1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Keystone Queue Manager subsystem driver 4 * 5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com 6 * Authors: Sandeep Nair <sandeep_n@ti.com> 7 * Cyril Chemparathy <cyril@ti.com> 8 * Santosh Shilimkar <santosh.shilimkar@ti.com> 9 */ 10 11 #include <linux/debugfs.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/firmware.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/module.h> 17 #include <linux/of_address.h> 18 #include <linux/of_device.h> 19 #include <linux/of_irq.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/slab.h> 22 #include <linux/soc/ti/knav_qmss.h> 23 24 #include "knav_qmss.h" 25 26 static struct knav_device *kdev; 27 static DEFINE_MUTEX(knav_dev_lock); 28 #define knav_dev_lock_held() \ 29 lockdep_is_held(&knav_dev_lock) 30 31 /* Queue manager register indices in DTS */ 32 #define KNAV_QUEUE_PEEK_REG_INDEX 0 33 #define KNAV_QUEUE_STATUS_REG_INDEX 1 34 #define KNAV_QUEUE_CONFIG_REG_INDEX 2 35 #define KNAV_QUEUE_REGION_REG_INDEX 3 36 #define KNAV_QUEUE_PUSH_REG_INDEX 4 37 #define KNAV_QUEUE_POP_REG_INDEX 5 38 39 /* Queue manager register indices in DTS for QMSS in K2G NAVSS. 40 * There are no status and vbusm push registers on this version 41 * of QMSS. Push registers are same as pop, So all indices above 1 42 * are to be re-defined 43 */ 44 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1 45 #define KNAV_L_QUEUE_REGION_REG_INDEX 2 46 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3 47 48 /* PDSP register indices in DTS */ 49 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0 50 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1 51 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2 52 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3 53 54 #define knav_queue_idx_to_inst(kdev, idx) \ 55 (kdev->instances + (idx << kdev->inst_shift)) 56 57 #define for_each_handle_rcu(qh, inst) \ 58 list_for_each_entry_rcu(qh, &inst->handles, list, \ 59 knav_dev_lock_held()) 60 61 #define for_each_instance(idx, inst, kdev) \ 62 for (idx = 0, inst = kdev->instances; \ 63 idx < (kdev)->num_queues_in_use; \ 64 idx++, inst = knav_queue_idx_to_inst(kdev, idx)) 65 66 /* All firmware file names end up here. List the firmware file names below. 67 * Newest followed by older ones. Search is done from start of the array 68 * until a firmware file is found. 69 */ 70 static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"}; 71 72 static bool device_ready; 73 bool knav_qmss_device_ready(void) 74 { 75 return device_ready; 76 } 77 EXPORT_SYMBOL_GPL(knav_qmss_device_ready); 78 79 /** 80 * knav_queue_notify: qmss queue notfier call 81 * 82 * @inst: - qmss queue instance like accumulator 83 */ 84 void knav_queue_notify(struct knav_queue_inst *inst) 85 { 86 struct knav_queue *qh; 87 88 if (!inst) 89 return; 90 91 rcu_read_lock(); 92 for_each_handle_rcu(qh, inst) { 93 if (atomic_read(&qh->notifier_enabled) <= 0) 94 continue; 95 if (WARN_ON(!qh->notifier_fn)) 96 continue; 97 this_cpu_inc(qh->stats->notifies); 98 qh->notifier_fn(qh->notifier_fn_arg); 99 } 100 rcu_read_unlock(); 101 } 102 EXPORT_SYMBOL_GPL(knav_queue_notify); 103 104 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata) 105 { 106 struct knav_queue_inst *inst = _instdata; 107 108 knav_queue_notify(inst); 109 return IRQ_HANDLED; 110 } 111 112 static int knav_queue_setup_irq(struct knav_range_info *range, 113 struct knav_queue_inst *inst) 114 { 115 unsigned queue = inst->id - range->queue_base; 116 int ret = 0, irq; 117 118 if (range->flags & RANGE_HAS_IRQ) { 119 irq = range->irqs[queue].irq; 120 ret = request_irq(irq, knav_queue_int_handler, 0, 121 inst->irq_name, inst); 122 if (ret) 123 return ret; 124 disable_irq(irq); 125 if (range->irqs[queue].cpu_mask) { 126 ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask); 127 if (ret) { 128 dev_warn(range->kdev->dev, 129 "Failed to set IRQ affinity\n"); 130 return ret; 131 } 132 } 133 } 134 return ret; 135 } 136 137 static void knav_queue_free_irq(struct knav_queue_inst *inst) 138 { 139 struct knav_range_info *range = inst->range; 140 unsigned queue = inst->id - inst->range->queue_base; 141 int irq; 142 143 if (range->flags & RANGE_HAS_IRQ) { 144 irq = range->irqs[queue].irq; 145 irq_set_affinity_hint(irq, NULL); 146 free_irq(irq, inst); 147 } 148 } 149 150 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst) 151 { 152 return !list_empty(&inst->handles); 153 } 154 155 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst) 156 { 157 return inst->range->flags & RANGE_RESERVED; 158 } 159 160 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst) 161 { 162 struct knav_queue *tmp; 163 164 rcu_read_lock(); 165 for_each_handle_rcu(tmp, inst) { 166 if (tmp->flags & KNAV_QUEUE_SHARED) { 167 rcu_read_unlock(); 168 return true; 169 } 170 } 171 rcu_read_unlock(); 172 return false; 173 } 174 175 static inline bool knav_queue_match_type(struct knav_queue_inst *inst, 176 unsigned type) 177 { 178 if ((type == KNAV_QUEUE_QPEND) && 179 (inst->range->flags & RANGE_HAS_IRQ)) { 180 return true; 181 } else if ((type == KNAV_QUEUE_ACC) && 182 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) { 183 return true; 184 } else if ((type == KNAV_QUEUE_GP) && 185 !(inst->range->flags & 186 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) { 187 return true; 188 } 189 return false; 190 } 191 192 static inline struct knav_queue_inst * 193 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id) 194 { 195 struct knav_queue_inst *inst; 196 int idx; 197 198 for_each_instance(idx, inst, kdev) { 199 if (inst->id == id) 200 return inst; 201 } 202 return NULL; 203 } 204 205 static inline struct knav_queue_inst *knav_queue_find_by_id(int id) 206 { 207 if (kdev->base_id <= id && 208 kdev->base_id + kdev->num_queues > id) { 209 id -= kdev->base_id; 210 return knav_queue_match_id_to_inst(kdev, id); 211 } 212 return NULL; 213 } 214 215 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst, 216 const char *name, unsigned flags) 217 { 218 struct knav_queue *qh; 219 unsigned id; 220 int ret = 0; 221 222 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL); 223 if (!qh) 224 return ERR_PTR(-ENOMEM); 225 226 qh->stats = alloc_percpu(struct knav_queue_stats); 227 if (!qh->stats) { 228 ret = -ENOMEM; 229 goto err; 230 } 231 232 qh->flags = flags; 233 qh->inst = inst; 234 id = inst->id - inst->qmgr->start_queue; 235 qh->reg_push = &inst->qmgr->reg_push[id]; 236 qh->reg_pop = &inst->qmgr->reg_pop[id]; 237 qh->reg_peek = &inst->qmgr->reg_peek[id]; 238 239 /* first opener? */ 240 if (!knav_queue_is_busy(inst)) { 241 