1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2013-2014, NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/device.h>
8 #include <linux/kobject.h>
9 #include <linux/init.h>
10 #include <linux/io.h>
11 #include <linux/nvmem-consumer.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/reset.h>
18 #include <linux/slab.h>
19 #include <linux/sys_soc.h>
20 
21 #include <soc/tegra/common.h>
22 #include <soc/tegra/fuse.h>
23 
24 #include "fuse.h"
25 
26 struct tegra_sku_info tegra_sku_info;
27 EXPORT_SYMBOL(tegra_sku_info);
28 
29 static const char *tegra_revision_name[TEGRA_REVISION_MAX] = {
30 	[TEGRA_REVISION_UNKNOWN] = "unknown",
31 	[TEGRA_REVISION_A01]     = "A01",
32 	[TEGRA_REVISION_A02]     = "A02",
33 	[TEGRA_REVISION_A03]     = "A03",
34 	[TEGRA_REVISION_A03p]    = "A03 prime",
35 	[TEGRA_REVISION_A04]     = "A04",
36 };
37 
38 static const struct of_device_id car_match[] __initconst = {
39 	{ .compatible = "nvidia,tegra20-car", },
40 	{ .compatible = "nvidia,tegra30-car", },
41 	{ .compatible = "nvidia,tegra114-car", },
42 	{ .compatible = "nvidia,tegra124-car", },
43 	{ .compatible = "nvidia,tegra132-car", },
44 	{ .compatible = "nvidia,tegra210-car", },
45 	{},
46 };
47 
48 static struct tegra_fuse *fuse = &(struct tegra_fuse) {
49 	.base = NULL,
50 	.soc = NULL,
51 };
52 
53 static const struct of_device_id tegra_fuse_match[] = {
54 #ifdef CONFIG_ARCH_TEGRA_234_SOC
55 	{ .compatible = "nvidia,tegra234-efuse", .data = &tegra234_fuse_soc },
56 #endif
57 #ifdef CONFIG_ARCH_TEGRA_194_SOC
58 	{ .compatible = "nvidia,tegra194-efuse", .data = &tegra194_fuse_soc },
59 #endif
60 #ifdef CONFIG_ARCH_TEGRA_186_SOC
61 	{ .compatible = "nvidia,tegra186-efuse", .data = &tegra186_fuse_soc },
62 #endif
63 #ifdef CONFIG_ARCH_TEGRA_210_SOC
64 	{ .compatible = "nvidia,tegra210-efuse", .data = &tegra210_fuse_soc },
65 #endif
66 #ifdef CONFIG_ARCH_TEGRA_132_SOC
67 	{ .compatible = "nvidia,tegra132-efuse", .data = &tegra124_fuse_soc },
68 #endif
69 #ifdef CONFIG_ARCH_TEGRA_124_SOC
70 	{ .compatible = "nvidia,tegra124-efuse", .data = &tegra124_fuse_soc },
71 #endif
72 #ifdef CONFIG_ARCH_TEGRA_114_SOC
73 	{ .compatible = "nvidia,tegra114-efuse", .data = &tegra114_fuse_soc },
74 #endif
75 #ifdef CONFIG_ARCH_TEGRA_3x_SOC
76 	{ .compatible = "nvidia,tegra30-efuse", .data = &tegra30_fuse_soc },
77 #endif
78 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
79 	{ .compatible = "nvidia,tegra20-efuse", .data = &tegra20_fuse_soc },
80 #endif
81 	{ /* sentinel */ }
82 };
83 
84 static int tegra_fuse_read(void *priv, unsigned int offset, void *value,
85 			   size_t bytes)
86 {
87 	unsigned int count = bytes / 4, i;
88 	struct tegra_fuse *fuse = priv;
89 	u32 *buffer = value;
90 
91 	for (i = 0; i < count; i++)
92 		buffer[i] = fuse->read(fuse, offset + i * 4);
93 
94 	return 0;
95 }
96 
97 static const struct nvmem_cell_info tegra_fuse_cells[] = {
98 	{
99 		.name = "tsensor-cpu1",
100 		.offset = 0x084,
101 		.bytes = 4,
102 		.bit_offset = 0,
103 		.nbits = 32,
104 	}, {
105 		.name = "tsensor-cpu2",
106 		.offset = 0x088,
107 		.bytes = 4,
108 		.bit_offset = 0,
109 		.nbits = 32,
110 	}, {
111 		.name = "tsensor-cpu0",
112 		.offset = 0x098,
113 		.bytes = 4,
114 		.bit_offset = 0,
115 		.nbits = 32,
116 	}, {
117 		.name = "xusb-pad-calibration",
118 		.offset = 0x0f0,
119 		.bytes = 4,
120 		.bit_offset = 0,
121 		.nbits = 32,
122 	}, {
123 		.name = "tsensor-cpu3",
124 		.offset = 0x12c,
125 		.bytes = 4,
126 		.bit_offset = 0,
127 		.nbits = 32,
