xref: /openbmc/linux/drivers/soc/ti/knav_qmss_queue.c (revision 350601b4)
1 /*
2  * Keystone Queue Manager subsystem driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5  * Authors:	Sandeep Nair <sandeep_n@ti.com>
6  *		Cyril Chemparathy <cyril@ti.com>
7  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18 
19 #include <linux/debugfs.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/firmware.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/module.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_irq.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/soc/ti/knav_qmss.h>
31 
32 #include "knav_qmss.h"
33 
34 static struct knav_device *kdev;
35 static DEFINE_MUTEX(knav_dev_lock);
36 
37 /* Queue manager register indices in DTS */
38 #define KNAV_QUEUE_PEEK_REG_INDEX	0
39 #define KNAV_QUEUE_STATUS_REG_INDEX	1
40 #define KNAV_QUEUE_CONFIG_REG_INDEX	2
41 #define KNAV_QUEUE_REGION_REG_INDEX	3
42 #define KNAV_QUEUE_PUSH_REG_INDEX	4
43 #define KNAV_QUEUE_POP_REG_INDEX	5
44 
45 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
46  * There are no status and vbusm push registers on this version
47  * of QMSS. Push registers are same as pop, So all indices above 1
48  * are to be re-defined
49  */
50 #define KNAV_L_QUEUE_CONFIG_REG_INDEX	1
51 #define KNAV_L_QUEUE_REGION_REG_INDEX	2
52 #define KNAV_L_QUEUE_PUSH_REG_INDEX	3
53 
54 /* PDSP register indices in DTS */
55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
59 
60 #define knav_queue_idx_to_inst(kdev, idx)			\
61 	(kdev->instances + (idx << kdev->inst_shift))
62 
63 #define for_each_handle_rcu(qh, inst)			\
64 	list_for_each_entry_rcu(qh, &inst->handles, list)
65 
66 #define for_each_instance(idx, inst, kdev)		\
67 	for (idx = 0, inst = kdev->instances;		\
68 	     idx < (kdev)->num_queues_in_use;			\
69 	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
70 
71 /* All firmware file names end up here. List the firmware file names below.
72  * Newest followed by older ones. Search is done from start of the array
73  * until a firmware file is found.
74  */
75 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
76 
77 /**
78  * knav_queue_notify: qmss queue notfier call
79  *
80  * @inst:		qmss queue instance like accumulator
81  */
82 void knav_queue_notify(struct knav_queue_inst *inst)
83 {
84 	struct knav_queue *qh;
85 
86 	if (!inst)
87 		return;
88 
89 	rcu_read_lock();
90 	for_each_handle_rcu(qh, inst) {
91 		if (atomic_read(&qh->notifier_enabled) <= 0)
92 			continue;
93 		if (WARN_ON(!qh->notifier_fn))
94 			continue;
95 		atomic_inc(&qh->stats.notifies);
96 		qh->notifier_fn(qh->notifier_fn_arg);
97 	}
98 	rcu_read_unlock();
99 }
100 EXPORT_SYMBOL_GPL(knav_queue_notify);
101 
102 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
103 {
104 	struct knav_queue_inst *inst = _instdata;
105 
106 	knav_queue_notify(inst);
107 	return IRQ_HANDLED;
108 }
109 
110 static int knav_queue_setup_irq(struct knav_range_info *range,
111 			  struct knav_queue_inst *inst)
112 {
113 	unsigned queue = inst->id - range->queue_base;
114 	unsigned long cpu_map;
115 	int ret = 0, irq;
116 
117 	if (range->flags & RANGE_HAS_IRQ) {
118 		irq = range->irqs[queue].irq;
119 		cpu_map = range->irqs[queue].cpu_map;
120 		ret = request_irq(irq, knav_queue_int_handler, 0,
121 					inst->irq_name, inst);
122 		if (ret)
123 			return ret;
124 		disable_irq(irq);
125 		if (cpu_map) {
126 			ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
127 			if (ret) {
128 				dev_warn(range->kdev->dev,
129 					 "Failed to set IRQ affinity\n");
130 				return ret;
131 			}
132 		}
133 	}
134 	return ret;
135 }
136 
137 static void knav_queue_free_irq(struct knav_queue_inst *inst)
138 {
139 	struct knav_range_info *range = inst->range;
140 	unsigned queue = inst->id - inst->range->queue_base;
141 	int irq;
142 
143 	if (range->flags & RANGE_HAS_IRQ) {
144 		irq = range->irqs[queue].irq;
145 		irq_set_affinity_hint(irq, NULL);
146 		free_irq(irq, inst);
147 	}
148 }
149 
150 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
151 {
152 	return !list_empty(&inst->handles);
153 }
154 
155 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
156 {
157 	return inst->range->flags & RANGE_RESERVED;
158 }
159 
160 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
161 {
162 	struct knav_queue *tmp;
163 
164 	rcu_read_lock();
165 	for_each_handle_rcu(tmp, inst) {
166 		if (tmp->flags & KNAV_QUEUE_SHARED) {
167 			rcu_read_unlock();
168 			return true;
169 		}
170 	}
171 	rcu_read_unlock();
172 	return false;
173 }
174 
175 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
176 						unsigned type)
177 {
178 	if ((type == KNAV_QUEUE_QPEND) &&
179 	    (inst->range->flags & RANGE_HAS_IRQ)) {
180 		return true;
181 	} else if ((type == KNAV_QUEUE_ACC) &&
182 		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
183 		return true;
184 	} else if ((type == KNAV_QUEUE_GP) &&
185 		!(inst->range->flags &
186 			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
187 		return true;
188 	}
189 	return false;
190 }
191 
192 static inline struct knav_queue_inst *
193 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
194 {
195 	struct knav_queue_inst *inst;
196 	int idx;
197 
198 	for_each_instance(idx, inst, kdev) {
199 		if (inst->id == id)
200 			return inst;
201 	}
202 	return NULL;
203 }
204 
205 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
206 {
207 	if (kdev->base_id <= id &&
208 	    kdev->base_id + kdev->num_queues > id) {
209 		id -= kdev->base_id;
210 		return knav_queue_match_id_to_inst(kdev, id);
211 	}
212 	return NULL;
213 }
214 
215 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
216 				      const char *name, unsigned flags)
217 {
218 	struct knav_queue *qh;
219 	unsigned id;
220 	int ret = 0;
221 
222 	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
223 	if (!qh)
224 		return ERR_PTR(-ENOMEM);
225 
226 	qh->flags = flags;
227 	qh->inst = inst;
228 	id = inst->id - inst->qmgr->start_queue;
229 	qh->reg_push = &inst->qmgr->reg_push[id];
230 	qh->reg_pop = &inst->qmgr->reg_pop[id];
231 	qh->reg_peek = &inst->qmgr->reg_peek[id];
232 
233 	/* first opener? */
234 	if (!knav_queue_is_busy(inst)) {
235 		struct knav_range_info *range = inst->range;
236 
237 		inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
238 		if (range->ops && range->ops->open_queue)
239 			ret = range->ops->open_queue(range, inst, flags);
240 
241 		if (ret) {
242 			devm_kfree(inst->kdev->dev, qh);
243 			return ERR_PTR(ret);
244 		}
245 	}
246 	list_add_tail_rcu(&qh->list, &inst->handles);
247 	return qh;
248 }
249 
250 static struct knav_queue *
251 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
252 {
253 	struct knav_queue_inst *inst;
254 	struct knav_queue *qh;
255 
256 	mutex_lock(&knav_dev_lock);
257 
258 	qh = ERR_PTR(-ENODEV);
