1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Keystone Queue Manager subsystem driver 4 * 5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com 6 * Authors: Sandeep Nair <sandeep_n@ti.com> 7 * Cyril Chemparathy <cyril@ti.com> 8 * Santosh Shilimkar <santosh.shilimkar@ti.com> 9 */ 10 11 #include <linux/debugfs.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/firmware.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/module.h> 17 #include <linux/of_address.h> 18 #include <linux/of_device.h> 19 #include <linux/of_irq.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/slab.h> 22 #include <linux/soc/ti/knav_qmss.h> 23 24 #include "knav_qmss.h" 25 26 static struct knav_device *kdev; 27 static DEFINE_MUTEX(knav_dev_lock); 28 #define knav_dev_lock_held() \ 29 lockdep_is_held(&knav_dev_lock) 30 31 /* Queue manager register indices in DTS */ 32 #define KNAV_QUEUE_PEEK_REG_INDEX 0 33 #define KNAV_QUEUE_STATUS_REG_INDEX 1 34 #define KNAV_QUEUE_CONFIG_REG_INDEX 2 35 #define KNAV_QUEUE_REGION_REG_INDEX 3 36 #define KNAV_QUEUE_PUSH_REG_INDEX 4 37 #define KNAV_QUEUE_POP_REG_INDEX 5 38 39 /* Queue manager register indices in DTS for QMSS in K2G NAVSS. 40 * There are no status and vbusm push registers on this version 41 * of QMSS. Push registers are same as pop, So all indices above 1 42 * are to be re-defined 43 */ 44 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1 45 #define KNAV_L_QUEUE_REGION_REG_INDEX 2 46 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3 47 48 /* PDSP register indices in DTS */ 49 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0 50 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1 51 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2 52 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3 53 54 #define knav_queue_idx_to_inst(kdev, idx) \ 55 (kdev->instances + (idx << kdev->inst_shift)) 56 57 #define for_each_handle_rcu(qh, inst) \ 58 list_for_each_entry_rcu(qh, &inst->handles, list, \ 59 knav_dev_lock_held()) 60 61 #define for_each_instance(idx, inst, kdev) \ 62 for (idx = 0, inst = kdev->instances; \ 63 idx < (kdev)->num_queues_in_use; \ 64 idx++, inst = knav_queue_idx_to_inst(kdev, idx)) 65 66 /* All firmware file names end up here. List the firmware file names below. 67 * Newest followed by older ones. Search is done from start of the array 68 * until a firmware file is found. 69 */ 70 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"}; 71 72 static bool device_ready; 73 bool knav_qmss_device_ready(void) 74 { 75 return device_ready; 76 } 77 EXPORT_SYMBOL_GPL(knav_qmss_device_ready); 78 79 /** 80 * knav_queue_notify: qmss queue notfier call 81 * 82 * @inst: qmss queue instance like accumulator 83 */ 84 void knav_queue_notify(struct knav_queue_inst *inst) 85 { 86 struct knav_queue *qh; 87 88 if (!inst) 89 return; 90 91 rcu_read_lock(); 92 for_each_handle_rcu(qh, inst) { 93 if (atomic_read(&qh->notifier_enabled) <= 0) 94 continue; 95 if (WARN_ON(!qh->notifier_fn)) 96 continue; 97 this_cpu_inc(qh->stats->notifies); 98 qh->notifier_fn(qh->notifier_fn_arg); 99 } 100 rcu_read_unlock(); 101 } 102 EXPORT_SYMBOL_GPL(knav_queue_notify); 103 104 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata) 105 { 106 struct knav_queue_inst *inst = _instdata; 107 108 knav_queue_notify(inst); 109 return IRQ_HANDLED; 110 } 111 112 static int knav_queue_setup_irq(struct knav_range_info *range, 113 struct knav_queue_inst *inst) 114 { 115 unsigned queue = inst->id - range->queue_base; 116 int ret = 0, irq; 117 118 if (range->flags & RANGE_HAS_IRQ) { 119 irq = range->irqs[queue].irq; 120 ret = request_irq(irq, knav_queue_int_handler, 0, 121 inst->irq_name, inst); 122 if (ret) 123 return ret; 124 disable_irq(irq); 125 if (range->irqs[queue].cpu_mask) { 126 ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask); 127 if (ret) { 128 dev_warn(range->kdev->dev, 129 "Failed to set IRQ affinity\n"); 130 return ret; 131 } 132 } 133 } 134 return ret; 135 } 136 137 static void knav_queue_free_irq(struct knav_queue_inst *inst) 138 { 139 struct knav_range_info *range = inst->range; 140 unsigned queue = inst->id - inst->range->queue_base; 141 int irq; 142 143 if (range->flags & RANGE_HAS_IRQ) { 144 irq = range->irqs[queue].irq; 145 irq_set_affinity_hint(irq, NULL); 146 free_irq(irq, inst); 147 } 148 } 149 150 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst) 151 { 152 return !list_empty(&inst->handles); 153 } 154 155 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst) 156 { 157 return inst->range->flags & RANGE_RESERVED; 158 } 159 160 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst) 161 { 162 struct knav_queue *tmp; 163 164 rcu_read_lock(); 165 for_each_handle_rcu(tmp, inst) { 166 if (tmp->flags & KNAV_QUEUE_SHARED) { 167 rcu_read_unlock(); 168 return true; 169 } 170 } 171 rcu_read_unlock(); 172 return false; 173 } 174 175 static inline bool knav_queue_match_type(struct knav_queue_inst *inst, 176 unsigned type) 177 { 178 if ((type == KNAV_QUEUE_QPEND) && 179 (inst->range->flags & RANGE_HAS_IRQ)) { 180 return true; 181 } else if ((type == KNAV_QUEUE_ACC) && 182 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) { 183 return true; 184 } else if ((type == KNAV_QUEUE_GP) && 185 !(inst->range->flags & 186 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) { 187 return true; 188 } 189 return false; 190 } 191 192 static inline struct knav_queue_inst * 193 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id) 194 { 195 struct knav_queue_inst *inst; 196 int idx; 197 198 for_each_instance(idx, inst, kdev) { 199 if (inst->id == id) 200 return inst; 201 } 202 return NULL; 203 } 204 205 static inline struct knav_queue_inst *knav_queue_find_by_id(int id) 206 { 207 if (kdev->base_id <= id && 208 kdev->base_id + kdev->num_queues > id) { 209 id -= kdev->base_id; 210 return knav_queue_match_id_to_inst(kdev, id); 211 } 212 return NULL; 213 } 214 215 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst, 216 const char *name, unsigned flags) 217 { 218 struct knav_queue *qh; 219 unsigned id; 220 int ret = 0; 221 222 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL); 223 if (!qh) 224 return ERR_PTR(-ENOMEM); 225 226 qh->stats = alloc_percpu(struct knav_queue_stats); 227 if (!qh->stats) { 228 ret = -ENOMEM; 229 goto err; 230 } 231 232 qh->flags = flags; 233 qh->inst = inst; 234 id = inst->id - inst->qmgr->start_queue; 235 qh->reg_push = &inst->qmgr->reg_push[id]; 236 qh->reg_pop = &inst->qmgr->reg_pop[id]; 237 qh->reg_peek = &inst->qmgr->reg_peek[id]; 238 239 /* first opener? */ 240 if (!knav_queue_is_busy(inst)) { 241 struct knav_range_info *range = inst->range; 242 243 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 244 if (range->ops && range->ops->open_queue) 245 ret = range->ops->open_queue(range, inst, flags); 246 247 if (ret) 248 goto err; 249 } 250 list_add_tail_rcu(&qh->list, &inst->handles); 251 return qh; 252 253 err: 254 if (qh->stats) 255 free_percpu(qh->stats); 256 devm_kfree(inst->kdev->dev, qh); 257 return ERR_PTR(ret); 258 } 259 260 static struct knav_queue * 261 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags) 262 { 263 struct knav_queue_inst *inst; 264 struct knav_queue *qh; 265 266 mutex_lock(&knav_dev_lock); 267 268 qh = ERR_PTR(-ENODEV); 269 inst = knav_queue_find_by_id(id); 270 if (!inst) 271 goto unlock_ret; 272 273 qh = ERR_PTR(-EEXIST); 274 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst)) 275 goto unlock_ret; 276 277 qh = ERR_PTR(-EBUSY); 278 if ((flags & KNAV_QUEUE_SHARED) && 279 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst))) 280 goto unlock_ret; 281 282 qh = __knav_queue_open(inst, name, flags); 283 284 unlock_ret: 285 mutex_unlock(&knav_dev_lock); 286 287 return qh; 288 } 289 290 static struct knav_queue *knav_queue_open_by_type(const char *name, 291 unsigned type, unsigned flags) 292 { 293 struct knav_queue_inst *inst; 294 struct knav_queue *qh = ERR_PTR(-EINVAL); 295 int idx; 296 297 mutex_lock(&knav_dev_lock); 298 299 for_each_instance(idx, inst, kdev) { 300 if (knav_queue_is_reserved(inst)) 301 continue; 302 if (!knav_queue_match_type(inst, type)) 303 continue; 304 if (knav_queue_is_busy(inst)) 305 continue; 306 qh = __knav_queue_open(inst, name, flags); 307 goto unlock_ret; 308 } 309 310 unlock_ret: 311 mutex_unlock(&knav_dev_lock); 312 return qh; 313 } 314 315 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled) 316 { 317 struct knav_range_info *range = inst->range; 318 319 if (range->ops && range->ops->set_notify) 320 range->ops->set_notify(range, inst, enabled); 321 } 322 323 static int knav_queue_enable_notifier(struct knav_queue *qh) 324 { 325 struct knav_queue_inst *inst = qh->inst; 326 bool first; 327 328 if (WARN_ON(!qh->notifier_fn)) 329 return -EINVAL; 330 331 /* Adjust the per handle notifier count */ 332 first = (atomic_inc_return(&qh->notifier_enabled) == 1); 333 if (!first) 334 return 0; /* nothing to do */ 335 336 /* Now adjust the per instance notifier count */ 337 first = (atomic_inc_return(&inst->num_notifiers) == 1); 338 if (first) 339 knav_queue_set_notify(inst, true); 340 341 return 0; 342 } 343 344 static int knav_queue_disable_notifier(struct knav_queue *qh) 345 { 346 struct knav_queue_inst *inst = qh->inst; 347 bool last; 348 349 last = (atomic_dec_return(&qh->notifier_enabled) == 0); 350 if (!last) 351 return 0; /* nothing to do */ 352 353 last = (atomic_dec_return(&inst->num_notifiers) == 0); 354 if (last) 355 knav_queue_set_notify(inst, false); 356 357 return 0; 358 } 359 360 static int knav_queue_set_notifier(struct knav_queue *qh, 361 struct knav_queue_notify_config *cfg) 362 { 363 knav_queue_notify_fn old_fn = qh->notifier_fn; 364 365 if (!cfg) 366 return -EINVAL; 367 368 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) 369 return -ENOTSUPP; 370 371 if (!cfg->fn && old_fn) 372 knav_queue_disable_notifier(qh); 373 374 qh->notifier_fn = cfg->fn; 375 qh->notifier_fn_arg = cfg->fn_arg; 376 377 if (cfg->fn && !old_fn) 378 knav_queue_enable_notifier(qh); 379 380 return 0; 381 } 382 383 static int knav_gp_set_notify(struct knav_range_info *range, 384 struct knav_queue_inst *inst, 385 bool enabled) 386 { 387 unsigned queue; 388 389 if (range->flags & RANGE_HAS_IRQ) { 390 queue = inst->id - range->queue_base; 391 if (enabled) 392 enable_irq(range->irqs[queue].irq); 393 else 394 disable_irq_nosync(range->irqs[queue].irq); 395 } 396 return 0; 397 } 398 399 static int knav_gp_open_queue(struct knav_range_info *range, 400 struct knav_queue_inst *inst, unsigned flags) 401 { 402 return knav_queue_setup_irq(range, inst); 403 } 404 405 static int knav_gp_close_queue(struct knav_range_info *range, 406 struct knav_queue_inst *inst) 407 { 408 knav_queue_free_irq(inst); 409 return 0; 410 } 411 412 static struct knav_range_ops knav_gp_range_ops = { 413 .set_notify = knav_gp_set_notify, 414 .open_queue = knav_gp_open_queue, 415 .close_queue = knav_gp_close_queue, 416 }; 417 418 419 static int knav_queue_get_count(void *qhandle) 420 { 421 struct knav_queue *qh = qhandle; 422 struct knav_queue_inst *inst = qh->inst; 423 424 return readl_relaxed(&qh->reg_peek[0].entry_count) + 425 atomic_read(&inst->desc_count); 426 } 427 428 static void knav_queue_debug_show_instance(struct seq_file *s, 429 struct knav_queue_inst *inst) 430 { 431 struct knav_device *kdev = inst->kdev; 432 struct knav_queue *qh; 433 int cpu = 0; 434 int pushes = 0; 435 int pops = 0; 436 int push_errors = 0; 437 int pop_errors = 0; 438 int notifies = 0; 439 440 if (!knav_queue_is_busy(inst)) 441 return; 442 443 seq_printf(s, "\tqueue id %d (%s)\n", 444 kdev->base_id + inst->id, inst->name); 445 for_each_handle_rcu(qh, inst) { 446 for_each_possible_cpu(cpu) { 447 pushes += per_cpu_ptr(qh->stats, cpu)->pushes; 448 pops += per_cpu_ptr(qh->stats, cpu)->pops; 449 push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors; 450 pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors; 451 notifies += per_cpu_ptr(qh->stats, cpu)->notifies; 452 } 453 454 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n", 455 qh, 456 pushes, 457 pops, 458 knav_queue_get_count(qh), 459 notifies, 460 push_errors, 461 pop_errors); 462 } 463 } 464 465 static int knav_queue_debug_show(struct seq_file *s, void *v) 466 { 467 struct knav_queue_inst *inst; 468 int idx; 469 470 mutex_lock(&knav_dev_lock); 471 seq_printf(s, "%s: %u-%u\n", 472 dev_name(kdev->dev), kdev->base_id, 473 kdev->base_id + kdev->num_queues - 1); 474 for_each_instance(idx, inst, kdev) 475 knav_queue_debug_show_instance(s, inst); 476 mutex_unlock(&knav_dev_lock); 477 478 return 0; 479 } 480 481 static int knav_queue_debug_open(struct inode *inode, struct file *file) 482 { 483 return single_open(file, knav_queue_debug_show, NULL); 484 } 485 486 static const struct file_operations knav_queue_debug_ops = { 487 .open = knav_queue_debug_open, 488 .read = seq_read, 489 .llseek = seq_lseek, 490 .release = single_release, 491 }; 492 493 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout, 494 u32 flags) 495 { 496 unsigned long end; 497 u32 val = 0; 498 499 end = jiffies + msecs_to_jiffies(timeout); 500 while (time_after(end, jiffies)) { 501 val = readl_relaxed(addr); 502 if (flags) 503 val &= flags; 504 if (!val) 505 break; 506 cpu_relax(); 507 } 508 return val ? -ETIMEDOUT : 0; 509 } 510 511 512 static int knav_queue_flush(struct knav_queue *qh) 513 { 514 struct knav_queue_inst *inst = qh->inst; 515 unsigned id = inst->id - inst->qmgr->start_queue; 516 517 atomic_set(&inst->desc_count, 0); 518 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh); 519 return 0; 520 } 521 522 /** 523 * knav_queue_open() - open a hardware queue 524 * @name - name to give the queue handle 525 * @id - desired queue number if any or specifes the type 526 * of queue 527 * @flags - the following flags are applicable to queues: 528 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are 529 * exclusive by default. 