struct knav_range_info *range = inst->range; 242 243 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 244 if (range->ops && range->ops->open_queue) 245 ret = range->ops->open_queue(range, inst, flags); 246 247 if (ret) 248 goto err; 249 } 250 list_add_tail_rcu(&qh->list, &inst->handles); 251 return qh; 252 253 err: 254 if (qh->stats) 255 free_percpu(qh->stats); 256 devm_kfree(inst->kdev->dev, qh); 257 return ERR_PTR(ret); 258 } 259 260 static struct knav_queue * 261 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags) 262 { 263 struct knav_queue_inst *inst; 264 struct knav_queue *qh; 265 266 mutex_lock(&knav_dev_lock); 267 268 qh = ERR_PTR(-ENODEV); 269 inst = knav_queue_find_by_id(id); 270 if (!inst) 271 goto unlock_ret; 272 273 qh = ERR_PTR(-EEXIST); 274 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst)) 275 goto unlock_ret; 276 277 qh = ERR_PTR(-EBUSY); 278 if ((flags & KNAV_QUEUE_SHARED) && 279 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst))) 280 goto unlock_ret; 281 282 qh = __knav_queue_open(inst, name, flags); 283 284 unlock_ret: 285 mutex_unlock(&knav_dev_lock); 286 287 return qh; 288 } 289 290 static struct knav_queue *knav_queue_open_by_type(const char *name, 291 unsigned type, unsigned flags) 292 { 293 struct knav_queue_inst *inst; 294 struct knav_queue *qh = ERR_PTR(-EINVAL); 295 int idx; 296 297 mutex_lock(&knav_dev_lock); 298 299 for_each_instance(idx, inst, kdev) { 300 if (knav_queue_is_reserved(inst)) 301 continue; 302 if (!knav_queue_match_type(inst, type)) 303 continue; 304 if (knav_queue_is_busy(inst)) 305 continue; 306 qh = __knav_queue_open(inst, name, flags); 307 goto unlock_ret; 308 } 309 310 unlock_ret: 311 mutex_unlock(&knav_dev_lock); 312 return qh; 313 } 314 315 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled) 316 { 317 struct knav_range_info *range = inst->range; 318 319 if (range->ops && range->ops->set_notify) 320 range->ops->set_notify(range, inst, enabled); 321 } 322 323 static int knav_queue_enable_notifier(struct knav_queue *qh) 324 { 325 struct knav_queue_inst *inst = qh->inst; 326 bool first; 327 328 if (WARN_ON(!qh->notifier_fn)) 329 return -EINVAL; 330 331 /* Adjust the per handle notifier count */ 332 first = (atomic_inc_return(&qh->notifier_enabled) == 1); 333 if (!first) 334 return 0; /* nothing to do */ 335 336 /* Now adjust the per instance notifier count */ 337 first = (atomic_inc_return(&inst->num_notifiers) == 1); 338 if (first) 339 knav_queue_set_notify(inst, true); 340 341 return 0; 342 } 343 344 static int knav_queue_disable_notifier(struct knav_queue *qh) 345 { 346 struct knav_queue_inst *inst = qh->inst; 347 bool last; 348 349 last = (atomic_dec_return(&qh->notifier_enabled) == 0); 350 if (!last) 351 return 0; /* nothing to do */ 352 353 last = (atomic_dec_return(&inst->num_notifiers) == 0); 354 if (last) 355 knav_queue_set_notify(inst, false); 356 357 return 0; 358 } 359 360 static int knav_queue_set_notifier(struct knav_queue *qh, 361 struct knav_queue_notify_config *cfg) 362 { 363 knav_queue_notify_fn old_fn = qh->notifier_fn; 364 365 if (!cfg) 366 return -EINVAL; 367 368 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) 369 return -ENOTSUPP; 370 371 if (!cfg->fn && old_fn) 372 knav_queue_disable_notifier(qh); 373 374 qh->notifier_fn = cfg->fn; 375 qh->notifier_fn_arg = cfg->fn_arg; 376 377 if (cfg->fn && !old_fn) 378 knav_queue_enable_notifier(qh); 379 380 return 0; 381 } 382 383 static int knav_gp_set_notify(struct knav_range_info *range, 384 struct knav_queue_inst *inst, 385 bool enabled) 386 { 387 unsigned queue; 388 389 if (range->flags & RANGE_HAS_IRQ) { 390 queue = inst->id - range->queue_base; 391 if (enabled) 392 enable_irq(range->irqs[queue].irq); 393 else 394 disable_irq_nosync(range->irqs[queue].irq); 395 } 396 return 0; 397 } 398 399 static int knav_gp_open_queue(struct knav_range_info *range, 400 struct knav_queue_inst *inst, unsigned flags) 401 { 402 return knav_queue_setup_irq(range, inst); 403 } 404 405 static int knav_gp_close_queue(struct knav_range_info *range, 406 struct knav_queue_inst *inst) 407 { 408 knav_queue_free_irq(inst); 409 return 0; 410 } 411 412 static struct knav_range_ops knav_gp_range_ops = { 413 .set_notify = knav_gp_set_notify, 414 .open_queue = knav_gp_open_queue, 415 .close_queue = knav_gp_close_queue, 416 }; 417 418 419 static int knav_queue_get_count(void *qhandle) 420 { 421 struct knav_queue *qh = qhandle; 422 struct knav_queue_inst *inst = qh->inst; 423 424 return readl_relaxed(&qh->reg_peek[0].entry_count) + 425 atomic_read(&inst->desc_count); 426 } 427 428 static void knav_queue_debug_show_instance(struct seq_file *s, 429 struct knav_queue_inst *inst) 430 { 431 struct knav_device *kdev = inst->kdev; 432 struct knav_queue *qh; 433 int cpu = 0; 434 int pushes = 0; 435 int pops = 0; 436 int push_errors = 0; 437 int pop_errors = 0; 438 int notifies = 0; 439 440 if (!knav_queue_is_busy(inst)) 441 return; 442 443 seq_printf(s, "\tqueue id %d (%s)\n", 444 kdev->base_id + inst->id, inst->name); 445 for_each_handle_rcu(qh, inst) { 446 for_each_possible_cpu(cpu) { 447 pushes += per_cpu_ptr(qh->stats, cpu)->pushes; 448 pops += per_cpu_ptr(qh->stats, cpu)->pops; 449 push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors; 450 pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors; 451 notifies += per_cpu_ptr(qh->stats, cpu)->notifies; 452 } 453 454 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n", 455 qh, 456 pushes, 457 pops, 458 knav_queue_get_count(qh), 459 notifies, 460 push_errors, 461 pop_errors); 462 } 463 } 464 465 static int knav_queue_debug_show(struct seq_file *s, void *v) 466 { 467 struct knav_queue_inst *inst; 468 int idx; 469 470 mutex_lock(&knav_dev_lock); 471 seq_printf(s, "%s: %u-%u\n", 472 dev_name(kdev->dev), kdev->base_id, 473 kdev->base_id + kdev->num_queues - 1); 474 for_each_instance(idx, inst, kdev) 475 knav_queue_debug_show_instance(s, inst); 476 mutex_unlock(&knav_dev_lock); 477 478 return 0; 479 } 480 481 DEFINE_SHOW_ATTRIBUTE(knav_queue_debug); 482 483 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout, 484 u32 flags) 485 { 486 unsigned long end; 487 u32 val = 0; 488 489 end = jiffies + msecs_to_jiffies(timeout); 490 while (time_after(end, jiffies)) { 491 val = readl_relaxed(addr); 492 if (flags) 493 val &= flags; 494 if (!val) 495 break; 496 cpu_relax(); 497 } 498 return val ? -ETIMEDOUT : 0; 499 } 500 501 502 static int knav_queue_flush(struct knav_queue *qh) 503 { 504 struct knav_queue_inst *inst = qh->inst; 505 unsigned id = inst->id - inst->qmgr->start_queue; 506 507 atomic_set(&inst->desc_count, 0); 508 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh); 509 return 0; 510 } 511 512 /** 513 * knav_queue_open() - open a hardware queue 514 * @name: - name to give the queue handle 515 * @id: - desired queue number if any or specifes the type 516 * of queue 517 * @flags: - the following flags are applicable to queues: 518 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are 519 * exclusive by default. 