xref: /openbmc/linux/drivers/soc/qcom/smem.c (revision cbdf59ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Sony Mobile Communications AB.
4  * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5  */
6 
7 #include <linux/hwspinlock.h>
8 #include <linux/io.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_address.h>
12 #include <linux/platform_device.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/soc/qcom/smem.h>
16 
17 /*
18  * The Qualcomm shared memory system is a allocate only heap structure that
19  * consists of one of more memory areas that can be accessed by the processors
20  * in the SoC.
21  *
22  * All systems contains a global heap, accessible by all processors in the SoC,
23  * with a table of contents data structure (@smem_header) at the beginning of
24  * the main shared memory block.
25  *
26  * The global header contains meta data for allocations as well as a fixed list
27  * of 512 entries (@smem_global_entry) that can be initialized to reference
28  * parts of the shared memory space.
29  *
30  *
31  * In addition to this global heap a set of "private" heaps can be set up at
32  * boot time with access restrictions so that only certain processor pairs can
33  * access the data.
34  *
35  * These partitions are referenced from an optional partition table
36  * (@smem_ptable), that is found 4kB from the end of the main smem region. The
37  * partition table entries (@smem_ptable_entry) lists the involved processors
38  * (or hosts) and their location in the main shared memory region.
39  *
40  * Each partition starts with a header (@smem_partition_header) that identifies
41  * the partition and holds properties for the two internal memory regions. The
42  * two regions are cached and non-cached memory respectively. Each region
43  * contain a link list of allocation headers (@smem_private_entry) followed by
44  * their data.
45  *
46  * Items in the non-cached region are allocated from the start of the partition
47  * while items in the cached region are allocated from the end. The free area
48  * is hence the region between the cached and non-cached offsets. The header of
49  * cached items comes after the data.
50  *
51  * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
52  * for the global heap. A new global partition is created from the global heap
53  * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
54  * set by the bootloader.
55  *
56  * To synchronize allocations in the shared memory heaps a remote spinlock must
57  * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
58  * platforms.
59  *
60  */
61 
62 /*
63  * The version member of the smem header contains an array of versions for the
64  * various software components in the SoC. We verify that the boot loader
65  * version is a valid version as a sanity check.
66  */
67 #define SMEM_MASTER_SBL_VERSION_INDEX	7
68 #define SMEM_GLOBAL_HEAP_VERSION	11
69 #define SMEM_GLOBAL_PART_VERSION	12
70 
71 /*
72  * The first 8 items are only to be allocated by the boot loader while
73  * initializing the heap.
74  */
75 #define SMEM_ITEM_LAST_FIXED	8
76 
77 /* Highest accepted item number, for both global and private heaps */
78 #define SMEM_ITEM_COUNT		512
79 
80 /* Processor/host identifier for the application processor */
81 #define SMEM_HOST_APPS		0
82 
83 /* Processor/host identifier for the global partition */
84 #define SMEM_GLOBAL_HOST	0xfffe
85 
86 /* Max number of processors/hosts in a system */
87 #define SMEM_HOST_COUNT		10
88 
89 /**
90   * struct smem_proc_comm - proc_comm communication struct (legacy)
91   * @command:	current command to be executed
92   * @status:	status of the currently requested command
93   * @params:	parameters to the command
94   */
95 struct smem_proc_comm {
96 	__le32 command;
97 	__le32 status;
98 	__le32 params[2];
99 };
100 
101 /**
102  * struct smem_global_entry - entry to reference smem items on the heap
103  * @allocated:	boolean to indicate if this entry is used
104  * @offset:	offset to the allocated space
105  * @size:	size of the allocated space, 8 byte aligned
106  * @aux_base:	base address for the memory region used by this unit, or 0 for
107  *		the default region. bits 0,1 are reserved
108  */
109 struct smem_global_entry {
110 	__le32 allocated;
