xref: /openbmc/linux/drivers/soc/ti/knav_qmss_queue.c (revision 4f6cce39)
1 /*
2  * Keystone Queue Manager subsystem driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5  * Authors:	Sandeep Nair <sandeep_n@ti.com>
6  *		Cyril Chemparathy <cyril@ti.com>
7  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18 
19 #include <linux/debugfs.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/firmware.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/module.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_irq.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/soc/ti/knav_qmss.h>
31 
32 #include "knav_qmss.h"
33 
34 static struct knav_device *kdev;
35 static DEFINE_MUTEX(knav_dev_lock);
36 
37 /* Queue manager register indices in DTS */
38 #define KNAV_QUEUE_PEEK_REG_INDEX	0
39 #define KNAV_QUEUE_STATUS_REG_INDEX	1
40 #define KNAV_QUEUE_CONFIG_REG_INDEX	2
41 #define KNAV_QUEUE_REGION_REG_INDEX	3
42 #define KNAV_QUEUE_PUSH_REG_INDEX	4
43 #define KNAV_QUEUE_POP_REG_INDEX	5
44 
45 /* PDSP register indices in DTS */
46 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
47 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
48 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
49 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
50 
51 #define knav_queue_idx_to_inst(kdev, idx)			\
52 	(kdev->instances + (idx << kdev->inst_shift))
53 
54 #define for_each_handle_rcu(qh, inst)			\
55 	list_for_each_entry_rcu(qh, &inst->handles, list)
56 
57 #define for_each_instance(idx, inst, kdev)		\
58 	for (idx = 0, inst = kdev->instances;		\
59 	     idx < (kdev)->num_queues_in_use;			\
60 	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
61 
62 /* All firmware file names end up here. List the firmware file names below.
63  * Newest followed by older ones. Search is done from start of the array
64  * until a firmware file is found.
65  */
66 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
67 
68 /**
69  * knav_queue_notify: qmss queue notfier call
70  *
71  * @inst:		qmss queue instance like accumulator
72  */
73 void knav_queue_notify(struct knav_queue_inst *inst)
74 {
75 	struct knav_queue *qh;
76 
77 	if (!inst)
78 		return;
79 
80 	rcu_read_lock();
81 	for_each_handle_rcu(qh, inst) {
82 		if (atomic_read(&qh->notifier_enabled) <= 0)
83 			continue;
84 		if (WARN_ON(!qh->notifier_fn))
85 			continue;
86 		atomic_inc(&qh->stats.notifies);
87 		qh->notifier_fn(qh->notifier_fn_arg);
88 	}
89 	rcu_read_unlock();
90 }
91 EXPORT_SYMBOL_GPL(knav_queue_notify);
92 
93 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
94 {
95 	struct knav_queue_inst *inst = _instdata;
96 
97 	knav_queue_notify(inst);
98 	return IRQ_HANDLED;
99 }
100 
101 static int knav_queue_setup_irq(struct knav_range_info *range,
102 			  struct knav_queue_inst *inst)
103 {
104 	unsigned queue = inst->id - range->queue_base;
105 	unsigned long cpu_map;
106 	int ret = 0, irq;
107 
108 	if (range->flags & RANGE_HAS_IRQ) {
109 		irq = range->irqs[queue].irq;
110 		cpu_map = range->irqs[queue].cpu_map;
111 		ret = request_irq(irq, knav_queue_int_handler, 0,
112 					inst->irq_name, inst);
113 		if (ret)
114 			return ret;
115 		disable_irq(irq);
116 		if (cpu_map) {
117 			ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
118 			if (ret) {
119 				dev_warn(range->kdev->dev,
120 					 "Failed to set IRQ affinity\n");
121 				return ret;
122 			}
123 		}
124 	}
125 	return ret;
126 }
127 
128 static void knav_queue_free_irq(struct knav_queue_inst *inst)
129 {
130 	struct knav_range_info *range = inst->range;
131 	unsigned queue = inst->id - inst->range->queue_base;
132 	int irq;
133 
134 	if (range->flags & RANGE_HAS_IRQ) {
135 		irq = range->irqs[queue].irq;
136 		irq_set_affinity_hint(irq, NULL);
137 		free_irq(irq, inst);
138 	}
139 }
140 
141 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
142 {
143 	return !list_empty(&inst->handles);
144 }
145 
146 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
147 {
148 	return inst->range->flags & RANGE_RESERVED;
149 }
150 
151 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
152 {
153 	struct knav_queue *tmp;
154 
155 	rcu_read_lock();
156 	for_each_handle_rcu(tmp, inst) {
157 		if (tmp->flags & KNAV_QUEUE_SHARED) {
158 			rcu_read_unlock();
159 			return true;
160 		}
161 	}
162 	rcu_read_unlock();
163 	return false;
164 }
165 
166 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
167 						unsigned type)
168 {
169 	if ((type == KNAV_QUEUE_QPEND) &&
170 	    (inst->range->flags & RANGE_HAS_IRQ)) {
171 		return true;
172 	} else if ((type == KNAV_QUEUE_ACC) &&
173 		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
174 		return true;
175 	} else if ((type == KNAV_QUEUE_GP) &&
176 		!(inst->range->flags &
177 			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
178 		return true;
179 	}
180 	return false;
181 }
182 
183 static inline struct knav_queue_inst *
184 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
185 {
186 	struct knav_queue_inst *inst;
187 	int idx;
188 
189 	for_each_instance(idx, inst, kdev) {
190 		if (inst->id == id)
191 			return inst;
192 	}
193 	return NULL;
194 }
195 
196 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
197 {
198 	if (kdev->base_id <= id &&
199 	    kdev->base_id + kdev->num_queues > id) {
200 		id -= kdev->base_id;
201 		return knav_queue_match_id_to_inst(kdev, id);
202 	}
203 	return NULL;
204 }
205 
206 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
207 				      const char *name, unsigned flags)
208 {
209 	struct knav_queue *qh;
210 	unsigned id;
211 	int ret = 0;
212 
213 	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
214 	if (!qh)
215 		return ERR_PTR(-ENOMEM);
216 
217 	qh->flags = flags;
218 	qh->inst = inst;
219 	id = inst->id - inst->qmgr->start_queue;
220 	qh->reg_push = &inst->qmgr->reg_push[id];
221 	qh->reg_pop = &inst->qmgr->reg_pop[id];
222 	qh->reg_peek = &inst->qmgr->reg_peek[id];
223 
224 	/* first opener? */
225 	if (!knav_queue_is_busy(inst)) {
226 		struct knav_range_info *range = inst->range;
227 
228 		inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
229 		if (range->ops && range->ops->open_queue)
230 			ret = range->ops->open_queue(range, inst, flags);
231 
232 		if (ret) {
233 			devm_kfree(inst->kdev->dev, qh);
234 			return ERR_PTR(ret);
235 		}
236 	}
237 	list_add_tail_rcu(&qh->list, &inst->handles);
238 	return qh;
239 }
240 
241 static struct knav_queue *
242 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
243 {
244 	struct knav_queue_inst *inst;
245 	struct knav_queue *qh;
246 
247 	mutex_lock(&knav_dev_lock);
248 
249 	qh = ERR_PTR(-ENODEV);
250 	inst = knav_queue_find_by_id(id);
251 	if (!inst)
252 		goto unlock_ret;
253 