520 * Subsequent attempts to open a shared queue should 521 * also have this flag. 522 * 523 * Returns a handle to the open hardware queue if successful. Use IS_ERR() 524 * to check the returned value for error codes. 525 */ 526 void *knav_queue_open(const char *name, unsigned id, 527 unsigned flags) 528 { 529 struct knav_queue *qh = ERR_PTR(-EINVAL); 530 531 switch (id) { 532 case KNAV_QUEUE_QPEND: 533 case KNAV_QUEUE_ACC: 534 case KNAV_QUEUE_GP: 535 qh = knav_queue_open_by_type(name, id, flags); 536 break; 537 538 default: 539 qh = knav_queue_open_by_id(name, id, flags); 540 break; 541 } 542 return qh; 543 } 544 EXPORT_SYMBOL_GPL(knav_queue_open); 545 546 /** 547 * knav_queue_close() - close a hardware queue handle 548 * @qhandle: - handle to close 549 */ 550 void knav_queue_close(void *qhandle) 551 { 552 struct knav_queue *qh = qhandle; 553 struct knav_queue_inst *inst = qh->inst; 554 555 while (atomic_read(&qh->notifier_enabled) > 0) 556 knav_queue_disable_notifier(qh); 557 558 mutex_lock(&knav_dev_lock); 559 list_del_rcu(&qh->list); 560 mutex_unlock(&knav_dev_lock); 561 synchronize_rcu(); 562 if (!knav_queue_is_busy(inst)) { 563 struct knav_range_info *range = inst->range; 564 565 if (range->ops && range->ops->close_queue) 566 range->ops->close_queue(range, inst); 567 } 568 free_percpu(qh->stats); 569 devm_kfree(inst->kdev->dev, qh); 570 } 571 EXPORT_SYMBOL_GPL(knav_queue_close); 572 573 /** 574 * knav_queue_device_control() - Perform control operations on a queue 575 * @qhandle: - queue handle 576 * @cmd: - control commands 577 * @arg: - command argument 578 * 579 * Returns 0 on success, errno otherwise. 580 */ 581 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd, 582 unsigned long arg) 583 { 584 struct knav_queue *qh = qhandle; 585 struct knav_queue_notify_config *cfg; 586 int ret; 587 588 switch ((int)cmd) { 589 case KNAV_QUEUE_GET_ID: 590 ret = qh->inst->kdev->base_id + qh->inst->id; 591 break; 592 593 case KNAV_QUEUE_FLUSH: 594 ret = knav_queue_flush(qh); 595 break; 596 597 case KNAV_QUEUE_SET_NOTIFIER: 598 cfg = (void *)arg; 599 ret = knav_queue_set_notifier(qh, cfg); 600 break; 601 602 case KNAV_QUEUE_ENABLE_NOTIFY: 603 ret = knav_queue_enable_notifier(qh); 604 break; 605 606 case KNAV_QUEUE_DISABLE_NOTIFY: 607 ret = knav_queue_disable_notifier(qh); 608 break; 609 610 case KNAV_QUEUE_GET_COUNT: 611 ret = knav_queue_get_count(qh); 612 break; 613 614 default: 615 ret = -ENOTSUPP; 616 break; 617 } 618 return ret; 619 } 620 EXPORT_SYMBOL_GPL(knav_queue_device_control); 621 622 623 624 /** 625 * knav_queue_push() - push data (or descriptor) to the tail of a queue 626 * @qhandle: - hardware queue handle 627 * @dma: - DMA data to push 628 * @size: - size of data to push 629 * @flags: - can be used to pass additional information 630 * 631 * Returns 0 on success, errno otherwise. 632 */ 633 int knav_queue_push(void *qhandle, dma_addr_t dma, 634 unsigned size, unsigned flags) 635 { 636 struct knav_queue *qh = qhandle; 637 u32 val; 638 639 val = (u32)dma | ((size / 16) - 1); 640 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh); 641 642 this_cpu_inc(qh->stats->pushes); 643 return 0; 644 } 645 EXPORT_SYMBOL_GPL(knav_queue_push); 646 647 /** 648 * knav_queue_pop() - pop data (or descriptor) from the head of a queue 649 * @qhandle: - hardware queue handle 650 * @size: - (optional) size of the data pop'ed. 651 * 652 * Returns a DMA address on success, 0 on failure. 653 */ 654 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size) 655 { 656 struct knav_queue *qh = qhandle; 657 struct knav_queue_inst *inst = qh->inst; 658 dma_addr_t dma; 659 u32 val, idx; 660 661 /* are we accumulated? */ 662 if (inst->descs) { 663 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) { 664 atomic_inc(&inst->desc_count); 665 return 0; 666 } 667 idx = atomic_inc_return(&inst->desc_head); 668 idx &= ACC_DESCS_MASK; 669 val = inst->descs[idx]; 670 } else { 671 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh); 672 if (unlikely(!val)) 673 return 0; 674 } 675 676 dma = val & DESC_PTR_MASK; 677 if (size) 678 *size = ((val & DESC_SIZE_MASK) + 1) * 16; 679 680 this_cpu_inc(qh->stats->pops); 681 return dma; 682 } 683 EXPORT_SYMBOL_GPL(knav_queue_pop); 684 685 /* carve out descriptors and push into queue */ 686 static void kdesc_fill_pool(struct knav_pool *pool) 687 { 688 struct knav_region *region; 689 int i; 690 691 region = pool->region; 692 pool->desc_size = region->desc_size; 693 for (i = 0; i < pool->num_desc; i++) { 694 int index = pool->region_offset + i; 695 dma_addr_t dma_addr; 696 unsigned dma_size; 697 dma_addr = region->dma_start + (region->desc_size * index); 698 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES); 699 dma_sync_single_for_device(pool->dev, dma_addr, dma_size, 700 DMA_TO_DEVICE); 701 knav_queue_push(pool->queue, dma_addr, dma_size, 0); 702 } 703 } 704 705 /* pop out descriptors and close the queue */ 706 static void kdesc_empty_pool(struct knav_pool *pool) 707 { 708 dma_addr_t dma; 709 unsigned size; 710 void *desc; 711 int i; 712 713 if (!pool->queue) 714 return; 715 716 for (i = 0;; i++) { 717 dma = knav_queue_pop(pool->queue, &size); 718 if (!dma) 719 break; 720 desc = knav_pool_desc_dma_to_virt(pool, dma); 721 if (!desc) { 722 dev_dbg(pool->kdev->dev, 723 "couldn't unmap desc, continuing\n"); 724 continue; 725 } 726 } 727 WARN_ON(i != pool->num_desc); 728 knav_queue_close(pool->queue); 729 } 730 731 732 /* Get the DMA address of a descriptor */ 733 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt) 734 { 735 struct knav_pool *pool = ph; 736 return pool->region->dma_start + (virt - pool->region->virt_start); 737 } 738 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma); 739 740 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma) 741 { 742 struct knav_pool *pool = ph; 743 return pool->region->virt_start + (dma - pool->region->dma_start); 744 } 745 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt); 746 747 /** 748 * knav_pool_create() - Create a pool of descriptors 749 * @name: - name to give the pool handle 750 * @num_desc: - numbers of descriptors in the pool 751 * @region_id: - QMSS region id from which the descriptors are to be 752 * allocated. 