259 	inst = knav_queue_find_by_id(id);
260 	if (!inst)
261 		goto unlock_ret;
262 
263 	qh = ERR_PTR(-EEXIST);
264 	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
265 		goto unlock_ret;
266 
267 	qh = ERR_PTR(-EBUSY);
268 	if ((flags & KNAV_QUEUE_SHARED) &&
269 	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
270 		goto unlock_ret;
271 
272 	qh = __knav_queue_open(inst, name, flags);
273 
274 unlock_ret:
275 	mutex_unlock(&knav_dev_lock);
276 
277 	return qh;
278 }
279 
280 static struct knav_queue *knav_queue_open_by_type(const char *name,
281 						unsigned type, unsigned flags)
282 {
283 	struct knav_queue_inst *inst;
284 	struct knav_queue *qh = ERR_PTR(-EINVAL);
285 	int idx;
286 
287 	mutex_lock(&knav_dev_lock);
288 
289 	for_each_instance(idx, inst, kdev) {
290 		if (knav_queue_is_reserved(inst))
291 			continue;
292 		if (!knav_queue_match_type(inst, type))
293 			continue;
294 		if (knav_queue_is_busy(inst))
295 			continue;
296 		qh = __knav_queue_open(inst, name, flags);
297 		goto unlock_ret;
298 	}
299 
300 unlock_ret:
301 	mutex_unlock(&knav_dev_lock);
302 	return qh;
303 }
304 
305 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
306 {
307 	struct knav_range_info *range = inst->range;
308 
309 	if (range->ops && range->ops->set_notify)
310 		range->ops->set_notify(range, inst, enabled);
311 }
312 
313 static int knav_queue_enable_notifier(struct knav_queue *qh)
314 {
315 	struct knav_queue_inst *inst = qh->inst;
316 	bool first;
317 
318 	if (WARN_ON(!qh->notifier_fn))
319 		return -EINVAL;
320 
321 	/* Adjust the per handle notifier count */
322 	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
323 	if (!first)
324 		return 0; /* nothing to do */
325 
326 	/* Now adjust the per instance notifier count */
327 	first = (atomic_inc_return(&inst->num_notifiers) == 1);
328 	if (first)
329 		knav_queue_set_notify(inst, true);
330 
331 	return 0;
332 }
333 
334 static int knav_queue_disable_notifier(struct knav_queue *qh)
335 {
336 	struct knav_queue_inst *inst = qh->inst;
337 	bool last;
338 
339 	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
340 	if (!last)
341 		return 0; /* nothing to do */
342 
343 	last = (atomic_dec_return(&inst->num_notifiers) == 0);
344 	if (last)
345 		knav_queue_set_notify(inst, false);
346 
347 	return 0;
348 }
349 
350 static int knav_queue_set_notifier(struct knav_queue *qh,
351 				struct knav_queue_notify_config *cfg)
352 {
353 	knav_queue_notify_fn old_fn = qh->notifier_fn;
354 
355 	if (!cfg)
356 		return -EINVAL;
357 
358 	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
359 		return -ENOTSUPP;
360 
361 	if (!cfg->fn && old_fn)
362 		knav_queue_disable_notifier(qh);
363 
364 	qh->notifier_fn = cfg->fn;
365 	qh->notifier_fn_arg = cfg->fn_arg;
366 
367 	if (cfg->fn && !old_fn)
368 		knav_queue_enable_notifier(qh);
369 
370 	return 0;
371 }
372 
373 static int knav_gp_set_notify(struct knav_range_info *range,
374 			       struct knav_queue_inst *inst,
375 			       bool enabled)
376 {
377 	unsigned queue;
378 
379 	if (range->flags & RANGE_HAS_IRQ) {
380 		queue = inst->id - range->queue_base;
381 		if (enabled)
382 			enable_irq(range->irqs[queue].irq);
383 		else
384 			disable_irq_nosync(range->irqs[queue].irq);
385 	}
386 	return 0;
387 }
388 
389 static int knav_gp_open_queue(struct knav_range_info *range,
390 				struct knav_queue_inst *inst, unsigned flags)
391 {
392 	return knav_queue_setup_irq(range, inst);
393 }
394 
395 static int knav_gp_close_queue(struct knav_range_info *range,
396 				struct knav_queue_inst *inst)
397 {
398 	knav_queue_free_irq(inst);
399 	return 0;
400 }
401 
402 struct knav_range_ops knav_gp_range_ops = {
403 	.set_notify	= knav_gp_set_notify,
404 	.open_queue	= knav_gp_open_queue,
405 	.close_queue	= knav_gp_close_queue,
406 };
407 
408 
409 static int knav_queue_get_count(void *qhandle)
410 {
411 	struct knav_queue *qh = qhandle;
412 	struct knav_queue_inst *inst = qh->inst;
413 
414 	return readl_relaxed(&qh->reg_peek[0].entry_count) +
415 		atomic_read(&inst->desc_count);
416 }
417 
418 static void knav_queue_debug_show_instance(struct seq_file *s,
419 					struct knav_queue_inst *inst)
420 {
421 	struct knav_device *kdev = inst->kdev;
422 	struct knav_queue *qh;
423 
424 	if (!knav_queue_is_busy(inst))
425 		return;
426 
427 	seq_printf(s, "\tqueue id %d (%s)\n",
428 		   kdev->base_id + inst->id, inst->name);
429 	for_each_handle_rcu(qh, inst) {
430 		seq_printf(s, "\t\thandle %p: ", qh);
431 		seq_printf(s, "pushes %8d, ",
432 			   atomic_read(&qh->stats.pushes));
433 		seq_printf(s, "pops %8d, ",
434 			   atomic_read(&qh->stats.pops));
435 		seq_printf(s, "count %8d, ",
436 			   knav_queue_get_count(qh));
437 		seq_printf(s, "notifies %8d, ",
438 			   atomic_read(&qh->stats.notifies));
439 		seq_printf(s, "push errors %8d, ",
440 			   atomic_read(&qh->stats.push_errors));
441 		seq_printf(s, "pop errors %8d\n",
442 			   atomic_read(&qh->stats.pop_errors));
443 	}
444 }
445 
446 static int knav_queue_debug_show(struct seq_file *s, void *v)
447 {
448 	struct knav_queue_inst *inst;
449 	int idx;
450 
451 	mutex_lock(&knav_dev_lock);
452 	seq_printf(s, "%s: %u-%u\n",
453 		   dev_name(kdev->dev), kdev->base_id,
454 		   kdev->base_id + kdev->num_queues - 1);
455 	for_each_instance(idx, inst, kdev)
456 		knav_queue_debug_show_instance(s, inst);
457 	mutex_unlock(&knav_dev_lock);
458 
459 	return 0;
460 }
461 
462 static int knav_queue_debug_open(struct inode *inode, struct file *file)
463 {
464 	return single_open(file, knav_queue_debug_show, NULL);
465 }
466 
467 static const struct file_operations knav_queue_debug_ops = {
468 	.open		= knav_queue_debug_open,
469 	.read		= seq_read,
470 	.llseek		= seq_lseek,
471 	.release	= single_release,
472 };
473 
474 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
475 					u32 flags)
476 {
477 	unsigned long end;
478 	u32 val = 0;
479 
480 	end = jiffies + msecs_to_jiffies(timeout);
481 	while (time_after(end, jiffies)) {
482 		val = readl_relaxed(addr);
483 		if (flags)
484 			val &= flags;
485 		if (!val)
486 			break;
487 		cpu_relax();
488 	}
489 	return val ? -ETIMEDOUT : 0;
490 }
491 
492 
493 static int knav_queue_flush(struct knav_queue *qh)
494 {
495 	struct knav_queue_inst *inst = qh->inst;
496 	unsigned id = inst->id - inst->qmgr->start_queue;
497 
498 	atomic_set(&inst->desc_count, 0);
499 	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
500 	return 0;
501 }
502 
503 /**
504  * knav_queue_open()	- open a hardware queue
505  * @name		- name to give the queue handle
506  * @id			- desired queue number if any or specifes the type
507  *			  of queue
508  * @flags		- the following flags are applicable to queues:
509  *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
510  *			     exclusive by default.