254 	qh = ERR_PTR(-EEXIST);
255 	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
256 		goto unlock_ret;
257 
258 	qh = ERR_PTR(-EBUSY);
259 	if ((flags & KNAV_QUEUE_SHARED) &&
260 	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
261 		goto unlock_ret;
262 
263 	qh = __knav_queue_open(inst, name, flags);
264 
265 unlock_ret:
266 	mutex_unlock(&knav_dev_lock);
267 
268 	return qh;
269 }
270 
271 static struct knav_queue *knav_queue_open_by_type(const char *name,
272 						unsigned type, unsigned flags)
273 {
274 	struct knav_queue_inst *inst;
275 	struct knav_queue *qh = ERR_PTR(-EINVAL);
276 	int idx;
277 
278 	mutex_lock(&knav_dev_lock);
279 
280 	for_each_instance(idx, inst, kdev) {
281 		if (knav_queue_is_reserved(inst))
282 			continue;
283 		if (!knav_queue_match_type(inst, type))
284 			continue;
285 		if (knav_queue_is_busy(inst))
286 			continue;
287 		qh = __knav_queue_open(inst, name, flags);
288 		goto unlock_ret;
289 	}
290 
291 unlock_ret:
292 	mutex_unlock(&knav_dev_lock);
293 	return qh;
294 }
295 
296 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
297 {
298 	struct knav_range_info *range = inst->range;
299 
300 	if (range->ops && range->ops->set_notify)
301 		range->ops->set_notify(range, inst, enabled);
302 }
303 
304 static int knav_queue_enable_notifier(struct knav_queue *qh)
305 {
306 	struct knav_queue_inst *inst = qh->inst;
307 	bool first;
308 
309 	if (WARN_ON(!qh->notifier_fn))
310 		return -EINVAL;
311 
312 	/* Adjust the per handle notifier count */
313 	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
314 	if (!first)
315 		return 0; /* nothing to do */
316 
317 	/* Now adjust the per instance notifier count */
318 	first = (atomic_inc_return(&inst->num_notifiers) == 1);
319 	if (first)
320 		knav_queue_set_notify(inst, true);
321 
322 	return 0;
323 }
324 
325 static int knav_queue_disable_notifier(struct knav_queue *qh)
326 {
327 	struct knav_queue_inst *inst = qh->inst;
328 	bool last;
329 
330 	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
331 	if (!last)
332 		return 0; /* nothing to do */
333 
334 	last = (atomic_dec_return(&inst->num_notifiers) == 0);
335 	if (last)
336 		knav_queue_set_notify(inst, false);
337 
338 	return 0;
339 }
340 
341 static int knav_queue_set_notifier(struct knav_queue *qh,
342 				struct knav_queue_notify_config *cfg)
343 {
344 	knav_queue_notify_fn old_fn = qh->notifier_fn;
345 
346 	if (!cfg)
347 		return -EINVAL;
348 
349 	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
350 		return -ENOTSUPP;
351 
352 	if (!cfg->fn && old_fn)
353 		knav_queue_disable_notifier(qh);
354 
355 	qh->notifier_fn = cfg->fn;
356 	qh->notifier_fn_arg = cfg->fn_arg;
357 
358 	if (cfg->fn && !old_fn)
359 		knav_queue_enable_notifier(qh);
360 
361 	return 0;
362 }
363 
364 static int knav_gp_set_notify(struct knav_range_info *range,
365 			       struct knav_queue_inst *inst,
366 			       bool enabled)
367 {
368 	unsigned queue;
369 
370 	if (range->flags & RANGE_HAS_IRQ) {
371 		queue = inst->id - range->queue_base;
372 		if (enabled)
373 			enable_irq(range->irqs[queue].irq);
374 		else
375 			disable_irq_nosync(range->irqs[queue].irq);
376 	}
377 	return 0;
378 }
379 
380 static int knav_gp_open_queue(struct knav_range_info *range,
381 				struct knav_queue_inst *inst, unsigned flags)
382 {
383 	return knav_queue_setup_irq(range, inst);
384 }
385 
386 static int knav_gp_close_queue(struct knav_range_info *range,
387 				struct knav_queue_inst *inst)
388 {
389 	knav_queue_free_irq(inst);
390 	return 0;
391 }
392 
393 struct knav_range_ops knav_gp_range_ops = {
394 	.set_notify	= knav_gp_set_notify,
395 	.open_queue	= knav_gp_open_queue,
396 	.close_queue	= knav_gp_close_queue,
397 };
398 
399 
400 static int knav_queue_get_count(void *qhandle)
401 {
402 	struct knav_queue *qh = qhandle;
403 	struct knav_queue_inst *inst = qh->inst;
404 
405 	return readl_relaxed(&qh->reg_peek[0].entry_count) +
406 		atomic_read(&inst->desc_count);
407 }
408 
409 static void knav_queue_debug_show_instance(struct seq_file *s,
410 					struct knav_queue_inst *inst)
411 {
412 	struct knav_device *kdev = inst->kdev;
413 	struct knav_queue *qh;
414 
415 	if (!knav_queue_is_busy(inst))
416 		return;
417 
418 	seq_printf(s, "\tqueue id %d (%s)\n",
419 		   kdev->base_id + inst->id, inst->name);
420 	for_each_handle_rcu(qh, inst) {
421 		seq_printf(s, "\t\thandle %p: ", qh);
422 		seq_printf(s, "pushes %8d, ",
423 			   atomic_read(&qh->stats.pushes));
424 		seq_printf(s, "pops %8d, ",
425 			   atomic_read(&qh->stats.pops));
426 		seq_printf(s, "count %8d, ",
427 			   knav_queue_get_count(qh));
428 		seq_printf(s, "notifies %8d, ",
429 			   atomic_read(&qh->stats.notifies));
430 		seq_printf(s, "push errors %8d, ",
431 			   atomic_read(&qh->stats.push_errors));
432 		seq_printf(s, "pop errors %8d\n",
433 			   atomic_read(&qh->stats.pop_errors));
434 	}
435 }
436 
437 static int knav_queue_debug_show(struct seq_file *s, void *v)
438 {
439 	struct knav_queue_inst *inst;
440 	int idx;
441 
442 	mutex_lock(&knav_dev_lock);
443 	seq_printf(s, "%s: %u-%u\n",
444 		   dev_name(kdev->dev), kdev->base_id,
445 		   kdev->base_id + kdev->num_queues - 1);
446 	for_each_instance(idx, inst, kdev)
447 		knav_queue_debug_show_instance(s, inst);
448 	mutex_unlock(&knav_dev_lock);
449 
450 	return 0;
451 }
452 
453 static int knav_queue_debug_open(struct inode *inode, struct file *file)
454 {
455 	return single_open(file, knav_queue_debug_show, NULL);
456 }
457 
458 static const struct file_operations knav_queue_debug_ops = {
459 	.open		= knav_queue_debug_open,
460 	.read		= seq_read,
461 	.llseek		= seq_lseek,
462 	.release	= single_release,
463 };
464 
465 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
466 					u32 flags)
467 {
468 	unsigned long end;
469 	u32 val = 0;
470 
471 	end = jiffies + msecs_to_jiffies(timeout);
472 	while (time_after(end, jiffies)) {
473 		val = readl_relaxed(addr);
474 		if (flags)
475 			val &= flags;
476 		if (!val)
477 			break;
478 		cpu_relax();
479 	}
480 	return val ? -ETIMEDOUT : 0;
481 }
482 
483 
484 static int knav_queue_flush(struct knav_queue *qh)
485 {
486 	struct knav_queue_inst *inst = qh->inst;
487 	unsigned id = inst->id - inst->qmgr->start_queue;
488 
489 	atomic_set(&inst->desc_count, 0);
490 	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
491 	return 0;
492 }
493 
494 /**
495  * knav_queue_open()	- open a hardware queue
496  * @name		- name to give the queue handle
497  * @id			- desired queue number if any or specifes the type
498  *			  of queue
499  * @flags		- the following flags are applicable to queues:
500  *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
501  *			     exclusive by default.