111 	__le32 offset;
112 	__le32 size;
113 	__le32 aux_base; /* bits 1:0 reserved */
114 };
115 #define AUX_BASE_MASK		0xfffffffc
116 
117 /**
118  * struct smem_header - header found in beginning of primary smem region
119  * @proc_comm:		proc_comm communication interface (legacy)
120  * @version:		array of versions for the various subsystems
121  * @initialized:	boolean to indicate that smem is initialized
122  * @free_offset:	index of the first unallocated byte in smem
123  * @available:		number of bytes available for allocation
124  * @reserved:		reserved field, must be 0
125  * toc:			array of references to items
126  */
127 struct smem_header {
128 	struct smem_proc_comm proc_comm[4];
129 	__le32 version[32];
130 	__le32 initialized;
131 	__le32 free_offset;
132 	__le32 available;
133 	__le32 reserved;
134 	struct smem_global_entry toc[SMEM_ITEM_COUNT];
135 };
136 
137 /**
138  * struct smem_ptable_entry - one entry in the @smem_ptable list
139  * @offset:	offset, within the main shared memory region, of the partition
140  * @size:	size of the partition
141  * @flags:	flags for the partition (currently unused)
142  * @host0:	first processor/host with access to this partition
143  * @host1:	second processor/host with access to this partition
144  * @cacheline:	alignment for "cached" entries
145  * @reserved:	reserved entries for later use
146  */
147 struct smem_ptable_entry {
148 	__le32 offset;
149 	__le32 size;
150 	__le32 flags;
151 	__le16 host0;
152 	__le16 host1;
153 	__le32 cacheline;
154 	__le32 reserved[7];
155 };
156 
157 /**
158  * struct smem_ptable - partition table for the private partitions
159  * @magic:	magic number, must be SMEM_PTABLE_MAGIC
160  * @version:	version of the partition table
161  * @num_entries: number of partitions in the table
162  * @reserved:	for now reserved entries
163  * @entry:	list of @smem_ptable_entry for the @num_entries partitions
164  */
165 struct smem_ptable {
166 	u8 magic[4];
167 	__le32 version;
168 	__le32 num_entries;
169 	__le32 reserved[5];
170 	struct smem_ptable_entry entry[];
171 };
172 
173 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
174 
175 /**
176  * struct smem_partition_header - header of the partitions
177  * @magic:	magic number, must be SMEM_PART_MAGIC
178  * @host0:	first processor/host with access to this partition
179  * @host1:	second processor/host with access to this partition
180  * @size:	size of the partition
181  * @offset_free_uncached: offset to the first free byte of uncached memory in
182  *		this partition
183  * @offset_free_cached: offset to the first free byte of cached memory in this
184  *		partition
185  * @reserved:	for now reserved entries
186  */
187 struct smem_partition_header {
188 	u8 magic[4];
189 	__le16 host0;
190 	__le16 host1;
191 	__le32 size;
192 	__le32 offset_free_uncached;
193 	__le32 offset_free_cached;
194 	__le32 reserved[3];
195 };
196 
197 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
198 
199 /**
200  * struct smem_private_entry - header of each item in the private partition
201  * @canary:	magic number, must be SMEM_PRIVATE_CANARY
202  * @item:	identifying number of the smem item
203  * @size:	size of the data, including padding bytes
204  * @padding_data: number of bytes of padding of data
205  * @padding_hdr: number of bytes of padding between the header and the data
206  * @reserved:	for now reserved entry
207  */
208 struct smem_private_entry {
209 	u16 canary; /* bytes are the same so no swapping needed */
210 	__le16 item;
211 	__le32 size; /* includes padding bytes */
212 	__le16 padding_data;
213 	__le16 padding_hdr;
214 	__le32 reserved;
215 };
216 #define SMEM_PRIVATE_CANARY	0xa5a5
217 
218 /**
219  * struct smem_info - smem region info located after the table of contents
220  * @magic:	magic number, must be SMEM_INFO_MAGIC
221  * @size:	size of the smem region
222  * @base_addr:	base address of the smem region
223  * @reserved:	for now reserved entry
224  * @num_items:	highest accepted item number
225  */
226 struct smem_info {
227 	u8 magic[4];
228 	__le32 size;
229 	__le32 base_addr;
230 	__le32 reserved;
231 	__le16 num_items;
232 };
233 
234 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
235 
236 /**
237  * struct smem_region - representation of a chunk of memory used for smem