128 	}, {
129 		.name = "sata-calibration",
130 		.offset = 0x124,
131 		.bytes = 1,
132 		.bit_offset = 0,
133 		.nbits = 2,
134 	}, {
135 		.name = "tsensor-gpu",
136 		.offset = 0x154,
137 		.bytes = 4,
138 		.bit_offset = 0,
139 		.nbits = 32,
140 	}, {
141 		.name = "tsensor-mem0",
142 		.offset = 0x158,
143 		.bytes = 4,
144 		.bit_offset = 0,
145 		.nbits = 32,
146 	}, {
147 		.name = "tsensor-mem1",
148 		.offset = 0x15c,
149 		.bytes = 4,
150 		.bit_offset = 0,
151 		.nbits = 32,
152 	}, {
153 		.name = "tsensor-pllx",
154 		.offset = 0x160,
155 		.bytes = 4,
156 		.bit_offset = 0,
157 		.nbits = 32,
158 	}, {
159 		.name = "tsensor-common",
160 		.offset = 0x180,
161 		.bytes = 4,
162 		.bit_offset = 0,
163 		.nbits = 32,
164 	}, {
165 		.name = "tsensor-realignment",
166 		.offset = 0x1fc,
167 		.bytes = 4,
168 		.bit_offset = 0,
169 		.nbits = 32,
170 	}, {
171 		.name = "gpu-calibration",
172 		.offset = 0x204,
173 		.bytes = 4,
174 		.bit_offset = 0,
175 		.nbits = 32,
176 	}, {
177 		.name = "xusb-pad-calibration-ext",
178 		.offset = 0x250,
179 		.bytes = 4,
180 		.bit_offset = 0,
181 		.nbits = 32,
182 	},
183 };
184 
185 static void tegra_fuse_restore(void *base)
186 {
187 	fuse->clk = NULL;
188 	fuse->base = base;
189 }
190 
191 static int tegra_fuse_probe(struct platform_device *pdev)
192 {
193 	void __iomem *base = fuse->base;
194 	struct nvmem_config nvmem;
195 	struct resource *res;
196 	int err;
197 
198 	err = devm_add_action(&pdev->dev, tegra_fuse_restore, base);
199 	if (err)
200 		return err;
201 
202 	/* take over the memory region from the early initialization */
203 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
204 	fuse->phys = res->start;
205 	fuse->base = devm_ioremap_resource(&pdev->dev, res);
206 	if (IS_ERR(fuse->base)) {
207 		err = PTR_ERR(fuse->base);
208 		return err;
209 	}
210 
211 	fuse->clk = devm_clk_get(&pdev->dev, "fuse");
212 	if (IS_ERR(fuse->clk)) {
213 		if (PTR_ERR(fuse->clk) != -EPROBE_DEFER)
214 			dev_err(&pdev->dev, "failed to get FUSE clock: %ld",
215 				PTR_ERR(fuse->clk));
216 
217 		return PTR_ERR(fuse->clk);
218 	}
219 
220 	platform_set_drvdata(pdev, fuse);
221 	fuse->dev = &pdev->dev;
222 
223 	err = devm_pm_runtime_enable(&pdev->dev);
224 	if (err)
225 		return err;
226 
227 	if (fuse->soc->probe) {
228 		err = fuse->soc->probe(fuse);
229 		if (err < 0)
230 			return err;
231 	}
232 
233 	memset(&nvmem, 0, sizeof(nvmem));
234 	nvmem.dev = &pdev->dev;
235 	nvmem.name = "fuse";
236 	nvmem.id = -1;
237 	nvmem.owner = THIS_MODULE;
238 	nvmem.cells = tegra_fuse_cells;
239 	nvmem.ncells = ARRAY_SIZE(tegra_fuse_cells);
240 	nvmem.type = NVMEM_TYPE_OTP;
241 	nvmem.read_only = true;
242 	nvmem.root_only = true;
243 	nvmem.reg_read = tegra_fuse_read;
244 	nvmem.size = fuse->soc->info->size;
245 	nvmem.word_size = 4;
246 	nvmem.stride = 4;
247 	nvmem.priv = fuse;
248 
249 	fuse->nvmem = devm_nvmem_register(&pdev->dev, &nvmem);
250 	if (IS_ERR(fuse->nvmem)) {
251 		err = PTR_ERR(fuse->nvmem);
252 		dev_err(&pdev->dev, "failed to register NVMEM device: %d\n",
253 			err);
254 		return err;
255 	}
256 
257 	fuse->rst = devm_reset_control_get_optional(&pdev->dev, "fuse");
258 	if (IS_ERR(fuse->rst)) {
259 		err = PTR_ERR(fuse->rst);
260 		dev_err(&pdev->dev, "failed to get FUSE reset: %pe\n",
261 			fuse->rst);
262 		return err;
263 	}
264 
265 	/*
266 	 * FUSE clock is enabled at a boot time, hence this resume/suspend
267 	 * disables the clock besides the h/w resetting.
