xref: /openbmc/linux/drivers/soc/qcom/smem.c (revision c4c3c32d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Sony Mobile Communications AB.
4  * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5  */
6 
7 #include <linux/hwspinlock.h>
8 #include <linux/io.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_address.h>
12 #include <linux/of_reserved_mem.h>
13 #include <linux/platform_device.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/soc/qcom/smem.h>
17 #include <linux/soc/qcom/socinfo.h>
18 
19 /*
20  * The Qualcomm shared memory system is a allocate only heap structure that
21  * consists of one of more memory areas that can be accessed by the processors
22  * in the SoC.
23  *
24  * All systems contains a global heap, accessible by all processors in the SoC,
25  * with a table of contents data structure (@smem_header) at the beginning of
26  * the main shared memory block.
27  *
28  * The global header contains meta data for allocations as well as a fixed list
29  * of 512 entries (@smem_global_entry) that can be initialized to reference
30  * parts of the shared memory space.
31  *
32  *
33  * In addition to this global heap a set of "private" heaps can be set up at
34  * boot time with access restrictions so that only certain processor pairs can
35  * access the data.
36  *
37  * These partitions are referenced from an optional partition table
38  * (@smem_ptable), that is found 4kB from the end of the main smem region. The
39  * partition table entries (@smem_ptable_entry) lists the involved processors
40  * (or hosts) and their location in the main shared memory region.
41  *
42  * Each partition starts with a header (@smem_partition_header) that identifies
43  * the partition and holds properties for the two internal memory regions. The
44  * two regions are cached and non-cached memory respectively. Each region
45  * contain a link list of allocation headers (@smem_private_entry) followed by
46  * their data.
47  *
48  * Items in the non-cached region are allocated from the start of the partition
49  * while items in the cached region are allocated from the end. The free area
50  * is hence the region between the cached and non-cached offsets. The header of
51  * cached items comes after the data.
52  *
53  * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
54  * for the global heap. A new global partition is created from the global heap
55  * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
56  * set by the bootloader.
57  *
58  * To synchronize allocations in the shared memory heaps a remote spinlock must
59  * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
60  * platforms.
61  *
62  */
63 
64 /*
65  * The version member of the smem header contains an array of versions for the
66  * various software components in the SoC. We verify that the boot loader
67  * version is a valid version as a sanity check.
68  */
69 #define SMEM_MASTER_SBL_VERSION_INDEX	7
70 #define SMEM_GLOBAL_HEAP_VERSION	11
71 #define SMEM_GLOBAL_PART_VERSION	12
72 
73 /*
74  * The first 8 items are only to be allocated by the boot loader while
75  * initializing the heap.
76  */
77 #define SMEM_ITEM_LAST_FIXED	8
78 
79 /* Highest accepted item number, for both global and private heaps */
80 #define SMEM_ITEM_COUNT		512
81 
82 /* Processor/host identifier for the application processor */
83 #define SMEM_HOST_APPS		0
84 
85 /* Processor/host identifier for the global partition */
86 #define SMEM_GLOBAL_HOST	0xfffe
87 
88 /* Max number of processors/hosts in a system */
89 #define SMEM_HOST_COUNT		20
90 
91 /**
92   * struct smem_proc_comm - proc_comm communication struct (legacy)
93   * @command:	current command to be executed
94   * @status:	status of the currently requested command
95   * @params:	parameters to the command
96   */
97 struct smem_proc_comm {
98 	__le32 command;
99 	__le32 status;
100 	__le32 params[2];
101 };
102 
103 /**
104  * struct smem_global_entry - entry to reference smem items on the heap
105  * @allocated:	boolean to indicate if this entry is used
106  * @offset:	offset to the allocated space
107  * @size:	size of the allocated space, 8 byte aligned
108  * @aux_base:	base address for the memory region used by this unit, or 0 for
109  *		the default region. bits 0,1 are reserved
110  */
111 struct smem_global_entry {
112 	__le32 allocated;
113 	__le32 offset;
114 	__le32 size;
115 	__le32 aux_base; /* bits 1:0 reserved */
116 };
117 #define AUX_BASE_MASK		0xfffffffc
118 
119 /**
120  * struct smem_header - header found in beginning of primary smem region
121  * @proc_comm:		proc_comm communication interface (legacy)
122  * @version:		array of versions for the various subsystems
123  * @initialized:	boolean to indicate that smem is initialized
124  * @free_offset:	index of the first unallocated byte in smem