238  * @aux_base:	identifier of aux_mem base
239  * @virt_base:	virtual base address of memory with this aux_mem identifier
240  * @size:	size of the memory region
241  */
242 struct smem_region {
243 	u32 aux_base;
244 	void __iomem *virt_base;
245 	size_t size;
246 };
247 
248 /**
249  * struct qcom_smem - device data for the smem device
250  * @dev:	device pointer
251  * @hwlock:	reference to a hwspinlock
252  * @global_partition:	pointer to global partition when in use
253  * @global_cacheline:	cacheline size for global partition
254  * @partitions:	list of pointers to partitions affecting the current
255  *		processor/host
256  * @cacheline:	list of cacheline sizes for each host
257  * @item_count: max accepted item number
258  * @num_regions: number of @regions
259  * @regions:	list of the memory regions defining the shared memory
260  */
261 struct qcom_smem {
262 	struct device *dev;
263 
264 	struct hwspinlock *hwlock;
265 
266 	struct smem_partition_header *global_partition;
267 	size_t global_cacheline;
268 	struct smem_partition_header *partitions[SMEM_HOST_COUNT];
269 	size_t cacheline[SMEM_HOST_COUNT];
270 	u32 item_count;
271 
272 	unsigned num_regions;
273 	struct smem_region regions[];
274 };
275 
276 static void *
277 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
278 {
279 	void *p = phdr;
280 
281 	return p + le32_to_cpu(phdr->offset_free_uncached);
282 }
283 
284 static struct smem_private_entry *
285 phdr_to_first_cached_entry(struct smem_partition_header *phdr,
286 					size_t cacheline)
287 {
288 	void *p = phdr;
289 	struct smem_private_entry *e;
290 
291 	return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
292 }
293 
294 static void *
295 phdr_to_last_cached_entry(struct smem_partition_header *phdr)
296 {
297 	void *p = phdr;
298 
299 	return p + le32_to_cpu(phdr->offset_free_cached);
300 }
301 
302 static struct smem_private_entry *
303 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
304 {
305 	void *p = phdr;
306 
307 	return p + sizeof(*phdr);
308 }
309 
310 static struct smem_private_entry *
311 uncached_entry_next(struct smem_private_entry *e)
312 {
313 	void *p = e;
314 
315 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
316 	       le32_to_cpu(e->size);
317 }
318 
319 static struct smem_private_entry *
320 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
321 {
322 	void *p = e;
323 
324 	return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
325 }
326 
327 static void *uncached_entry_to_item(struct smem_private_entry *e)
328 {
329 	void *p = e;
330 
331 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
332 }
333 
334 static void *cached_entry_to_item(struct smem_private_entry *e)
335 {
336 	void *p = e;
337 
338 	return p - le32_to_cpu(e->size);
339 }
340 
341 /* Pointer to the one and only smem handle */
342 static struct qcom_smem *__smem;
343 
344 /* Timeout (ms) for the trylock of remote spinlocks */
345 #define HWSPINLOCK_TIMEOUT	1000
346 
347 static int qcom_smem_alloc_private(struct qcom_smem *smem,
348 				   struct smem_partition_header *phdr,
349 				   unsigned item,
350 				   size_t size)
351 {
352 	struct smem_private_entry *hdr, *end;
353 	size_t alloc_size;
354 	void *cached;
355 
356 	hdr = phdr_to_first_uncached_entry(phdr);
357 	end = phdr_to_last_uncached_entry(phdr);
358 	cached = phdr_to_last_cached_entry(phdr);
359 
360 	while (hdr < end) {
361 		if (hdr->canary != SMEM_PRIVATE_CANARY)
362 			goto bad_canary;
363 		if (le16_to_cpu(hdr->item) == item)
364 			return -EEXIST;
365 
366 		hdr = uncached_entry_next(hdr);
367 	}
368 
369 	/* Check that we don't grow into the cached region */
370 	alloc_size = sizeof(*hdr) + ALIGN(size, 8);
371 	if ((void *)hdr + alloc_size > cached) {
372 		dev_err(smem->dev, "Out of memory\n");
373 		return -ENOSPC;
374 	}
375 
376 	hdr->canary = SMEM_PRIVATE_CANARY;
377 	hdr->item = cpu_to_le16(item);
378 	hdr->size = cpu_to_le32(ALIGN(size, 8));
379 	hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
380 	hdr->padding_hdr = 0;
381 
382 	/*
383 	 * Ensure the header is written before we advance the free offset, so
384 	 * that remote processors that does not take the remote spinlock still
385 	 * gets a consistent view of the linked list.
