xref: /openbmc/linux/drivers/soc/qcom/spm.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Copyright (c) 2011-2014, The Linux Foundation. All rights reserved.
3  * Copyright (c) 2014,2015, Linaro Ltd.
4  *
5  * SAW power controller driver
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 and
9  * only version 2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/of_address.h>
23 #include <linux/of_device.h>
24 #include <linux/err.h>
25 #include <linux/platform_device.h>
26 #include <linux/cpuidle.h>
27 #include <linux/cpu_pm.h>
28 #include <linux/qcom_scm.h>
29 
30 #include <asm/cpuidle.h>
31 #include <asm/proc-fns.h>
32 #include <asm/suspend.h>
33 
34 #define MAX_PMIC_DATA		2
35 #define MAX_SEQ_DATA		64
36 #define SPM_CTL_INDEX		0x7f
37 #define SPM_CTL_INDEX_SHIFT	4
38 #define SPM_CTL_EN		BIT(0)
39 
40 enum pm_sleep_mode {
41 	PM_SLEEP_MODE_STBY,
42 	PM_SLEEP_MODE_RET,
43 	PM_SLEEP_MODE_SPC,
44 	PM_SLEEP_MODE_PC,
45 	PM_SLEEP_MODE_NR,
46 };
47 
48 enum spm_reg {
49 	SPM_REG_CFG,
50 	SPM_REG_SPM_CTL,
51 	SPM_REG_DLY,
52 	SPM_REG_PMIC_DLY,
53 	SPM_REG_PMIC_DATA_0,
54 	SPM_REG_PMIC_DATA_1,
55 	SPM_REG_VCTL,
56 	SPM_REG_SEQ_ENTRY,
57 	SPM_REG_SPM_STS,
58 	SPM_REG_PMIC_STS,
59 	SPM_REG_NR,
60 };
61 
62 struct spm_reg_data {
63 	const u8 *reg_offset;
64 	u32 spm_cfg;
65 	u32 spm_dly;
66 	u32 pmic_dly;
67 	u32 pmic_data[MAX_PMIC_DATA];
68 	u8 seq[MAX_SEQ_DATA];
69 	u8 start_index[PM_SLEEP_MODE_NR];
70 };
71 
72 struct spm_driver_data {
73 	void __iomem *reg_base;
74 	const struct spm_reg_data *reg_data;
75 };
76 
77 static const u8 spm_reg_offset_v2_1[SPM_REG_NR] = {
78 	[SPM_REG_CFG]		= 0x08,
79 	[SPM_REG_SPM_CTL]	= 0x30,
80 	[SPM_REG_DLY]		= 0x34,
81 	[SPM_REG_SEQ_ENTRY]	= 0x80,
82 };
83 
84 /* SPM register data for 8974, 8084 */
85 static const struct spm_reg_data spm_reg_8974_8084_cpu  = {
86 	.reg_offset = spm_reg_offset_v2_1,
87 	.spm_cfg = 0x1,
88 	.spm_dly = 0x3C102800,
89 	.seq = { 0x03, 0x0B, 0x0F, 0x00, 0x20, 0x80, 0x10, 0xE8, 0x5B, 0x03,
90 		0x3B, 0xE8, 0x5B, 0x82, 0x10, 0x0B, 0x30, 0x06, 0x26, 0x30,
91 		0x0F },
92 	.start_index[PM_SLEEP_MODE_STBY] = 0,
93 	.start_index[PM_SLEEP_MODE_SPC] = 3,
94 };
95 
96 static const u8 spm_reg_offset_v1_1[SPM_REG_NR] = {
97 	[SPM_REG_CFG]		= 0x08,
98 	[SPM_REG_SPM_CTL]	= 0x20,
99 	[SPM_REG_PMIC_DLY]	= 0x24,
100 	[SPM_REG_PMIC_DATA_0]	= 0x28,
101 	[SPM_REG_PMIC_DATA_1]	= 0x2C,
102 	[SPM_REG_SEQ_ENTRY]	= 0x80,
103 };
104 
105 /* SPM register data for 8064 */
106 static const struct spm_reg_data spm_reg_8064_cpu = {
107 	.reg_offset = spm_reg_offset_v1_1,
108 	.spm_cfg = 0x1F,
109 	.pmic_dly = 0x02020004,
110 	.pmic_data[0] = 0x0084009C,
111 	.pmic_data[1] = 0x00A4001C,
112 	.seq = { 0x03, 0x0F, 0x00, 0x24, 0x54, 0x10, 0x09, 0x03, 0x01,
113 		0x10, 0x54, 0x30, 0x0C, 0x24, 0x30, 0x0F },
114 	.start_index[PM_SLEEP_MODE_STBY] = 0,
115 	.start_index[PM_SLEEP_MODE_SPC] = 2,
116 };
117 
118 static DEFINE_PER_CPU(struct spm_driver_data *, cpu_spm_drv);
119 
120 typedef int (*idle_fn)(void);
121 static DEFINE_PER_CPU(idle_fn*, qcom_idle_ops);
122 
123 static inline void spm_register_write(struct spm_driver_data *drv,
124 					enum spm_reg reg, u32 val)
125 {
126 	if (drv->reg_data->reg_offset[reg])
127 		writel_relaxed(val, drv->reg_base +
128 				drv->reg_data->reg_offset[reg]);
129 }
130 
131 /* Ensure a guaranteed write, before return */
132 static inline void spm_register_write_sync(struct spm_driver_data *drv,
133 					enum spm_reg reg, u32 val)
134 {
135 	u32 ret;
136 
137 	if (!drv->reg_data->reg_offset[reg])
138 		return;
139 
140 	do {
141 		writel_relaxed(val, drv->reg_base +
142 				drv->reg_data->reg_offset[reg]);
143 		ret = readl_relaxed(drv->reg_base +
144 				drv->reg_data->reg_offset[reg]);