125  * @available:		number of bytes available for allocation
126  * @reserved:		reserved field, must be 0
127  * @toc:		array of references to items
128  */
129 struct smem_header {
130 	struct smem_proc_comm proc_comm[4];
131 	__le32 version[32];
132 	__le32 initialized;
133 	__le32 free_offset;
134 	__le32 available;
135 	__le32 reserved;
136 	struct smem_global_entry toc[SMEM_ITEM_COUNT];
137 };
138 
139 /**
140  * struct smem_ptable_entry - one entry in the @smem_ptable list
141  * @offset:	offset, within the main shared memory region, of the partition
142  * @size:	size of the partition
143  * @flags:	flags for the partition (currently unused)
144  * @host0:	first processor/host with access to this partition
145  * @host1:	second processor/host with access to this partition
146  * @cacheline:	alignment for "cached" entries
147  * @reserved:	reserved entries for later use
148  */
149 struct smem_ptable_entry {
150 	__le32 offset;
151 	__le32 size;
152 	__le32 flags;
153 	__le16 host0;
154 	__le16 host1;
155 	__le32 cacheline;
156 	__le32 reserved[7];
157 };
158 
159 /**
160  * struct smem_ptable - partition table for the private partitions
161  * @magic:	magic number, must be SMEM_PTABLE_MAGIC
162  * @version:	version of the partition table
163  * @num_entries: number of partitions in the table
164  * @reserved:	for now reserved entries
165  * @entry:	list of @smem_ptable_entry for the @num_entries partitions
166  */
167 struct smem_ptable {
168 	u8 magic[4];
169 	__le32 version;
170 	__le32 num_entries;
171 	__le32 reserved[5];
172 	struct smem_ptable_entry entry[];
173 };
174 
175 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
176 
177 /**
178  * struct smem_partition_header - header of the partitions
179  * @magic:	magic number, must be SMEM_PART_MAGIC
180  * @host0:	first processor/host with access to this partition
181  * @host1:	second processor/host with access to this partition
182  * @size:	size of the partition
183  * @offset_free_uncached: offset to the first free byte of uncached memory in
184  *		this partition
185  * @offset_free_cached: offset to the first free byte of cached memory in this
186  *		partition
187  * @reserved:	for now reserved entries
188  */
189 struct smem_partition_header {
190 	u8 magic[4];
191 	__le16 host0;
192 	__le16 host1;
193 	__le32 size;
194 	__le32 offset_free_uncached;
195 	__le32 offset_free_cached;
196 	__le32 reserved[3];
197 };
198 
199 /**
200  * struct smem_partition - describes smem partition
201  * @virt_base:	starting virtual address of partition
202  * @phys_base:	starting physical address of partition
203  * @cacheline:	alignment for "cached" entries
204  * @size:	size of partition
205  */
206 struct smem_partition {
207 	void __iomem *virt_base;
208 	phys_addr_t phys_base;
209 	size_t cacheline;
210 	size_t size;
211 };
212 
213 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
214 
215 /**
216  * struct smem_private_entry - header of each item in the private partition
217  * @canary:	magic number, must be SMEM_PRIVATE_CANARY
218  * @item:	identifying number of the smem item
219  * @size:	size of the data, including padding bytes
220  * @padding_data: number of bytes of padding of data
221  * @padding_hdr: number of bytes of padding between the header and the data
222  * @reserved:	for now reserved entry
223  */
224 struct smem_private_entry {
225 	u16 canary; /* bytes are the same so no swapping needed */
226 	__le16 item;
227 	__le32 size; /* includes padding bytes */
228 	__le16 padding_data;
229 	__le16 padding_hdr;
230 	__le32 reserved;
231 };
232 #define SMEM_PRIVATE_CANARY	0xa5a5
233 
234 /**
235  * struct smem_info - smem region info located after the table of contents
236  * @magic:	magic number, must be SMEM_INFO_MAGIC
237  * @size:	size of the smem region
238  * @base_addr:	base address of the smem region
239  * @reserved:	for now reserved entry
240  * @num_items:	highest accepted item number
241  */
242 struct smem_info {
243 	u8 magic[4];
244 	__le32 size;
245 	__le32 base_addr;
246 	__le32 reserved;
247 	__le16 num_items;
248 };
249 
250 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
251 
252 /**
253  * struct smem_region - representation of a chunk of memory used for smem
254  * @aux_base:	identifier of aux_mem base
255  * @virt_base:	virtual base address of memory with this aux_mem identifier
256  * @size:	size of the memory region
257  */
258 struct smem_region {
259 	phys_addr_t aux_base;
260 	void __iomem *virt_base;
261 	size_t size;
262 };
263 
264 /**
265  * struct qcom_smem - device data for the smem device
266  * @dev:	device pointer
267  * @hwlock:	reference to a hwspinlock
268  * @ptable: virtual base of partition table
269  * @global_partition: describes for global partition when in use
270  * @partitions: list of partitions of current processor/host
271  * @item_count: max accepted item number