502  *			     Subsequent attempts to open a shared queue should
503  *			     also have this flag.
504  *
505  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
506  * to check the returned value for error codes.
507  */
508 void *knav_queue_open(const char *name, unsigned id,
509 					unsigned flags)
510 {
511 	struct knav_queue *qh = ERR_PTR(-EINVAL);
512 
513 	switch (id) {
514 	case KNAV_QUEUE_QPEND:
515 	case KNAV_QUEUE_ACC:
516 	case KNAV_QUEUE_GP:
517 		qh = knav_queue_open_by_type(name, id, flags);
518 		break;
519 
520 	default:
521 		qh = knav_queue_open_by_id(name, id, flags);
522 		break;
523 	}
524 	return qh;
525 }
526 EXPORT_SYMBOL_GPL(knav_queue_open);
527 
528 /**
529  * knav_queue_close()	- close a hardware queue handle
530  * @qh			- handle to close
531  */
532 void knav_queue_close(void *qhandle)
533 {
534 	struct knav_queue *qh = qhandle;
535 	struct knav_queue_inst *inst = qh->inst;
536 
537 	while (atomic_read(&qh->notifier_enabled) > 0)
538 		knav_queue_disable_notifier(qh);
539 
540 	mutex_lock(&knav_dev_lock);
541 	list_del_rcu(&qh->list);
542 	mutex_unlock(&knav_dev_lock);
543 	synchronize_rcu();
544 	if (!knav_queue_is_busy(inst)) {
545 		struct knav_range_info *range = inst->range;
546 
547 		if (range->ops && range->ops->close_queue)
548 			range->ops->close_queue(range, inst);
549 	}
550 	devm_kfree(inst->kdev->dev, qh);
551 }
552 EXPORT_SYMBOL_GPL(knav_queue_close);
553 
554 /**
555  * knav_queue_device_control()	- Perform control operations on a queue
556  * @qh				- queue handle
557  * @cmd				- control commands
558  * @arg				- command argument
559  *
560  * Returns 0 on success, errno otherwise.
561  */
562 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
563 				unsigned long arg)
564 {
565 	struct knav_queue *qh = qhandle;
566 	struct knav_queue_notify_config *cfg;
567 	int ret;
568 
569 	switch ((int)cmd) {
570 	case KNAV_QUEUE_GET_ID:
571 		ret = qh->inst->kdev->base_id + qh->inst->id;
572 		break;
573 
574 	case KNAV_QUEUE_FLUSH:
575 		ret = knav_queue_flush(qh);
576 		break;
577 
578 	case KNAV_QUEUE_SET_NOTIFIER:
579 		cfg = (void *)arg;
580 		ret = knav_queue_set_notifier(qh, cfg);
581 		break;
582 
583 	case KNAV_QUEUE_ENABLE_NOTIFY:
584 		ret = knav_queue_enable_notifier(qh);
585 		break;
586 
587 	case KNAV_QUEUE_DISABLE_NOTIFY:
588 		ret = knav_queue_disable_notifier(qh);
589 		break;
590 
591 	case KNAV_QUEUE_GET_COUNT:
592 		ret = knav_queue_get_count(qh);
593 		break;
594 
595 	default:
596 		ret = -ENOTSUPP;
597 		break;
598 	}
599 	return ret;
600 }
601 EXPORT_SYMBOL_GPL(knav_queue_device_control);
602 
603 
604 
605 /**
606  * knav_queue_push()	- push data (or descriptor) to the tail of a queue
607  * @qh			- hardware queue handle
608  * @data		- data to push
609  * @size		- size of data to push
610  * @flags		- can be used to pass additional information
611  *
612  * Returns 0 on success, errno otherwise.
613  */
614 int knav_queue_push(void *qhandle, dma_addr_t dma,
615 					unsigned size, unsigned flags)
616 {
617 	struct knav_queue *qh = qhandle;
618 	u32 val;
619 
620 	val = (u32)dma | ((size / 16) - 1);
621 	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
622 
623 	atomic_inc(&qh->stats.pushes);
624 	return 0;
625 }
626 EXPORT_SYMBOL_GPL(knav_queue_push);
627 
628 /**
629  * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
630  * @qh			- hardware queue handle
631  * @size		- (optional) size of the data pop'ed.
632  *
633  * Returns a DMA address on success, 0 on failure.
634  */
635 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
636 {
637 	struct knav_queue *qh = qhandle;
638 	struct knav_queue_inst *inst = qh->inst;
639 	dma_addr_t dma;
640 	u32 val, idx;
641 
642 	/* are we accumulated? */
643 	if (inst->descs) {
644 		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
645 			atomic_inc(&inst->desc_count);
646 			return 0;
647 		}
648 		idx  = atomic_inc_return(&inst->desc_head);
649 		idx &= ACC_DESCS_MASK;
650 		val = inst->descs[idx];
651 	} else {
652 		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
653 		if (unlikely(!val))
654 			return 0;
655 	}
656 
657 	dma = val & DESC_PTR_MASK;
658 	if (size)
659 		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
660 
661 	atomic_inc(&qh->stats.pops);
662 	return dma;
663 }
664 EXPORT_SYMBOL_GPL(knav_queue_pop);
665 
666 /* carve out descriptors and push into queue */
667 static void kdesc_fill_pool(struct knav_pool *pool)
668 {
669 	struct knav_region *region;
670 	int i;
671 
672 	region = pool->region;
673 	pool->desc_size = region->desc_size;
674 	for (i = 0; i < pool->num_desc; i++) {
675 		int index = pool->region_offset + i;
676 		dma_addr_t dma_addr;
677 		unsigned dma_size;
678 		dma_addr = region->dma_start + (region->desc_size * index);
679 		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
680 		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
681 					   DMA_TO_DEVICE);
682 		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
683 	}
684 }
685 
686 /* pop out descriptors and close the queue */
687 static void kdesc_empty_pool(struct knav_pool *pool)
688 {
689 	dma_addr_t dma;
690 	unsigned size;
691 	void *desc;
692 	int i;
693 
694 	if (!pool->queue)
695 		return;
696 
697 	for (i = 0;; i++) {
698 		dma = knav_queue_pop(pool->queue, &size);
699 		if (!dma)
700 			break;
701 		desc = knav_pool_desc_dma_to_virt(pool, dma);
702 		if (!desc) {
703 			dev_dbg(pool->kdev->dev,
704 				"couldn't unmap desc, continuing\n");
705 			continue;
706 		}
707 	}
708 	WARN_ON(i != pool->num_desc);
709 	knav_queue_close(pool->queue);
710 }
711 
712 
713 /* Get the DMA address of a descriptor */
714 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
715 {
716 	struct knav_pool *pool = ph;
717 	return pool->region->dma_start + (virt - pool->region->virt_start);
718 }
719 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
720 
721 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
722 {
723 	struct knav_pool *pool = ph;
724 	return pool->region->virt_start + (dma - pool->region->dma_start);
725 }
726 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
727 
728 /**
729  * knav_pool_create()	- Create a pool of descriptors
730  * @name		- name to give the pool handle
731  * @num_desc		- numbers of descriptors in the pool
732  * @region_id		- QMSS region id from which the descriptors are to be
733  *			  allocated.