530 * Subsequent attempts to open a shared queue should 531 * also have this flag. 532 * 533 * Returns a handle to the open hardware queue if successful. Use IS_ERR() 534 * to check the returned value for error codes. 535 */ 536 void *knav_queue_open(const char *name, unsigned id, 537 unsigned flags) 538 { 539 struct knav_queue *qh = ERR_PTR(-EINVAL); 540 541 switch (id) { 542 case KNAV_QUEUE_QPEND: 543 case KNAV_QUEUE_ACC: 544 case KNAV_QUEUE_GP: 545 qh = knav_queue_open_by_type(name, id, flags); 546 break; 547 548 default: 549 qh = knav_queue_open_by_id(name, id, flags); 550 break; 551 } 552 return qh; 553 } 554 EXPORT_SYMBOL_GPL(knav_queue_open); 555 556 /** 557 * knav_queue_close() - close a hardware queue handle 558 * @qh - handle to close 559 */ 560 void knav_queue_close(void *qhandle) 561 { 562 struct knav_queue *qh = qhandle; 563 struct knav_queue_inst *inst = qh->inst; 564 565 while (atomic_read(&qh->notifier_enabled) > 0) 566 knav_queue_disable_notifier(qh); 567 568 mutex_lock(&knav_dev_lock); 569 list_del_rcu(&qh->list); 570 mutex_unlock(&knav_dev_lock); 571 synchronize_rcu(); 572 if (!knav_queue_is_busy(inst)) { 573 struct knav_range_info *range = inst->range; 574 575 if (range->ops && range->ops->close_queue) 576 range->ops->close_queue(range, inst); 577 } 578 free_percpu(qh->stats); 579 devm_kfree(inst->kdev->dev, qh); 580 } 581 EXPORT_SYMBOL_GPL(knav_queue_close); 582 583 /** 584 * knav_queue_device_control() - Perform control operations on a queue 585 * @qh - queue handle 586 * @cmd - control commands 587 * @arg - command argument 588 * 589 * Returns 0 on success, errno otherwise. 590 */ 591 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd, 592 unsigned long arg) 593 { 594 struct knav_queue *qh = qhandle; 595 struct knav_queue_notify_config *cfg; 596 int ret; 597 598 switch ((int)cmd) { 599 case KNAV_QUEUE_GET_ID: 600 ret = qh->inst->kdev->base_id + qh->inst->id; 601 break; 602 603 case KNAV_QUEUE_FLUSH: 604 ret = knav_queue_flush(qh); 605 break; 606 607 case KNAV_QUEUE_SET_NOTIFIER: 608 cfg = (void *)arg; 609 ret = knav_queue_set_notifier(qh, cfg); 610 break; 611 612 case KNAV_QUEUE_ENABLE_NOTIFY: 613 ret = knav_queue_enable_notifier(qh); 614 break; 615 616 case KNAV_QUEUE_DISABLE_NOTIFY: 617 ret = knav_queue_disable_notifier(qh); 618 break; 619 620 case KNAV_QUEUE_GET_COUNT: 621 ret = knav_queue_get_count(qh); 622 break; 623 624 default: 625 ret = -ENOTSUPP; 626 break; 627 } 628 return ret; 629 } 630 EXPORT_SYMBOL_GPL(knav_queue_device_control); 631 632 633 634 /** 635 * knav_queue_push() - push data (or descriptor) to the tail of a queue 636 * @qh - hardware queue handle 637 * @data - data to push 638 * @size - size of data to push 639 * @flags - can be used to pass additional information 640 * 641 * Returns 0 on success, errno otherwise. 642 */ 643 int knav_queue_push(void *qhandle, dma_addr_t dma, 644 unsigned size, unsigned flags) 645 { 646 struct knav_queue *qh = qhandle; 647 u32 val; 648 649 val = (u32)dma | ((size / 16) - 1); 650 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh); 651 652 this_cpu_inc(qh->stats->pushes); 653 return 0; 654 } 655 EXPORT_SYMBOL_GPL(knav_queue_push); 656 657 /** 658 * knav_queue_pop() - pop data (or descriptor) from the head of a queue 659 * @qh - hardware queue handle 660 * @size - (optional) size of the data pop'ed. 661 * 662 * Returns a DMA address on success, 0 on failure. 663 */ 664 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size) 665 { 666 struct knav_queue *qh = qhandle; 667 struct knav_queue_inst *inst = qh->inst; 668 dma_addr_t dma; 669 u32 val, idx; 670 671 /* are we accumulated? */ 672 if (inst->descs) { 673 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) { 674 atomic_inc(&inst->desc_count); 675 return 0; 676 } 677 idx = atomic_inc_return(&inst->desc_head); 678 idx &= ACC_DESCS_MASK; 679 val = inst->descs[idx]; 680 } else { 681 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh); 682 if (unlikely(!val)) 683 return 0; 684 } 685 686 dma = val & DESC_PTR_MASK; 687 if (size) 688 *size = ((val & DESC_SIZE_MASK) + 1) * 16; 689 690 this_cpu_inc(qh->stats->pops); 691 return dma; 692 } 693 EXPORT_SYMBOL_GPL(knav_queue_pop); 694 695 /* carve out descriptors and push into queue */ 696 static void kdesc_fill_pool(struct knav_pool *pool) 697 { 698 struct knav_region *region; 699 int i; 700 701 region = pool->region; 702 pool->desc_size = region->desc_size; 703 for (i = 0; i < pool->num_desc; i++) { 704 int index = pool->region_offset + i; 705 dma_addr_t dma_addr; 706 unsigned dma_size; 707 dma_addr = region->dma_start + (region->desc_size * index); 708 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES); 709 dma_sync_single_for_device(pool->dev, dma_addr, dma_size, 710 DMA_TO_DEVICE); 711 knav_queue_push(pool->queue, dma_addr, dma_size, 0); 712 } 713 } 714 715 /* pop out descriptors and close the queue */ 716 static void kdesc_empty_pool(struct knav_pool *pool) 717 { 718 dma_addr_t dma; 719 unsigned size; 720 void *desc; 721 int i; 722 723 if (!pool->queue) 724 return; 725 726 for (i = 0;; i++) { 727 dma = knav_queue_pop(pool->queue, &size); 728 if (!dma) 729 break; 730 desc = knav_pool_desc_dma_to_virt(pool, dma); 731 if (!desc) { 732 dev_dbg(pool->kdev->dev, 733 "couldn't unmap desc, continuing\n"); 734 continue; 735 } 736 } 737 WARN_ON(i != pool->num_desc); 738 knav_queue_close(pool->queue); 739 } 740 741 742 /* Get the DMA address of a descriptor */ 743 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt) 744 { 745 struct knav_pool *pool = ph; 746 return pool->region->dma_start + (virt - pool->region->virt_start); 747 } 748 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma); 749 750 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma) 751 { 752 struct knav_pool *pool = ph; 753 return pool->region->virt_start + (dma - pool->region->dma_start); 754 } 755 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt); 756 757 /** 758 * knav_pool_create() - Create a pool of descriptors 759 * @name - name to give the pool handle 760 * @num_desc - numbers of descriptors in the pool 761 * @region_id - QMSS region id from which the descriptors are to be 762 * allocated. 