272  * @socinfo:	platform device pointer
273  * @num_regions: number of @regions
274  * @regions:	list of the memory regions defining the shared memory
275  */
276 struct qcom_smem {
277 	struct device *dev;
278 
279 	struct hwspinlock *hwlock;
280 
281 	u32 item_count;
282 	struct platform_device *socinfo;
283 	struct smem_ptable *ptable;
284 	struct smem_partition global_partition;
285 	struct smem_partition partitions[SMEM_HOST_COUNT];
286 
287 	unsigned num_regions;
288 	struct smem_region regions[];
289 };
290 
291 static void *
292 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
293 {
294 	void *p = phdr;
295 
296 	return p + le32_to_cpu(phdr->offset_free_uncached);
297 }
298 
299 static struct smem_private_entry *
300 phdr_to_first_cached_entry(struct smem_partition_header *phdr,
301 					size_t cacheline)
302 {
303 	void *p = phdr;
304 	struct smem_private_entry *e;
305 
306 	return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
307 }
308 
309 static void *
310 phdr_to_last_cached_entry(struct smem_partition_header *phdr)
311 {
312 	void *p = phdr;
313 
314 	return p + le32_to_cpu(phdr->offset_free_cached);
315 }
316 
317 static struct smem_private_entry *
318 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
319 {
320 	void *p = phdr;
321 
322 	return p + sizeof(*phdr);
323 }
324 
325 static struct smem_private_entry *
326 uncached_entry_next(struct smem_private_entry *e)
327 {
328 	void *p = e;
329 
330 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
331 	       le32_to_cpu(e->size);
332 }
333 
334 static struct smem_private_entry *
335 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
336 {
337 	void *p = e;
338 
339 	return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
340 }
341 
342 static void *uncached_entry_to_item(struct smem_private_entry *e)
343 {
344 	void *p = e;
345 
346 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
347 }
348 
349 static void *cached_entry_to_item(struct smem_private_entry *e)
350 {
351 	void *p = e;
352 
353 	return p - le32_to_cpu(e->size);
354 }
355 
356 /* Pointer to the one and only smem handle */
357 static struct qcom_smem *__smem;
358 
359 /* Timeout (ms) for the trylock of remote spinlocks */
360 #define HWSPINLOCK_TIMEOUT	1000
361 
362 static int qcom_smem_alloc_private(struct qcom_smem *smem,
363 				   struct smem_partition *part,
364 				   unsigned item,
365 				   size_t size)
366 {
367 	struct smem_private_entry *hdr, *end;
368 	struct smem_partition_header *phdr;
369 	size_t alloc_size;
370 	void *cached;
371 	void *p_end;
372 
373 	phdr = (struct smem_partition_header __force *)part->virt_base;
374 	p_end = (void *)phdr + part->size;
375 
376 	hdr = phdr_to_first_uncached_entry(phdr);
377 	end = phdr_to_last_uncached_entry(phdr);
378 	cached = phdr_to_last_cached_entry(phdr);
379 
380 	if (WARN_ON((void *)end > p_end || cached > p_end))
381 		return -EINVAL;
382 
383 	while (hdr < end) {
384 		if (hdr->canary != SMEM_PRIVATE_CANARY)
385 			goto bad_canary;
386 		if (le16_to_cpu(hdr->item) == item)
387 			return -EEXIST;
388 
389 		hdr = uncached_entry_next(hdr);
390 	}
391 
392 	if (WARN_ON((void *)hdr > p_end))
393 		return -EINVAL;
394 
395 	/* Check that we don't grow into the cached region */
396 	alloc_size = sizeof(*hdr) + ALIGN(size, 8);
397 	if ((void *)hdr + alloc_size > cached) {
398 		dev_err(smem->dev, "Out of memory\n");
399 		return -ENOSPC;
400 	}
401 
402 	hdr->canary = SMEM_PRIVATE_CANARY;
403 	hdr->item = cpu_to_le16(item);
404 	hdr->size = cpu_to_le32(ALIGN(size, 8));
405 	hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
406 	hdr->padding_hdr = 0;
407 
408 	/*
409 	 * Ensure the header is written before we advance the free offset, so
410 	 * that remote processors that does not take the remote spinlock still
411 	 * gets a consistent view of the linked list.
412 	 */
413 	wmb();
414 	le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
415 
416 	return 0;
417 bad_canary:
418 	dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
419 		le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
420 
421 	return -EINVAL;
422 }
423 
424 static int qcom_smem_alloc_global(struct qcom_smem *smem,
425 				  unsigned item,
426 				  size_t size)
427 {
428 	struct smem_global_entry *entry;
429 	struct smem_header *header;
430 
431 	header = smem->regions[0].virt_base;
432 	entry = &header->toc[item];
433 	if (entry->allocated)
434 		return -EEXIST;
435 
436 	size = ALIGN(size, 8);
437 	if (WARN_ON(size > le32_to_cpu(header->available)))
438 		return -ENOMEM;
439 
440 	entry->offset = header->free_offset;
441 	entry->size = cpu_to_le32(size);
442 
443 	/*
444 	 * Ensure the header is consistent before we mark the item allocated,
445 	 * so that remote processors will get a consistent view of the item
446 	 * even though they do not take the spinlock on read.