734  *
735  * Returns a pool handle on success.
736  * Use IS_ERR_OR_NULL() to identify error values on return.
737  */
738 void *knav_pool_create(const char *name,
739 					int num_desc, int region_id)
740 {
741 	struct knav_region *reg_itr, *region = NULL;
742 	struct knav_pool *pool, *pi;
743 	struct list_head *node;
744 	unsigned last_offset;
745 	bool slot_found;
746 	int ret;
747 
748 	if (!kdev->dev)
749 		return ERR_PTR(-ENODEV);
750 
751 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
752 	if (!pool) {
753 		dev_err(kdev->dev, "out of memory allocating pool\n");
754 		return ERR_PTR(-ENOMEM);
755 	}
756 
757 	for_each_region(kdev, reg_itr) {
758 		if (reg_itr->id != region_id)
759 			continue;
760 		region = reg_itr;
761 		break;
762 	}
763 
764 	if (!region) {
765 		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
766 		ret = -EINVAL;
767 		goto err;
768 	}
769 
770 	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
771 	if (IS_ERR_OR_NULL(pool->queue)) {
772 		dev_err(kdev->dev,
773 			"failed to open queue for pool(%s), error %ld\n",
774 			name, PTR_ERR(pool->queue));
775 		ret = PTR_ERR(pool->queue);
776 		goto err;
777 	}
778 
779 	pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
780 	pool->kdev = kdev;
781 	pool->dev = kdev->dev;
782 
783 	mutex_lock(&knav_dev_lock);
784 
785 	if (num_desc > (region->num_desc - region->used_desc)) {
786 		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
787 			region_id, name);
788 		ret = -ENOMEM;
789 		goto err_unlock;
790 	}
791 
792 	/* Region maintains a sorted (by region offset) list of pools
793 	 * use the first free slot which is large enough to accomodate
794 	 * the request
795 	 */
796 	last_offset = 0;
797 	slot_found = false;
798 	node = &region->pools;
799 	list_for_each_entry(pi, &region->pools, region_inst) {
800 		if ((pi->region_offset - last_offset) >= num_desc) {
801 			slot_found = true;
802 			break;
803 		}
804 		last_offset = pi->region_offset + pi->num_desc;
805 	}
806 	node = &pi->region_inst;
807 
808 	if (slot_found) {
809 		pool->region = region;
810 		pool->num_desc = num_desc;
811 		pool->region_offset = last_offset;
812 		region->used_desc += num_desc;
813 		list_add_tail(&pool->list, &kdev->pools);
814 		list_add_tail(&pool->region_inst, node);
815 	} else {
816 		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
817 			name, region_id);
818 		ret = -ENOMEM;
819 		goto err_unlock;
820 	}
821 
822 	mutex_unlock(&knav_dev_lock);
823 	kdesc_fill_pool(pool);
824 	return pool;
825 
826 err_unlock:
827 	mutex_unlock(&knav_dev_lock);
828 err:
829 	kfree(pool->name);
830 	devm_kfree(kdev->dev, pool);
831 	return ERR_PTR(ret);
832 }
833 EXPORT_SYMBOL_GPL(knav_pool_create);
834 
835 /**
836  * knav_pool_destroy()	- Free a pool of descriptors
837  * @pool		- pool handle
838  */
839 void knav_pool_destroy(void *ph)
840 {
841 	struct knav_pool *pool = ph;
842 
843 	if (!pool)
844 		return;
845 
846 	if (!pool->region)
847 		return;
848 
849 	kdesc_empty_pool(pool);
850 	mutex_lock(&knav_dev_lock);
851 
852 	pool->region->used_desc -= pool->num_desc;
853 	list_del(&pool->region_inst);
854 	list_del(&pool->list);
855 
856 	mutex_unlock(&knav_dev_lock);
857 	kfree(pool->name);
858 	devm_kfree(kdev->dev, pool);
859 }
860 EXPORT_SYMBOL_GPL(knav_pool_destroy);
861 
862 
863 /**
864  * knav_pool_desc_get()	- Get a descriptor from the pool
865  * @pool			- pool handle
866  *
867  * Returns descriptor from the pool.
868  */
869 void *knav_pool_desc_get(void *ph)
870 {
871 	struct knav_pool *pool = ph;
872 	dma_addr_t dma;
873 	unsigned size;
874 	void *data;
875 
876 	dma = knav_queue_pop(pool->queue, &size);
877 	if (unlikely(!dma))
878 		return ERR_PTR(-ENOMEM);
879 	data = knav_pool_desc_dma_to_virt(pool, dma);
880 	return data;
881 }
882 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
883 
884 /**
885  * knav_pool_desc_put()	- return a descriptor to the pool
886  * @pool			- pool handle
887  */
888 void knav_pool_desc_put(void *ph, void *desc)
889 {
890 	struct knav_pool *pool = ph;
891 	dma_addr_t dma;
892 	dma = knav_pool_desc_virt_to_dma(pool, desc);
893 	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
894 }
895 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
896 
897 /**
898  * knav_pool_desc_map()	- Map descriptor for DMA transfer
899  * @pool			- pool handle
900  * @desc			- address of descriptor to map
901  * @size			- size of descriptor to map
902  * @dma				- DMA address return pointer
903  * @dma_sz			- adjusted return pointer
904  *
905  * Returns 0 on success, errno otherwise.
906  */
907 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
908 					dma_addr_t *dma, unsigned *dma_sz)
909 {
910 	struct knav_pool *pool = ph;
911 	*dma = knav_pool_desc_virt_to_dma(pool, desc);
912 	size = min(size, pool->region->desc_size);
913 	size = ALIGN(size, SMP_CACHE_BYTES);
914 	*dma_sz = size;
915 	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
916 
917 	/* Ensure the descriptor reaches to the memory */
918 	__iowmb();
919 
920 	return 0;
921 }
922 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
923 
924 /**
925  * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
926  * @pool			- pool handle
927  * @dma				- DMA address of descriptor to unmap
928  * @dma_sz			- size of descriptor to unmap
929  *
930  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
931  * error values on return.
932  */
933 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
934 {
935 	struct knav_pool *pool = ph;
936 	unsigned desc_sz;
937 	void *desc;
938 
939 	desc_sz = min(dma_sz, pool->region->desc_size);
940 	desc = knav_pool_desc_dma_to_virt(pool, dma);
941 	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
942 	prefetch(desc);
943 	return desc;
944 }
945 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
946 
947 /**
948  * knav_pool_count()	- Get the number of descriptors in pool.
949  * @pool		- pool handle
950  * Returns number of elements in the pool.