753 * 754 * Returns a pool handle on success. 755 * Use IS_ERR_OR_NULL() to identify error values on return. 756 */ 757 void *knav_pool_create(const char *name, 758 int num_desc, int region_id) 759 { 760 struct knav_region *reg_itr, *region = NULL; 761 struct knav_pool *pool, *pi = NULL, *iter; 762 struct list_head *node; 763 unsigned last_offset; 764 int ret; 765 766 if (!kdev) 767 return ERR_PTR(-EPROBE_DEFER); 768 769 if (!kdev->dev) 770 return ERR_PTR(-ENODEV); 771 772 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 773 if (!pool) { 774 dev_err(kdev->dev, "out of memory allocating pool\n"); 775 return ERR_PTR(-ENOMEM); 776 } 777 778 for_each_region(kdev, reg_itr) { 779 if (reg_itr->id != region_id) 780 continue; 781 region = reg_itr; 782 break; 783 } 784 785 if (!region) { 786 dev_err(kdev->dev, "region-id(%d) not found\n", region_id); 787 ret = -EINVAL; 788 goto err; 789 } 790 791 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0); 792 if (IS_ERR(pool->queue)) { 793 dev_err(kdev->dev, 794 "failed to open queue for pool(%s), error %ld\n", 795 name, PTR_ERR(pool->queue)); 796 ret = PTR_ERR(pool->queue); 797 goto err; 798 } 799 800 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 801 pool->kdev = kdev; 802 pool->dev = kdev->dev; 803 804 mutex_lock(&knav_dev_lock); 805 806 if (num_desc > (region->num_desc - region->used_desc)) { 807 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n", 808 region_id, name); 809 ret = -ENOMEM; 810 goto err_unlock; 811 } 812 813 /* Region maintains a sorted (by region offset) list of pools 814 * use the first free slot which is large enough to accomodate 815 * the request 816 */ 817 last_offset = 0; 818 node = ®ion->pools; 819 list_for_each_entry(iter, ®ion->pools, region_inst) { 820 if ((iter->region_offset - last_offset) >= num_desc) { 821 pi = iter; 822 break; 823 } 824 last_offset = iter->region_offset + iter->num_desc; 825 } 826 827 if (pi) { 828 node = &pi->region_inst; 829 pool->region = region; 830 pool->num_desc = num_desc; 831 pool->region_offset = last_offset; 832 region->used_desc += num_desc; 833 list_add_tail(&pool->list, &kdev->pools); 834 list_add_tail(&pool->region_inst, node); 835 } else { 836 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n", 837 name, region_id); 838 ret = -ENOMEM; 839 goto err_unlock; 840 } 841 842 mutex_unlock(&knav_dev_lock); 843 kdesc_fill_pool(pool); 844 return pool; 845 846 err_unlock: 847 mutex_unlock(&knav_dev_lock); 848 err: 849 kfree(pool->name); 850 devm_kfree(kdev->dev, pool); 851 return ERR_PTR(ret); 852 } 853 EXPORT_SYMBOL_GPL(knav_pool_create); 854 855 /** 856 * knav_pool_destroy() - Free a pool of descriptors 857 * @ph: - pool handle 858 */ 859 void knav_pool_destroy(void *ph) 860 { 861 struct knav_pool *pool = ph; 862 863 if (!pool) 864 return; 865 866 if (!pool->region) 867 return; 868 869 kdesc_empty_pool(pool); 870 mutex_lock(&knav_dev_lock); 871 872 pool->region->used_desc -= pool->num_desc; 873 list_del(&pool->region_inst); 874 list_del(&pool->list); 875 876 mutex_unlock(&knav_dev_lock); 877 kfree(pool->name); 878 devm_kfree(kdev->dev, pool); 879 } 880 EXPORT_SYMBOL_GPL(knav_pool_destroy); 881 882 883 /** 884 * knav_pool_desc_get() - Get a descriptor from the pool 885 * @ph: - pool handle 886 * 887 * Returns descriptor from the pool. 888 */ 889 void *knav_pool_desc_get(void *ph) 890 { 891 struct knav_pool *pool = ph; 892 dma_addr_t dma; 893 unsigned size; 894 void *data; 895 896 dma = knav_queue_pop(pool->queue, &size); 897 if (unlikely(!dma)) 898 return ERR_PTR(-ENOMEM); 899 data = knav_pool_desc_dma_to_virt(pool, dma); 900 return data; 901 } 902 EXPORT_SYMBOL_GPL(knav_pool_desc_get); 903 904 /** 905 * knav_pool_desc_put() - return a descriptor to the pool 906 * @ph: - pool handle 907 * @desc: - virtual address 908 */ 909 void knav_pool_desc_put(void *ph, void *desc) 910 { 911 struct knav_pool *pool = ph; 912 dma_addr_t dma; 913 dma = knav_pool_desc_virt_to_dma(pool, desc); 914 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0); 915 } 916 EXPORT_SYMBOL_GPL(knav_pool_desc_put); 917 918 /** 919 * knav_pool_desc_map() - Map descriptor for DMA transfer 920 * @ph: - pool handle 921 * @desc: - address of descriptor to map 922 * @size: - size of descriptor to map 923 * @dma: - DMA address return pointer 924 * @dma_sz: - adjusted return pointer 925 * 926 * Returns 0 on success, errno otherwise. 927 */ 928 int knav_pool_desc_map(void *ph, void *desc, unsigned size, 929 dma_addr_t *dma, unsigned *dma_sz) 930 { 931 struct knav_pool *pool = ph; 932 *dma = knav_pool_desc_virt_to_dma(pool, desc); 933 size = min(size, pool->region->desc_size); 934 size = ALIGN(size, SMP_CACHE_BYTES); 935 *dma_sz = size; 936 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE); 937 938 /* Ensure the descriptor reaches to the memory */ 939 __iowmb(); 940 941 return 0; 942 } 943 EXPORT_SYMBOL_GPL(knav_pool_desc_map); 944 945 /** 946 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer 947 * @ph: - pool handle 948 * @dma: - DMA address of descriptor to unmap 949 * @dma_sz: - size of descriptor to unmap 950 * 951 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify 952 * error values on return. 953 */ 954 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz) 955 { 956 struct knav_pool *pool = ph; 957 unsigned desc_sz; 958 void *desc; 959 960 desc_sz = min(dma_sz, pool->region->desc_size); 961 desc = knav_pool_desc_dma_to_virt(pool, dma); 962 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE); 963 prefetch(desc); 964 return desc; 965 } 966 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap); 967 968 /** 969 * knav_pool_count() - Get the number of descriptors in pool. 970 * @ph: - pool handle 971 * Returns number of elements in the pool. 972 */ 973 int knav_pool_count(void *ph) 974 { 975 struct knav_pool *pool = ph; 976 return knav_queue_get_count(pool->queue); 977 } 978 EXPORT_SYMBOL_GPL(knav_pool_count); 979 980 static void knav_queue_setup_region(struct knav_device *kdev, 981 struct knav_region *region) 982 { 983 unsigned hw_num_desc, hw_desc_size, size; 984 struct knav_reg_region __iomem *regs; 985 struct knav_qmgr_info *qmgr; 986 struct knav_pool *pool; 987 int id = region->id; 988 struct page *page; 989 990 /* unused region? */ 991 if (!region->num_desc) { 992 dev_warn(kdev->dev, "unused region %s\n", region->name); 993 return; 994 } 995 996 /* get hardware descriptor value */ 997 hw_num_desc = ilog2(region->num_desc - 1) + 1; 998 999 /* did we force fit ourselves into nothingness? */ 1000 if (region->num_desc < 32) { 1001 region->num_desc = 0; 1002 dev_warn(kdev->dev, "too few descriptors in region %s\n", 1003 region->name); 1004 return; 1005 } 1006 1007 size = region->num_desc * region->desc_size; 1008 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA | 1009 GFP_DMA32); 1010 if (!region->virt_start) { 1011 region->num_desc = 0; 1012 dev_err(kdev->dev, "memory alloc failed for region %s\n", 1013 region->name); 1014 return; 1015 } 1016 region->virt_end = region->virt_start + size; 1017 page = virt_to_page(region->virt_start); 1018 1019 region->dma_start = dma_map_page(kdev->dev, page, 0, size, 1020 DMA_BIDIRECTIONAL); 1021 if (dma_mapping_error(kdev->dev, region->dma_start)) { 1022 dev_err(kdev->dev, "dma map failed for region %s\n", 1023 region->name); 1024 goto fail; 1025 } 1026 region->dma_end = region->dma_start + size; 1027 1028 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 1029 if (!pool) { 1030 dev_err(kdev->dev, "out of memory allocating dummy pool\n"); 1031 goto fail; 1032 } 1033 pool->num_desc = 0; 1034 pool->region_offset = region->num_desc; 1035 list_add(&pool->region_inst, ®ion->pools); 1036 1037 dev_dbg(kdev->dev, 1038 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n", 1039 region->name, id, region->desc_size, region->num_desc, 1040 region->link_index, ®ion->dma_start, ®ion->dma_end, 1041 region->virt_start, region->virt_end); 1042 1043 hw_desc_size = (region->desc_size / 16) - 1; 1044 hw_num_desc -= 5; 1045 1046 for_each_qmgr(kdev, qmgr) { 1047 regs = qmgr->reg_region + id; 1048 writel_relaxed((u32)region->dma_start, ®s->base); 1049 writel_relaxed(region->link_index, ®s->start_index); 1050 writel_relaxed(hw_desc_size << 16 | hw_num_desc, 1051 ®s->size_count); 1052 } 1053 return; 1054 1055 fail: 1056 if (region->dma_start) 1057 dma_unmap_page(kdev->dev, region->dma_start, size, 1058 DMA_BIDIRECTIONAL); 1059 if (region->virt_start) 1060 free_pages_exact(region->virt_start, size); 1061 region->num_desc = 0; 1062 return; 1063 } 1064 1065 static const char *knav_queue_find_name(struct device_node *node) 1066 { 1067 const char *name; 1068 1069 if (of_property_read_string(node, "label", &name) < 0) 1070 name = node->name; 1071 if (!name) 1072 name = "unknown"; 1073 return name; 1074 } 1075 1076 static int knav_queue_setup_regions(struct knav_device *kdev, 1077 struct device_node *regions) 1078 { 1079 struct device *dev = kdev->dev; 1080 struct knav_region *region; 1081 struct device_node *child; 1082 u32 temp[2]; 1083 int ret; 1084 1085 for_each_child_of_node(regions, child) { 1086 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL); 1087 if (!region) { 1088 of_node_put(child); 1089 dev_err(dev, "out of memory allocating region\n"); 1090 return -ENOMEM; 1091 } 1092 1093 region->name = knav_queue_find_name(child); 1094 of_property_read_u32(child, "id", ®ion->id); 1095 ret = of_property_read_u32_array(child, "region-spec", temp, 2); 1096 if (!ret) { 1097 region->num_desc = temp[0]; 1098 region->desc_size = temp[1]; 1099 } else { 1100 dev_err(dev, "invalid region info %s\n", region->name); 1101 devm_kfree(dev, region); 1102 continue; 1103 } 1104 1105 if (!of_get_property(child, "link-index", NULL)) { 1106 dev_err(dev, "No link info for %s\n", region->name); 1107 devm_kfree(dev, region); 1108 continue; 1109 } 1110 ret = of_property_read_u32(child, "link-index", 1111 ®ion->link_index); 1112 if (ret) { 1113 dev_err(dev, "link index not found for %s\n", 1114 region->name); 1115 devm_kfree(dev, region); 1116 continue; 1117 } 1118 1119 INIT_LIST_HEAD(®ion->pools); 1120 list_add_tail(®ion->list, &kdev->regions); 1121 } 1122 if (list_empty(&kdev->regions)) { 1123 dev_err(dev, "no valid region information found\n"); 1124 return -ENODEV; 1125 } 1126 1127 /* Next, we run through the regions and set things up */ 1128 for_each_region(kdev, region) 1129 knav_queue_setup_region(kdev, region); 1130 1131 return 0; 1132 } 1133 1134 static int knav_get_link_ram(struct knav_device *kdev, 1135 const char *name, 1136 struct knav_link_ram_block *block) 1137 { 1138 struct platform_device *pdev = to_platform_device(kdev->dev); 1139 struct device_node *node = pdev->dev.of_node; 1140 u32 temp[2]; 1141 1142 /* 1143 * Note: link ram resources are specified in "entry" sized units. In 1144 * reality, although entries are ~40bits in hardware, we treat them as 1145 * 64-bit entities here. 1146 * 1147 * For example, to specify the internal link ram for Keystone-I class 1148 * devices, we would set the linkram0 resource to 0x80000-0x83fff. 1149 * 1150 * This gets a bit weird when other link rams are used. For example, 1151 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries 1152 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000, 1153 * which accounts for 64-bits per entry, for 16K entries. 1154 */ 1155 if (!of_property_read_u32_array(node, name , temp, 2)) { 1156 if (temp[0]) { 1157 /* 1158 * queue_base specified => using internal or onchip 1159 * link ram WARNING - we do not "reserve" this block 1160 */ 1161 block->dma = (dma_addr_t)temp[0]; 1162 block->virt = NULL; 1163 block->size = temp[1]; 1164 } else { 1165 block->size = temp[1]; 1166 /* queue_base not specific => allocate requested size */ 1167 block->virt = dmam_alloc_coherent(kdev->dev, 1168 8 * block->size, &block->dma, 1169 GFP_KERNEL); 1170 if (!block->virt) { 1171 dev_err(kdev->dev, "failed to alloc linkram\n"); 1172 return -ENOMEM; 1173 } 1174 } 1175 } else { 1176 return -ENODEV; 1177 } 1178 return 0; 1179 } 1180 1181 static int knav_queue_setup_link_ram(struct knav_device *kdev) 1182 { 1183 struct knav_link_ram_block *block; 1184 struct knav_qmgr_info *qmgr; 1185 1186 for_each_qmgr(kdev, qmgr) { 1187 block = &kdev->link_rams[0]; 1188 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n", 1189 &block->dma, block->virt, block->size); 1190 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0); 1191 if (kdev->version == QMSS_66AK2G) 1192 writel_relaxed(block->size, 1193 &qmgr->reg_config->link_ram_size0); 1194 else 1195 writel_relaxed(block->size - 1, 1196 &qmgr->reg_config->link_ram_size0); 1197 block++; 1198 if (!block->size) 1199 continue; 1200 1201 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n", 1202 &block->dma, block->virt, block->size); 1203 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1); 1204 } 1205 1206 return 0; 1207 } 1208 1209 static int knav_setup_queue_range(struct knav_device *kdev, 1210 struct device_node *node) 1211 { 1212 struct device *dev = kdev->dev; 1213 struct knav_range_info *range; 1214 struct knav_qmgr_info *qmgr; 1215 u32 temp[2], start, end, id, index; 1216 int ret, i; 1217 1218 