
1324 	struct device_node *type, *range;
1325 	int ret;
1326 
1327 	for_each_child_of_node(queue_pools, type) {
1328 		for_each_child_of_node(type, range) {
1329 			ret = knav_setup_queue_range(kdev, range);
1330 			/* return value ignored, we init the rest... */
1331 		}
1332 	}
1333 
1334 	/* ... and barf if they all failed! */
1335 	if (list_empty(&kdev->queue_ranges)) {
1336 		dev_err(kdev->dev, "no valid queue range found\n");
1337 		return -ENODEV;
1338 	}
1339 	return 0;
1340 }
1341 
1342 static void knav_free_queue_range(struct knav_device *kdev,
1343 				  struct knav_range_info *range)
1344 {
1345 	if (range->ops && range->ops->free_range)
1346 		range->ops->free_range(range);
1347 	list_del(&range->list);
1348 	devm_kfree(kdev->dev, range);
1349 }
1350 
1351 static void knav_free_queue_ranges(struct knav_device *kdev)
1352 {
1353 	struct knav_range_info *range;
1354 
1355 	for (;;) {
1356 		range = first_queue_range(kdev);
1357 		if (!range)
1358 			break;
1359 		knav_free_queue_range(kdev, range);
1360 	}
1361 }
1362 
1363 static void knav_queue_free_regions(struct knav_device *kdev)
1364 {
1365 	struct knav_region *region;
1366 	struct knav_pool *pool, *tmp;
1367 	unsigned size;
1368 
1369 	for (;;) {
1370 		region = first_region(kdev);
1371 		if (!region)
1372 			break;
1373 		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1374 			knav_pool_destroy(pool);
1375 
1376 		size = region->virt_end - region->virt_start;
1377 		if (size)
1378 			free_pages_exact(region->virt_start, size);
1379 		list_del(&region->list);
1380 		devm_kfree(kdev->dev, region);
1381 	}
1382 }
1383 
1384 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1385 					struct device_node *node, int index)
1386 {
1387 	struct resource res;
1388 	void __iomem *regs;
1389 	int ret;
1390 
1391 	ret = of_address_to_resource(node, index, &res);
1392 	if (ret) {
1393 		dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1394 			node, index);
1395 		return ERR_PTR(ret);
1396 	}
1397 
1398 	regs = devm_ioremap_resource(kdev->dev, &res);
1399 	if (IS_ERR(regs))
1400 		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1401 			index, node);
1402 	return regs;
1403 }
1404 
1405 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1406 					struct device_node *qmgrs)
1407 {
1408 	struct device *dev = kdev->dev;
1409 	struct knav_qmgr_info *qmgr;
1410 	struct device_node *child;
1411 	u32 temp[2];
1412 	int ret;
1413 
1414 	for_each_child_of_node(qmgrs, child) {
1415 		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1416 		if (!qmgr) {
1417 			dev_err(dev, "out of memory allocating qmgr\n");
1418 			return -ENOMEM;
1419 		}
1420 
1421 		ret = of_property_read_u32_array(child, "managed-queues",
1422 						 temp, 2);
1423 		if (!ret) {
1424 			qmgr->start_queue = temp[0];
1425 			qmgr->num_queues = temp[1];
1426 		} else {
1427 			dev_err(dev, "invalid qmgr queue range\n");
1428 			devm_kfree(dev, qmgr);
1429 			continue;
1430 		}
1431 
1432 		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1433 			 qmgr->start_queue, qmgr->num_queues);
1434 
1435 		qmgr->reg_peek =
1436 			knav_queue_map_reg(kdev, child,
1437 					   KNAV_QUEUE_PEEK_REG_INDEX);
1438 
1439 		if (kdev->version == QMSS) {
1440 			qmgr->reg_status =
1441 				knav_queue_map_reg(kdev, child,
1442 						   KNAV_QUEUE_STATUS_REG_INDEX);
1443 		}
1444 
1445 		qmgr->reg_config =
1446 			knav_queue_map_reg(kdev, child,
1447 					   (kdev->version == QMSS_66AK2G) ?