951  */
952 int knav_pool_count(void *ph)
953 {
954 	struct knav_pool *pool = ph;
955 	return knav_queue_get_count(pool->queue);
956 }
957 EXPORT_SYMBOL_GPL(knav_pool_count);
958 
959 static void knav_queue_setup_region(struct knav_device *kdev,
960 					struct knav_region *region)
961 {
962 	unsigned hw_num_desc, hw_desc_size, size;
963 	struct knav_reg_region __iomem  *regs;
964 	struct knav_qmgr_info *qmgr;
965 	struct knav_pool *pool;
966 	int id = region->id;
967 	struct page *page;
968 
969 	/* unused region? */
970 	if (!region->num_desc) {
971 		dev_warn(kdev->dev, "unused region %s\n", region->name);
972 		return;
973 	}
974 
975 	/* get hardware descriptor value */
976 	hw_num_desc = ilog2(region->num_desc - 1) + 1;
977 
978 	/* did we force fit ourselves into nothingness? */
979 	if (region->num_desc < 32) {
980 		region->num_desc = 0;
981 		dev_warn(kdev->dev, "too few descriptors in region %s\n",
982 			 region->name);
983 		return;
984 	}
985 
986 	size = region->num_desc * region->desc_size;
987 	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
988 						GFP_DMA32);
989 	if (!region->virt_start) {
990 		region->num_desc = 0;
991 		dev_err(kdev->dev, "memory alloc failed for region %s\n",
992 			region->name);
993 		return;
994 	}
995 	region->virt_end = region->virt_start + size;
996 	page = virt_to_page(region->virt_start);
997 
998 	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
999 					 DMA_BIDIRECTIONAL);
1000 	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1001 		dev_err(kdev->dev, "dma map failed for region %s\n",
1002 			region->name);
1003 		goto fail;
1004 	}
1005 	region->dma_end = region->dma_start + size;
1006 
1007 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1008 	if (!pool) {
1009 		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1010 		goto fail;
1011 	}
1012 	pool->num_desc = 0;
1013 	pool->region_offset = region->num_desc;
1014 	list_add(&pool->region_inst, &region->pools);
1015 
1016 	dev_dbg(kdev->dev,
1017 		"region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1018 		region->name, id, region->desc_size, region->num_desc,
1019 		region->link_index, &region->dma_start, &region->dma_end,
1020 		region->virt_start, region->virt_end);
1021 
1022 	hw_desc_size = (region->desc_size / 16) - 1;
1023 	hw_num_desc -= 5;
1024 
1025 	for_each_qmgr(kdev, qmgr) {
1026 		regs = qmgr->reg_region + id;
1027 		writel_relaxed((u32)region->dma_start, &regs->base);
1028 		writel_relaxed(region->link_index, &regs->start_index);
1029 		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1030 			       &regs->size_count);
1031 	}
1032 	return;
1033 
1034 fail:
1035 	if (region->dma_start)
1036 		dma_unmap_page(kdev->dev, region->dma_start, size,
1037 				DMA_BIDIRECTIONAL);
1038 	if (region->virt_start)
1039 		free_pages_exact(region->virt_start, size);
1040 	region->num_desc = 0;
1041 	return;
1042 }
1043 
1044 static const char *knav_queue_find_name(struct device_node *node)
1045 {
1046 	const char *name;
1047 
1048 	if (of_property_read_string(node, "label", &name) < 0)
1049 		name = node->name;
1050 	if (!name)
1051 		name = "unknown";
1052 	return name;
1053 }
1054 
1055 static int knav_queue_setup_regions(struct knav_device *kdev,
1056 					struct device_node *regions)
1057 {
1058 	struct device *dev = kdev->dev;
1059 	struct knav_region *region;
1060 	struct device_node *child;
1061 	u32 temp[2];
1062 	int ret;
1063 
1064 	for_each_child_of_node(regions, child) {
1065 		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1066 		if (!region) {
1067 			dev_err(dev, "out of memory allocating region\n");
1068 			return -ENOMEM;
1069 		}
1070 
1071 		region->name = knav_queue_find_name(child);
1072 		of_property_read_u32(child, "id", &region->id);
1073 		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1074 		if (!ret) {
1075 			region->num_desc  = temp[0];
1076 			region->desc_size = temp[1];
1077 		} else {
1078 			dev_err(dev, "invalid region info %s\n", region->name);
1079 			devm_kfree(dev, region);
1080 			continue;
1081 		}
1082 
1083 		if (!of_get_property(child, "link-index", NULL)) {
1084 			dev_err(dev, "No link info for %s\n", region->name);
1085 			devm_kfree(dev, region);
1086 			continue;
1087 		}
1088 		ret = of_property_read_u32(child, "link-index",
1089 					   &region->link_index);
1090 		if (ret) {
1091 			dev_err(dev, "link index not found for %s\n",
1092 				region->name);
1093 			devm_kfree(dev, region);
1094 			continue;
1095 		}
1096 
1097 		INIT_LIST_HEAD(&region->pools);
1098 		list_add_tail(&region->list, &kdev->regions);
1099 	}
1100 	if (list_empty(&kdev->regions)) {
1101 		dev_err(dev, "no valid region information found\n");
1102 		return -ENODEV;
1103 	}
1104 
1105 	/* Next, we run through the regions and set things up */
1106 	for_each_region(kdev, region)
1107 		knav_queue_setup_region(kdev, region);
1108 
1109 	return 0;
1110 }
1111 
1112 static int knav_get_link_ram(struct knav_device *kdev,
1113 				       const char *name,
1114 				       struct knav_link_ram_block *block)
1115 {
1116 	struct platform_device *pdev = to_platform_device(kdev->dev);
1117 	struct device_node *node = pdev->dev.of_node;
1118 	u32 temp[2];
1119 
1120 	/*
1121 	 * Note: link ram resources are specified in "entry" sized units. In
1122 	 * reality, although entries are ~40bits in hardware, we treat them as
1123 	 * 64-bit entities here.
1124 	 *
1125 	 * For example, to specify the internal link ram for Keystone-I class
1126 	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1127 	 *
1128 	 * This gets a bit weird when other link rams are used.  For example,
1129 	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1130 	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1131 	 * which accounts for 64-bits per entry, for 16K entries.