145 		if (ret == val)
146 			break;
147 		cpu_relax();
148 	} while (1);
149 }
150 
151 static inline u32 spm_register_read(struct spm_driver_data *drv,
152 					enum spm_reg reg)
153 {
154 	return readl_relaxed(drv->reg_base + drv->reg_data->reg_offset[reg]);
155 }
156 
157 static void spm_set_low_power_mode(struct spm_driver_data *drv,
158 					enum pm_sleep_mode mode)
159 {
160 	u32 start_index;
161 	u32 ctl_val;
162 
163 	start_index = drv->reg_data->start_index[mode];
164 
165 	ctl_val = spm_register_read(drv, SPM_REG_SPM_CTL);
166 	ctl_val &= ~(SPM_CTL_INDEX << SPM_CTL_INDEX_SHIFT);
167 	ctl_val |= start_index << SPM_CTL_INDEX_SHIFT;
168 	ctl_val |= SPM_CTL_EN;
169 	spm_register_write_sync(drv, SPM_REG_SPM_CTL, ctl_val);
170 }
171 
172 static int qcom_pm_collapse(unsigned long int unused)
173 {
174 	qcom_scm_cpu_power_down(QCOM_SCM_CPU_PWR_DOWN_L2_ON);
175 
176 	/*
177 	 * Returns here only if there was a pending interrupt and we did not
178 	 * power down as a result.
179 	 */
180 	return -1;
181 }
182 
183 static int qcom_cpu_spc(void)
184 {
185 	int ret;
186 	struct spm_driver_data *drv = __this_cpu_read(cpu_spm_drv);
187 
188 	spm_set_low_power_mode(drv, PM_SLEEP_MODE_SPC);
189 	ret = cpu_suspend(0, qcom_pm_collapse);
190 	/*
191 	 * ARM common code executes WFI without calling into our driver and
192 	 * if the SPM mode is not reset, then we may accidently power down the
193 	 * cpu when we intended only to gate the cpu clock.
194 	 * Ensure the state is set to standby before returning.
195 	 */
196 	spm_set_low_power_mode(drv, PM_SLEEP_MODE_STBY);
197 
198 	return ret;
199 }
200 
201 static int qcom_idle_enter(unsigned long index)
202 {
203 	return __this_cpu_read(qcom_idle_ops)[index]();
204 }
205 
206 static const struct of_device_id qcom_idle_state_match[] __initconst = {
207 	{ .compatible = "qcom,idle-state-spc", .data = qcom_cpu_spc },
208 	{ },
209 };
210 
211 static int __init qcom_cpuidle_init(struct device_node *cpu_node, int cpu)
212 {
213 	const struct of_device_id *match_id;
214 	struct device_node *state_node;
215 	int i;
216 	int state_count = 1;
217 	idle_fn idle_fns[CPUIDLE_STATE_MAX];
218 	idle_fn *fns;
219 	cpumask_t mask;
220 	bool use_scm_power_down = false;
221 
222 	if (!qcom_scm_is_available())
223 		return -EPROBE_DEFER;
224 
225 	for (i = 0; ; i++) {
226 		state_node = of_parse_phandle(cpu_node, "cpu-idle-states", i);
227 		if (!state_node)
228 			break;
229 
230 		if (!of_device_is_available(state_node))
231 			continue;
232 
233 		if (i == CPUIDLE_STATE_MAX) {
234 			pr_warn("%s: cpuidle states reached max possible\n",
235 					__func__);
236 			break;
237 		}
238 
239 		match_id = of_match_node(qcom_idle_state_match, state_node);
240 		if (!match_id)
241 			return -ENODEV;
242 
243 		idle_fns[state_count] = match_id->data;
244 
245 		/* Check if any of the states allow power down */
246 		if (match_id->data == qcom_cpu_spc)
247 			use_scm_power_down = true;
248 
249 		state_count++;
250 	}
251 
252 	if (state_count == 1)
253 		goto check_spm;
254 
255 	fns = devm_kcalloc(get_cpu_device(cpu), state_count, sizeof(*fns),
256 			GFP_KERNEL);
257 	if (!fns)
258 		return -ENOMEM;
259 
260 	for (i = 1; i < state_count; i++)
261 		fns[i] = idle_fns[i];
262 
263 	if (use_scm_power_down) {
264 		/* We have atleast one power down mode */
265 		cpumask_clear(&mask);
266 		cpumask_set_cpu(cpu, &mask);
267 		qcom_scm_set_warm_boot_addr(cpu_resume_arm, &mask);
268 	}
269 
270 	per_cpu(qcom_idle_ops, cpu) = fns;
271 
272 	/*
273 	 * SPM probe for the cpu should have happened by now, if the
274 	 * SPM device does not exist, return -ENXIO to indicate that the
275 	 * cpu does not support idle states.