1448 					   KNAV_L_QUEUE_CONFIG_REG_INDEX :
1449 					   KNAV_QUEUE_CONFIG_REG_INDEX);
1450 		qmgr->reg_region =
1451 			knav_queue_map_reg(kdev, child,
1452 					   (kdev->version == QMSS_66AK2G) ?
1453 					   KNAV_L_QUEUE_REGION_REG_INDEX :
1454 					   KNAV_QUEUE_REGION_REG_INDEX);
1455 
1456 		qmgr->reg_push =
1457 			knav_queue_map_reg(kdev, child,
1458 					   (kdev->version == QMSS_66AK2G) ?
1459 					    KNAV_L_QUEUE_PUSH_REG_INDEX :
1460 					    KNAV_QUEUE_PUSH_REG_INDEX);
1461 
1462 		if (kdev->version == QMSS) {
1463 			qmgr->reg_pop =
1464 				knav_queue_map_reg(kdev, child,
1465 						   KNAV_QUEUE_POP_REG_INDEX);
1466 		}
1467 
1468 		if (IS_ERR(qmgr->reg_peek) ||
1469 		    ((kdev->version == QMSS) &&
1470 		    (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1471 		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1472 		    IS_ERR(qmgr->reg_push)) {
1473 			dev_err(dev, "failed to map qmgr regs\n");
1474 			if (kdev->version == QMSS) {
1475 				if (!IS_ERR(qmgr->reg_status))
1476 					devm_iounmap(dev, qmgr->reg_status);
1477 				if (!IS_ERR(qmgr->reg_pop))
1478 					devm_iounmap(dev, qmgr->reg_pop);
1479 			}
1480 			if (!IS_ERR(qmgr->reg_peek))
1481 				devm_iounmap(dev, qmgr->reg_peek);
1482 			if (!IS_ERR(qmgr->reg_config))
1483 				devm_iounmap(dev, qmgr->reg_config);
1484 			if (!IS_ERR(qmgr->reg_region))
1485 				devm_iounmap(dev, qmgr->reg_region);
1486 			if (!IS_ERR(qmgr->reg_push))
1487 				devm_iounmap(dev, qmgr->reg_push);
1488 			devm_kfree(dev, qmgr);
1489 			continue;
1490 		}
1491 
1492 		/* Use same push register for pop as well */
1493 		if (kdev->version == QMSS_66AK2G)
1494 			qmgr->reg_pop = qmgr->reg_push;
1495 
1496 		list_add_tail(&qmgr->list, &kdev->qmgrs);
1497 		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1498 			 qmgr->start_queue, qmgr->num_queues,
1499 			 qmgr->reg_peek, qmgr->reg_status,
1500 			 qmgr->reg_config, qmgr->reg_region,
1501 			 qmgr->reg_push, qmgr->reg_pop);
1502 	}
1503 	return 0;
1504 }
1505 
1506 static int knav_queue_init_pdsps(struct knav_device *kdev,
1507 					struct device_node *pdsps)
1508 {
1509 	struct device *dev = kdev->dev;
1510 	struct knav_pdsp_info *pdsp;
1511 	struct device_node *child;
1512 
1513 	for_each_child_of_node(pdsps, child) {
1514 		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1515 		if (!pdsp) {
1516 			dev_err(dev, "out of memory allocating pdsp\n");
1517 			return -ENOMEM;
1518 		}
1519 		pdsp->name = knav_queue_find_name(child);
1520 		pdsp->iram =
1521 			knav_queue_map_reg(kdev, child,
1522 					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1523 		pdsp->regs =
1524 			knav_queue_map_reg(kdev, child,
1525 					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1526 		pdsp->intd =
1527 			knav_queue_map_reg(kdev, child,
1528 					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1529 		pdsp->command =
1530 			knav_queue_map_reg(kdev, child,
1531 					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1532 
1533 		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1534 		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1535 			dev_err(dev, "failed to map pdsp %s regs\n",
1536 				pdsp->name);
1537 			if (!IS_ERR(pdsp->command))
1538 				devm_iounmap(dev, pdsp->command);
1539 			if (!IS_ERR(pdsp->iram))
1540 				devm_iounmap(dev, pdsp->iram);
1541 			if (!IS_ERR(pdsp->regs))
1542 				devm_iounmap(dev, pdsp->regs);
1543 			if (!IS_ERR(pdsp->intd))
1544 				devm_iounmap(dev, pdsp->intd);
1545 			devm_kfree(dev, pdsp);
1546 			continue;
1547 		}