447 	 */
448 	wmb();
449 	entry->allocated = cpu_to_le32(1);
450 
451 	le32_add_cpu(&header->free_offset, size);
452 	le32_add_cpu(&header->available, -size);
453 
454 	return 0;
455 }
456 
457 /**
458  * qcom_smem_alloc() - allocate space for a smem item
459  * @host:	remote processor id, or -1
460  * @item:	smem item handle
461  * @size:	number of bytes to be allocated
462  *
463  * Allocate space for a given smem item of size @size, given that the item is
464  * not yet allocated.
465  */
466 int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
467 {
468 	struct smem_partition *part;
469 	unsigned long flags;
470 	int ret;
471 
472 	if (!__smem)
473 		return -EPROBE_DEFER;
474 
475 	if (item < SMEM_ITEM_LAST_FIXED) {
476 		dev_err(__smem->dev,
477 			"Rejecting allocation of static entry %d\n", item);
478 		return -EINVAL;
479 	}
480 
481 	if (WARN_ON(item >= __smem->item_count))
482 		return -EINVAL;
483 
484 	ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
485 					  HWSPINLOCK_TIMEOUT,
486 					  &flags);
487 	if (ret)
488 		return ret;
489 
490 	if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
491 		part = &__smem->partitions[host];
492 		ret = qcom_smem_alloc_private(__smem, part, item, size);
493 	} else if (__smem->global_partition.virt_base) {
494 		part = &__smem->global_partition;
495 		ret = qcom_smem_alloc_private(__smem, part, item, size);
496 	} else {
497 		ret = qcom_smem_alloc_global(__smem, item, size);
498 	}
499 
500 	hwspin_unlock_irqrestore(__smem->hwlock, &flags);
501 
502 	return ret;
503 }
504 EXPORT_SYMBOL_GPL(qcom_smem_alloc);
505 
506 static void *qcom_smem_get_global(struct qcom_smem *smem,
507 				  unsigned item,
508 				  size_t *size)
509 {
510 	struct smem_header *header;
511 	struct smem_region *region;
512 	struct smem_global_entry *entry;
513 	u64 entry_offset;
514 	u32 e_size;
515 	u32 aux_base;
516 	unsigned i;
517 
518 	header = smem->regions[0].virt_base;
519 	entry = &header->toc[item];
520 	if (!entry->allocated)
521 		return ERR_PTR(-ENXIO);
522 
523 	aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
524 
525 	for (i = 0; i < smem->num_regions; i++) {
526 		region = &smem->regions[i];
527 
528 		if ((u32)region->aux_base == aux_base || !aux_base) {
529 			e_size = le32_to_cpu(entry->size);
530 			entry_offset = le32_to_cpu(entry->offset);
531 
532 			if (WARN_ON(e_size + entry_offset > region->size))
533 				return ERR_PTR(-EINVAL);
534 
535 			if (size != NULL)
536 				*size = e_size;
537 
538 			return region->virt_base + entry_offset;
539 		}
540 	}
541 
542 	return ERR_PTR(-ENOENT);
543 }
544 
545 static void *qcom_smem_get_private(struct qcom_smem *smem,
546 				   struct smem_partition *part,
547 				   unsigned item,
548 				   size_t *size)
549 {
550 	struct smem_private_entry *e, *end;
551 	struct smem_partition_header *phdr;
552 	void *item_ptr, *p_end;
553 	u32 padding_data;
554 	u32 e_size;
555 
556 	phdr = (struct smem_partition_header __force *)part->virt_base;
557 	p_end = (void *)phdr + part->size;
558 
559 	e = phdr_to_first_uncached_entry(phdr);
560 	end = phdr_to_last_uncached_entry(phdr);
561 
562 	while (e < end) {
563 		if (e->canary != SMEM_PRIVATE_CANARY)
564 			goto invalid_canary;
565 
566 		if (le16_to_cpu(e->item) == item) {
567 			if (size != NULL) {
568 				e_size = le32_to_cpu(e->size);
569 				padding_data = le16_to_cpu(e->padding_data);
570 
571 				if (WARN_ON(e_size > part->size || padding_data > e_size))
572 					return ERR_PTR(-EINVAL);
573 
574 				*size = e_size - padding_data;
575 			}
576 
577 			item_ptr = uncached_entry_to_item(e);
578 			if (WARN_ON(item_ptr > p_end))
579 				return ERR_PTR(-EINVAL);
580 
581 			return item_ptr;
582 		}
583 
584 		e = uncached_entry_next(e);
585 	}
586 
587 	if (WARN_ON((void *)e > p_end))
588 		return ERR_PTR(-EINVAL);
589 
590 	/* Item was not found in the uncached list, search the cached list */
591 
592 	e = phdr_to_first_cached_entry(phdr, part->cacheline);
593 	end = phdr_to_last_cached_entry(phdr);
594 
595 	if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end))