763 * 764 * Returns a pool handle on success. 765 * Use IS_ERR_OR_NULL() to identify error values on return. 766 */ 767 void *knav_pool_create(const char *name, 768 int num_desc, int region_id) 769 { 770 struct knav_region *reg_itr, *region = NULL; 771 struct knav_pool *pool, *pi; 772 struct list_head *node; 773 unsigned last_offset; 774 bool slot_found; 775 int ret; 776 777 if (!kdev) 778 return ERR_PTR(-EPROBE_DEFER); 779 780 if (!kdev->dev) 781 return ERR_PTR(-ENODEV); 782 783 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 784 if (!pool) { 785 dev_err(kdev->dev, "out of memory allocating pool\n"); 786 return ERR_PTR(-ENOMEM); 787 } 788 789 for_each_region(kdev, reg_itr) { 790 if (reg_itr->id != region_id) 791 continue; 792 region = reg_itr; 793 break; 794 } 795 796 if (!region) { 797 dev_err(kdev->dev, "region-id(%d) not found\n", region_id); 798 ret = -EINVAL; 799 goto err; 800 } 801 802 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0); 803 if (IS_ERR_OR_NULL(pool->queue)) { 804 dev_err(kdev->dev, 805 "failed to open queue for pool(%s), error %ld\n", 806 name, PTR_ERR(pool->queue)); 807 ret = PTR_ERR(pool->queue); 808 goto err; 809 } 810 811 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 812 pool->kdev = kdev; 813 pool->dev = kdev->dev; 814 815 mutex_lock(&knav_dev_lock); 816 817 if (num_desc > (region->num_desc - region->used_desc)) { 818 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n", 819 region_id, name); 820 ret = -ENOMEM; 821 goto err_unlock; 822 } 823 824 /* Region maintains a sorted (by region offset) list of pools 825 * use the first free slot which is large enough to accomodate 826 * the request 827 */ 828 last_offset = 0; 829 slot_found = false; 830 node = ®ion->pools; 831 list_for_each_entry(pi, ®ion->pools, region_inst) { 832 if ((pi->region_offset - last_offset) >= num_desc) { 833 slot_found = true; 834 break; 835 } 836 last_offset = pi->region_offset + pi->num_desc; 837 } 838 node = &pi->region_inst; 839 840 if (slot_found) { 841 pool->region = region; 842 pool->num_desc = num_desc; 843 pool->region_offset = last_offset; 844 region->used_desc += num_desc; 845 list_add_tail(&pool->list, &kdev->pools); 846 list_add_tail(&pool->region_inst, node); 847 } else { 848 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n", 849 name, region_id); 850 ret = -ENOMEM; 851 goto err_unlock; 852 } 853 854 mutex_unlock(&knav_dev_lock); 855 kdesc_fill_pool(pool); 856 return pool; 857 858 err_unlock: 859 mutex_unlock(&knav_dev_lock); 860 err: 861 kfree(pool->name); 862 devm_kfree(kdev->dev, pool); 863 return ERR_PTR(ret); 864 } 865 EXPORT_SYMBOL_GPL(knav_pool_create); 866 867 /** 868 * knav_pool_destroy() - Free a pool of descriptors 869 * @pool - pool handle 870 */ 871 void knav_pool_destroy(void *ph) 872 { 873 struct knav_pool *pool = ph; 874 875 if (!pool) 876 return; 877 878 if (!pool->region) 879 return; 880 881 kdesc_empty_pool(pool); 882 mutex_lock(&knav_dev_lock); 883 884 pool->region->used_desc -= pool->num_desc; 885 list_del(&pool->region_inst); 886 list_del(&pool->list); 887 888 mutex_unlock(&knav_dev_lock); 889 kfree(pool->name); 890 devm_kfree(kdev->dev, pool); 891 } 892 EXPORT_SYMBOL_GPL(knav_pool_destroy); 893 894 895 /** 896 * knav_pool_desc_get() - Get a descriptor from the pool 897 * @pool - pool handle 898 * 899 * Returns descriptor from the pool. 900 */ 901 void *knav_pool_desc_get(void *ph) 902 { 903 struct knav_pool *pool = ph; 904 dma_addr_t dma; 905 unsigned size; 906 void *data; 907 908 dma = knav_queue_pop(pool->queue, &size); 909 if (unlikely(!dma)) 910 return ERR_PTR(-ENOMEM); 911 data = knav_pool_desc_dma_to_virt(pool, dma); 912 return data; 913 } 914 EXPORT_SYMBOL_GPL(knav_pool_desc_get); 915 916 /** 917 * knav_pool_desc_put() - return a descriptor to the pool 918 * @pool - pool handle 919 */ 920 void knav_pool_desc_put(void *ph, void *desc) 921 { 922 struct knav_pool *pool = ph; 923 dma_addr_t dma; 924 dma = knav_pool_desc_virt_to_dma(pool, desc); 925 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0); 926 } 927 EXPORT_SYMBOL_GPL(knav_pool_desc_put); 928 929 /** 930 * knav_pool_desc_map() - Map descriptor for DMA transfer 931 * @pool - pool handle 932 * @desc - address of descriptor to map 933 * @size - size of descriptor to map 934 * @dma - DMA address return pointer 935 * @dma_sz - adjusted return pointer 936 * 937 * Returns 0 on success, errno otherwise. 938 */ 939 int knav_pool_desc_map(void *ph, void *desc, unsigned size, 940 dma_addr_t *dma, unsigned *dma_sz) 941 { 942 struct knav_pool *pool = ph; 943 *dma = knav_pool_desc_virt_to_dma(pool, desc); 944 size = min(size, pool->region->desc_size); 945 size = ALIGN(size, SMP_CACHE_BYTES); 946 *dma_sz = size; 947 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE); 948 949 /* Ensure the descriptor reaches to the memory */ 950 __iowmb(); 951 952 return 0; 953 } 954 EXPORT_SYMBOL_GPL(knav_pool_desc_map); 955 956 /** 957 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer 958 * @pool - pool handle 959 * @dma - DMA address of descriptor to unmap 960 * @dma_sz - size of descriptor to unmap 961 * 962 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify 963 * error values on return. 964 */ 965 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz) 966 { 967 struct knav_pool *pool = ph; 968 unsigned desc_sz; 969 void *desc; 970 971 desc_sz = min(dma_sz, pool->region->desc_size); 972 desc = knav_pool_desc_dma_to_virt(pool, dma); 973 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE); 974 prefetch(desc); 975 return desc; 976 } 977 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap); 978 979 /** 980 * knav_pool_count() - Get the number of descriptors in pool. 981 * @pool - pool handle 982 * Returns number of elements in the pool. 983 */ 984 int knav_pool_count(void *ph) 985 { 986 struct knav_pool *pool = ph; 987 return knav_queue_get_count(pool->queue); 988 } 989 EXPORT_SYMBOL_GPL(knav_pool_count); 990 991 static void knav_queue_setup_region(struct knav_device *kdev, 992 struct knav_region *region) 993 { 994 unsigned hw_num_desc, hw_desc_size, size; 995 struct knav_reg_region __iomem *regs; 996 struct knav_qmgr_info *qmgr; 997 struct knav_pool *pool; 998 int id = region->id; 999 struct page *page; 1000 1001 /* unused region? */ 1002 if (!region->num_desc) { 1003 dev_warn(kdev->dev, "unused region %s\n", region->name); 1004 return; 1005 } 1006 1007 /* get hardware descriptor value */ 1008 hw_num_desc = ilog2(region->num_desc - 1) + 1; 1009 1010 /* did we force fit ourselves into nothingness? */ 1011 if (region->num_desc < 32) { 1012 region->num_desc = 0; 1013 dev_warn(kdev->dev, "too few descriptors in region %s\n", 1014 region->name); 1015 return; 1016 } 1017 1018 size = region->num_desc * region->desc_size; 1019 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA | 1020 GFP_DMA32); 1021 if (!region->virt_start) { 1022 region->num_desc = 0; 1023 dev_err(kdev->dev, "memory alloc failed for region %s\n", 1024 region->name); 1025 return; 1026 } 1027 region->virt_end = region->virt_start + size; 1028 page = virt_to_page(region->virt_start); 1029 1030 region->dma_start = dma_map_page(kdev->dev, page, 0, size, 1031 DMA_BIDIRECTIONAL); 1032 if (dma_mapping_error(kdev->dev, region->dma_start)) { 1033 dev_err(kdev->dev, "dma map failed for region %s\n", 1034 region->name); 1035 goto fail; 1036 } 1037 region->dma_end = region->dma_start + size; 1038 1039 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 1040 if (!pool) { 1041 dev_err(kdev->dev, "out of memory allocating dummy pool\n"); 1042 goto fail; 1043 } 1044 pool->num_desc = 0; 1045 pool->region_offset = region->num_desc; 1046 list_add(&pool->region_inst, ®ion->pools); 1047 1048 dev_dbg(kdev->dev, 1049 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n", 1050 region->name, id, region->desc_size, region->num_desc, 1051 region->link_index, ®ion->dma_start, ®ion->dma_end, 1052 region->virt_start, region->virt_end); 1053 1054 hw_desc_size = (region->desc_size / 16) - 1; 1055 hw_num_desc -= 5; 1056 1057 for_each_qmgr(kdev, qmgr) { 1058 regs = qmgr->reg_region + id; 1059 writel_relaxed((u32)region->dma_start, ®s->base); 1060 writel_relaxed(region->link_index, ®s->start_index); 1061 writel_relaxed(hw_desc_size << 16 | hw_num_desc, 1062 ®s->size_count); 1063 } 1064 return; 1065 1066 fail: 1067 if (region->dma_start) 1068 dma_unmap_page(kdev->dev, region->dma_start, size, 1069 DMA_BIDIRECTIONAL); 1070 if (region->virt_start) 1071 free_pages_exact(region->virt_start, size); 1072 region->num_desc = 0; 1073 return; 1074 } 1075 1076 static const char *knav_queue_find_name(struct device_node *node) 1077 { 1078 const char *name; 1079 1080 if (of_property_read_string(node, "label", &name) < 0) 1081 name = node->name; 1082 if (!name) 1083 name = "unknown"; 1084 return name; 1085 } 1086 1087 static int knav_queue_setup_regions(struct knav_device *kdev, 1088 struct device_node *regions) 1089 { 1090 struct device *dev = kdev->dev; 1091 struct knav_region *region; 1092 struct device_node *child; 1093 u32 temp[2]; 1094 int ret; 1095 1096 for_each_child_of_node(regions, child) { 1097 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL); 1098 if (!region) { 1099 dev_err(dev, "out of memory allocating region\n"); 1100 return -ENOMEM; 1101 } 1102 1103 region->name = knav_queue_find_name(child); 1104 of_property_read_u32(child, "id", ®ion->id); 1105 ret = of_property_read_u32_array(child, "region-spec", temp, 2); 1106 if (!ret) { 1107 region->num_desc = temp[0]; 1108 region->desc_size = temp[1]; 1109 } else { 1110 dev_err(dev, "invalid region info %s\n", region->name); 1111 devm_kfree(dev, region); 1112 continue; 1113 } 1114 1115 if (!of_get_property(child, "link-index", NULL)) { 1116 dev_err(dev, "No link info for %s\n", region->name); 1117 devm_kfree(dev, region); 1118 continue; 1119 } 1120 ret = of_property_read_u32(child, "link-index", 1121 ®ion->link_index); 1122 if (ret) { 1123 dev_err(dev, "link index not found for %s\n", 1124 region->name); 1125 devm_kfree(dev, region); 1126 continue; 1127 } 1128 1129 INIT_LIST_HEAD(®ion->pools); 1130 list_add_tail(®ion->list, &kdev->regions); 1131 } 1132 if (list_empty(&kdev->regions)) { 1133 dev_err(dev, "no valid region information found\n"); 1134 return -ENODEV; 1135 } 1136 1137 /* Next, we run through the regions and set things up */ 1138 for_each_region(kdev, region) 1139 knav_queue_setup_region(kdev, region); 1140 1141 return 0; 1142 } 1143 1144 static int knav_get_link_ram(struct knav_device *kdev, 1145 const char *name, 1146 struct knav_link_ram_block *block) 1147 { 1148 struct platform_device *pdev = to_platform_device(kdev->dev); 1149 struct device_node *node = pdev->dev.of_node; 1150 u32 temp[2]; 1151 1152 /* 1153 * Note: link ram resources are specified in "entry" sized units. In 1154 * reality, although entries are ~40bits in hardware, we treat them as 1155 * 64-bit entities here. 1156 * 1157 * For example, to specify the internal link ram for Keystone-I class 1158 * devices, we would set the linkram0 resource to 0x80000-0x83fff. 1159 * 1160 * This gets a bit weird when other link rams are used. For example, 1161 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries 1162 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000, 1163 * which accounts for 64-bits per entry, for 16K entries. 1164 */ 1165 if (!of_property_read_u32_array(node, name , temp, 2)) { 1166 if (temp[0]) { 1167 /* 1168 * queue_base specified => using internal or onchip 1169 * link ram WARNING - we do not "reserve" this block 1170 */ 1171 block->dma = (dma_addr_t)temp[0]; 1172 block->virt = NULL; 1173 block->size = temp[1]; 1174 } else { 1175 block->size = temp[1]; 1176 /* queue_base not specific => allocate requested size */ 1177 block->virt = dmam_alloc_coherent(kdev->dev, 1178 8 * block->size, &block->dma, 1179 GFP_KERNEL); 1180 if (!block->virt) { 1181 dev_err(kdev->dev, "failed to alloc linkram\n"); 1182 return -ENOMEM; 1183 } 1184 } 1185 } else { 1186 return -ENODEV; 1187 } 1188 return 0; 1189 } 1190 1191 static int knav_queue_setup_link_ram(struct knav_device *kdev) 1192 { 1193 struct knav_link_ram_block *block; 1194 struct knav_qmgr_info *qmgr; 1195 1196 for_each_qmgr(kdev, qmgr) { 1197 block = &kdev->link_rams[0]; 1198 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n", 1199 &block->dma, block->virt, block->size); 1200 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0); 1201 if (kdev->version == QMSS_66AK2G) 1202 writel_relaxed(block->size, 1203 &qmgr->reg_config->link_ram_size0); 1204 else 1205 writel_relaxed(block->size - 1, 1206 &qmgr->reg_config->link_ram_size0); 1207 block++; 1208 if (!block->size) 1209 continue; 1210 1211 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n", 1212 &block->dma, block->virt, block->size); 1213 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1); 1214 } 1215 1216 return 0; 1217 } 1218 1219 static int knav_setup_queue_range(struct knav_device *kdev, 1220 struct device_node *node) 1221 { 1222 struct device *dev = kdev->dev; 