1548 		of_property_read_u32(child, "id", &pdsp->id);
1549 		list_add_tail(&pdsp->list, &kdev->pdsps);
1550 		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1551 			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1552 			pdsp->intd);
1553 	}
1554 	return 0;
1555 }
1556 
1557 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1558 			  struct knav_pdsp_info *pdsp)
1559 {
1560 	u32 val, timeout = 1000;
1561 	int ret;
1562 
1563 	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1564 	writel_relaxed(val, &pdsp->regs->control);
1565 	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1566 					PDSP_CTRL_RUNNING);
1567 	if (ret < 0) {
1568 		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1569 		return ret;
1570 	}
1571 	pdsp->loaded = false;
1572 	pdsp->started = false;
1573 	return 0;
1574 }
1575 
1576 static int knav_queue_load_pdsp(struct knav_device *kdev,
1577 			  struct knav_pdsp_info *pdsp)
1578 {
1579 	int i, ret, fwlen;
1580 	const struct firmware *fw;
1581 	bool found = false;
1582 	u32 *fwdata;
1583 
1584 	for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1585 		if (knav_acc_firmwares[i]) {
1586 			ret = request_firmware_direct(&fw,
1587 						      knav_acc_firmwares[i],
1588 						      kdev->dev);
1589 			if (!ret) {
1590 				found = true;
1591 				break;
1592 			}
1593 		}
1594 	}
1595 
1596 	if (!found) {
1597 		dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1598 		return -ENODEV;
1599 	}
1600 
1601 	dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1602 		 knav_acc_firmwares[i]);
1603 
1604 	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1605 	/* download the firmware */
1606 	fwdata = (u32 *)fw->data;
1607 	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1608 	for (i = 0; i < fwlen; i++)
1609 		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1610 
1611 	release_firmware(fw);
1612 	return 0;
1613 }
1614 
1615 static int knav_queue_start_pdsp(struct knav_device *kdev,
1616 			   struct knav_pdsp_info *pdsp)
1617 {
1618 	u32 val, timeout = 1000;
1619 	int ret;
1620 
1621 	/* write a command for sync */
1622 	writel_relaxed(0xffffffff, pdsp->command);
1623 	while (readl_relaxed(pdsp->command) != 0xffffffff)
1624 		cpu_relax();
1625 
1626 	/* soft reset the PDSP */
1627 	val  = readl_relaxed(&pdsp->regs->control);
1628 	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1629 	writel_relaxed(val, &pdsp->regs->control);
1630 
1631 	/* enable pdsp */
1632 	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1633 	writel_relaxed(val, &pdsp->regs->control);
1634 
1635 	/* wait for command register to clear */
1636 	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1637 	if (ret < 0) {
1638 		dev_err(kdev->dev,
1639 			"timed out on pdsp %s command register wait\n",
1640 			pdsp->name);
1641 		return ret;
1642 	}
1643 	return 0;
1644 }
1645 
1646 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1647 {
1648 	struct knav_pdsp_info *pdsp;
1649 
1650 	/* disable all pdsps */
1651 	for_each_pdsp(kdev, pdsp)
1652 		knav_queue_stop_pdsp(kdev, pdsp);
1653 }
1654 
1655 static int knav_queue_start_pdsps(struct knav_device *kdev)
1656 {
1657 	struct knav_pdsp_info *pdsp;
1658 	int ret;
1659 
1660 	knav_queue_stop_pdsps(kdev);
1661 	/* now load them all. We return success even if pdsp
1662 	 * is not loaded as acc channels are optional on having
1663 	 * firmware availability in the system. We set the loaded
1664 	 * and stated flag and when initialize the acc range, check
1665 	 * it and init the range only if pdsp is started.