596 		return ERR_PTR(-EINVAL);
597 
598 	while (e > end) {
599 		if (e->canary != SMEM_PRIVATE_CANARY)
600 			goto invalid_canary;
601 
602 		if (le16_to_cpu(e->item) == item) {
603 			if (size != NULL) {
604 				e_size = le32_to_cpu(e->size);
605 				padding_data = le16_to_cpu(e->padding_data);
606 
607 				if (WARN_ON(e_size > part->size || padding_data > e_size))
608 					return ERR_PTR(-EINVAL);
609 
610 				*size = e_size - padding_data;
611 			}
612 
613 			item_ptr = cached_entry_to_item(e);
614 			if (WARN_ON(item_ptr < (void *)phdr))
615 				return ERR_PTR(-EINVAL);
616 
617 			return item_ptr;
618 		}
619 
620 		e = cached_entry_next(e, part->cacheline);
621 	}
622 
623 	if (WARN_ON((void *)e < (void *)phdr))
624 		return ERR_PTR(-EINVAL);
625 
626 	return ERR_PTR(-ENOENT);
627 
628 invalid_canary:
629 	dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
630 			le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
631 
632 	return ERR_PTR(-EINVAL);
633 }
634 
635 /**
636  * qcom_smem_get() - resolve ptr of size of a smem item
637  * @host:	the remote processor, or -1
638  * @item:	smem item handle
639  * @size:	pointer to be filled out with size of the item
640  *
641  * Looks up smem item and returns pointer to it. Size of smem
642  * item is returned in @size.
643  */
644 void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
645 {
646 	struct smem_partition *part;
647 	unsigned long flags;
648 	int ret;
649 	void *ptr = ERR_PTR(-EPROBE_DEFER);
650 
651 	if (!__smem)
652 		return ptr;
653 
654 	if (WARN_ON(item >= __smem->item_count))
655 		return ERR_PTR(-EINVAL);
656 
657 	ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
658 					  HWSPINLOCK_TIMEOUT,
659 					  &flags);
660 	if (ret)
661 		return ERR_PTR(ret);
662 
663 	if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
664 		part = &__smem->partitions[host];
665 		ptr = qcom_smem_get_private(__smem, part, item, size);
666 	} else if (__smem->global_partition.virt_base) {
667 		part = &__smem->global_partition;
668 		ptr = qcom_smem_get_private(__smem, part, item, size);
669 	} else {
670 		ptr = qcom_smem_get_global(__smem, item, size);
671 	}
672 
673 	hwspin_unlock_irqrestore(__smem->hwlock, &flags);
674 
675 	return ptr;
676 
677 }
678 EXPORT_SYMBOL_GPL(qcom_smem_get);
679 
680 /**
681  * qcom_smem_get_free_space() - retrieve amount of free space in a partition
682  * @host:	the remote processor identifying a partition, or -1
683  *
684  * To be used by smem clients as a quick way to determine if any new
685  * allocations has been made.
686  */
687 int qcom_smem_get_free_space(unsigned host)
688 {
689 	struct smem_partition *part;
690 	struct smem_partition_header *phdr;
691 	struct smem_header *header;
692 	unsigned ret;
693 
694 	if (!__smem)
695 		return -EPROBE_DEFER;
696 
697 	if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
698 		part = &__smem->partitions[host];
699 		phdr = part->virt_base;
700 		ret = le32_to_cpu(phdr->offset_free_cached) -
701 		      le32_to_cpu(phdr->offset_free_uncached);
702 
703 		if (ret > le32_to_cpu(part->size))
704 			return -EINVAL;
705 	} else if (__smem->global_partition.virt_base) {
706 		part = &__smem->global_partition;
707 		phdr = part->virt_base;
708 		ret = le32_to_cpu(phdr->offset_free_cached) -
709 		      le32_to_cpu(phdr->offset_free_uncached);
710 
711 		if (ret > le32_to_cpu(part->size))
712 			return -EINVAL;
713 	} else {
714 		header = __smem->regions[0].virt_base;
715 		ret = le32_to_cpu(header->available);
716 
717 		if (ret > __smem->regions[0].size)
718 			return -EINVAL;
719 	}
720 
721 	return ret;
722 }
723 EXPORT_SYMBOL_GPL(qcom_smem_get_free_space);
724 
725 static bool addr_in_range(void __iomem *base, size_t size, void *addr)
726 {
727 	return base && (addr >= base && addr < base + size);
728 }
729 
730 /**
731  * qcom_smem_virt_to_phys() - return the physical address associated
732  * with an smem item pointer (previously returned by qcom_smem_get()
733  * @p:	the virtual address to convert
734  *
735  * Returns 0 if the pointer provided is not within any smem region.