268 	 */
269 	err = pm_runtime_resume_and_get(&pdev->dev);
270 	if (err)
271 		return err;
272 
273 	err = reset_control_reset(fuse->rst);
274 	pm_runtime_put(&pdev->dev);
275 
276 	if (err < 0) {
277 		dev_err(&pdev->dev, "failed to reset FUSE: %d\n", err);
278 		return err;
279 	}
280 
281 	/* release the early I/O memory mapping */
282 	iounmap(base);
283 
284 	return 0;
285 }
286 
287 static int __maybe_unused tegra_fuse_runtime_resume(struct device *dev)
288 {
289 	int err;
290 
291 	err = clk_prepare_enable(fuse->clk);
292 	if (err < 0) {
293 		dev_err(dev, "failed to enable FUSE clock: %d\n", err);
294 		return err;
295 	}
296 
297 	return 0;
298 }
299 
300 static int __maybe_unused tegra_fuse_runtime_suspend(struct device *dev)
301 {
302 	clk_disable_unprepare(fuse->clk);
303 
304 	return 0;
305 }
306 
307 static int __maybe_unused tegra_fuse_suspend(struct device *dev)
308 {
309 	int ret;
310 
311 	/*
312 	 * Critical for RAM re-repair operation, which must occur on resume
313 	 * from LP1 system suspend and as part of CCPLEX cluster switching.
314 	 */
315 	if (fuse->soc->clk_suspend_on)
316 		ret = pm_runtime_resume_and_get(dev);
317 	else
318 		ret = pm_runtime_force_suspend(dev);
319 
320 	return ret;
321 }
322 
323 static int __maybe_unused tegra_fuse_resume(struct device *dev)
324 {
325 	int ret = 0;
326 
327 	if (fuse->soc->clk_suspend_on)
328 		pm_runtime_put(dev);
329 	else
330 		ret = pm_runtime_force_resume(dev);
331 
332 	return ret;
333 }
334 
335 static const struct dev_pm_ops tegra_fuse_pm = {
336 	SET_RUNTIME_PM_OPS(tegra_fuse_runtime_suspend, tegra_fuse_runtime_resume,
337 			   NULL)
338 	SET_SYSTEM_SLEEP_PM_OPS(tegra_fuse_suspend, tegra_fuse_resume)
339 };
340 
341 static struct platform_driver tegra_fuse_driver = {
342 	.driver = {
343 		.name = "tegra-fuse",
344 		.of_match_table = tegra_fuse_match,
345 		.pm = &tegra_fuse_pm,
346 		.suppress_bind_attrs = true,
347 	},
348 	.probe = tegra_fuse_probe,
349 };
350 builtin_platform_driver(tegra_fuse_driver);
351 
352 u32 __init tegra_fuse_read_spare(unsigned int spare)
353 {
354 	unsigned int offset = fuse->soc->info->spare + spare * 4;
355 
356 	return fuse->read_early(fuse, offset) & 1;
357 }
358 
359 u32 __init tegra_fuse_read_early(unsigned int offset)
360 {
361 	return fuse->read_early(fuse, offset);
362 }
363 
364 int tegra_fuse_readl(unsigned long offset, u32 *value)
365 {
366 	if (!fuse->read || !fuse->clk)
367 		return -EPROBE_DEFER;
368 
369 	if (IS_ERR(fuse->clk))
370 		return PTR_ERR(fuse->clk);
371 
372 	*value = fuse->read(fuse, offset);
373 
374 	return 0;
375 }
376 EXPORT_SYMBOL(tegra_fuse_readl);
377 
378 static void tegra_enable_fuse_clk(void __iomem *base)
379 {
380 	u32 reg;
381 
382 	reg = readl_relaxed(base + 0x48);
383 	reg |= 1 << 28;
384 	writel(reg, base + 0x48);
385 
386 	/*
387 	 * Enable FUSE clock. This needs to be hardcoded because the clock
388 	 * subsystem is not active during early boot.