1666 	 */
1667 	for_each_pdsp(kdev, pdsp) {
1668 		ret = knav_queue_load_pdsp(kdev, pdsp);
1669 		if (!ret)
1670 			pdsp->loaded = true;
1671 	}
1672 
1673 	for_each_pdsp(kdev, pdsp) {
1674 		if (pdsp->loaded) {
1675 			ret = knav_queue_start_pdsp(kdev, pdsp);
1676 			if (!ret)
1677 				pdsp->started = true;
1678 		}
1679 	}
1680 	return 0;
1681 }
1682 
1683 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1684 {
1685 	struct knav_qmgr_info *qmgr;
1686 
1687 	for_each_qmgr(kdev, qmgr) {
1688 		if ((id >= qmgr->start_queue) &&
1689 		    (id < qmgr->start_queue + qmgr->num_queues))
1690 			return qmgr;
1691 	}
1692 	return NULL;
1693 }
1694 
1695 static int knav_queue_init_queue(struct knav_device *kdev,
1696 					struct knav_range_info *range,
1697 					struct knav_queue_inst *inst,
1698 					unsigned id)
1699 {
1700 	char irq_name[KNAV_NAME_SIZE];
1701 	inst->qmgr = knav_find_qmgr(id);
1702 	if (!inst->qmgr)
1703 		return -1;
1704 
1705 	INIT_LIST_HEAD(&inst->handles);
1706 	inst->kdev = kdev;
1707 	inst->range = range;
1708 	inst->irq_num = -1;
1709 	inst->id = id;
1710 	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1711 	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1712 
1713 	if (range->ops && range->ops->init_queue)
1714 		return range->ops->init_queue(range, inst);
1715 	else
1716 		return 0;
1717 }
1718 
1719 static int knav_queue_init_queues(struct knav_device *kdev)
1720 {
1721 	struct knav_range_info *range;
1722 	int size, id, base_idx;
1723 	int idx = 0, ret = 0;
1724 
1725 	/* how much do we need for instance data? */
1726 	size = sizeof(struct knav_queue_inst);
1727 
1728 	/* round this up to a power of 2, keep the index to instance
1729 	 * arithmetic fast.
1730 	 * */
1731 	kdev->inst_shift = order_base_2(size);
1732 	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1733 	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1734 	if (!kdev->instances)
1735 		return -ENOMEM;
1736 
1737 	for_each_queue_range(kdev, range) {
1738 		if (range->ops && range->ops->init_range)
1739 			range->ops->init_range(range);
1740 		base_idx = idx;
1741 		for (id = range->queue_base;
1742 		     id < range->queue_base + range->num_queues; id++, idx++) {
1743 			ret = knav_queue_init_queue(kdev, range,
1744 					knav_queue_idx_to_inst(kdev, idx), id);
1745 			if (ret < 0)
1746 				return ret;
1747 		}
1748 		range->queue_base_inst =
1749 			knav_queue_idx_to_inst(kdev, base_idx);
1750 	}
1751 	return 0;
1752 }
1753 
1754 /* Match table for of_platform binding */
1755 static const struct of_device_id keystone_qmss_of_match[] = {
1756 	{
1757 		.compatible = "ti,keystone-navigator-qmss",
1758 	},
1759 	{
1760 		.compatible = "ti,66ak2g-navss-qm",
1761 		.data	= (void *)QMSS_66AK2G,
1762 	},
1763 	{},
1764 };
1765 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1766 
1767 static int knav_queue_probe(struct platform_device *pdev)
1768 {
1769 	struct device_node *node = pdev->dev.of_node;
1770 	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1771 	const struct of_device_id *match;
1772 	struct device *dev = &pdev->dev;
1773 	u32 temp[2];
1774 	int ret;
1775 
1776 	if (!node) {
1777 		dev_err(dev, "device tree info unavailable\n");
1778 		return -ENODEV;
1779 	}
1780 
1781 	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1782 	if (!kdev) {
1783 		dev_err(dev, "memory allocation failed\n");
1784 		return -ENOMEM;
1785 	}
1786 
1787 	match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1788 	if (match && match->data)
1789 		kdev->version = QMSS_66AK2G;
1790 
1791 	platform_set_drvdata(pdev, kdev);
1792 	kdev->dev = dev;
1793 	INIT_LIST_HEAD(&kdev->queue_ranges);