736  */
737 phys_addr_t qcom_smem_virt_to_phys(void *p)
738 {
739 	struct smem_partition *part;
740 	struct smem_region *area;
741 	u64 offset;
742 	u32 i;
743 
744 	for (i = 0; i < SMEM_HOST_COUNT; i++) {
745 		part = &__smem->partitions[i];
746 
747 		if (addr_in_range(part->virt_base, part->size, p)) {
748 			offset = p - part->virt_base;
749 
750 			return (phys_addr_t)part->phys_base + offset;
751 		}
752 	}
753 
754 	part = &__smem->global_partition;
755 
756 	if (addr_in_range(part->virt_base, part->size, p)) {
757 		offset = p - part->virt_base;
758 
759 		return (phys_addr_t)part->phys_base + offset;
760 	}
761 
762 	for (i = 0; i < __smem->num_regions; i++) {
763 		area = &__smem->regions[i];
764 
765 		if (addr_in_range(area->virt_base, area->size, p)) {
766 			offset = p - area->virt_base;
767 
768 			return (phys_addr_t)area->aux_base + offset;
769 		}
770 	}
771 
772 	return 0;
773 }
774 EXPORT_SYMBOL_GPL(qcom_smem_virt_to_phys);
775 
776 /**
777  * qcom_smem_get_soc_id() - return the SoC ID
778  * @id:	On success, we return the SoC ID here.
779  *
780  * Look up SoC ID from HW/SW build ID and return it.
781  *
782  * Return: 0 on success, negative errno on failure.
783  */
784 int qcom_smem_get_soc_id(u32 *id)
785 {
786 	struct socinfo *info;
787 
788 	info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL);
789 	if (IS_ERR(info))
790 		return PTR_ERR(info);
791 
792 	*id = __le32_to_cpu(info->id);
793 
794 	return 0;
795 }
796 EXPORT_SYMBOL_GPL(qcom_smem_get_soc_id);
797 
798 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
799 {
800 	struct smem_header *header;
801 	__le32 *versions;
802 
803 	header = smem->regions[0].virt_base;
804 	versions = header->version;
805 
806 	return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
807 }
808 
809 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
810 {
811 	struct smem_ptable *ptable;
812 	u32 version;
813 
814 	ptable = smem->ptable;
815 	if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
816 		return ERR_PTR(-ENOENT);
817 
818 	version = le32_to_cpu(ptable->version);
819 	if (version != 1) {
820 		dev_err(smem->dev,
821 			"Unsupported partition header version %d\n", version);
822 		return ERR_PTR(-EINVAL);
823 	}
824 	return ptable;
825 }
826 
827 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
828 {
829 	struct smem_ptable *ptable;
830 	struct smem_info *info;
831 
832 	ptable = qcom_smem_get_ptable(smem);
833 	if (IS_ERR_OR_NULL(ptable))
834 		return SMEM_ITEM_COUNT;
835 
836 	info = (struct smem_info *)&ptable->entry[ptable->num_entries];
837 	if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
838 		return SMEM_ITEM_COUNT;
839 
840 	return le16_to_cpu(info->num_items);
841 }
842 
843 /*
844  * Validate the partition header for a partition whose partition
845  * table entry is supplied.  Returns a pointer to its header if
846  * valid, or a null pointer otherwise.
847  */
848 static struct smem_partition_header *
849 qcom_smem_partition_header(struct qcom_smem *smem,
850 		struct smem_ptable_entry *entry, u16 host0, u16 host1)
851 {
852 	struct smem_partition_header *header;
853 	u32 phys_addr;
854 	u32 size;
855 
856 	phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset);
857 	header = devm_ioremap_wc(smem->dev, phys_addr, le32_to_cpu(entry->size));
858 
859 	if (!header)
860 		return NULL;
861 
862 	if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
863 		dev_err(smem->dev, "bad partition magic %4ph\n", header->magic);
864 		return NULL;
865 	}
866 
867 	if (host0 != le16_to_cpu(header->host0)) {
868 		dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
869 				host0, le16_to_cpu(header->host0));
870 		return NULL;
871 	}
872 	if (host1 != le16_to_cpu(header->host1)) {
873 		dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
874 				host1, le16_to_cpu(header->host1));
875 		return NULL;
876 	}
877 
878 	size = le32_to_cpu(header->size);
879 	if (size != le32_to_cpu(entry->size)) {
880 		dev_err(smem->dev, "bad partition size (%u != %u)\n",
881 			size, le32_to_cpu(entry->size));
882 		return NULL;
883 	}
884 
885 	if (le32_to_cpu(header->offset_free_uncached) > size) {
886 		dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
887 			le32_to_cpu(header->offset_free_uncached), size);
888 		return NULL;
889 	}
890 
891 	return header;
892 }
893 
894 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
895 {
896 	struct smem_partition_header *header;
897 	struct smem_ptable_entry *entry;
898 	struct smem_ptable *ptable;
899 	bool found = false;
900 	int i;
901 
902 	if (smem->global_partition.virt_base) {
903 		dev_err(smem->dev, "Already found the global partition\n");
904 		return -EINVAL;
905 	}
906 
907 	ptable = qcom_smem_get_ptable(smem);
908 	if (IS_ERR(ptable))
909 		return PTR_ERR(ptable);
910 
911 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
912 		entry = &ptable->entry[i];
913 		if (!le32_to_cpu(entry->offset))