511  *			     Subsequent attempts to open a shared queue should
512  *			     also have this flag.
513  *
514  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
515  * to check the returned value for error codes.
516  */
517 void *knav_queue_open(const char *name, unsigned id,
518 					unsigned flags)
519 {
520 	struct knav_queue *qh = ERR_PTR(-EINVAL);
521 
522 	switch (id) {
523 	case KNAV_QUEUE_QPEND:
524 	case KNAV_QUEUE_ACC:
525 	case KNAV_QUEUE_GP:
526 		qh = knav_queue_open_by_type(name, id, flags);
527 		break;
528 
529 	default:
530 		qh = knav_queue_open_by_id(name, id, flags);
531 		break;
532 	}
533 	return qh;
534 }
535 EXPORT_SYMBOL_GPL(knav_queue_open);
536 
537 /**
538  * knav_queue_close()	- close a hardware queue handle
539  * @qh			- handle to close
540  */
541 void knav_queue_close(void *qhandle)
542 {
543 	struct knav_queue *qh = qhandle;
544 	struct knav_queue_inst *inst = qh->inst;
545 
546 	while (atomic_read(&qh->notifier_enabled) > 0)
547 		knav_queue_disable_notifier(qh);
548 
549 	mutex_lock(&knav_dev_lock);
550 	list_del_rcu(&qh->list);
551 	mutex_unlock(&knav_dev_lock);
552 	synchronize_rcu();
553 	if (!knav_queue_is_busy(inst)) {
554 		struct knav_range_info *range = inst->range;
555 
556 		if (range->ops && range->ops->close_queue)
557 			range->ops->close_queue(range, inst);
558 	}
559 	devm_kfree(inst->kdev->dev, qh);
560 }
561 EXPORT_SYMBOL_GPL(knav_queue_close);
562 
563 /**
564  * knav_queue_device_control()	- Perform control operations on a queue
565  * @qh				- queue handle
566  * @cmd				- control commands
567  * @arg				- command argument
568  *
569  * Returns 0 on success, errno otherwise.
570  */
571 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
572 				unsigned long arg)
573 {
574 	struct knav_queue *qh = qhandle;
575 	struct knav_queue_notify_config *cfg;
576 	int ret;
577 
578 	switch ((int)cmd) {
579 	case KNAV_QUEUE_GET_ID:
580 		ret = qh->inst->kdev->base_id + qh->inst->id;
581 		break;
582 
583 	case KNAV_QUEUE_FLUSH:
584 		ret = knav_queue_flush(qh);
585 		break;
586 
587 	case KNAV_QUEUE_SET_NOTIFIER:
588 		cfg = (void *)arg;
589 		ret = knav_queue_set_notifier(qh, cfg);
590 		break;
591 
592 	case KNAV_QUEUE_ENABLE_NOTIFY:
593 		ret = knav_queue_enable_notifier(qh);
594 		break;
595 
596 	case KNAV_QUEUE_DISABLE_NOTIFY:
597 		ret = knav_queue_disable_notifier(qh);
598 		break;
599 
600 	case KNAV_QUEUE_GET_COUNT:
601 		ret = knav_queue_get_count(qh);
602 		break;
603 
604 	default:
605 		ret = -ENOTSUPP;
606 		break;
607 	}
608 	return ret;
609 }
610 EXPORT_SYMBOL_GPL(knav_queue_device_control);
611 
612 
613 
614 /**
615  * knav_queue_push()	- push data (or descriptor) to the tail of a queue
616  * @qh			- hardware queue handle
617  * @data		- data to push
618  * @size		- size of data to push
619  * @flags		- can be used to pass additional information
620  *
621  * Returns 0 on success, errno otherwise.
622  */
623 int knav_queue_push(void *qhandle, dma_addr_t dma,
624 					unsigned size, unsigned flags)
625 {
626 	struct knav_queue *qh = qhandle;
627 	u32 val;
628 
629 	val = (u32)dma | ((size / 16) - 1);
630 	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
631 
632 	atomic_inc(&qh->stats.pushes);
633 	return 0;
634 }
635 EXPORT_SYMBOL_GPL(knav_queue_push);
636 
637 /**
638  * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
639  * @qh			- hardware queue handle
640  * @size		- (optional) size of the data pop'ed.
641  *
642  * Returns a DMA address on success, 0 on failure.
643  */
644 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
645 {
646 	struct knav_queue *qh = qhandle;
647 	struct knav_queue_inst *inst = qh->inst;
648 	dma_addr_t dma;
649 	u32 val, idx;
650 
651 	/* are we accumulated? */
652 	if (inst->descs) {
653 		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
654 			atomic_inc(&inst->desc_count);
655 			return 0;
656 		}
657 		idx  = atomic_inc_return(&inst->desc_head);
658 		idx &= ACC_DESCS_MASK;
659 		val = inst->descs[idx];
660 	} else {
661 		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
662 		if (unlikely(!val))
663 			return 0;
664 	}
665 
666 	dma = val & DESC_PTR_MASK;
667 	if (size)
668 		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
669 
670 	atomic_inc(&qh->stats.pops);
671 	return dma;
672 }
673 EXPORT_SYMBOL_GPL(knav_queue_pop);
674 
675 /* carve out descriptors and push into queue */
676 static void kdesc_fill_pool(struct knav_pool *pool)
677 {
678 	struct knav_region *region;
679 	int i;
680 
681 	region = pool->region;
682 	pool->desc_size = region->desc_size;
683 	for (i = 0; i < pool->num_desc; i++) {
684 		int index = pool->region_offset + i;
685 		dma_addr_t dma_addr;
686 		unsigned dma_size;
687 		dma_addr = region->dma_start + (region->desc_size * index);
688 		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
689 		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
690 					   DMA_TO_DEVICE);
691 		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
692 	}
693 }
694 
695 /* pop out descriptors and close the queue */
696 static void kdesc_empty_pool(struct knav_pool *pool)
697 {
698 	dma_addr_t dma;
699 	unsigned size;
700 	void *desc;
701 	int i;
702 
703 	if (!pool->queue)
704 		return;
705 
706 	for (i = 0;; i++) {
707 		dma = knav_queue_pop(pool->queue, &size);
708 		if (!dma)
709 			break;
710 		desc = knav_pool_desc_dma_to_virt(pool, dma);
711 		if (!desc) {
712 			dev_dbg(pool->kdev->dev,
713 				"couldn't unmap desc, continuing\n");
714 			continue;
715 		}
716 	}
717 	WARN_ON(i != pool->num_desc);
718 	knav_queue_close(pool->queue);
719 }
720 
721 
722 /* Get the DMA address of a descriptor */
723 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
724 {
725 	struct knav_pool *pool = ph;
726 	return pool->region->dma_start + (virt - pool->region->virt_start);
727 }
728 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
729 
730 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
731 {
732 	struct knav_pool *pool = ph;
733 	return pool->region->virt_start + (dma - pool->region->dma_start);
734 }
735 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
736 
737 /**
738  * knav_pool_create()	- Create a pool of descriptors
739  * @name		- name to give the pool handle
740  * @num_desc		- numbers of descriptors in the pool
741  * @region_id		- QMSS region id from which the descriptors are to be
742  *			  allocated.
743  *
744  * Returns a pool handle on success.
745  * Use IS_ERR_OR_NULL() to identify error values on return.