389 	 */
390 	reg = readl(base + 0x14);
391 	reg |= 1 << 7;
392 	writel(reg, base + 0x14);
393 }
394 
395 static ssize_t major_show(struct device *dev, struct device_attribute *attr,
396 			     char *buf)
397 {
398 	return sprintf(buf, "%d\n", tegra_get_major_rev());
399 }
400 
401 static DEVICE_ATTR_RO(major);
402 
403 static ssize_t minor_show(struct device *dev, struct device_attribute *attr,
404 			     char *buf)
405 {
406 	return sprintf(buf, "%d\n", tegra_get_minor_rev());
407 }
408 
409 static DEVICE_ATTR_RO(minor);
410 
411 static struct attribute *tegra_soc_attr[] = {
412 	&dev_attr_major.attr,
413 	&dev_attr_minor.attr,
414 	NULL,
415 };
416 
417 const struct attribute_group tegra_soc_attr_group = {
418 	.attrs = tegra_soc_attr,
419 };
420 
421 #if IS_ENABLED(CONFIG_ARCH_TEGRA_194_SOC) || \
422     IS_ENABLED(CONFIG_ARCH_TEGRA_234_SOC)
423 static ssize_t platform_show(struct device *dev, struct device_attribute *attr,
424 			     char *buf)
425 {
426 	/*
427 	 * Displays the value in the 'pre_si_platform' field of the HIDREV
428 	 * register for Tegra194 devices. A value of 0 indicates that the
429 	 * platform type is silicon and all other non-zero values indicate
430 	 * the type of simulation platform is being used.
431 	 */
432 	return sprintf(buf, "%d\n", tegra_get_platform());
433 }
434 
435 static DEVICE_ATTR_RO(platform);
436 
437 static struct attribute *tegra194_soc_attr[] = {
438 	&dev_attr_major.attr,
439 	&dev_attr_minor.attr,
440 	&dev_attr_platform.attr,
441 	NULL,
442 };
443 
444 const struct attribute_group tegra194_soc_attr_group = {
445 	.attrs = tegra194_soc_attr,
446 };
447 #endif
448 
449 struct device * __init tegra_soc_device_register(void)
450 {
451 	struct soc_device_attribute *attr;
452 	struct soc_device *dev;
453 
454 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
455 	if (!attr)
456 		return NULL;
457 
458 	attr->family = kasprintf(GFP_KERNEL, "Tegra");
459 	attr->revision = kasprintf(GFP_KERNEL, "%s",
460 		tegra_revision_name[tegra_sku_info.revision]);
461 	attr->soc_id = kasprintf(GFP_KERNEL, "%u", tegra_get_chip_id());
462 	attr->custom_attr_group = fuse->soc->soc_attr_group;
463 
464 	dev = soc_device_register(attr);
465 	if (IS_ERR(dev)) {
466 		kfree(attr->soc_id);
467 		kfree(attr->revision);
468 		kfree(attr->family);
469 		kfree(attr);
470 		return ERR_CAST(dev);
471 	}
472 
473 	return soc_device_to_device(dev);
474 }
475 
476 static int __init tegra_init_fuse(void)
477 {
478 	const struct of_device_id *match;
479 	struct device_node *np;
480 	struct resource regs;
481 
482 	tegra_init_apbmisc();
483 
484 	np = of_find_matching_node_and_match(NULL, tegra_fuse_match, &match);
485 	if (!np) {
486 		/*
487 		 * Fall back to legacy initialization for 32-bit ARM only. All
488 		 * 64-bit ARM device tree files for Tegra are required to have
489 		 * a FUSE node.