276 	 */
277 check_spm:
278 	return per_cpu(cpu_spm_drv, cpu) ? 0 : -ENXIO;
279 }
280 
281 static const struct cpuidle_ops qcom_cpuidle_ops __initconst = {
282 	.suspend = qcom_idle_enter,
283 	.init = qcom_cpuidle_init,
284 };
285 
286 CPUIDLE_METHOD_OF_DECLARE(qcom_idle_v1, "qcom,kpss-acc-v1", &qcom_cpuidle_ops);
287 CPUIDLE_METHOD_OF_DECLARE(qcom_idle_v2, "qcom,kpss-acc-v2", &qcom_cpuidle_ops);
288 
289 static struct spm_driver_data *spm_get_drv(struct platform_device *pdev,
290 		int *spm_cpu)
291 {
292 	struct spm_driver_data *drv = NULL;
293 	struct device_node *cpu_node, *saw_node;
294 	int cpu;
295 	bool found = 0;
296 
297 	for_each_possible_cpu(cpu) {
298 		cpu_node = of_cpu_device_node_get(cpu);
299 		if (!cpu_node)
300 			continue;
301 		saw_node = of_parse_phandle(cpu_node, "qcom,saw", 0);
302 		found = (saw_node == pdev->dev.of_node);
303 		of_node_put(saw_node);
304 		of_node_put(cpu_node);
305 		if (found)
306 			break;
307 	}
308 
309 	if (found) {
310 		drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
311 		if (drv)
312 			*spm_cpu = cpu;
313 	}
314 
315 	return drv;
316 }
317 
318 static const struct of_device_id spm_match_table[] = {
319 	{ .compatible = "qcom,msm8974-saw2-v2.1-cpu",
320 	  .data = &spm_reg_8974_8084_cpu },
321 	{ .compatible = "qcom,apq8084-saw2-v2.1-cpu",
322 	  .data = &spm_reg_8974_8084_cpu },
323 	{ .compatible = "qcom,apq8064-saw2-v1.1-cpu",
324 	  .data = &spm_reg_8064_cpu },
325 	{ },
326 };
327 
328 static int spm_dev_probe(struct platform_device *pdev)
329 {
330 	struct spm_driver_data *drv;
331 	struct resource *res;
332 	const struct of_device_id *match_id;
333 	void __iomem *addr;
334 	int cpu;
335 
336 	drv = spm_get_drv(pdev, &cpu);
337 	if (!drv)
338 		return -EINVAL;
339 
340 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
341 	drv->reg_base = devm_ioremap_resource(&pdev->dev, res);
342 	if (IS_ERR(drv->reg_base))
343 		return PTR_ERR(drv->reg_base);
344 
345 	match_id = of_match_node(spm_match_table, pdev->dev.of_node);
346 	if (!match_id)
347 		return -ENODEV;
348 
349 	drv->reg_data = match_id->data;
350 
351 	/* Write the SPM sequences first.. */
352 	addr = drv->reg_base + drv->reg_data->reg_offset[SPM_REG_SEQ_ENTRY];
353 	__iowrite32_copy(addr, drv->reg_data->seq,
354 			ARRAY_SIZE(drv->reg_data->seq) / 4);
355 
356 	/*
357 	 * ..and then the control registers.
358 	 * On some SoC if the control registers are written first and if the
359 	 * CPU was held in reset, the reset signal could trigger the SPM state
360 	 * machine, before the sequences are completely written.
361 	 */
362 	spm_register_write(drv, SPM_REG_CFG, drv->reg_data->spm_cfg);
363 	spm_register_write(drv, SPM_REG_DLY, drv->reg_data->spm_dly);
364 	spm_register_write(drv, SPM_REG_PMIC_DLY, drv->reg_data->pmic_dly);
365 	spm_register_write(drv, SPM_REG_PMIC_DATA_0,
366 				drv->reg_data->pmic_data[0]);
367 	spm_register_write(drv, SPM_REG_PMIC_DATA_1,
368 				drv->reg_data->pmic_data[1]);
369 
370 	/* Set up Standby as the default low power mode */
371 	spm_set_low_power_mode(drv, PM_SLEEP_MODE_STBY);
372 
373 	per_cpu(cpu_spm_drv, cpu) = drv;
374 
375 	return 0;
376 }
377 
378 static struct platform_driver spm_driver = {
379 	.probe = spm_dev_probe,
380 	.driver = {
381 		.name = "saw",
382 		.of_match_table = spm_match_table,
383 	},
384 };
385 
386 builtin_platform_driver(spm_driver);
387