746  */
747 void *knav_pool_create(const char *name,
748 					int num_desc, int region_id)
749 {
750 	struct knav_region *reg_itr, *region = NULL;
751 	struct knav_pool *pool, *pi;
752 	struct list_head *node;
753 	unsigned last_offset;
754 	bool slot_found;
755 	int ret;
756 
757 	if (!kdev)
758 		return ERR_PTR(-EPROBE_DEFER);
759 
760 	if (!kdev->dev)
761 		return ERR_PTR(-ENODEV);
762 
763 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
764 	if (!pool) {
765 		dev_err(kdev->dev, "out of memory allocating pool\n");
766 		return ERR_PTR(-ENOMEM);
767 	}
768 
769 	for_each_region(kdev, reg_itr) {
770 		if (reg_itr->id != region_id)
771 			continue;
772 		region = reg_itr;
773 		break;
774 	}
775 
776 	if (!region) {
777 		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
778 		ret = -EINVAL;
779 		goto err;
780 	}
781 
782 	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
783 	if (IS_ERR_OR_NULL(pool->queue)) {
784 		dev_err(kdev->dev,
785 			"failed to open queue for pool(%s), error %ld\n",
786 			name, PTR_ERR(pool->queue));
787 		ret = PTR_ERR(pool->queue);
788 		goto err;
789 	}
790 
791 	pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
792 	pool->kdev = kdev;
793 	pool->dev = kdev->dev;
794 
795 	mutex_lock(&knav_dev_lock);
796 
797 	if (num_desc > (region->num_desc - region->used_desc)) {
798 		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
799 			region_id, name);
800 		ret = -ENOMEM;
801 		goto err_unlock;
802 	}
803 
804 	/* Region maintains a sorted (by region offset) list of pools
805 	 * use the first free slot which is large enough to accomodate
806 	 * the request
807 	 */
808 	last_offset = 0;
809 	slot_found = false;
810 	node = &region->pools;
811 	list_for_each_entry(pi, &region->pools, region_inst) {
812 		if ((pi->region_offset - last_offset) >= num_desc) {
813 			slot_found = true;
814 			break;
815 		}
816 		last_offset = pi->region_offset + pi->num_desc;
817 	}
818 	node = &pi->region_inst;
819 
820 	if (slot_found) {
821 		pool->region = region;
822 		pool->num_desc = num_desc;
823 		pool->region_offset = last_offset;
824 		region->used_desc += num_desc;
825 		list_add_tail(&pool->list, &kdev->pools);
826 		list_add_tail(&pool->region_inst, node);
827 	} else {
828 		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
829 			name, region_id);
830 		ret = -ENOMEM;
831 		goto err_unlock;
832 	}
833 
834 	mutex_unlock(&knav_dev_lock);
835 	kdesc_fill_pool(pool);
836 	return pool;
837 
838 err_unlock:
839 	mutex_unlock(&knav_dev_lock);
840 err:
841 	kfree(pool->name);
842 	devm_kfree(kdev->dev, pool);
843 	return ERR_PTR(ret);
844 }
845 EXPORT_SYMBOL_GPL(knav_pool_create);
846 
847 /**
848  * knav_pool_destroy()	- Free a pool of descriptors
849  * @pool		- pool handle
850  */
851 void knav_pool_destroy(void *ph)
852 {
853 	struct knav_pool *pool = ph;
854 
855 	if (!pool)
856 		return;
857 
858 	if (!pool->region)
859 		return;
860 
861 	kdesc_empty_pool(pool);
862 	mutex_lock(&knav_dev_lock);
863 
864 	pool->region->used_desc -= pool->num_desc;
865 	list_del(&pool->region_inst);
866 	list_del(&pool->list);
867 
868 	mutex_unlock(&knav_dev_lock);
869 	kfree(pool->name);
870 	devm_kfree(kdev->dev, pool);
871 }
872 EXPORT_SYMBOL_GPL(knav_pool_destroy);
873 
874 
875 /**
876  * knav_pool_desc_get()	- Get a descriptor from the pool
877  * @pool			- pool handle
878  *
879  * Returns descriptor from the pool.
880  */
881 void *knav_pool_desc_get(void *ph)
882 {
883 	struct knav_pool *pool = ph;
884 	dma_addr_t dma;
885 	unsigned size;
886 	void *data;
887 
888 	dma = knav_queue_pop(pool->queue, &size);
889 	if (unlikely(!dma))
890 		return ERR_PTR(-ENOMEM);
891 	data = knav_pool_desc_dma_to_virt(pool, dma);
892 	return data;
893 }
894 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
895 
896 /**
897  * knav_pool_desc_put()	- return a descriptor to the pool
898  * @pool			- pool handle
899  */
900 void knav_pool_desc_put(void *ph, void *desc)
901 {
902 	struct knav_pool *pool = ph;
903 	dma_addr_t dma;
904 	dma = knav_pool_desc_virt_to_dma(pool, desc);
905 	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
906 }
907 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
908 
909 /**
910  * knav_pool_desc_map()	- Map descriptor for DMA transfer
911  * @pool			- pool handle
912  * @desc			- address of descriptor to map
913  * @size			- size of descriptor to map
914  * @dma				- DMA address return pointer
915  * @dma_sz			- adjusted return pointer
916  *
917  * Returns 0 on success, errno otherwise.
918  */
919 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
920 					dma_addr_t *dma, unsigned *dma_sz)
921 {
922 	struct knav_pool *pool = ph;
923 	*dma = knav_pool_desc_virt_to_dma(pool, desc);
924 	size = min(size, pool->region->desc_size);
925 	size = ALIGN(size, SMP_CACHE_BYTES);
926 	*dma_sz = size;
927 	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
928 
929 	/* Ensure the descriptor reaches to the memory */
930 	__iowmb();
931 
932 	return 0;
933 }
934 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
935 
936 /**
937  * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
938  * @pool			- pool handle
939  * @dma				- DMA address of descriptor to unmap
940  * @dma_sz			- size of descriptor to unmap
941  *
942  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
943  * error values on return.
944  */
945 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
946 {
947 	struct knav_pool *pool = ph;
948 	unsigned desc_sz;
949 	void *desc;
950 
951 	desc_sz = min(dma_sz, pool->region->desc_size);
952 	desc = knav_pool_desc_dma_to_virt(pool, dma);
953 	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
954 	prefetch(desc);
955 	return desc;
956 }
957 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
958 
959 /**
960  * knav_pool_count()	- Get the number of descriptors in pool.
961  * @pool		- pool handle
962  * Returns number of elements in the pool.