386 	 */
387 	wmb();
388 	le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
389 
390 	return 0;
391 bad_canary:
392 	dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
393 		le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
394 
395 	return -EINVAL;
396 }
397 
398 static int qcom_smem_alloc_global(struct qcom_smem *smem,
399 				  unsigned item,
400 				  size_t size)
401 {
402 	struct smem_global_entry *entry;
403 	struct smem_header *header;
404 
405 	header = smem->regions[0].virt_base;
406 	entry = &header->toc[item];
407 	if (entry->allocated)
408 		return -EEXIST;
409 
410 	size = ALIGN(size, 8);
411 	if (WARN_ON(size > le32_to_cpu(header->available)))
412 		return -ENOMEM;
413 
414 	entry->offset = header->free_offset;
415 	entry->size = cpu_to_le32(size);
416 
417 	/*
418 	 * Ensure the header is consistent before we mark the item allocated,
419 	 * so that remote processors will get a consistent view of the item
420 	 * even though they do not take the spinlock on read.
421 	 */
422 	wmb();
423 	entry->allocated = cpu_to_le32(1);
424 
425 	le32_add_cpu(&header->free_offset, size);
426 	le32_add_cpu(&header->available, -size);
427 
428 	return 0;
429 }
430 
431 /**
432  * qcom_smem_alloc() - allocate space for a smem item
433  * @host:	remote processor id, or -1
434  * @item:	smem item handle
435  * @size:	number of bytes to be allocated
436  *
437  * Allocate space for a given smem item of size @size, given that the item is
438  * not yet allocated.
439  */
440 int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
441 {
442 	struct smem_partition_header *phdr;
443 	unsigned long flags;
444 	int ret;
445 
446 	if (!__smem)
447 		return -EPROBE_DEFER;
448 
449 	if (item < SMEM_ITEM_LAST_FIXED) {
450 		dev_err(__smem->dev,
451 			"Rejecting allocation of static entry %d\n", item);
452 		return -EINVAL;
453 	}
454 
455 	if (WARN_ON(item >= __smem->item_count))
456 		return -EINVAL;
457 
458 	ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
459 					  HWSPINLOCK_TIMEOUT,
460 					  &flags);
461 	if (ret)
462 		return ret;
463 
464 	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
465 		phdr = __smem->partitions[host];
466 		ret = qcom_smem_alloc_private(__smem, phdr, item, size);
467 	} else if (__smem->global_partition) {
468 		phdr = __smem->global_partition;
469 		ret = qcom_smem_alloc_private(__smem, phdr, item, size);
470 	} else {
471 		ret = qcom_smem_alloc_global(__smem, item, size);
472 	}
473 
474 	hwspin_unlock_irqrestore(__smem->hwlock, &flags);
475 
476 	return ret;
477 }
478 EXPORT_SYMBOL(qcom_smem_alloc);
479 
480 static void *qcom_smem_get_global(struct qcom_smem *smem,
481 				  unsigned item,
482 				  size_t *size)
483 {
484 	struct smem_header *header;
485 	struct smem_region *region;
486 	struct smem_global_entry *entry;
487 	u32 aux_base;
488 	unsigned i;
489 
490 	header = smem->regions[0].virt_base;
491 	entry = &header->toc[item];
492 	if (!entry->allocated)
493 		return ERR_PTR(-ENXIO);
494 
495 	aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
496 
497 	for (i = 0; i < smem->num_regions; i++) {
498 		region = &smem->regions[i];
499 
500 		if (region->aux_base == aux_base || !aux_base) {
501 			if (size != NULL)
502 				*size = le32_to_cpu(entry->size);