1223 struct knav_range_info *range; 1224 struct knav_qmgr_info *qmgr; 1225 u32 temp[2], start, end, id, index; 1226 int ret, i; 1227 1228 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL); 1229 if (!range) { 1230 dev_err(dev, "out of memory allocating range\n"); 1231 return -ENOMEM; 1232 } 1233 1234 range->kdev = kdev; 1235 range->name = knav_queue_find_name(node); 1236 ret = of_property_read_u32_array(node, "qrange", temp, 2); 1237 if (!ret) { 1238 range->queue_base = temp[0] - kdev->base_id; 1239 range->num_queues = temp[1]; 1240 } else { 1241 dev_err(dev, "invalid queue range %s\n", range->name); 1242 devm_kfree(dev, range); 1243 return -EINVAL; 1244 } 1245 1246 for (i = 0; i < RANGE_MAX_IRQS; i++) { 1247 struct of_phandle_args oirq; 1248 1249 if (of_irq_parse_one(node, i, &oirq)) 1250 break; 1251 1252 range->irqs[i].irq = irq_create_of_mapping(&oirq); 1253 if (range->irqs[i].irq == IRQ_NONE) 1254 break; 1255 1256 range->num_irqs++; 1257 1258 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) { 1259 unsigned long mask; 1260 int bit; 1261 1262 range->irqs[i].cpu_mask = devm_kzalloc(dev, 1263 cpumask_size(), GFP_KERNEL); 1264 if (!range->irqs[i].cpu_mask) 1265 return -ENOMEM; 1266 1267 mask = (oirq.args[2] & 0x0000ff00) >> 8; 1268 for_each_set_bit(bit, &mask, BITS_PER_LONG) 1269 cpumask_set_cpu(bit, range->irqs[i].cpu_mask); 1270 } 1271 } 1272 1273 range->num_irqs = min(range->num_irqs, range->num_queues); 1274 if (range->num_irqs) 1275 range->flags |= RANGE_HAS_IRQ; 1276 1277 if (of_get_property(node, "qalloc-by-id", NULL)) 1278 range->flags |= RANGE_RESERVED; 1279 1280 if (of_get_property(node, "accumulator", NULL)) { 1281 ret = knav_init_acc_range(kdev, node, range); 1282 if (ret < 0) { 1283 devm_kfree(dev, range); 1284 return ret; 1285 } 1286 } else { 1287 range->ops = &knav_gp_range_ops; 1288 } 1289 1290 /* set threshold to 1, and flush out the queues */ 1291 for_each_qmgr(kdev, qmgr) { 1292 start = max(qmgr->start_queue, range->queue_base); 1293 end = min(qmgr->start_queue + qmgr->num_queues, 1294 range->queue_base + range->num_queues); 1295 for (id = start; id < end; id++) { 1296 index = id - qmgr->start_queue; 1297 writel_relaxed(THRESH_GTE | 1, 1298 &qmgr->reg_peek[index].ptr_size_thresh); 1299 writel_relaxed(0, 1300 &qmgr->reg_push[index].ptr_size_thresh); 1301 } 1302 } 1303 1304 list_add_tail(&range->list, &kdev->queue_ranges); 1305 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n", 1306 range->name, range->queue_base, 1307 range->queue_base + range->num_queues - 1, 1308 range->num_irqs, 1309 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "", 1310 (range->flags & RANGE_RESERVED) ? ", reserved" : "", 1311 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : ""); 1312 kdev->num_queues_in_use += range->num_queues; 1313 return 0; 1314 } 1315 1316 static int knav_setup_queue_pools(struct knav_device *kdev, 1317 struct device_node *queue_pools) 1318 { 1319 struct device_node *type, *range; 1320 int ret; 1321 1322 for_each_child_of_node(queue_pools, type) { 1323 for_each_child_of_node(type, range) { 1324 ret = knav_setup_queue_range(kdev, range); 1325 /* return value ignored, we init the rest... */ 1326 } 1327 } 1328 1329 /* ... and barf if they all failed! */ 1330 if (list_empty(&kdev->queue_ranges)) { 1331 dev_err(kdev->dev, "no valid queue range found\n"); 1332 return -ENODEV; 1333 } 1334 return 0; 1335 } 1336 1337 static void knav_free_queue_range(struct knav_device *kdev, 1338 struct knav_range_info *range) 1339 { 1340 if (range->ops && range->ops->free_range) 1341 range->ops->free_range(range); 1342 list_del(&range->list); 1343 devm_kfree(kdev->dev, range); 1344 } 1345 1346 static void knav_free_queue_ranges(struct knav_device *kdev) 1347 { 1348 struct knav_range_info *range; 1349 1350 for (;;) { 1351 range = first_queue_range(kdev); 1352 if (!range) 1353 break; 1354 knav_free_queue_range(kdev, range); 1355 } 1356 } 1357 1358 static void knav_queue_free_regions(struct knav_device *kdev) 1359 { 1360 struct knav_region *region; 1361 struct knav_pool *pool, *tmp; 1362 unsigned size; 1363 1364 for (;;) { 1365 region = first_region(kdev); 1366 if (!region) 1367 break; 1368 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst) 1369 knav_pool_destroy(pool); 1370 1371 size = region->virt_end - region->virt_start; 1372 if (size) 1373 free_pages_exact(region->virt_start, size); 1374 list_del(®ion->list); 1375 devm_kfree(kdev->dev, region); 1376 } 1377 } 1378 1379 static void __iomem *knav_queue_map_reg(struct knav_device *kdev, 1380 struct device_node *node, int index) 1381 { 1382 struct resource res; 1383 void __iomem *regs; 1384 int ret; 1385 1386 ret = of_address_to_resource(node, index, &res); 1387 if (ret) { 1388 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n", 1389 node, index); 1390 return ERR_PTR(ret); 1391 } 1392 1393 regs = devm_ioremap_resource(kdev->dev, &res); 1394 if (IS_ERR(regs)) 1395 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n", 1396 index, node); 1397 return regs; 1398 } 1399 1400 static int knav_queue_init_qmgrs(struct knav_device *kdev, 1401 struct device_node *qmgrs) 1402 { 1403 struct device *dev = kdev->dev; 1404 struct knav_qmgr_info *qmgr; 1405 struct device_node *child; 1406 u32 temp[2]; 1407 int ret; 1408 1409 for_each_child_of_node(qmgrs, child) { 1410 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL); 1411 if (!qmgr) { 1412 dev_err(dev, "out of memory allocating qmgr\n"); 1413 return -ENOMEM; 1414 } 1415 1416 ret = of_property_read_u32_array(child, "managed-queues", 1417 temp, 2); 1418 if (!ret) { 1419 qmgr->start_queue = temp[0]; 1420 qmgr->num_queues = temp[1]; 1421 } else { 1422 dev_err(dev, "invalid qmgr queue range\n"); 1423 devm_kfree(dev, qmgr); 1424 continue; 1425 } 1426 1427 dev_info(dev, "qmgr start queue %d, number of queues %d\n", 1428 qmgr->start_queue, qmgr->num_queues); 1429 1430 qmgr->reg_peek = 1431 knav_queue_map_reg(kdev, child, 1432 KNAV_QUEUE_PEEK_REG_INDEX); 1433 1434 if (kdev->version == QMSS) { 1435 qmgr->reg_status = 1436 knav_queue_map_reg(kdev, child, 1437 KNAV_QUEUE_STATUS_REG_INDEX); 1438 } 1439 1440 qmgr->reg_config = 1441 knav_queue_map_reg(kdev, child, 1442 (kdev->version == QMSS_66AK2G) ? 1443 KNAV_L_QUEUE_CONFIG_REG_INDEX : 1444 KNAV_QUEUE_CONFIG_REG_INDEX); 1445 qmgr->reg_region = 1446 knav_queue_map_reg(kdev, child, 1447 (kdev->version == QMSS_66AK2G) ? 1448 KNAV_L_QUEUE_REGION_REG_INDEX : 1449 KNAV_QUEUE_REGION_REG_INDEX); 1450 1451 qmgr->reg_push = 1452 knav_queue_map_reg(kdev, child, 1453 (kdev->version == QMSS_66AK2G) ? 