490 		 *
491 		 * This is for backwards-compatibility with old device trees
492 		 * that didn't contain a FUSE node.
493 		 */
494 		if (IS_ENABLED(CONFIG_ARM) && soc_is_tegra()) {
495 			u8 chip = tegra_get_chip_id();
496 
497 			regs.start = 0x7000f800;
498 			regs.end = 0x7000fbff;
499 			regs.flags = IORESOURCE_MEM;
500 
501 			switch (chip) {
502 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
503 			case TEGRA20:
504 				fuse->soc = &tegra20_fuse_soc;
505 				break;
506 #endif
507 
508 #ifdef CONFIG_ARCH_TEGRA_3x_SOC
509 			case TEGRA30:
510 				fuse->soc = &tegra30_fuse_soc;
511 				break;
512 #endif
513 
514 #ifdef CONFIG_ARCH_TEGRA_114_SOC
515 			case TEGRA114:
516 				fuse->soc = &tegra114_fuse_soc;
517 				break;
518 #endif
519 
520 #ifdef CONFIG_ARCH_TEGRA_124_SOC
521 			case TEGRA124:
522 				fuse->soc = &tegra124_fuse_soc;
523 				break;
524 #endif
525 
526 			default:
527 				pr_warn("Unsupported SoC: %02x\n", chip);
528 				break;
529 			}
530 		} else {
531 			/*
532 			 * At this point we're not running on Tegra, so play
533 			 * nice with multi-platform kernels.
534 			 */
535 			return 0;
536 		}
537 	} else {
538 		/*
539 		 * Extract information from the device tree if we've found a
540 		 * matching node.
541 		 */
542 		if (of_address_to_resource(np, 0, &regs) < 0) {
543 			pr_err("failed to get FUSE register\n");
544 			return -ENXIO;
545 		}
546 
547 		fuse->soc = match->data;
548 	}
549 
550 	np = of_find_matching_node(NULL, car_match);
551 	if (np) {
552 		void __iomem *base = of_iomap(np, 0);
553 		if (base) {
554 			tegra_enable_fuse_clk(base);
555 			iounmap(base);
556 		} else {
557 			pr_err("failed to map clock registers\n");
558 			return -ENXIO;
559 		}
560 	}
561 
562 	fuse->base = ioremap(regs.start, resource_size(&regs));
563 	if (!fuse->base) {
564 		pr_err("failed to map FUSE registers\n");
565 		return -ENXIO;
566 	}
567 
568 	fuse->soc->init(fuse);
569 
570 	pr_info("Tegra Revision: %s SKU: %d CPU Process: %d SoC Process: %d\n",
571 		tegra_revision_name[tegra_sku_info.revision],
572 		tegra_sku_info.sku_id, tegra_sku_info.cpu_process_id,
573 		tegra_sku_info.soc_process_id);
574 	pr_debug("Tegra CPU Speedo ID %d, SoC Speedo ID %d\n",
575 		 tegra_sku_info.cpu_speedo_id, tegra_sku_info.soc_speedo_id);
576 
577 	if (fuse->soc->lookups) {
578 		size_t size = sizeof(*fuse->lookups) * fuse->soc->num_lookups;
579 
580 		fuse->lookups = kmemdup(fuse->soc->lookups, size, GFP_KERNEL);
581 		if (fuse->lookups)
582 			nvmem_add_cell_lookups(fuse->lookups, fuse->soc->num_lookups);
583 	}
584 
585 	return 0;
586 }
587 early_initcall(tegra_init_fuse);
588 
589 #ifdef CONFIG_ARM64
590 static int __init tegra_init_soc(void)
591 {
592 	struct device_node *np;
593 	struct device *soc;
594 
595 	/* make sure we're running on Tegra */
596 	np = of_find_matching_node(NULL, tegra_fuse_match);
597 	if (!np)
598 		return 0;
599 
600 	of_node_put(np);
601 
602 	soc = tegra_soc_device_register();
603 	if (IS_ERR(soc)) {
604 		pr_err("failed to register SoC device: %ld\n", PTR_ERR(soc));
605 		return PTR_ERR(soc);
606 	}
607 
608 	return 0;
609 }
610 device_initcall(tegra_init_soc);
611 #endif
612