503 			return region->virt_base + le32_to_cpu(entry->offset);
504 		}
505 	}
506 
507 	return ERR_PTR(-ENOENT);
508 }
509 
510 static void *qcom_smem_get_private(struct qcom_smem *smem,
511 				   struct smem_partition_header *phdr,
512 				   size_t cacheline,
513 				   unsigned item,
514 				   size_t *size)
515 {
516 	struct smem_private_entry *e, *end;
517 
518 	e = phdr_to_first_uncached_entry(phdr);
519 	end = phdr_to_last_uncached_entry(phdr);
520 
521 	while (e < end) {
522 		if (e->canary != SMEM_PRIVATE_CANARY)
523 			goto invalid_canary;
524 
525 		if (le16_to_cpu(e->item) == item) {
526 			if (size != NULL)
527 				*size = le32_to_cpu(e->size) -
528 					le16_to_cpu(e->padding_data);
529 
530 			return uncached_entry_to_item(e);
531 		}
532 
533 		e = uncached_entry_next(e);
534 	}
535 
536 	/* Item was not found in the uncached list, search the cached list */
537 
538 	e = phdr_to_first_cached_entry(phdr, cacheline);
539 	end = phdr_to_last_cached_entry(phdr);
540 
541 	while (e > end) {
542 		if (e->canary != SMEM_PRIVATE_CANARY)
543 			goto invalid_canary;
544 
545 		if (le16_to_cpu(e->item) == item) {
546 			if (size != NULL)
547 				*size = le32_to_cpu(e->size) -
548 					le16_to_cpu(e->padding_data);
549 
550 			return cached_entry_to_item(e);
551 		}
552 
553 		e = cached_entry_next(e, cacheline);
554 	}
555 
556 	return ERR_PTR(-ENOENT);
557 
558 invalid_canary:
559 	dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
560 			le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
561 
562 	return ERR_PTR(-EINVAL);
563 }
564 
565 /**
566  * qcom_smem_get() - resolve ptr of size of a smem item
567  * @host:	the remote processor, or -1
568  * @item:	smem item handle
569  * @size:	pointer to be filled out with size of the item
570  *
571  * Looks up smem item and returns pointer to it. Size of smem
572  * item is returned in @size.
573  */
574 void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
575 {
576 	struct smem_partition_header *phdr;
577 	unsigned long flags;
578 	size_t cacheln;
579 	int ret;
580 	void *ptr = ERR_PTR(-EPROBE_DEFER);
581 
582 	if (!__smem)
583 		return ptr;
584 
585 	if (WARN_ON(item >= __smem->item_count))
586 		return ERR_PTR(-EINVAL);
587 
588 	ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
589 					  HWSPINLOCK_TIMEOUT,
590 					  &flags);
591 	if (ret)
592 		return ERR_PTR(ret);
593 
594 	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
595 		phdr = __smem->partitions[host];
596 		cacheln = __smem->cacheline[host];
597 		ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
598 	} else if (__smem->global_partition) {
599 		phdr = __smem->global_partition;
600 		cacheln = __smem->global_cacheline;
601 		ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
602 	} else {
603 		ptr = qcom_smem_get_global(__smem, item, size);
604 	}
605 
606 	hwspin_unlock_irqrestore(__smem->hwlock, &flags);
607 
608 	return ptr;
609 
610 }
611 EXPORT_SYMBOL(qcom_smem_get);
612 
613 /**
614  * qcom_smem_get_free_space() - retrieve amount of free space in a partition
615  * @host:	the remote processor identifying a partition, or -1
616  *
617  * To be used by smem clients as a quick way to determine if any new
618  * allocations has been made.