1454 KNAV_L_QUEUE_PUSH_REG_INDEX : 1455 KNAV_QUEUE_PUSH_REG_INDEX); 1456 1457 if (kdev->version == QMSS) { 1458 qmgr->reg_pop = 1459 knav_queue_map_reg(kdev, child, 1460 KNAV_QUEUE_POP_REG_INDEX); 1461 } 1462 1463 if (IS_ERR(qmgr->reg_peek) || 1464 ((kdev->version == QMSS) && 1465 (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) || 1466 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) || 1467 IS_ERR(qmgr->reg_push)) { 1468 dev_err(dev, "failed to map qmgr regs\n"); 1469 if (kdev->version == QMSS) { 1470 if (!IS_ERR(qmgr->reg_status)) 1471 devm_iounmap(dev, qmgr->reg_status); 1472 if (!IS_ERR(qmgr->reg_pop)) 1473 devm_iounmap(dev, qmgr->reg_pop); 1474 } 1475 if (!IS_ERR(qmgr->reg_peek)) 1476 devm_iounmap(dev, qmgr->reg_peek); 1477 if (!IS_ERR(qmgr->reg_config)) 1478 devm_iounmap(dev, qmgr->reg_config); 1479 if (!IS_ERR(qmgr->reg_region)) 1480 devm_iounmap(dev, qmgr->reg_region); 1481 if (!IS_ERR(qmgr->reg_push)) 1482 devm_iounmap(dev, qmgr->reg_push); 1483 devm_kfree(dev, qmgr); 1484 continue; 1485 } 1486 1487 /* Use same push register for pop as well */ 1488 if (kdev->version == QMSS_66AK2G) 1489 qmgr->reg_pop = qmgr->reg_push; 1490 1491 list_add_tail(&qmgr->list, &kdev->qmgrs); 1492 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n", 1493 qmgr->start_queue, qmgr->num_queues, 1494 qmgr->reg_peek, qmgr->reg_status, 1495 qmgr->reg_config, qmgr->reg_region, 1496 qmgr->reg_push, qmgr->reg_pop); 1497 } 1498 return 0; 1499 } 1500 1501 static int knav_queue_init_pdsps(struct knav_device *kdev, 1502 struct device_node *pdsps) 1503 { 1504 struct device *dev = kdev->dev; 1505 struct knav_pdsp_info *pdsp; 1506 struct device_node *child; 1507 1508 for_each_child_of_node(pdsps, child) { 1509 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL); 1510 if (!pdsp) { 1511 dev_err(dev, "out of memory allocating pdsp\n"); 1512 return -ENOMEM; 1513 } 1514 pdsp->name = knav_queue_find_name(child); 1515 pdsp->iram = 1516 knav_queue_map_reg(kdev, child, 1517 KNAV_QUEUE_PDSP_IRAM_REG_INDEX); 1518 pdsp->regs = 1519 knav_queue_map_reg(kdev, child, 1520 KNAV_QUEUE_PDSP_REGS_REG_INDEX); 1521 pdsp->intd = 1522 knav_queue_map_reg(kdev, child, 1523 KNAV_QUEUE_PDSP_INTD_REG_INDEX); 1524 pdsp->command = 1525 knav_queue_map_reg(kdev, child, 1526 KNAV_QUEUE_PDSP_CMD_REG_INDEX); 1527 1528 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) || 1529 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) { 1530 dev_err(dev, "failed to map pdsp %s regs\n", 1531 pdsp->name); 1532 if (!IS_ERR(pdsp->command)) 1533 devm_iounmap(dev, pdsp->command); 1534 if (!IS_ERR(pdsp->iram)) 1535 devm_iounmap(dev, pdsp->iram); 1536 if (!IS_ERR(pdsp->regs)) 1537 devm_iounmap(dev, pdsp->regs); 1538 if (!IS_ERR(pdsp->intd)) 1539 devm_iounmap(dev, pdsp->intd); 1540 devm_kfree(dev, pdsp); 1541 continue; 1542 } 1543 of_property_read_u32(child, "id", &pdsp->id); 1544 list_add_tail(&pdsp->list, &kdev->pdsps); 1545 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n", 1546 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs, 1547 pdsp->intd); 1548 } 1549 return 0; 1550 } 1551 1552 static int knav_queue_stop_pdsp(struct knav_device *kdev, 1553 struct knav_pdsp_info *pdsp) 1554 { 1555 u32 val, timeout = 1000; 1556 int ret; 1557 1558 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE; 1559 writel_relaxed(val, &pdsp->regs->control); 1560 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout, 1561 PDSP_CTRL_RUNNING); 1562 if (ret < 0) { 1563 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name); 1564 return ret; 1565 } 1566 pdsp->loaded = false; 1567 pdsp->started = false; 1568 return 0; 1569 } 1570 1571 static int knav_queue_load_pdsp(struct knav_device *kdev, 1572 struct knav_pdsp_info *pdsp) 1573 { 1574 int i, ret, fwlen; 1575 const struct firmware *fw; 1576 bool found = false; 1577 u32 *fwdata; 1578 1579 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) { 1580 if (knav_acc_firmwares[i]) { 1581 ret = request_firmware_direct(&fw, 1582 knav_acc_firmwares[i], 1583 kdev->dev); 1584 if (!ret) { 1585 found = true; 1586 break; 1587 } 1588 } 1589 } 1590 1591 if (!found) { 1592 dev_err(kdev->dev, "failed to get firmware for pdsp\n"); 1593 return -ENODEV; 1594 } 1595 1596 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n", 1597 knav_acc_firmwares[i]); 1598 1599 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18); 1600 /* download the firmware */ 1601 fwdata = (u32 *)fw->data; 1602 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32); 1603 for (i = 0; i < fwlen; i++) 1604 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i); 1605 1606 release_firmware(fw); 1607 return 0; 1608 } 1609 1610 static int knav_queue_start_pdsp(struct knav_device *kdev, 1611 struct knav_pdsp_info *pdsp) 1612 { 1613 u32 val, timeout = 1000; 1614 int ret; 1615 1616 /* write a command for sync */ 1617 writel_relaxed(0xffffffff, pdsp->command); 1618 while (readl_relaxed(pdsp->command) != 0xffffffff) 1619 cpu_relax(); 1620 1621 /* soft reset the PDSP */ 1622 val = readl_relaxed(&pdsp->regs->control); 1623 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET); 1624 writel_relaxed(val, &pdsp->regs->control); 1625 1626 /* enable pdsp */ 1627 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE; 1628 writel_relaxed(val, &pdsp->regs->control); 1629 1630 /* wait for command register to clear */ 1631 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0); 1632 if (ret < 0) { 1633 dev_err(kdev->dev, 1634 "timed out on pdsp %s command register wait\n", 1635 pdsp->name); 1636 return ret; 1637 } 1638 return 0; 1639 } 1640 1641 static void knav_queue_stop_pdsps(struct knav_device *kdev) 1642 { 1643 struct knav_pdsp_info *pdsp; 1644 1645 /* disable all pdsps */ 1646 for_each_pdsp(kdev, pdsp) 1647 knav_queue_stop_pdsp(kdev, pdsp); 1648 } 1649 1650 static int knav_queue_start_pdsps(struct knav_device *kdev) 1651 { 1652 struct knav_pdsp_info *pdsp; 1653 int ret; 1654 1655 knav_queue_stop_pdsps(kdev); 1656 /* now load them all. We return success even if pdsp 1657 * is not loaded as acc channels are optional on having 1658 * firmware availability in the system. We set the loaded 1659 * and stated flag and when initialize the acc range, check 1660 * it and init the range only if pdsp is started. 