1132 	 */
1133 	if (!of_property_read_u32_array(node, name , temp, 2)) {
1134 		if (temp[0]) {
1135 			/*
1136 			 * queue_base specified => using internal or onchip
1137 			 * link ram WARNING - we do not "reserve" this block
1138 			 */
1139 			block->dma = (dma_addr_t)temp[0];
1140 			block->virt = NULL;
1141 			block->size = temp[1];
1142 		} else {
1143 			block->size = temp[1];
1144 			/* queue_base not specific => allocate requested size */
1145 			block->virt = dmam_alloc_coherent(kdev->dev,
1146 						  8 * block->size, &block->dma,
1147 						  GFP_KERNEL);
1148 			if (!block->virt) {
1149 				dev_err(kdev->dev, "failed to alloc linkram\n");
1150 				return -ENOMEM;
1151 			}
1152 		}
1153 	} else {
1154 		return -ENODEV;
1155 	}
1156 	return 0;
1157 }
1158 
1159 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1160 {
1161 	struct knav_link_ram_block *block;
1162 	struct knav_qmgr_info *qmgr;
1163 
1164 	for_each_qmgr(kdev, qmgr) {
1165 		block = &kdev->link_rams[0];
1166 		dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1167 			&block->dma, block->virt, block->size);
1168 		writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1169 		writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1170 
1171 		block++;
1172 		if (!block->size)
1173 			continue;
1174 
1175 		dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1176 			&block->dma, block->virt, block->size);
1177 		writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 static int knav_setup_queue_range(struct knav_device *kdev,
1184 					struct device_node *node)
1185 {
1186 	struct device *dev = kdev->dev;
1187 	struct knav_range_info *range;
1188 	struct knav_qmgr_info *qmgr;
1189 	u32 temp[2], start, end, id, index;
1190 	int ret, i;
1191 
1192 	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1193 	if (!range) {
1194 		dev_err(dev, "out of memory allocating range\n");
1195 		return -ENOMEM;
1196 	}
1197 
1198 	range->kdev = kdev;
1199 	range->name = knav_queue_find_name(node);
1200 	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1201 	if (!ret) {
1202 		range->queue_base = temp[0] - kdev->base_id;
1203 		range->num_queues = temp[1];
1204 	} else {
1205 		dev_err(dev, "invalid queue range %s\n", range->name);
1206 		devm_kfree(dev, range);
1207 		return -EINVAL;
1208 	}
1209 
1210 	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1211 		struct of_phandle_args oirq;
1212 
1213 		if (of_irq_parse_one(node, i, &oirq))
1214 			break;
1215 
1216 		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1217 		if (range->irqs[i].irq == IRQ_NONE)
1218 			break;
1219 
1220 		range->num_irqs++;
1221 
1222 		if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3)
1223 			range->irqs[i].cpu_map =
1224 				(oirq.args[2] & 0x0000ff00) >> 8;
1225 	}
1226 
1227 	range->num_irqs = min(range->num_irqs, range->num_queues);
1228 	if (range->num_irqs)
1229 		range->flags |= RANGE_HAS_IRQ;
1230 
1231 	if (of_get_property(node, "qalloc-by-id", NULL))
1232 		range->flags |= RANGE_RESERVED;
1233 
1234 	if (of_get_property(node, "accumulator", NULL)) {
1235 		ret = knav_init_acc_range(kdev, node, range);
1236 		if (ret < 0) {
1237 			devm_kfree(dev, range);
1238 			return ret;
1239 		}
1240 	} else {
1241 		range->ops = &knav_gp_range_ops;
1242 	}
1243 
1244 	/* set threshold to 1, and flush out the queues */
1245 	for_each_qmgr(kdev, qmgr) {
1246 		start = max(qmgr->start_queue, range->queue_base);
1247 		end   = min(qmgr->start_queue + qmgr->num_queues,
1248 			    range->queue_base + range->num_queues);
1249 		for (id = start; id < end; id++) {
1250 			index = id - qmgr->start_queue;
1251 			writel_relaxed(THRESH_GTE | 1,
1252 				       &qmgr->reg_peek[index].ptr_size_thresh);
1253 			writel_relaxed(0,
1254 				       &qmgr->reg_push[index].ptr_size_thresh);
1255 		}
1256 	}
1257 
1258 	list_add_tail(&range->list, &kdev->queue_ranges);
1259 	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1260 		range->name, range->queue_base,
1261 		range->queue_base + range->num_queues - 1,
1262 		range->num_irqs,
1263 		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1264 		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1265 		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1266 	kdev->num_queues_in_use += range->num_queues;
1267 	return 0;
1268 }
1269 
1270 static int knav_setup_queue_pools(struct knav_device *kdev,
1271 				   struct device_node *queue_pools)
1272 {
1273 	struct device_node *type, *range;
1274 	int ret;
1275 
1276 	for_each_child_of_node(queue_pools, type) {
1277 		for_each_child_of_node(type, range) {
1278 			ret = knav_setup_queue_range(kdev, range);
1279 			/* return value ignored, we init the rest... */
1280 		}
1281 	}
1282 
1283 	/* ... and barf if they all failed! */
1284 	if (list_empty(&kdev->queue_ranges)) {
1285 		dev_err(kdev->dev, "no valid queue range found\n");
1286 		return -ENODEV;
1287 	}
1288 	return 0;
1289 }
1290 
1291 static void knav_free_queue_range(struct knav_device *kdev,
1292 				  struct knav_range_info *range)
1293 {
1294 	if (range->ops && range->ops->free_range)
1295 		range->ops->free_range(range);
1296 	list_del(&range->list);
1297 	devm_kfree(kdev->dev, range);
1298 }
1299 
1300 static void knav_free_queue_ranges(struct knav_device *kdev)
1301 {
1302 	struct knav_range_info *range;
1303 
1304 	for (;;) {
1305 		range = first_queue_range(kdev);
1306 		if (!range)
1307 			break;
1308 		knav_free_queue_range(kdev, range);
1309 	}
1310 }
1311 
1312 static void knav_queue_free_regions(struct knav_device *kdev)
1313 {
1314 	struct knav_region *region;
1315 	struct knav_pool *pool, *tmp;
1316 	unsigned size;
1317 
1318 	for (;;) {
1319 		region = first_region(kdev);
1320 		if (!region)
1321 			break;
1322 		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1323 			knav_pool_destroy(pool);
1324 
1325 		size = region->virt_end - region->virt_start;
1326 		if (size)
1327 			free_pages_exact(region->virt_start, size);
1328 		list_del(&region->list);
1329 		devm_kfree(kdev->dev, region);
1330 	}
1331 }
1332 
1333 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1334 					struct device_node *node, int index)
1335 {
1336 	struct resource res;
1337 	void __iomem *regs;
1338 	int ret;
1339 
1340 	ret = of_address_to_resource(node, index, &res);
1341 	if (ret) {
1342 		dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1343 			node->name, index);
1344 		return ERR_PTR(ret);
1345 	}
1346 
1347 	regs = devm_ioremap_resource(kdev->dev, &res);
1348 	if (IS_ERR(regs))
1349 		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1350 			index, node->name);
1351 	return regs;
1352 }
1353 
1354 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1355 					struct device_node *qmgrs)
1356 {
1357 	struct device *dev = kdev->dev;
1358 	struct knav_qmgr_info *qmgr;
1359 	struct device_node *child;
1360 	u32 temp[2];
1361 	int ret;
1362 
1363 	for_each_child_of_node(qmgrs, child) {
1364 		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1365 		if (!qmgr) {
1366 			dev_err(dev, "out of memory allocating qmgr\n");
1367 			return -ENOMEM;
1368 		}
1369 
1370 		ret = of_property_read_u32_array(child, "managed-queues",
1371 						 temp, 2);