619  */
620 int qcom_smem_get_free_space(unsigned host)
621 {
622 	struct smem_partition_header *phdr;
623 	struct smem_header *header;
624 	unsigned ret;
625 
626 	if (!__smem)
627 		return -EPROBE_DEFER;
628 
629 	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
630 		phdr = __smem->partitions[host];
631 		ret = le32_to_cpu(phdr->offset_free_cached) -
632 		      le32_to_cpu(phdr->offset_free_uncached);
633 	} else if (__smem->global_partition) {
634 		phdr = __smem->global_partition;
635 		ret = le32_to_cpu(phdr->offset_free_cached) -
636 		      le32_to_cpu(phdr->offset_free_uncached);
637 	} else {
638 		header = __smem->regions[0].virt_base;
639 		ret = le32_to_cpu(header->available);
640 	}
641 
642 	return ret;
643 }
644 EXPORT_SYMBOL(qcom_smem_get_free_space);
645 
646 /**
647  * qcom_smem_virt_to_phys() - return the physical address associated
648  * with an smem item pointer (previously returned by qcom_smem_get()
649  * @p:	the virtual address to convert
650  *
651  * Returns 0 if the pointer provided is not within any smem region.
652  */
653 phys_addr_t qcom_smem_virt_to_phys(void *p)
654 {
655 	unsigned i;
656 
657 	for (i = 0; i < __smem->num_regions; i++) {
658 		struct smem_region *region = &__smem->regions[i];
659 
660 		if (p < region->virt_base)
661 			continue;
662 		if (p < region->virt_base + region->size) {
663 			u64 offset = p - region->virt_base;
664 
665 			return (phys_addr_t)region->aux_base + offset;
666 		}
667 	}
668 
669 	return 0;
670 }
671 EXPORT_SYMBOL(qcom_smem_virt_to_phys);
672 
673 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
674 {
675 	struct smem_header *header;
676 	__le32 *versions;
677 
678 	header = smem->regions[0].virt_base;
679 	versions = header->version;
680 
681 	return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
682 }
683 
684 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
685 {
686 	struct smem_ptable *ptable;
687 	u32 version;
688 
689 	ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
690 	if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
691 		return ERR_PTR(-ENOENT);
692 
693 	version = le32_to_cpu(ptable->version);
694 	if (version != 1) {
695 		dev_err(smem->dev,
696 			"Unsupported partition header version %d\n", version);
697 		return ERR_PTR(-EINVAL);
698 	}
699 	return ptable;
700 }
701 
702 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
703 {
704 	struct smem_ptable *ptable;
705 	struct smem_info *info;
706 
707 	ptable = qcom_smem_get_ptable(smem);
708 	if (IS_ERR_OR_NULL(ptable))
709 		return SMEM_ITEM_COUNT;
710 
711 	info = (struct smem_info *)&ptable->entry[ptable->num_entries];
712 	if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
713 		return SMEM_ITEM_COUNT;
714 
715 	return le16_to_cpu(info->num_items);
716 }
717 
718 /*
719  * Validate the partition header for a partition whose partition
720  * table entry is supplied.  Returns a pointer to its header if
721  * valid, or a null pointer otherwise.