1661 */ 1662 for_each_pdsp(kdev, pdsp) { 1663 ret = knav_queue_load_pdsp(kdev, pdsp); 1664 if (!ret) 1665 pdsp->loaded = true; 1666 } 1667 1668 for_each_pdsp(kdev, pdsp) { 1669 if (pdsp->loaded) { 1670 ret = knav_queue_start_pdsp(kdev, pdsp); 1671 if (!ret) 1672 pdsp->started = true; 1673 } 1674 } 1675 return 0; 1676 } 1677 1678 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id) 1679 { 1680 struct knav_qmgr_info *qmgr; 1681 1682 for_each_qmgr(kdev, qmgr) { 1683 if ((id >= qmgr->start_queue) && 1684 (id < qmgr->start_queue + qmgr->num_queues)) 1685 return qmgr; 1686 } 1687 return NULL; 1688 } 1689 1690 static int knav_queue_init_queue(struct knav_device *kdev, 1691 struct knav_range_info *range, 1692 struct knav_queue_inst *inst, 1693 unsigned id) 1694 { 1695 char irq_name[KNAV_NAME_SIZE]; 1696 inst->qmgr = knav_find_qmgr(id); 1697 if (!inst->qmgr) 1698 return -1; 1699 1700 INIT_LIST_HEAD(&inst->handles); 1701 inst->kdev = kdev; 1702 inst->range = range; 1703 inst->irq_num = -1; 1704 inst->id = id; 1705 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id); 1706 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL); 1707 1708 if (range->ops && range->ops->init_queue) 1709 return range->ops->init_queue(range, inst); 1710 else 1711 return 0; 1712 } 1713 1714 static int knav_queue_init_queues(struct knav_device *kdev) 1715 { 1716 struct knav_range_info *range; 1717 int size, id, base_idx; 1718 int idx = 0, ret = 0; 1719 1720 /* how much do we need for instance data? */ 1721 size = sizeof(struct knav_queue_inst); 1722 1723 /* round this up to a power of 2, keep the index to instance 1724 * arithmetic fast. 1725 * */ 1726 kdev->inst_shift = order_base_2(size); 1727 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use; 1728 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL); 1729 if (!kdev->instances) 1730 return -ENOMEM; 1731 1732 for_each_queue_range(kdev, range) { 1733 if (range->ops && range->ops->init_range) 1734 range->ops->init_range(range); 1735 base_idx = idx; 1736 for (id = range->queue_base; 1737 id < range->queue_base + range->num_queues; id++, idx++) { 1738 ret = knav_queue_init_queue(kdev, range, 1739 knav_queue_idx_to_inst(kdev, idx), id); 1740 if (ret < 0) 1741 return ret; 1742 } 1743 range->queue_base_inst = 1744 knav_queue_idx_to_inst(kdev, base_idx); 1745 } 1746 return 0; 1747 } 1748 1749 /* Match table for of_platform binding */ 1750 static const struct of_device_id keystone_qmss_of_match[] = { 1751 { 1752 .compatible = "ti,keystone-navigator-qmss", 1753 }, 1754 { 1755 .compatible = "ti,66ak2g-navss-qm", 1756 .data = (void *)QMSS_66AK2G, 1757 }, 1758 {}, 1759 }; 1760 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match); 1761 1762 static int knav_queue_probe(struct platform_device *pdev) 1763 { 1764 struct device_node *node = pdev->dev.of_node; 1765 struct device_node *qmgrs, *queue_pools, *regions, *pdsps; 1766 const struct of_device_id *match; 1767 struct device *dev = &pdev->dev; 1768 u32 temp[2]; 1769 int ret; 1770 1771 if (!node) { 1772 dev_err(dev, "device tree info unavailable\n"); 1773 return -ENODEV; 1774 } 1775 1776 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL); 1777 if (!kdev) { 1778 dev_err(dev, "memory allocation failed\n"); 1779 return -ENOMEM; 1780 } 1781 1782 match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev); 1783 if (match && match->data) 1784 kdev->version = QMSS_66AK2G; 1785 1786 platform_set_drvdata(pdev, kdev); 1787 kdev->dev = dev; 1788 INIT_LIST_HEAD(&kdev->queue_ranges); 1789 INIT_LIST_HEAD(&kdev->qmgrs); 1790 INIT_LIST_HEAD(&kdev->pools); 1791 INIT_LIST_HEAD(&kdev->regions); 1792 INIT_LIST_HEAD(&kdev->pdsps); 1793 1794 pm_runtime_enable(&pdev->dev); 1795 ret = pm_runtime_get_sync(&pdev->dev); 1796 if (ret < 0) { 1797 dev_err(dev, "Failed to enable QMSS\n"); 1798 return ret; 1799 } 1800 1801 if (of_property_read_u32_array(node, "queue-range", temp, 2)) { 1802 dev_err(dev, "queue-range not specified\n"); 1803 ret = -ENODEV; 1804 goto err; 1805 } 1806 kdev->base_id = temp[0]; 1807 kdev->num_queues = temp[1]; 1808 1809 /* Initialize queue managers using device tree configuration */ 1810 qmgrs = of_get_child_by_name(node, "qmgrs"); 1811 if (!qmgrs) { 1812 dev_err(dev, "queue manager info not specified\n"); 1813 ret = -ENODEV; 1814 goto err; 1815 } 1816 ret = knav_queue_init_qmgrs(kdev, qmgrs); 1817 of_node_put(qmgrs); 1818 if (ret) 1819 goto err; 1820 1821 /* get pdsp configuration values from device tree */ 1822 pdsps = of_get_child_by_name(node, "pdsps"); 1823 if (pdsps) { 1824 ret = knav_queue_init_pdsps(kdev, pdsps); 1825 if (ret) 1826 goto err; 1827 1828 ret = knav_queue_start_pdsps(kdev); 1829 if (ret) 1830 goto err; 1831 } 1832 of_node_put(pdsps); 1833 1834 /* get usable queue range values from device tree */ 1835 queue_pools = of_get_child_by_name(node, "queue-pools"); 1836 if (!queue_pools) { 1837 dev_err(dev, "queue-pools not specified\n"); 1838 ret = -ENODEV; 1839 goto err; 1840 } 1841 ret = knav_setup_queue_pools(kdev, queue_pools); 1842 of_node_put(queue_pools); 1843 if (ret) 1844 goto err; 1845 1846 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]); 1847 if (ret) { 1848 dev_err(kdev->dev, "could not setup linking ram\n"); 1849 goto err; 1850 } 1851 1852 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]); 1853 if (ret) { 1854 /* 1855 * nothing really, we have one linking ram already, so we just 1856 * live within our means 1857 */ 1858 } 1859 1860 ret = knav_queue_setup_link_ram(kdev); 1861 if (ret) 1862 goto err; 1863 1864 regions = of_get_child_by_name(node, "descriptor-regions"); 1865 if (!regions) { 1866 dev_err(dev, "descriptor-regions not specified\n"); 1867 goto err; 1868 } 1869 ret = knav_queue_setup_regions(kdev, regions); 1870 of_node_put(regions); 1871 if (ret) 1872 goto err; 1873 1874 ret = knav_queue_init_queues(kdev); 1875 if (ret < 0) { 1876 dev_err(dev, "hwqueue initialization failed\n"); 1877 goto err; 1878 } 1879 1880 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL, 1881 &knav_queue_debug_ops); 1882 device_ready = true; 1883 return 0; 1884 1885 err: 1886 knav_queue_stop_pdsps(kdev); 1887 knav_queue_free_regions(kdev); 1888 knav_free_queue_ranges(kdev); 1889 pm_runtime_put_sync(&pdev->dev); 1890 pm_runtime_disable(&pdev->dev); 1891 return ret; 1892 } 1893 1894 static int knav_queue_remove(struct platform_device *pdev) 1895 { 1896 /* TODO: Free resources */ 1897 pm_runtime_put_sync(&pdev->dev); 1898 pm_runtime_disable(&pdev->dev); 1899 return 0; 1900 } 1901 1902 static struct platform_driver keystone_qmss_driver = { 1903 .probe = knav_queue_probe, 1904 .remove = knav_queue_remove, 1905 .driver = { 1906 .name = "keystone-navigator-qmss", 1907 .of_match_table = keystone_qmss_of_match, 1908 }, 1909 }; 1910 module_platform_driver(keystone_qmss_driver); 1911 1912 MODULE_LICENSE("GPL v2"); 1913 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs"); 1914 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>"); 1915 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>"); 1916