1794 	INIT_LIST_HEAD(&kdev->qmgrs);
1795 	INIT_LIST_HEAD(&kdev->pools);
1796 	INIT_LIST_HEAD(&kdev->regions);
1797 	INIT_LIST_HEAD(&kdev->pdsps);
1798 
1799 	pm_runtime_enable(&pdev->dev);
1800 	ret = pm_runtime_get_sync(&pdev->dev);
1801 	if (ret < 0) {
1802 		dev_err(dev, "Failed to enable QMSS\n");
1803 		return ret;
1804 	}
1805 
1806 	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1807 		dev_err(dev, "queue-range not specified\n");
1808 		ret = -ENODEV;
1809 		goto err;
1810 	}
1811 	kdev->base_id    = temp[0];
1812 	kdev->num_queues = temp[1];
1813 
1814 	/* Initialize queue managers using device tree configuration */
1815 	qmgrs =  of_get_child_by_name(node, "qmgrs");
1816 	if (!qmgrs) {
1817 		dev_err(dev, "queue manager info not specified\n");
1818 		ret = -ENODEV;
1819 		goto err;
1820 	}
1821 	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1822 	of_node_put(qmgrs);
1823 	if (ret)
1824 		goto err;
1825 
1826 	/* get pdsp configuration values from device tree */
1827 	pdsps =  of_get_child_by_name(node, "pdsps");
1828 	if (pdsps) {
1829 		ret = knav_queue_init_pdsps(kdev, pdsps);
1830 		if (ret)
1831 			goto err;
1832 
1833 		ret = knav_queue_start_pdsps(kdev);
1834 		if (ret)
1835 			goto err;
1836 	}
1837 	of_node_put(pdsps);
1838 
1839 	/* get usable queue range values from device tree */
1840 	queue_pools = of_get_child_by_name(node, "queue-pools");
1841 	if (!queue_pools) {
1842 		dev_err(dev, "queue-pools not specified\n");
1843 		ret = -ENODEV;
1844 		goto err;
1845 	}
1846 	ret = knav_setup_queue_pools(kdev, queue_pools);
1847 	of_node_put(queue_pools);
1848 	if (ret)
1849 		goto err;
1850 
1851 	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1852 	if (ret) {
1853 		dev_err(kdev->dev, "could not setup linking ram\n");
1854 		goto err;
1855 	}
1856 
1857 	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1858 	if (ret) {
1859 		/*
1860 		 * nothing really, we have one linking ram already, so we just
1861 		 * live within our means
1862 		 */
1863 	}
1864 
1865 	ret = knav_queue_setup_link_ram(kdev);
1866 	if (ret)
1867 		goto err;
1868 
1869 	regions =  of_get_child_by_name(node, "descriptor-regions");
1870 	if (!regions) {
1871 		dev_err(dev, "descriptor-regions not specified\n");
1872 		goto err;
1873 	}
1874 	ret = knav_queue_setup_regions(kdev, regions);
1875 	of_node_put(regions);
1876 	if (ret)
1877 		goto err;
1878 
1879 	ret = knav_queue_init_queues(kdev);
1880 	if (ret < 0) {
1881 		dev_err(dev, "hwqueue initialization failed\n");
1882 		goto err;
1883 	}
1884 
1885 	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1886 			    &knav_queue_debug_ops);
1887 	device_ready = true;
1888 	return 0;
1889 
1890 err:
1891 	knav_queue_stop_pdsps(kdev);
1892 	knav_queue_free_regions(kdev);
1893 	knav_free_queue_ranges(kdev);
1894 	pm_runtime_put_sync(&pdev->dev);
1895 	pm_runtime_disable(&pdev->dev);
1896 	return ret;
1897 }
1898 
1899 static int knav_queue_remove(struct platform_device *pdev)
1900 {
1901 	/* TODO: Free resources */
1902 	pm_runtime_put_sync(&pdev->dev);
1903 	pm_runtime_disable(&pdev->dev);
1904 	return 0;
1905 }
1906 
1907 static struct platform_driver keystone_qmss_driver = {
1908 	.probe		= knav_queue_probe,
1909 	.remove		= knav_queue_remove,
1910 	.driver		= {
1911 		.name	= "keystone-navigator-qmss",
1912 		.of_match_table = keystone_qmss_of_match,
1913 	},
1914 };
1915 module_platform_driver(keystone_qmss_driver);
1916 
1917 MODULE_LICENSE("GPL v2");
1918 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1919 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1920 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1921