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL); 1219 if (!range) { 1220 dev_err(dev, "out of memory allocating range\n"); 1221 return -ENOMEM; 1222 } 1223 1224 range->kdev = kdev; 1225 range->name = knav_queue_find_name(node); 1226 ret = of_property_read_u32_array(node, "qrange", temp, 2); 1227 if (!ret) { 1228 range->queue_base = temp[0] - kdev->base_id; 1229 range->num_queues = temp[1]; 1230 } else { 1231 dev_err(dev, "invalid queue range %s\n", range->name); 1232 devm_kfree(dev, range); 1233 return -EINVAL; 1234 } 1235 1236 for (i = 0; i < RANGE_MAX_IRQS; i++) { 1237 struct of_phandle_args oirq; 1238 1239 if (of_irq_parse_one(node, i, &oirq)) 1240 break; 1241 1242 range->irqs[i].irq = irq_create_of_mapping(&oirq); 1243 if (range->irqs[i].irq == IRQ_NONE) 1244 break; 1245 1246 range->num_irqs++; 1247 1248 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) { 1249 unsigned long mask; 1250 int bit; 1251 1252 range->irqs[i].cpu_mask = devm_kzalloc(dev, 1253 cpumask_size(), GFP_KERNEL); 1254 if (!range->irqs[i].cpu_mask) 1255 return -ENOMEM; 1256 1257 mask = (oirq.args[2] & 0x0000ff00) >> 8; 1258 for_each_set_bit(bit, &mask, BITS_PER_LONG) 1259 cpumask_set_cpu(bit, range->irqs[i].cpu_mask); 1260 } 1261 } 1262 1263 range->num_irqs = min(range->num_irqs, range->num_queues); 1264 if (range->num_irqs) 1265 range->flags |= RANGE_HAS_IRQ; 1266 1267 if (of_property_read_bool(node, "qalloc-by-id")) 1268 range->flags |= RANGE_RESERVED; 1269 1270 if (of_property_present(node, "accumulator")) { 1271 ret = knav_init_acc_range(kdev, node, range); 1272 if (ret < 0) { 1273 devm_kfree(dev, range); 1274 return ret; 1275 } 1276 } else { 1277 range->ops = &knav_gp_range_ops; 1278 } 1279 1280 /* set threshold to 1, and flush out the queues */ 1281 for_each_qmgr(kdev, qmgr) { 1282 start = max(qmgr->start_queue, range->queue_base); 1283 end = min(qmgr->start_queue + qmgr->num_queues, 1284 range->queue_base + range->num_queues); 1285 for (id = start; id < end; id++) { 1286 index = id - qmgr->start_queue; 1287 writel_relaxed(THRESH_GTE | 1, 1288 &qmgr->reg_peek[index].ptr_size_thresh); 1289 writel_relaxed(0, 1290 &qmgr->reg_push[index].ptr_size_thresh); 1291 } 1292 } 1293 1294 list_add_tail(&range->list, &kdev->queue_ranges); 1295 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n", 1296 range->name, range->queue_base, 1297 range->queue_base + range->num_queues - 1, 1298 range->num_irqs, 1299 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "", 1300 (range->flags & RANGE_RESERVED) ? ", reserved" : "", 1301 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : ""); 1302 kdev->num_queues_in_use += range->num_queues; 1303 return 0; 1304 } 1305 1306 static int knav_setup_queue_pools(struct knav_device *kdev, 1307 struct device_node *queue_pools) 1308 { 1309 struct device_node *type, *range; 1310 1311 for_each_child_of_node(queue_pools, type) { 1312 for_each_child_of_node(type, range) { 1313 /* return value ignored, we init the rest... */ 1314 knav_setup_queue_range(kdev, range); 1315 } 1316 } 1317 1318 /* ... and barf if they all failed! */ 1319 if (list_empty(&kdev->queue_ranges)) { 1320 dev_err(kdev->dev, "no valid queue range found\n"); 1321 return -ENODEV; 1322 } 1323 return 0; 1324 } 1325 1326 static void knav_free_queue_range(struct knav_device *kdev, 1327 struct knav_range_info *range) 1328 { 1329 if (range->ops && range->ops->free_range) 1330 range->ops->free_range(range); 1331 list_del(&range->list); 1332 devm_kfree(kdev->dev, range); 1333 } 1334 1335 static void knav_free_queue_ranges(struct knav_device *kdev) 1336 { 1337 struct knav_range_info *range; 1338 1339 for (;;) { 1340 range = first_queue_range(kdev); 1341 if (!range) 1342 break; 1343 knav_free_queue_range(kdev, range); 1344 } 1345 } 1346 1347 static void knav_queue_free_regions(struct knav_device *kdev) 1348 { 1349 struct knav_region *region; 1350 struct knav_pool *pool, *tmp; 1351 unsigned size; 1352 1353 for (;;) { 1354 region = first_region(kdev); 1355 if (!region) 1356 break; 1357 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst) 1358 knav_pool_destroy(pool); 1359 1360 size = region->virt_end - region->virt_start; 1361 if (size) 1362 free_pages_exact(region->virt_start, size); 1363 list_del(®ion->list); 1364 devm_kfree(kdev->dev, region); 1365 } 1366 } 1367 1368 static void __iomem *knav_queue_map_reg(struct knav_device *kdev, 1369 struct device_node *node, int index) 1370 { 1371 struct resource res; 1372 void __iomem *regs; 1373 int ret; 1374 1375 ret = of_address_to_resource(node, index, &res); 1376 if (ret) { 1377 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n", 1378 node, index); 1379 return ERR_PTR(ret); 1380 } 1381 1382 regs = devm_ioremap_resource(kdev->dev, &res); 1383 if (IS_ERR(regs)) 1384 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n", 1385 index, node); 1386 return regs; 1387 } 1388 1389 static int knav_queue_init_qmgrs(struct knav_device *kdev, 1390 struct device_node *qmgrs) 1391 { 1392 struct device *dev = kdev->dev; 1393 struct knav_qmgr_info *qmgr; 1394 struct device_node *child; 1395 u32 temp[2]; 1396 int ret; 1397 1398 for_each_child_of_node(qmgrs, child) { 1399 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL); 1400 if (!qmgr) { 1401 of_node_put(child); 1402 dev_err(dev, "out of memory allocating qmgr\n"); 1403 return -ENOMEM; 1404 } 1405 1406 ret = of_property_read_u32_array(child, "managed-queues", 1407 temp, 2); 1408 if (!ret) { 1409 qmgr->start_queue = temp[0]; 1410 qmgr->num_queues = temp[1]; 1411 } else { 1412 dev_err(dev, "invalid qmgr queue range\n"); 1413 devm_kfree(dev, qmgr); 1414 continue; 1415 } 1416 1417 dev_info(dev, "qmgr start queue %d, number of queues %d\n", 1418 qmgr->start_queue, qmgr->num_queues); 1419 1420 qmgr->reg_peek = 1421 knav_queue_map_reg(kdev, child, 1422 KNAV_QUEUE_PEEK_REG_INDEX); 1423 1424 if (kdev->version == QMSS) { 1425 qmgr->reg_status = 1426 knav_queue_map_reg(kdev, child, 1427 KNAV_QUEUE_STATUS_REG_INDEX); 1428 } 1429 1430 qmgr->reg_config = 1431 knav_queue_map_reg(kdev, child, 1432 (kdev->version == QMSS_66AK2G) ? 1433 KNAV_L_QUEUE_CONFIG_REG_INDEX : 1434 KNAV_QUEUE_CONFIG_REG_INDEX); 1435 qmgr->reg_region = 1436 knav_queue_map_reg(kdev, child, 1437 (kdev->version == QMSS_66AK2G) ? 1438 KNAV_L_QUEUE_REGION_REG_INDEX : 1439 KNAV_QUEUE_REGION_REG_INDEX); 1440 1441 qmgr->reg_push = 1442 knav_queue_map_reg(kdev, child, 1443 (kdev->version == QMSS_66AK2G) ? 