963  */
964 int knav_pool_count(void *ph)
965 {
966 	struct knav_pool *pool = ph;
967 	return knav_queue_get_count(pool->queue);
968 }
969 EXPORT_SYMBOL_GPL(knav_pool_count);
970 
971 static void knav_queue_setup_region(struct knav_device *kdev,
972 					struct knav_region *region)
973 {
974 	unsigned hw_num_desc, hw_desc_size, size;
975 	struct knav_reg_region __iomem  *regs;
976 	struct knav_qmgr_info *qmgr;
977 	struct knav_pool *pool;
978 	int id = region->id;
979 	struct page *page;
980 
981 	/* unused region? */
982 	if (!region->num_desc) {
983 		dev_warn(kdev->dev, "unused region %s\n", region->name);
984 		return;
985 	}
986 
987 	/* get hardware descriptor value */
988 	hw_num_desc = ilog2(region->num_desc - 1) + 1;
989 
990 	/* did we force fit ourselves into nothingness? */
991 	if (region->num_desc < 32) {
992 		region->num_desc = 0;
993 		dev_warn(kdev->dev, "too few descriptors in region %s\n",
994 			 region->name);
995 		return;
996 	}
997 
998 	size = region->num_desc * region->desc_size;
999 	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1000 						GFP_DMA32);
1001 	if (!region->virt_start) {
1002 		region->num_desc = 0;
1003 		dev_err(kdev->dev, "memory alloc failed for region %s\n",
1004 			region->name);
1005 		return;
1006 	}
1007 	region->virt_end = region->virt_start + size;
1008 	page = virt_to_page(region->virt_start);
1009 
1010 	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1011 					 DMA_BIDIRECTIONAL);
1012 	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1013 		dev_err(kdev->dev, "dma map failed for region %s\n",
1014 			region->name);
1015 		goto fail;
1016 	}
1017 	region->dma_end = region->dma_start + size;
1018 
1019 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1020 	if (!pool) {
1021 		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1022 		goto fail;
1023 	}
1024 	pool->num_desc = 0;
1025 	pool->region_offset = region->num_desc;
1026 	list_add(&pool->region_inst, &region->pools);
1027 
1028 	dev_dbg(kdev->dev,
1029 		"region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1030 		region->name, id, region->desc_size, region->num_desc,
1031 		region->link_index, &region->dma_start, &region->dma_end,
1032 		region->virt_start, region->virt_end);
1033 
1034 	hw_desc_size = (region->desc_size / 16) - 1;
1035 	hw_num_desc -= 5;
1036 
1037 	for_each_qmgr(kdev, qmgr) {
1038 		regs = qmgr->reg_region + id;
1039 		writel_relaxed((u32)region->dma_start, &regs->base);
1040 		writel_relaxed(region->link_index, &regs->start_index);
1041 		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1042 			       &regs->size_count);
1043 	}
1044 	return;
1045 
1046 fail:
1047 	if (region->dma_start)
1048 		dma_unmap_page(kdev->dev, region->dma_start, size,
1049 				DMA_BIDIRECTIONAL);
1050 	if (region->virt_start)
1051 		free_pages_exact(region->virt_start, size);
1052 	region->num_desc = 0;
1053 	return;
1054 }
1055 
1056 static const char *knav_queue_find_name(struct device_node *node)
1057 {
1058 	const char *name;
1059 
1060 	if (of_property_read_string(node, "label", &name) < 0)
1061 		name = node->name;
1062 	if (!name)
1063 		name = "unknown";
1064 	return name;
1065 }
1066 
1067 static int knav_queue_setup_regions(struct knav_device *kdev,
1068 					struct device_node *regions)
1069 {
1070 	struct device *dev = kdev->dev;
1071 	struct knav_region *region;
1072 	struct device_node *child;
1073 	u32 temp[2];
1074 	int ret;
1075 
1076 	for_each_child_of_node(regions, child) {
1077 		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1078 		if (!region) {
1079 			dev_err(dev, "out of memory allocating region\n");
1080 			return -ENOMEM;
1081 		}
1082 
1083 		region->name = knav_queue_find_name(child);
1084 		of_property_read_u32(child, "id", &region->id);
1085 		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1086 		if (!ret) {
1087 			region->num_desc  = temp[0];
1088 			region->desc_size = temp[1];
1089 		} else {
1090 			dev_err(dev, "invalid region info %s\n", region->name);
1091 			devm_kfree(dev, region);
1092 			continue;
1093 		}
1094 
1095 		if (!of_get_property(child, "link-index", NULL)) {
1096 			dev_err(dev, "No link info for %s\n", region->name);
1097 			devm_kfree(dev, region);
1098 			continue;
1099 		}
1100 		ret = of_property_read_u32(child, "link-index",
1101 					   &region->link_index);
1102 		if (ret) {
1103 			dev_err(dev, "link index not found for %s\n",
1104 				region->name);
1105 			devm_kfree(dev, region);
1106 			continue;
1107 		}
1108 
1109 		INIT_LIST_HEAD(&region->pools);
1110 		list_add_tail(&region->list, &kdev->regions);
1111 	}
1112 	if (list_empty(&kdev->regions)) {
1113 		dev_err(dev, "no valid region information found\n");
1114 		return -ENODEV;
1115 	}
1116 
1117 	/* Next, we run through the regions and set things up */
1118 	for_each_region(kdev, region)
1119 		knav_queue_setup_region(kdev, region);
1120 
1121 	return 0;
1122 }
1123 
1124 static int knav_get_link_ram(struct knav_device *kdev,
1125 				       const char *name,
1126 				       struct knav_link_ram_block *block)
1127 {
1128 	struct platform_device *pdev = to_platform_device(kdev->dev);
1129 	struct device_node *node = pdev->dev.of_node;
1130 	u32 temp[2];
1131 
1132 	/*
1133 	 * Note: link ram resources are specified in "entry" sized units. In
1134 	 * reality, although entries are ~40bits in hardware, we treat them as
1135 	 * 64-bit entities here.
1136 	 *
1137 	 * For example, to specify the internal link ram for Keystone-I class
1138 	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1139 	 *
1140 	 * This gets a bit weird when other link rams are used.  For example,
1141 	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1142 	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1143 	 * which accounts for 64-bits per entry, for 16K entries.
1144 	 */
1145 	if (!of_property_read_u32_array(node, name , temp, 2)) {
1146 		if (temp[0]) {
1147 			/*
1148 			 * queue_base specified => using internal or onchip
1149 			 * link ram WARNING - we do not "reserve" this block
1150 			 */
1151 			block->dma = (dma_addr_t)temp[0];
1152 			block->virt = NULL;
1153 			block->size = temp[1];
1154 		} else {
1155 			block->size = temp[1];
1156 			/* queue_base not specific => allocate requested size */
1157 			block->virt = dmam_alloc_coherent(kdev->dev,
1158 						  8 * block->size, &block->dma,
1159 						  GFP_KERNEL);
1160 			if (!block->virt) {
1161 				dev_err(kdev->dev, "failed to alloc linkram\n");
1162 				return -ENOMEM;
1163 			}
1164 		}
1165 	} else {
1166 		return -ENODEV;
1167 	}
1168 	return 0;
1169 }
1170 
1171 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1172 {
1173 	struct knav_link_ram_block *block;
1174 	struct knav_qmgr_info *qmgr;
1175 
1176 	for_each_qmgr(kdev, qmgr) {
1177 		block = &kdev->link_rams[0];
1178 		dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1179 			&block->dma, block->virt, block->size);
1180 		writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1181 		if (kdev->version == QMSS_66AK2G)
1182 			writel_relaxed(block->size,
1183 				       &qmgr->reg_config->link_ram_size0);
1184 		else