914 			continue;
915 		if (!le32_to_cpu(entry->size))
916 			continue;
917 
918 		if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
919 			continue;
920 
921 		if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
922 			found = true;
923 			break;
924 		}
925 	}
926 
927 	if (!found) {
928 		dev_err(smem->dev, "Missing entry for global partition\n");
929 		return -EINVAL;
930 	}
931 
932 	header = qcom_smem_partition_header(smem, entry,
933 				SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
934 	if (!header)
935 		return -EINVAL;
936 
937 	smem->global_partition.virt_base = (void __iomem *)header;
938 	smem->global_partition.phys_base = smem->regions[0].aux_base +
939 								le32_to_cpu(entry->offset);
940 	smem->global_partition.size = le32_to_cpu(entry->size);
941 	smem->global_partition.cacheline = le32_to_cpu(entry->cacheline);
942 
943 	return 0;
944 }
945 
946 static int
947 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
948 {
949 	struct smem_partition_header *header;
950 	struct smem_ptable_entry *entry;
951 	struct smem_ptable *ptable;
952 	u16 remote_host;
953 	u16 host0, host1;
954 	int i;
955 
956 	ptable = qcom_smem_get_ptable(smem);
957 	if (IS_ERR(ptable))
958 		return PTR_ERR(ptable);
959 
960 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
961 		entry = &ptable->entry[i];
962 		if (!le32_to_cpu(entry->offset))
963 			continue;
964 		if (!le32_to_cpu(entry->size))
965 			continue;
966 
967 		host0 = le16_to_cpu(entry->host0);
968 		host1 = le16_to_cpu(entry->host1);
969 		if (host0 == local_host)
970 			remote_host = host1;
971 		else if (host1 == local_host)
972 			remote_host = host0;
973 		else
974 			continue;
975 
976 		if (remote_host >= SMEM_HOST_COUNT) {
977 			dev_err(smem->dev, "bad host %u\n", remote_host);
978 			return -EINVAL;
979 		}
980 
981 		if (smem->partitions[remote_host].virt_base) {
982 			dev_err(smem->dev, "duplicate host %u\n", remote_host);
983 			return -EINVAL;
984 		}
985 
986 		header = qcom_smem_partition_header(smem, entry, host0, host1);
987 		if (!header)
988 			return -EINVAL;
989 
990 		smem->partitions[remote_host].virt_base = (void __iomem *)header;
991 		smem->partitions[remote_host].phys_base = smem->regions[0].aux_base +
992 										le32_to_cpu(entry->offset);
993 		smem->partitions[remote_host].size = le32_to_cpu(entry->size);
994 		smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline);
995 	}
996 
997 	return 0;
998 }
999 
1000 static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region)
1001 {
1002 	u32 ptable_start;
1003 
1004 	/* map starting 4K for smem header */
1005 	region->virt_base = devm_ioremap_wc(smem->dev, region->aux_base, SZ_4K);
1006 	ptable_start = region->aux_base + region->size - SZ_4K;
1007 	/* map last 4k for toc */
1008 	smem->ptable = devm_ioremap_wc(smem->dev, ptable_start, SZ_4K);
1009 
1010 	if (!region->virt_base || !smem->ptable)
1011 		return -ENOMEM;
1012 
1013 	return 0;
1014 }
1015 
1016 static int qcom_smem_map_global(struct qcom_smem *smem, u32 size)
1017 {
1018 	u32 phys_addr;
1019 
1020 	phys_addr = smem->regions[0].aux_base;
1021 
1022 	smem->regions[0].size = size;
1023 	smem->regions[0].virt_base = devm_ioremap_wc(smem->dev, phys_addr, size);
1024 
1025 	if (!smem->regions[0].virt_base)
1026 		return -ENOMEM;
1027 
1028 	return 0;
1029 }
1030 
1031 static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name,
1032 				 struct smem_region *region)
1033 {
1034 	struct device *dev = smem->dev;
1035 	struct device_node *np;
1036 	struct resource r;
1037 	int ret;
1038 
1039 	np = of_parse_phandle(dev->of_node, name, 0);
1040 	if (!np) {
1041 		dev_err(dev, "No %s specified\n", name);
1042 		return -EINVAL;
1043 	}
1044 
1045 	ret = of_address_to_resource(np, 0, &r);
1046 	of_node_put(np);
1047 	if (ret)
1048 		return ret;
1049 
1050 	region->aux_base = r.start;
1051 	region->size = resource_size(&r);
1052 
1053 	return 0;
1054 }
1055 
1056 static int qcom_smem_probe(struct platform_device *pdev)
1057 {
1058 	struct smem_header *header;
1059 	struct reserved_mem *rmem;
1060 	struct qcom_smem *smem;
1061 	unsigned long flags;
1062 	size_t array_size;
1063 	int num_regions;
1064 	int hwlock_id;
1065 	u32 version;
1066 	u32 size;
1067 	int ret;
1068 	int i;
1069 
1070 	num_regions = 1;
1071 	if (of_property_present(pdev->dev.of_node, "qcom,rpm-msg-ram"))
1072 		num_regions++;
1073 
1074 	array_size = num_regions * sizeof(struct smem_region);
1075 	smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL);
1076 	if (!smem)
1077 		return -ENOMEM;
1078 
1079 	smem->dev = &pdev->dev;
1080 	smem->num_regions = num_regions;
1081 
1082 	rmem = of_reserved_mem_lookup(pdev->dev.of_node);
1083 	if (rmem) {
1084 		smem->regions[0].aux_base = rmem->base;
1085 		smem->regions[0].size = rmem->size;
1086 	} else {
1087 		/*
1088 		 * Fall back to the memory-region reference, if we're not a
1089 		 * reserved-memory node.