722  */
723 static struct smem_partition_header *
724 qcom_smem_partition_header(struct qcom_smem *smem,
725 		struct smem_ptable_entry *entry, u16 host0, u16 host1)
726 {
727 	struct smem_partition_header *header;
728 	u32 size;
729 
730 	header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
731 
732 	if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
733 		dev_err(smem->dev, "bad partition magic %02x %02x %02x %02x\n",
734 			header->magic[0], header->magic[1],
735 			header->magic[2], header->magic[3]);
736 		return NULL;
737 	}
738 
739 	if (host0 != le16_to_cpu(header->host0)) {
740 		dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
741 				host0, le16_to_cpu(header->host0));
742 		return NULL;
743 	}
744 	if (host1 != le16_to_cpu(header->host1)) {
745 		dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
746 				host1, le16_to_cpu(header->host1));
747 		return NULL;
748 	}
749 
750 	size = le32_to_cpu(header->size);
751 	if (size != le32_to_cpu(entry->size)) {
752 		dev_err(smem->dev, "bad partition size (%u != %u)\n",
753 			size, le32_to_cpu(entry->size));
754 		return NULL;
755 	}
756 
757 	if (le32_to_cpu(header->offset_free_uncached) > size) {
758 		dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
759 			le32_to_cpu(header->offset_free_uncached), size);
760 		return NULL;
761 	}
762 
763 	return header;
764 }
765 
766 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
767 {
768 	struct smem_partition_header *header;
769 	struct smem_ptable_entry *entry;
770 	struct smem_ptable *ptable;
771 	bool found = false;
772 	int i;
773 
774 	if (smem->global_partition) {
775 		dev_err(smem->dev, "Already found the global partition\n");
776 		return -EINVAL;
777 	}
778 
779 	ptable = qcom_smem_get_ptable(smem);
780 	if (IS_ERR(ptable))
781 		return PTR_ERR(ptable);
782 
783 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
784 		entry = &ptable->entry[i];
785 		if (!le32_to_cpu(entry->offset))
786 			continue;
787 		if (!le32_to_cpu(entry->size))
788 			continue;
789 
790 		if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
791 			continue;
792 
793 		if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
794 			found = true;
795 			break;
796 		}
797 	}
798 
799 	if (!found) {
800 		dev_err(smem->dev, "Missing entry for global partition\n");
801 		return -EINVAL;
802 	}
803 
804 	header = qcom_smem_partition_header(smem, entry,
805 				SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
806 	if (!header)
807 		return -EINVAL;
808 
809 	smem->global_partition = header;
810 	smem->global_cacheline = le32_to_cpu(entry->cacheline);
811 
812 	return 0;
813 }
814 
815 static int
816 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
817 {
818 	struct smem_partition_header *header;
819 	struct smem_ptable_entry *entry;
820 	struct smem_ptable *ptable;
821 	unsigned int remote_host;
822 	u16 host0, host1;
823 	int i;
824 
825 	ptable = qcom_smem_get_ptable(smem);
826 	if (IS_ERR(ptable))
827 		return PTR_ERR(ptable);
828 
829 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
830 		entry = &ptable->entry[i];
831 		if (!le32_to_cpu(entry->offset))
832 			continue;
833 		if (!le32_to_cpu(entry->size))
834 			continue;
835 
836 		host0 = le16_to_cpu(entry->host0);
837 		host1 = le16_to_cpu(entry->host1);
838 		if (host0 == local_host)
839 			remote_host = host1;
840 		else if (host1 == local_host)
841 			remote_host = host0;
842 		else
843 			continue;
844 
845 		if (remote_host >= SMEM_HOST_COUNT) {
846 			dev_err(smem->dev, "bad host %hu\n", remote_host);
847 			return -EINVAL;
848 		}
849 
850 		if (smem->partitions[remote_host]) {
851 			dev_err(smem->dev, "duplicate host %hu\n", remote_host);
852 			return -EINVAL;
853 		}
854 
855 		header = qcom_smem_partition_header(smem, entry, host0, host1);
856 		if (!header)
857 			return -EINVAL;
858 
859 		smem->partitions[remote_host] = header;
860 		smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline);