1372 		if (!ret) {
1373 			qmgr->start_queue = temp[0];
1374 			qmgr->num_queues = temp[1];
1375 		} else {
1376 			dev_err(dev, "invalid qmgr queue range\n");
1377 			devm_kfree(dev, qmgr);
1378 			continue;
1379 		}
1380 
1381 		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1382 			 qmgr->start_queue, qmgr->num_queues);
1383 
1384 		qmgr->reg_peek =
1385 			knav_queue_map_reg(kdev, child,
1386 					   KNAV_QUEUE_PEEK_REG_INDEX);
1387 		qmgr->reg_status =
1388 			knav_queue_map_reg(kdev, child,
1389 					   KNAV_QUEUE_STATUS_REG_INDEX);
1390 		qmgr->reg_config =
1391 			knav_queue_map_reg(kdev, child,
1392 					   KNAV_QUEUE_CONFIG_REG_INDEX);
1393 		qmgr->reg_region =
1394 			knav_queue_map_reg(kdev, child,
1395 					   KNAV_QUEUE_REGION_REG_INDEX);
1396 		qmgr->reg_push =
1397 			knav_queue_map_reg(kdev, child,
1398 					   KNAV_QUEUE_PUSH_REG_INDEX);
1399 		qmgr->reg_pop =
1400 			knav_queue_map_reg(kdev, child,
1401 					   KNAV_QUEUE_POP_REG_INDEX);
1402 
1403 		if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1404 		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1405 		    IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1406 			dev_err(dev, "failed to map qmgr regs\n");
1407 			if (!IS_ERR(qmgr->reg_peek))
1408 				devm_iounmap(dev, qmgr->reg_peek);
1409 			if (!IS_ERR(qmgr->reg_status))
1410 				devm_iounmap(dev, qmgr->reg_status);
1411 			if (!IS_ERR(qmgr->reg_config))
1412 				devm_iounmap(dev, qmgr->reg_config);
1413 			if (!IS_ERR(qmgr->reg_region))
1414 				devm_iounmap(dev, qmgr->reg_region);
1415 			if (!IS_ERR(qmgr->reg_push))
1416 				devm_iounmap(dev, qmgr->reg_push);
1417 			if (!IS_ERR(qmgr->reg_pop))
1418 				devm_iounmap(dev, qmgr->reg_pop);
1419 			devm_kfree(dev, qmgr);
1420 			continue;
1421 		}
1422 
1423 		list_add_tail(&qmgr->list, &kdev->qmgrs);
1424 		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1425 			 qmgr->start_queue, qmgr->num_queues,
1426 			 qmgr->reg_peek, qmgr->reg_status,
1427 			 qmgr->reg_config, qmgr->reg_region,
1428 			 qmgr->reg_push, qmgr->reg_pop);
1429 	}
1430 	return 0;
1431 }
1432 
1433 static int knav_queue_init_pdsps(struct knav_device *kdev,
1434 					struct device_node *pdsps)
1435 {
1436 	struct device *dev = kdev->dev;
1437 	struct knav_pdsp_info *pdsp;
1438 	struct device_node *child;
1439 
1440 	for_each_child_of_node(pdsps, child) {
1441 		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1442 		if (!pdsp) {
1443 			dev_err(dev, "out of memory allocating pdsp\n");
1444 			return -ENOMEM;
1445 		}
1446 		pdsp->name = knav_queue_find_name(child);
1447 		pdsp->iram =
1448 			knav_queue_map_reg(kdev, child,
1449 					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1450 		pdsp->regs =
1451 			knav_queue_map_reg(kdev, child,
1452 					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1453 		pdsp->intd =
1454 			knav_queue_map_reg(kdev, child,
1455 					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1456 		pdsp->command =
1457 			knav_queue_map_reg(kdev, child,
1458 					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1459 
1460 		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1461 		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1462 			dev_err(dev, "failed to map pdsp %s regs\n",
1463 				pdsp->name);
1464 			if (!IS_ERR(pdsp->command))
1465 				devm_iounmap(dev, pdsp->command);
1466 			if (!IS_ERR(pdsp->iram))
1467 				devm_iounmap(dev, pdsp->iram);
1468 			if (!IS_ERR(pdsp->regs))
1469 				devm_iounmap(dev, pdsp->regs);
1470 			if (!IS_ERR(pdsp->intd))
1471 				devm_iounmap(dev, pdsp->intd);
1472 			devm_kfree(dev, pdsp);
1473 			continue;
1474 		}
1475 		of_property_read_u32(child, "id", &pdsp->id);
1476 		list_add_tail(&pdsp->list, &kdev->pdsps);
1477 		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1478 			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1479 			pdsp->intd);
1480 	}
1481 	return 0;
1482 }
1483 
1484 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1485 			  struct knav_pdsp_info *pdsp)
1486 {
1487 	u32 val, timeout = 1000;
1488 	int ret;
1489 
1490 	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1491 	writel_relaxed(val, &pdsp->regs->control);
1492 	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1493 					PDSP_CTRL_RUNNING);
1494 	if (ret < 0) {
1495 		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1496 		return ret;
1497 	}
1498 	pdsp->loaded = false;
1499 	pdsp->started = false;
1500 	return 0;
1501 }
1502 
1503 static int knav_queue_load_pdsp(struct knav_device *kdev,
1504 			  struct knav_pdsp_info *pdsp)
1505 {
1506 	int i, ret, fwlen;
1507 	const struct firmware *fw;
1508 	bool found = false;
1509 	u32 *fwdata;
1510 
1511 	for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1512 		if (knav_acc_firmwares[i]) {
1513 			ret = request_firmware_direct(&fw,
1514 						      knav_acc_firmwares[i],
1515 						      kdev->dev);
1516 			if (!ret) {
1517 				found = true;
1518 				break;
1519 			}
1520 		}
1521 	}
1522 
1523 	if (!found) {
1524 		dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1525 		return -ENODEV;
1526 	}
1527 
1528 	dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1529 		 knav_acc_firmwares[i]);
1530 
1531 	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1532 	/* download the firmware */
1533 	fwdata = (u32 *)fw->data;
1534 	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1535 	for (i = 0; i < fwlen; i++)
1536 		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1537 
1538 	release_firmware(fw);
1539 	return 0;
1540 }
1541 
1542 static int knav_queue_start_pdsp(struct knav_device *kdev,
1543 			   struct knav_pdsp_info *pdsp)
1544 {
1545 	u32 val, timeout = 1000;
1546 	int ret;
1547 
1548 	/* write a command for sync */
1549 	writel_relaxed(0xffffffff, pdsp->command);
1550 	while (readl_relaxed(pdsp->command) != 0xffffffff)
1551 		cpu_relax();
1552 
1553 	/* soft reset the PDSP */
1554 	val  = readl_relaxed(&pdsp->regs->control);
1555 	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1556 	writel_relaxed(val, &pdsp->regs->control);
1557 
1558 	/* enable pdsp */
1559 	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1560 	writel_relaxed(val, &pdsp->regs->control);
1561 
1562 	/* wait for command register to clear */
1563 	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1564 	if (ret < 0) {
1565 		dev_err(kdev->dev,
1566 			"timed out on pdsp %s command register wait\n",
1567 			pdsp->name);
1568 		return ret;
1569 	}
1570 	return 0;
1571 }
1572 
1573 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1574 {
1575 	struct knav_pdsp_info *pdsp;
1576 
1577 	/* disable all pdsps */
1578 	for_each_pdsp(kdev, pdsp)
1579 		knav_queue_stop_pdsp(kdev, pdsp);
1580 }
1581 
1582 static int knav_queue_start_pdsps(struct knav_device *kdev)
1583 {
1584 	struct knav_pdsp_info *pdsp;
1585 	int ret;
1586 
1587 	knav_queue_stop_pdsps(kdev);
1588 	/* now load them all. We return success even if pdsp
1589 	 * is not loaded as acc channels are optional on having
1590 	 * firmware availability in the system. We set the loaded
1591 	 * and stated flag and when initialize the acc range, check
1592 	 * it and init the range only if pdsp is started.