1185 			writel_relaxed(block->size - 1,
1186 				       &qmgr->reg_config->link_ram_size0);
1187 		block++;
1188 		if (!block->size)
1189 			continue;
1190 
1191 		dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1192 			&block->dma, block->virt, block->size);
1193 		writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 static int knav_setup_queue_range(struct knav_device *kdev,
1200 					struct device_node *node)
1201 {
1202 	struct device *dev = kdev->dev;
1203 	struct knav_range_info *range;
1204 	struct knav_qmgr_info *qmgr;
1205 	u32 temp[2], start, end, id, index;
1206 	int ret, i;
1207 
1208 	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1209 	if (!range) {
1210 		dev_err(dev, "out of memory allocating range\n");
1211 		return -ENOMEM;
1212 	}
1213 
1214 	range->kdev = kdev;
1215 	range->name = knav_queue_find_name(node);
1216 	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1217 	if (!ret) {
1218 		range->queue_base = temp[0] - kdev->base_id;
1219 		range->num_queues = temp[1];
1220 	} else {
1221 		dev_err(dev, "invalid queue range %s\n", range->name);
1222 		devm_kfree(dev, range);
1223 		return -EINVAL;
1224 	}
1225 
1226 	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1227 		struct of_phandle_args oirq;
1228 
1229 		if (of_irq_parse_one(node, i, &oirq))
1230 			break;
1231 
1232 		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1233 		if (range->irqs[i].irq == IRQ_NONE)
1234 			break;
1235 
1236 		range->num_irqs++;
1237 
1238 		if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3)
1239 			range->irqs[i].cpu_map =
1240 				(oirq.args[2] & 0x0000ff00) >> 8;
1241 	}
1242 
1243 	range->num_irqs = min(range->num_irqs, range->num_queues);
1244 	if (range->num_irqs)
1245 		range->flags |= RANGE_HAS_IRQ;
1246 
1247 	if (of_get_property(node, "qalloc-by-id", NULL))
1248 		range->flags |= RANGE_RESERVED;
1249 
1250 	if (of_get_property(node, "accumulator", NULL)) {
1251 		ret = knav_init_acc_range(kdev, node, range);
1252 		if (ret < 0) {
1253 			devm_kfree(dev, range);
1254 			return ret;
1255 		}
1256 	} else {
1257 		range->ops = &knav_gp_range_ops;
1258 	}
1259 
1260 	/* set threshold to 1, and flush out the queues */
1261 	for_each_qmgr(kdev, qmgr) {
1262 		start = max(qmgr->start_queue, range->queue_base);
1263 		end   = min(qmgr->start_queue + qmgr->num_queues,
1264 			    range->queue_base + range->num_queues);
1265 		for (id = start; id < end; id++) {
1266 			index = id - qmgr->start_queue;
1267 			writel_relaxed(THRESH_GTE | 1,
1268 				       &qmgr->reg_peek[index].ptr_size_thresh);
1269 			writel_relaxed(0,
1270 				       &qmgr->reg_push[index].ptr_size_thresh);
1271 		}
1272 	}
1273 
1274 	list_add_tail(&range->list, &kdev->queue_ranges);
1275 	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1276 		range->name, range->queue_base,
1277 		range->queue_base + range->num_queues - 1,
1278 		range->num_irqs,
1279 		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1280 		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1281 		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1282 	kdev->num_queues_in_use += range->num_queues;
1283 	return 0;
1284 }
1285 
1286 static int knav_setup_queue_pools(struct knav_device *kdev,
1287 				   struct device_node *queue_pools)
1288 {
1289 	struct device_node *type, *range;
1290 	int ret;
1291 
1292 	for_each_child_of_node(queue_pools, type) {
1293 		for_each_child_of_node(type, range) {
1294 			ret = knav_setup_queue_range(kdev, range);
1295 			/* return value ignored, we init the rest... */
1296 		}
1297 	}
1298 
1299 	/* ... and barf if they all failed! */
1300 	if (list_empty(&kdev->queue_ranges)) {
1301 		dev_err(kdev->dev, "no valid queue range found\n");
1302 		return -ENODEV;
1303 	}
1304 	return 0;
1305 }
1306 
1307 static void knav_free_queue_range(struct knav_device *kdev,
1308 				  struct knav_range_info *range)
1309 {
1310 	if (range->ops && range->ops->free_range)
1311 		range->ops->free_range(range);
1312 	list_del(&range->list);
1313 	devm_kfree(kdev->dev, range);
1314 }
1315 
1316 static void knav_free_queue_ranges(struct knav_device *kdev)
1317 {
1318 	struct knav_range_info *range;
1319 
1320 	for (;;) {
1321 		range = first_queue_range(kdev);
1322 		if (!range)
1323 			break;
1324 		knav_free_queue_range(kdev, range);
1325 	}
1326 }
1327 
1328 static void knav_queue_free_regions(struct knav_device *kdev)
1329 {
1330 	struct knav_region *region;
1331 	struct knav_pool *pool, *tmp;
1332 	unsigned size;
1333 
1334 	for (;;) {
1335 		region = first_region(kdev);
1336 		if (!region)
1337 			break;
1338 		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1339 			knav_pool_destroy(pool);
1340 
1341 		size = region->virt_end - region->virt_start;
1342 		if (size)
1343 			free_pages_exact(region->virt_start, size);
1344 		list_del(&region->list);
1345 		devm_kfree(kdev->dev, region);
1346 	}
1347 }
1348 
1349 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1350 					struct device_node *node, int index)
1351 {
1352 	struct resource res;
1353 	void __iomem *regs;
1354 	int ret;
1355 
1356 	ret = of_address_to_resource(node, index, &res);
1357 	if (ret) {
1358 		dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1359 			node->name, index);
1360 		return ERR_PTR(ret);
1361 	}
1362 
1363 	regs = devm_ioremap_resource(kdev->dev, &res);
1364 	if (IS_ERR(regs))
1365 		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1366 			index, node->name);
1367 	return regs;
1368 }
1369 
1370 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1371 					struct device_node *qmgrs)
1372 {
1373 	struct device *dev = kdev->dev;
1374 	struct knav_qmgr_info *qmgr;
1375 	struct device_node *child;
1376 	u32 temp[2];
1377 	int ret;
1378 
1379 	for_each_child_of_node(qmgrs, child) {
1380 		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1381 		if (!qmgr) {
1382 			dev_err(dev, "out of memory allocating qmgr\n");
1383 			return -ENOMEM;
1384 		}
1385 
1386 		ret = of_property_read_u32_array(child, "managed-queues",
1387 						 temp, 2);
1388 		if (!ret) {
1389 			qmgr->start_queue = temp[0];
1390 			qmgr->num_queues = temp[1];
1391 		} else {
1392 			dev_err(dev, "invalid qmgr queue range\n");
1393 			devm_kfree(dev, qmgr);
1394 			continue;
1395 		}
1396 
1397 		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1398 			 qmgr->start_queue, qmgr->num_queues);
1399 
1400 		qmgr->reg_peek =
1401 			knav_queue_map_reg(kdev, child,
1402 					   KNAV_QUEUE_PEEK_REG_INDEX);
1403 
1404 		if (kdev->version == QMSS) {
1405 			qmgr->reg_status =
1406 				knav_queue_map_reg(kdev, child,
1407 						   KNAV_QUEUE_STATUS_REG_INDEX);
1408 		}
1409 
1410 		qmgr->reg_config =
1411 			knav_queue_map_reg(kdev, child,
1412 					   (kdev->version == QMSS_66AK2G) ?
1413 					   KNAV_L_QUEUE_CONFIG_REG_INDEX :
1414 					   KNAV_QUEUE_CONFIG_REG_INDEX);
1415 		qmgr->reg_region =
1416 			knav_queue_map_reg(kdev, child,
1417 					   (kdev->version == QMSS_66AK2G) ?
1418 					   KNAV_L_QUEUE_REGION_REG_INDEX :
1419 					   KNAV_QUEUE_REGION_REG_INDEX);
1420 
1421 		qmgr->reg_push =
1422 			knav_queue_map_reg(kdev, child,
1423 					   (kdev->version == QMSS_66AK2G) ?