1444 KNAV_L_QUEUE_PUSH_REG_INDEX : 1445 KNAV_QUEUE_PUSH_REG_INDEX); 1446 1447 if (kdev->version == QMSS) { 1448 qmgr->reg_pop = 1449 knav_queue_map_reg(kdev, child, 1450 KNAV_QUEUE_POP_REG_INDEX); 1451 } 1452 1453 if (IS_ERR(qmgr->reg_peek) || 1454 ((kdev->version == QMSS) && 1455 (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) || 1456 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) || 1457 IS_ERR(qmgr->reg_push)) { 1458 dev_err(dev, "failed to map qmgr regs\n"); 1459 if (kdev->version == QMSS) { 1460 if (!IS_ERR(qmgr->reg_status)) 1461 devm_iounmap(dev, qmgr->reg_status); 1462 if (!IS_ERR(qmgr->reg_pop)) 1463 devm_iounmap(dev, qmgr->reg_pop); 1464 } 1465 if (!IS_ERR(qmgr->reg_peek)) 1466 devm_iounmap(dev, qmgr->reg_peek); 1467 if (!IS_ERR(qmgr->reg_config)) 1468 devm_iounmap(dev, qmgr->reg_config); 1469 if (!IS_ERR(qmgr->reg_region)) 1470 devm_iounmap(dev, qmgr->reg_region); 1471 if (!IS_ERR(qmgr->reg_push)) 1472 devm_iounmap(dev, qmgr->reg_push); 1473 devm_kfree(dev, qmgr); 1474 continue; 1475 } 1476 1477 /* Use same push register for pop as well */ 1478 if (kdev->version == QMSS_66AK2G) 1479 qmgr->reg_pop = qmgr->reg_push; 1480 1481 list_add_tail(&qmgr->list, &kdev->qmgrs); 1482 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n", 1483 qmgr->start_queue, qmgr->num_queues, 1484 qmgr->reg_peek, qmgr->reg_status, 1485 qmgr->reg_config, qmgr->reg_region, 1486 qmgr->reg_push, qmgr->reg_pop); 1487 } 1488 return 0; 1489 } 1490 1491 static int knav_queue_init_pdsps(struct knav_device *kdev, 1492 struct device_node *pdsps) 1493 { 1494 struct device *dev = kdev->dev; 1495 struct knav_pdsp_info *pdsp; 1496 struct device_node *child; 1497 1498 for_each_child_of_node(pdsps, child) { 1499 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL); 1500 if (!pdsp) { 1501 of_node_put(child); 1502 dev_err(dev, "out of memory allocating pdsp\n"); 1503 return -ENOMEM; 1504 } 1505 pdsp->name = knav_queue_find_name(child); 1506 pdsp->iram = 1507 knav_queue_map_reg(kdev, child, 1508 KNAV_QUEUE_PDSP_IRAM_REG_INDEX); 1509 pdsp->regs = 1510 knav_queue_map_reg(kdev, child, 1511 KNAV_QUEUE_PDSP_REGS_REG_INDEX); 1512 pdsp->intd = 1513 knav_queue_map_reg(kdev, child, 1514 KNAV_QUEUE_PDSP_INTD_REG_INDEX); 1515 pdsp->command = 1516 knav_queue_map_reg(kdev, child, 1517 KNAV_QUEUE_PDSP_CMD_REG_INDEX); 1518 1519 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) || 1520 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) { 1521 dev_err(dev, "failed to map pdsp %s regs\n", 1522 pdsp->name); 1523 if (!IS_ERR(pdsp->command)) 1524 devm_iounmap(dev, pdsp->command); 1525 if (!IS_ERR(pdsp->iram)) 1526 devm_iounmap(dev, pdsp->iram); 1527 if (!IS_ERR(pdsp->regs)) 1528 devm_iounmap(dev, pdsp->regs); 1529 if (!IS_ERR(pdsp->intd)) 1530 devm_iounmap(dev, pdsp->intd); 1531 devm_kfree(dev, pdsp); 1532 continue; 1533 } 1534 of_property_read_u32(child, "id", &pdsp->id); 1535 list_add_tail(&pdsp->list, &kdev->pdsps); 1536 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n", 1537 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs, 1538 pdsp->intd); 1539 } 1540 return 0; 1541 } 1542 1543 static int knav_queue_stop_pdsp(struct knav_device *kdev, 1544 struct knav_pdsp_info *pdsp) 1545 { 1546 u32 val, timeout = 1000; 1547 int ret; 1548 1549 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE; 1550 writel_relaxed(val, &pdsp->regs->control); 1551 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout, 1552 PDSP_CTRL_RUNNING); 1553 if (ret < 0) { 1554 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name); 1555 return ret; 1556 } 1557 pdsp->loaded = false; 1558 pdsp->started = false; 1559 return 0; 1560 } 1561 1562 static int knav_queue_load_pdsp(struct knav_device *kdev, 1563 struct knav_pdsp_info *pdsp) 1564 { 1565 int i, ret, fwlen; 1566 const struct firmware *fw; 1567 bool found = false; 1568 u32 *fwdata; 1569 1570 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) { 1571 if (knav_acc_firmwares[i]) { 1572 ret = request_firmware_direct(&fw, 1573 knav_acc_firmwares[i], 1574 kdev->dev); 1575 if (!ret) { 1576 found = true; 1577 break; 1578 } 1579 } 1580 } 1581 1582 if (!found) { 1583 dev_err(kdev->dev, "failed to get firmware for pdsp\n"); 1584 return -ENODEV; 1585 } 1586 1587 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n", 1588 knav_acc_firmwares[i]); 1589 1590 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18); 1591 /* download the firmware */ 1592 fwdata = (u32 *)fw->data; 1593 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32); 1594 for (i = 0; i < fwlen; i++) 1595 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i); 1596 1597 release_firmware(fw); 1598 return 0; 1599 } 1600 1601 static int knav_queue_start_pdsp(struct knav_device *kdev, 1602 struct knav_pdsp_info *pdsp) 1603 { 1604 u32 val, timeout = 1000; 1605 int ret; 1606 1607 /* write a command for sync */ 1608 writel_relaxed(0xffffffff, pdsp->command); 1609 while (readl_relaxed(pdsp->command) != 0xffffffff) 1610 cpu_relax(); 1611 1612 /* soft reset the PDSP */ 1613 val = readl_relaxed(&pdsp->regs->control); 1614 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET); 1615 writel_relaxed(val, &pdsp->regs->control); 1616 1617 /* enable pdsp */ 1618 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE; 1619 writel_relaxed(val, &pdsp->regs->control); 1620 1621 /* wait for command register to clear */ 1622 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0); 1623 if (ret < 0) { 1624 dev_err(kdev->dev, 1625 "timed out on pdsp %s command register wait\n", 1626 pdsp->name); 1627 return ret; 1628 } 1629 return 0; 1630 } 1631 1632 static void knav_queue_stop_pdsps(struct knav_device *kdev) 1633 { 1634 struct knav_pdsp_info *pdsp; 1635 1636 /* disable all pdsps */ 1637 for_each_pdsp(kdev, pdsp) 1638 knav_queue_stop_pdsp(kdev, pdsp); 1639 } 1640 1641 static int knav_queue_start_pdsps(struct knav_device *kdev) 1642 { 1643 struct knav_pdsp_info *pdsp; 1644 int ret; 1645 1646 knav_queue_stop_pdsps(kdev); 1647 /* now load them all. We return success even if pdsp 1648 * is not loaded as acc channels are optional on having 1649 * firmware availability in the system. We set the loaded 1650 * and stated flag and when initialize the acc range, check 1651 * it and init the range only if pdsp is started. 