1593 	 */
1594 	for_each_pdsp(kdev, pdsp) {
1595 		ret = knav_queue_load_pdsp(kdev, pdsp);
1596 		if (!ret)
1597 			pdsp->loaded = true;
1598 	}
1599 
1600 	for_each_pdsp(kdev, pdsp) {
1601 		if (pdsp->loaded) {
1602 			ret = knav_queue_start_pdsp(kdev, pdsp);
1603 			if (!ret)
1604 				pdsp->started = true;
1605 		}
1606 	}
1607 	return 0;
1608 }
1609 
1610 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1611 {
1612 	struct knav_qmgr_info *qmgr;
1613 
1614 	for_each_qmgr(kdev, qmgr) {
1615 		if ((id >= qmgr->start_queue) &&
1616 		    (id < qmgr->start_queue + qmgr->num_queues))
1617 			return qmgr;
1618 	}
1619 	return NULL;
1620 }
1621 
1622 static int knav_queue_init_queue(struct knav_device *kdev,
1623 					struct knav_range_info *range,
1624 					struct knav_queue_inst *inst,
1625 					unsigned id)
1626 {
1627 	char irq_name[KNAV_NAME_SIZE];
1628 	inst->qmgr = knav_find_qmgr(id);
1629 	if (!inst->qmgr)
1630 		return -1;
1631 
1632 	INIT_LIST_HEAD(&inst->handles);
1633 	inst->kdev = kdev;
1634 	inst->range = range;
1635 	inst->irq_num = -1;
1636 	inst->id = id;
1637 	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1638 	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1639 
1640 	if (range->ops && range->ops->init_queue)
1641 		return range->ops->init_queue(range, inst);
1642 	else
1643 		return 0;
1644 }
1645 
1646 static int knav_queue_init_queues(struct knav_device *kdev)
1647 {
1648 	struct knav_range_info *range;
1649 	int size, id, base_idx;
1650 	int idx = 0, ret = 0;
1651 
1652 	/* how much do we need for instance data? */
1653 	size = sizeof(struct knav_queue_inst);
1654 
1655 	/* round this up to a power of 2, keep the index to instance
1656 	 * arithmetic fast.
1657 	 * */
1658 	kdev->inst_shift = order_base_2(size);
1659 	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1660 	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1661 	if (!kdev->instances)
1662 		return -ENOMEM;
1663 
1664 	for_each_queue_range(kdev, range) {
1665 		if (range->ops && range->ops->init_range)
1666 			range->ops->init_range(range);
1667 		base_idx = idx;
1668 		for (id = range->queue_base;
1669 		     id < range->queue_base + range->num_queues; id++, idx++) {
1670 			ret = knav_queue_init_queue(kdev, range,
1671 					knav_queue_idx_to_inst(kdev, idx), id);
1672 			if (ret < 0)
1673 				return ret;
1674 		}
1675 		range->queue_base_inst =
1676 			knav_queue_idx_to_inst(kdev, base_idx);
1677 	}
1678 	return 0;
1679 }
1680 
1681 static int knav_queue_probe(struct platform_device *pdev)
1682 {
1683 	struct device_node *node = pdev->dev.of_node;
1684 	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1685 	struct device *dev = &pdev->dev;
1686 	u32 temp[2];
1687 	int ret;
1688 
1689 	if (!node) {
1690 		dev_err(dev, "device tree info unavailable\n");
1691 		return -ENODEV;
1692 	}
1693 
1694 	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1695 	if (!kdev) {
1696 		dev_err(dev, "memory allocation failed\n");
1697 		return -ENOMEM;
1698 	}
1699 
1700 	platform_set_drvdata(pdev, kdev);
1701 	kdev->dev = dev;
1702 	INIT_LIST_HEAD(&kdev->queue_ranges);
1703 	INIT_LIST_HEAD(&kdev->qmgrs);
1704 	INIT_LIST_HEAD(&kdev->pools);
1705 	INIT_LIST_HEAD(&kdev->regions);
1706 	INIT_LIST_HEAD(&kdev->pdsps);
1707 
1708 	pm_runtime_enable(&pdev->dev);
1709 	ret = pm_runtime_get_sync(&pdev->dev);
1710 	if (ret < 0) {
1711 		dev_err(dev, "Failed to enable QMSS\n");
1712 		return ret;
1713 	}
1714 
1715 	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1716 		dev_err(dev, "queue-range not specified\n");
1717 		ret = -ENODEV;
1718 		goto err;
1719 	}
1720 	kdev->base_id    = temp[0];
1721 	kdev->num_queues = temp[1];
1722 
1723 	/* Initialize queue managers using device tree configuration */
1724 	qmgrs =  of_get_child_by_name(node, "qmgrs");
1725 	if (!qmgrs) {
1726 		dev_err(dev, "queue manager info not specified\n");
1727 		ret = -ENODEV;
1728 		goto err;
1729 	}
1730 	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1731 	of_node_put(qmgrs);
1732 	if (ret)
1733 		goto err;
1734 
1735 	/* get pdsp configuration values from device tree */
1736 	pdsps =  of_get_child_by_name(node, "pdsps");
1737 	if (pdsps) {
1738 		ret = knav_queue_init_pdsps(kdev, pdsps);
1739 		if (ret)
1740 			goto err;
1741 
1742 		ret = knav_queue_start_pdsps(kdev);
1743 		if (ret)
1744 			goto err;
1745 	}
1746 	of_node_put(pdsps);
1747 
1748 	/* get usable queue range values from device tree */
1749 	queue_pools = of_get_child_by_name(node, "queue-pools");
1750 	if (!queue_pools) {
1751 		dev_err(dev, "queue-pools not specified\n");
1752 		ret = -ENODEV;
1753 		goto err;
1754 	}
1755 	ret = knav_setup_queue_pools(kdev, queue_pools);
1756 	of_node_put(queue_pools);
1757 	if (ret)
1758 		goto err;
1759 
1760 	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1761 	if (ret) {
1762 		dev_err(kdev->dev, "could not setup linking ram\n");
1763 		goto err;
1764 	}
1765 
1766 	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1767 	if (ret) {
1768 		/*
1769 		 * nothing really, we have one linking ram already, so we just
1770 		 * live within our means
1771 		 */
1772 	}
1773 
1774 	ret = knav_queue_setup_link_ram(kdev);
1775 	if (ret)
1776 		goto err;
1777 
1778 	regions =  of_get_child_by_name(node, "descriptor-regions");
1779 	if (!regions) {
1780 		dev_err(dev, "descriptor-regions not specified\n");
1781 		goto err;
1782 	}
1783 	ret = knav_queue_setup_regions(kdev, regions);
1784 	of_node_put(regions);
1785 	if (ret)
1786 		goto err;
1787 
1788 	ret = knav_queue_init_queues(kdev);
1789 	if (ret < 0) {
1790 		dev_err(dev, "hwqueue initialization failed\n");
1791 		goto err;
1792 	}
1793 
1794 	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1795 			    &knav_queue_debug_ops);
1796 	return 0;
1797 
1798 err:
1799 	knav_queue_stop_pdsps(kdev);
1800 	knav_queue_free_regions(kdev);
1801 	knav_free_queue_ranges(kdev);
1802 	pm_runtime_put_sync(&pdev->dev);
1803 	pm_runtime_disable(&pdev->dev);
1804 	return ret;
1805 }
1806 
1807 static int knav_queue_remove(struct platform_device *pdev)
1808 {
1809 	/* TODO: Free resources */
1810 	pm_runtime_put_sync(&pdev->dev);
1811 	pm_runtime_disable(&pdev->dev);
1812 	return 0;
1813 }
1814 
1815 /* Match table for of_platform binding */
1816 static struct of_device_id keystone_qmss_of_match[] = {
1817 	{ .compatible = "ti,keystone-navigator-qmss", },
1818 	{},
1819 };
1820 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1821 
1822 static struct platform_driver keystone_qmss_driver = {
1823 	.probe		= knav_queue_probe,
1824 	.remove		= knav_queue_remove,
1825 	.driver		= {
1826 		.name	= "keystone-navigator-qmss",
1827 		.of_match_table = keystone_qmss_of_match,
1828 	},
1829 };
1830 module_platform_driver(keystone_qmss_driver);
1831 
1832 MODULE_LICENSE("GPL v2");
1833 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1834 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1835 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1836