1424 					    KNAV_L_QUEUE_PUSH_REG_INDEX :
1425 					    KNAV_QUEUE_PUSH_REG_INDEX);
1426 
1427 		if (kdev->version == QMSS) {
1428 			qmgr->reg_pop =
1429 				knav_queue_map_reg(kdev, child,
1430 						   KNAV_QUEUE_POP_REG_INDEX);
1431 		}
1432 
1433 		if (IS_ERR(qmgr->reg_peek) ||
1434 		    ((kdev->version == QMSS) &&
1435 		    (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1436 		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1437 		    IS_ERR(qmgr->reg_push)) {
1438 			dev_err(dev, "failed to map qmgr regs\n");
1439 			if (kdev->version == QMSS) {
1440 				if (!IS_ERR(qmgr->reg_status))
1441 					devm_iounmap(dev, qmgr->reg_status);
1442 				if (!IS_ERR(qmgr->reg_pop))
1443 					devm_iounmap(dev, qmgr->reg_pop);
1444 			}
1445 			if (!IS_ERR(qmgr->reg_peek))
1446 				devm_iounmap(dev, qmgr->reg_peek);
1447 			if (!IS_ERR(qmgr->reg_config))
1448 				devm_iounmap(dev, qmgr->reg_config);
1449 			if (!IS_ERR(qmgr->reg_region))
1450 				devm_iounmap(dev, qmgr->reg_region);
1451 			if (!IS_ERR(qmgr->reg_push))
1452 				devm_iounmap(dev, qmgr->reg_push);
1453 			devm_kfree(dev, qmgr);
1454 			continue;
1455 		}
1456 
1457 		/* Use same push register for pop as well */
1458 		if (kdev->version == QMSS_66AK2G)
1459 			qmgr->reg_pop = qmgr->reg_push;
1460 
1461 		list_add_tail(&qmgr->list, &kdev->qmgrs);
1462 		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1463 			 qmgr->start_queue, qmgr->num_queues,
1464 			 qmgr->reg_peek, qmgr->reg_status,
1465 			 qmgr->reg_config, qmgr->reg_region,
1466 			 qmgr->reg_push, qmgr->reg_pop);
1467 	}
1468 	return 0;
1469 }
1470 
1471 static int knav_queue_init_pdsps(struct knav_device *kdev,
1472 					struct device_node *pdsps)
1473 {
1474 	struct device *dev = kdev->dev;
1475 	struct knav_pdsp_info *pdsp;
1476 	struct device_node *child;
1477 
1478 	for_each_child_of_node(pdsps, child) {
1479 		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1480 		if (!pdsp) {
1481 			dev_err(dev, "out of memory allocating pdsp\n");
1482 			return -ENOMEM;
1483 		}
1484 		pdsp->name = knav_queue_find_name(child);
1485 		pdsp->iram =
1486 			knav_queue_map_reg(kdev, child,
1487 					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1488 		pdsp->regs =
1489 			knav_queue_map_reg(kdev, child,
1490 					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1491 		pdsp->intd =
1492 			knav_queue_map_reg(kdev, child,
1493 					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1494 		pdsp->command =
1495 			knav_queue_map_reg(kdev, child,
1496 					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1497 
1498 		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1499 		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1500 			dev_err(dev, "failed to map pdsp %s regs\n",
1501 				pdsp->name);
1502 			if (!IS_ERR(pdsp->command))
1503 				devm_iounmap(dev, pdsp->command);
1504 			if (!IS_ERR(pdsp->iram))
1505 				devm_iounmap(dev, pdsp->iram);
1506 			if (!IS_ERR(pdsp->regs))
1507 				devm_iounmap(dev, pdsp->regs);
1508 			if (!IS_ERR(pdsp->intd))
1509 				devm_iounmap(dev, pdsp->intd);
1510 			devm_kfree(dev, pdsp);
1511 			continue;
1512 		}
1513 		of_property_read_u32(child, "id", &pdsp->id);
1514 		list_add_tail(&pdsp->list, &kdev->pdsps);
1515 		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1516 			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1517 			pdsp->intd);
1518 	}
1519 	return 0;
1520 }
1521 
1522 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1523 			  struct knav_pdsp_info *pdsp)
1524 {
1525 	u32 val, timeout = 1000;
1526 	int ret;
1527 
1528 	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1529 	writel_relaxed(val, &pdsp->regs->control);
1530 	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1531 					PDSP_CTRL_RUNNING);
1532 	if (ret < 0) {
1533 		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1534 		return ret;
1535 	}
1536 	pdsp->loaded = false;
1537 	pdsp->started = false;
1538 	return 0;
1539 }
1540 
1541 static int knav_queue_load_pdsp(struct knav_device *kdev,
1542 			  struct knav_pdsp_info *pdsp)
1543 {
1544 	int i, ret, fwlen;
1545 	const struct firmware *fw;
1546 	bool found = false;
1547 	u32 *fwdata;
1548 
1549 	for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1550 		if (knav_acc_firmwares[i]) {
1551 			ret = request_firmware_direct(&fw,
1552 						      knav_acc_firmwares[i],
1553 						      kdev->dev);
1554 			if (!ret) {
1555 				found = true;
1556 				break;
1557 			}
1558 		}
1559 	}
1560 
1561 	if (!found) {
1562 		dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1563 		return -ENODEV;
1564 	}
1565 
1566 	dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1567 		 knav_acc_firmwares[i]);
1568 
1569 	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1570 	/* download the firmware */
1571 	fwdata = (u32 *)fw->data;
1572 	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1573 	for (i = 0; i < fwlen; i++)
1574 		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1575 
1576 	release_firmware(fw);
1577 	return 0;
1578 }
1579 
1580 static int knav_queue_start_pdsp(struct knav_device *kdev,
1581 			   struct knav_pdsp_info *pdsp)
1582 {
1583 	u32 val, timeout = 1000;
1584 	int ret;
1585 
1586 	/* write a command for sync */
1587 	writel_relaxed(0xffffffff, pdsp->command);
1588 	while (readl_relaxed(pdsp->command) != 0xffffffff)
1589 		cpu_relax();
1590 
1591 	/* soft reset the PDSP */
1592 	val  = readl_relaxed(&pdsp->regs->control);
1593 	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1594 	writel_relaxed(val, &pdsp->regs->control);
1595 
1596 	/* enable pdsp */
1597 	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1598 	writel_relaxed(val, &pdsp->regs->control);
1599 
1600 	/* wait for command register to clear */
1601 	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1602 	if (ret < 0) {
1603 		dev_err(kdev->dev,
1604 			"timed out on pdsp %s command register wait\n",
1605 			pdsp->name);
1606 		return ret;
1607 	}
1608 	return 0;
1609 }
1610 
1611 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1612 {
1613 	struct knav_pdsp_info *pdsp;
1614 
1615 	/* disable all pdsps */
1616 	for_each_pdsp(kdev, pdsp)
1617 		knav_queue_stop_pdsp(kdev, pdsp);
1618 }
1619 
1620 static int knav_queue_start_pdsps(struct knav_device *kdev)
1621 {
1622 	struct knav_pdsp_info *pdsp;
1623 	int ret;
1624 
1625 	knav_queue_stop_pdsps(kdev);
1626 	/* now load them all. We return success even if pdsp
1627 	 * is not loaded as acc channels are optional on having
1628 	 * firmware availability in the system. We set the loaded
1629 	 * and stated flag and when initialize the acc range, check
1630 	 * it and init the range only if pdsp is started.