1652 */ 1653 for_each_pdsp(kdev, pdsp) { 1654 ret = knav_queue_load_pdsp(kdev, pdsp); 1655 if (!ret) 1656 pdsp->loaded = true; 1657 } 1658 1659 for_each_pdsp(kdev, pdsp) { 1660 if (pdsp->loaded) { 1661 ret = knav_queue_start_pdsp(kdev, pdsp); 1662 if (!ret) 1663 pdsp->started = true; 1664 } 1665 } 1666 return 0; 1667 } 1668 1669 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id) 1670 { 1671 struct knav_qmgr_info *qmgr; 1672 1673 for_each_qmgr(kdev, qmgr) { 1674 if ((id >= qmgr->start_queue) && 1675 (id < qmgr->start_queue + qmgr->num_queues)) 1676 return qmgr; 1677 } 1678 return NULL; 1679 } 1680 1681 static int knav_queue_init_queue(struct knav_device *kdev, 1682 struct knav_range_info *range, 1683 struct knav_queue_inst *inst, 1684 unsigned id) 1685 { 1686 char irq_name[KNAV_NAME_SIZE]; 1687 inst->qmgr = knav_find_qmgr(id); 1688 if (!inst->qmgr) 1689 return -1; 1690 1691 INIT_LIST_HEAD(&inst->handles); 1692 inst->kdev = kdev; 1693 inst->range = range; 1694 inst->irq_num = -1; 1695 inst->id = id; 1696 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id); 1697 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL); 1698 1699 if (range->ops && range->ops->init_queue) 1700 return range->ops->init_queue(range, inst); 1701 else 1702 return 0; 1703 } 1704 1705 static int knav_queue_init_queues(struct knav_device *kdev) 1706 { 1707 struct knav_range_info *range; 1708 int size, id, base_idx; 1709 int idx = 0, ret = 0; 1710 1711 /* how much do we need for instance data? */ 1712 size = sizeof(struct knav_queue_inst); 1713 1714 /* round this up to a power of 2, keep the index to instance 1715 * arithmetic fast. 1716 * */ 1717 kdev->inst_shift = order_base_2(size); 1718 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use; 1719 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL); 1720 if (!kdev->instances) 1721 return -ENOMEM; 1722 1723 for_each_queue_range(kdev, range) { 1724 if (range->ops && range->ops->init_range) 1725 range->ops->init_range(range); 1726 base_idx = idx; 1727 for (id = range->queue_base; 1728 id < range->queue_base + range->num_queues; id++, idx++) { 1729 ret = knav_queue_init_queue(kdev, range, 1730 knav_queue_idx_to_inst(kdev, idx), id); 1731 if (ret < 0) 1732 return ret; 1733 } 1734 range->queue_base_inst = 1735 knav_queue_idx_to_inst(kdev, base_idx); 1736 } 1737 return 0; 1738 } 1739 1740 /* Match table for of_platform binding */ 1741 static const struct of_device_id keystone_qmss_of_match[] = { 1742 { 1743 .compatible = "ti,keystone-navigator-qmss", 1744 }, 1745 { 1746 .compatible = "ti,66ak2g-navss-qm", 1747 .data = (void *)QMSS_66AK2G, 1748 }, 1749 {}, 1750 }; 1751 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match); 1752 1753 static int knav_queue_probe(struct platform_device *pdev) 1754 { 1755 struct device_node *node = pdev->dev.of_node; 1756 struct device_node *qmgrs, *queue_pools, *regions, *pdsps; 1757 const struct of_device_id *match; 1758 struct device *dev = &pdev->dev; 1759 u32 temp[2]; 1760 int ret; 1761 1762 if (!node) { 1763 dev_err(dev, "device tree info unavailable\n"); 1764 return -ENODEV; 1765 } 1766 1767 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL); 1768 if (!kdev) { 1769 dev_err(dev, "memory allocation failed\n"); 1770 return -ENOMEM; 1771 } 1772 1773 match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev); 1774 if (match && match->data) 1775 kdev->version = QMSS_66AK2G; 1776 1777 platform_set_drvdata(pdev, kdev); 1778 kdev->dev = dev; 1779 INIT_LIST_HEAD(&kdev->queue_ranges); 1780 INIT_LIST_HEAD(&kdev->qmgrs); 1781 INIT_LIST_HEAD(&kdev->pools); 1782 INIT_LIST_HEAD(&kdev->regions); 1783 INIT_LIST_HEAD(&kdev->pdsps); 1784 1785 pm_runtime_enable(&pdev->dev); 1786 ret = pm_runtime_resume_and_get(&pdev->dev); 1787 if (ret < 0) { 1788 pm_runtime_disable(&pdev->dev); 1789 dev_err(dev, "Failed to enable QMSS\n"); 1790 return ret; 1791 } 1792 1793 if (of_property_read_u32_array(node, "queue-range", temp, 2)) { 1794 dev_err(dev, "queue-range not specified\n"); 1795 ret = -ENODEV; 1796 goto err; 1797 } 1798 kdev->base_id = temp[0]; 1799 kdev->num_queues = temp[1]; 1800 1801 /* Initialize queue managers using device tree configuration */ 1802 qmgrs = of_get_child_by_name(node, "qmgrs"); 1803 if (!qmgrs) { 1804 dev_err(dev, "queue manager info not specified\n"); 1805 ret = -ENODEV; 1806 goto err; 1807 } 1808 ret = knav_queue_init_qmgrs(kdev, qmgrs); 1809 of_node_put(qmgrs); 1810 if (ret) 1811 goto err; 1812 1813 /* get pdsp configuration values from device tree */ 1814 pdsps = of_get_child_by_name(node, "pdsps"); 1815 if (pdsps) { 1816 ret = knav_queue_init_pdsps(kdev, pdsps); 1817 if (ret) 1818 goto err; 1819 1820 ret = knav_queue_start_pdsps(kdev); 1821 if (ret) 1822 goto err; 1823 } 1824 of_node_put(pdsps); 1825 1826 /* get usable queue range values from device tree */ 1827 queue_pools = of_get_child_by_name(node, "queue-pools"); 1828 if (!queue_pools) { 1829 dev_err(dev, "queue-pools not specified\n"); 1830 ret = -ENODEV; 1831 goto err; 1832 } 1833 ret = knav_setup_queue_pools(kdev, queue_pools); 1834 of_node_put(queue_pools); 1835 if (ret) 1836 goto err; 1837 1838 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]); 1839 if (ret) { 1840 dev_err(kdev->dev, "could not setup linking ram\n"); 1841 goto err; 1842 } 1843 1844 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]); 1845 if (ret) { 1846 /* 1847 * nothing really, we have one linking ram already, so we just 1848 * live within our means 1849 */ 1850 } 1851 1852 ret = knav_queue_setup_link_ram(kdev); 1853 if (ret) 1854 goto err; 1855 1856 regions = of_get_child_by_name(node, "descriptor-regions"); 1857 if (!regions) { 1858 dev_err(dev, "descriptor-regions not specified\n"); 1859 ret = -ENODEV; 1860 goto err; 1861 } 1862 ret = knav_queue_setup_regions(kdev, regions); 1863 of_node_put(regions); 1864 if (ret) 1865 goto err; 1866 1867 ret = knav_queue_init_queues(kdev); 1868 if (ret < 0) { 1869 dev_err(dev, "hwqueue initialization failed\n"); 1870 goto err; 1871 } 1872 1873 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL, 1874 &knav_queue_debug_fops); 1875 device_ready = true; 1876 return 0; 1877 1878 err: 1879 knav_queue_stop_pdsps(kdev); 1880 knav_queue_free_regions(kdev); 1881 knav_free_queue_ranges(kdev); 1882 pm_runtime_put_sync(&pdev->dev); 1883 pm_runtime_disable(&pdev->dev); 1884 return ret; 1885 } 1886 1887 static int knav_queue_remove(struct platform_device *pdev) 1888 { 1889 /* TODO: Free resources */ 1890 pm_runtime_put_sync(&pdev->dev); 1891 pm_runtime_disable(&pdev->dev); 1892 return 0; 1893 } 1894 1895 static struct platform_driver keystone_qmss_driver = { 1896 .probe = knav_queue_probe, 1897 .remove = knav_queue_remove, 1898 .driver = { 1899 .name = "keystone-navigator-qmss", 1900 .of_match_table = keystone_qmss_of_match, 1901 }, 1902 }; 1903 module_platform_driver(keystone_qmss_driver); 1904 1905 MODULE_LICENSE("GPL v2"); 1906 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs"); 1907 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>"); 1908 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>"); 1909