861 	}
862 
863 	return 0;
864 }
865 
866 static int qcom_smem_map_memory(struct qcom_smem *smem, struct device *dev,
867 				const char *name, int i)
868 {
869 	struct device_node *np;
870 	struct resource r;
871 	resource_size_t size;
872 	int ret;
873 
874 	np = of_parse_phandle(dev->of_node, name, 0);
875 	if (!np) {
876 		dev_err(dev, "No %s specified\n", name);
877 		return -EINVAL;
878 	}
879 
880 	ret = of_address_to_resource(np, 0, &r);
881 	of_node_put(np);
882 	if (ret)
883 		return ret;
884 	size = resource_size(&r);
885 
886 	smem->regions[i].virt_base = devm_ioremap_wc(dev, r.start, size);
887 	if (!smem->regions[i].virt_base)
888 		return -ENOMEM;
889 	smem->regions[i].aux_base = (u32)r.start;
890 	smem->regions[i].size = size;
891 
892 	return 0;
893 }
894 
895 static int qcom_smem_probe(struct platform_device *pdev)
896 {
897 	struct smem_header *header;
898 	struct qcom_smem *smem;
899 	size_t array_size;
900 	int num_regions;
901 	int hwlock_id;
902 	u32 version;
903 	int ret;
904 
905 	num_regions = 1;
906 	if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL))
907 		num_regions++;
908 
909 	array_size = num_regions * sizeof(struct smem_region);
910 	smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL);
911 	if (!smem)
912 		return -ENOMEM;
913 
914 	smem->dev = &pdev->dev;
915 	smem->num_regions = num_regions;
916 
917 	ret = qcom_smem_map_memory(smem, &pdev->dev, "memory-region", 0);
918 	if (ret)
919 		return ret;
920 
921 	if (num_regions > 1 && (ret = qcom_smem_map_memory(smem, &pdev->dev,
922 					"qcom,rpm-msg-ram", 1)))
923 		return ret;
924 
925 	header = smem->regions[0].virt_base;
926 	if (le32_to_cpu(header->initialized) != 1 ||
927 	    le32_to_cpu(header->reserved)) {
928 		dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
929 		return -EINVAL;
930 	}
931 
932 	version = qcom_smem_get_sbl_version(smem);
933 	switch (version >> 16) {
934 	case SMEM_GLOBAL_PART_VERSION:
935 		ret = qcom_smem_set_global_partition(smem);
936 		if (ret < 0)
937 			return ret;
938 		smem->item_count = qcom_smem_get_item_count(smem);
939 		break;
940 	case SMEM_GLOBAL_HEAP_VERSION:
941 		smem->item_count = SMEM_ITEM_COUNT;
942 		break;
943 	default:
944 		dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
945 		return -EINVAL;
946 	}
947 
948 	BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
949 	ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
950 	if (ret < 0 && ret != -ENOENT)
951 		return ret;
952 
953 	hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
954 	if (hwlock_id < 0) {
955 		if (hwlock_id != -EPROBE_DEFER)
956 			dev_err(&pdev->dev, "failed to retrieve hwlock\n");
957 		return hwlock_id;
958 	}
959 
960 	smem->hwlock = hwspin_lock_request_specific(hwlock_id);
961 	if (!smem->hwlock)
962 		return -ENXIO;
963 
964 	__smem = smem;
965 
966 	return 0;
967 }
968 
969 static int qcom_smem_remove(struct platform_device *pdev)
970 {
971 	hwspin_lock_free(__smem->hwlock);
972 	__smem = NULL;
973 
974 	return 0;
975 }
976 
977 static const struct of_device_id qcom_smem_of_match[] = {
978 	{ .compatible = "qcom,smem" },
979 	{}
980 };
981 MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
982 
983 static struct platform_driver qcom_smem_driver = {
984 	.probe = qcom_smem_probe,
985 	.remove = qcom_smem_remove,
986 	.driver  = {
987 		.name = "qcom-smem",
988 		.of_match_table = qcom_smem_of_match,
989 		.suppress_bind_attrs = true,
990 	},
991 };
992 
993 static int __init qcom_smem_init(void)
994 {
995 	return platform_driver_register(&qcom_smem_driver);
996 }
997 arch_initcall(qcom_smem_init);
998 
999 static void __exit qcom_smem_exit(void)
1000 {
1001 	platform_driver_unregister(&qcom_smem_driver);
1002 }
1003 module_exit(qcom_smem_exit)
1004 
1005 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1006 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1007 MODULE_LICENSE("GPL v2");
1008