1631 	 */
1632 	for_each_pdsp(kdev, pdsp) {
1633 		ret = knav_queue_load_pdsp(kdev, pdsp);
1634 		if (!ret)
1635 			pdsp->loaded = true;
1636 	}
1637 
1638 	for_each_pdsp(kdev, pdsp) {
1639 		if (pdsp->loaded) {
1640 			ret = knav_queue_start_pdsp(kdev, pdsp);
1641 			if (!ret)
1642 				pdsp->started = true;
1643 		}
1644 	}
1645 	return 0;
1646 }
1647 
1648 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1649 {
1650 	struct knav_qmgr_info *qmgr;
1651 
1652 	for_each_qmgr(kdev, qmgr) {
1653 		if ((id >= qmgr->start_queue) &&
1654 		    (id < qmgr->start_queue + qmgr->num_queues))
1655 			return qmgr;
1656 	}
1657 	return NULL;
1658 }
1659 
1660 static int knav_queue_init_queue(struct knav_device *kdev,
1661 					struct knav_range_info *range,
1662 					struct knav_queue_inst *inst,
1663 					unsigned id)
1664 {
1665 	char irq_name[KNAV_NAME_SIZE];
1666 	inst->qmgr = knav_find_qmgr(id);
1667 	if (!inst->qmgr)
1668 		return -1;
1669 
1670 	INIT_LIST_HEAD(&inst->handles);
1671 	inst->kdev = kdev;
1672 	inst->range = range;
1673 	inst->irq_num = -1;
1674 	inst->id = id;
1675 	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1676 	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1677 
1678 	if (range->ops && range->ops->init_queue)
1679 		return range->ops->init_queue(range, inst);
1680 	else
1681 		return 0;
1682 }
1683 
1684 static int knav_queue_init_queues(struct knav_device *kdev)
1685 {
1686 	struct knav_range_info *range;
1687 	int size, id, base_idx;
1688 	int idx = 0, ret = 0;
1689 
1690 	/* how much do we need for instance data? */
1691 	size = sizeof(struct knav_queue_inst);
1692 
1693 	/* round this up to a power of 2, keep the index to instance
1694 	 * arithmetic fast.
1695 	 * */
1696 	kdev->inst_shift = order_base_2(size);
1697 	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1698 	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1699 	if (!kdev->instances)
1700 		return -ENOMEM;
1701 
1702 	for_each_queue_range(kdev, range) {
1703 		if (range->ops && range->ops->init_range)
1704 			range->ops->init_range(range);
1705 		base_idx = idx;
1706 		for (id = range->queue_base;
1707 		     id < range->queue_base + range->num_queues; id++, idx++) {
1708 			ret = knav_queue_init_queue(kdev, range,
1709 					knav_queue_idx_to_inst(kdev, idx), id);
1710 			if (ret < 0)
1711 				return ret;
1712 		}
1713 		range->queue_base_inst =
1714 			knav_queue_idx_to_inst(kdev, base_idx);
1715 	}
1716 	return 0;
1717 }
1718 
1719 /* Match table for of_platform binding */
1720 static const struct of_device_id keystone_qmss_of_match[] = {
1721 	{
1722 		.compatible = "ti,keystone-navigator-qmss",
1723 	},
1724 	{
1725 		.compatible = "ti,66ak2g-navss-qm",
1726 		.data	= (void *)QMSS_66AK2G,
1727 	},
1728 	{},
1729 };
1730 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1731 
1732 static int knav_queue_probe(struct platform_device *pdev)
1733 {
1734 	struct device_node *node = pdev->dev.of_node;
1735 	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1736 	const struct of_device_id *match;
1737 	struct device *dev = &pdev->dev;
1738 	u32 temp[2];
1739 	int ret;
1740 
1741 	if (!node) {
1742 		dev_err(dev, "device tree info unavailable\n");
1743 		return -ENODEV;
1744 	}
1745 
1746 	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1747 	if (!kdev) {
1748 		dev_err(dev, "memory allocation failed\n");
1749 		return -ENOMEM;
1750 	}
1751 
1752 	match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1753 	if (match && match->data)
1754 		kdev->version = QMSS_66AK2G;
1755 
1756 	platform_set_drvdata(pdev, kdev);
1757 	kdev->dev = dev;
1758 	INIT_LIST_HEAD(&kdev->queue_ranges);
1759 	INIT_LIST_HEAD(&kdev->qmgrs);
1760 	INIT_LIST_HEAD(&kdev->pools);
1761 	INIT_LIST_HEAD(&kdev->regions);
1762 	INIT_LIST_HEAD(&kdev->pdsps);
1763 
1764 	pm_runtime_enable(&pdev->dev);
1765 	ret = pm_runtime_get_sync(&pdev->dev);
1766 	if (ret < 0) {
1767 		dev_err(dev, "Failed to enable QMSS\n");
1768 		return ret;
1769 	}
1770 
1771 	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1772 		dev_err(dev, "queue-range not specified\n");
1773 		ret = -ENODEV;
1774 		goto err;
1775 	}
1776 	kdev->base_id    = temp[0];
1777 	kdev->num_queues = temp[1];
1778 
1779 	/* Initialize queue managers using device tree configuration */
1780 	qmgrs =  of_get_child_by_name(node, "qmgrs");
1781 	if (!qmgrs) {
1782 		dev_err(dev, "queue manager info not specified\n");
1783 		ret = -ENODEV;
1784 		goto err;
1785 	}
1786 	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1787 	of_node_put(qmgrs);
1788 	if (ret)
1789 		goto err;
1790 
1791 	/* get pdsp configuration values from device tree */
1792 	pdsps =  of_get_child_by_name(node, "pdsps");
1793 	if (pdsps) {
1794 		ret = knav_queue_init_pdsps(kdev, pdsps);
1795 		if (ret)
1796 			goto err;
1797 
1798 		ret = knav_queue_start_pdsps(kdev);
1799 		if (ret)
1800 			goto err;
1801 	}
1802 	of_node_put(pdsps);
1803 
1804 	/* get usable queue range values from device tree */
1805 	queue_pools = of_get_child_by_name(node, "queue-pools");
1806 	if (!queue_pools) {
1807 		dev_err(dev, "queue-pools not specified\n");
1808 		ret = -ENODEV;
1809 		goto err;
1810 	}
1811 	ret = knav_setup_queue_pools(kdev, queue_pools);
1812 	of_node_put(queue_pools);
1813 	if (ret)
1814 		goto err;
1815 
1816 	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1817 	if (ret) {
1818 		dev_err(kdev->dev, "could not setup linking ram\n");
1819 		goto err;
1820 	}
1821 
1822 	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1823 	if (ret) {
1824 		/*
1825 		 * nothing really, we have one linking ram already, so we just
1826 		 * live within our means
1827 		 */
1828 	}
1829 
1830 	ret = knav_queue_setup_link_ram(kdev);
1831 	if (ret)
1832 		goto err;
1833 
1834 	regions =  of_get_child_by_name(node, "descriptor-regions");
1835 	if (!regions) {
1836 		dev_err(dev, "descriptor-regions not specified\n");
1837 		goto err;
1838 	}
1839 	ret = knav_queue_setup_regions(kdev, regions);
1840 	of_node_put(regions);
1841 	if (ret)
1842 		goto err;
1843 
1844 	ret = knav_queue_init_queues(kdev);
1845 	if (ret < 0) {
1846 		dev_err(dev, "hwqueue initialization failed\n");
1847 		goto err;
1848 	}
1849 
1850 	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1851 			    &knav_queue_debug_ops);
1852 	return 0;
1853 
1854 err:
1855 	knav_queue_stop_pdsps(kdev);
1856 	knav_queue_free_regions(kdev);
1857 	knav_free_queue_ranges(kdev);
1858 	pm_runtime_put_sync(&pdev->dev);
1859 	pm_runtime_disable(&pdev->dev);
1860 	return ret;
1861 }
1862 
1863 static int knav_queue_remove(struct platform_device *pdev)
1864 {
1865 	/* TODO: Free resources */
1866 	pm_runtime_put_sync(&pdev->dev);
1867 	pm_runtime_disable(&pdev->dev);
1868 	return 0;
1869 }
1870 
1871 static struct platform_driver keystone_qmss_driver = {
1872 	.probe		= knav_queue_probe,
1873 	.remove		= knav_queue_remove,
1874 	.driver		= {
1875 		.name	= "keystone-navigator-qmss",
1876 		.of_match_table = keystone_qmss_of_match,
1877 	},
1878 };
1879 module_platform_driver(keystone_qmss_driver);
1880 
1881 MODULE_LICENSE("GPL v2");
1882 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1883 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1884 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1885