1090 		 */
1091 		ret = qcom_smem_resolve_mem(smem, "memory-region", &smem->regions[0]);
1092 		if (ret)
1093 			return ret;
1094 	}
1095 
1096 	if (num_regions > 1) {
1097 		ret = qcom_smem_resolve_mem(smem, "qcom,rpm-msg-ram", &smem->regions[1]);
1098 		if (ret)
1099 			return ret;
1100 	}
1101 
1102 
1103 	ret = qcom_smem_map_toc(smem, &smem->regions[0]);
1104 	if (ret)
1105 		return ret;
1106 
1107 	for (i = 1; i < num_regions; i++) {
1108 		smem->regions[i].virt_base = devm_ioremap_wc(&pdev->dev,
1109 							     smem->regions[i].aux_base,
1110 							     smem->regions[i].size);
1111 		if (!smem->regions[i].virt_base) {
1112 			dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base);
1113 			return -ENOMEM;
1114 		}
1115 	}
1116 
1117 	header = smem->regions[0].virt_base;
1118 	if (le32_to_cpu(header->initialized) != 1 ||
1119 	    le32_to_cpu(header->reserved)) {
1120 		dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
1121 		return -EINVAL;
1122 	}
1123 
1124 	hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
1125 	if (hwlock_id < 0) {
1126 		if (hwlock_id != -EPROBE_DEFER)
1127 			dev_err(&pdev->dev, "failed to retrieve hwlock\n");
1128 		return hwlock_id;
1129 	}
1130 
1131 	smem->hwlock = hwspin_lock_request_specific(hwlock_id);
1132 	if (!smem->hwlock)
1133 		return -ENXIO;
1134 
1135 	ret = hwspin_lock_timeout_irqsave(smem->hwlock, HWSPINLOCK_TIMEOUT, &flags);
1136 	if (ret)
1137 		return ret;
1138 	size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset);
1139 	hwspin_unlock_irqrestore(smem->hwlock, &flags);
1140 
1141 	version = qcom_smem_get_sbl_version(smem);
1142 	/*
1143 	 * smem header mapping is required only in heap version scheme, so unmap
1144 	 * it here. It will be remapped in qcom_smem_map_global() when whole
1145 	 * partition is mapped again.
1146 	 */
1147 	devm_iounmap(smem->dev, smem->regions[0].virt_base);
1148 	switch (version >> 16) {
1149 	case SMEM_GLOBAL_PART_VERSION:
1150 		ret = qcom_smem_set_global_partition(smem);
1151 		if (ret < 0)
1152 			return ret;
1153 		smem->item_count = qcom_smem_get_item_count(smem);
1154 		break;
1155 	case SMEM_GLOBAL_HEAP_VERSION:
1156 		qcom_smem_map_global(smem, size);
1157 		smem->item_count = SMEM_ITEM_COUNT;
1158 		break;
1159 	default:
1160 		dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
1161 		return -EINVAL;
1162 	}
1163 
1164 	BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
1165 	ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
1166 	if (ret < 0 && ret != -ENOENT)
1167 		return ret;
1168 
1169 	__smem = smem;
1170 
1171 	smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo",
1172 						      PLATFORM_DEVID_NONE, NULL,
1173 						      0);
1174 	if (IS_ERR(smem->socinfo))
1175 		dev_dbg(&pdev->dev, "failed to register socinfo device\n");
1176 
1177 	return 0;
1178 }
1179 
1180 static int qcom_smem_remove(struct platform_device *pdev)
1181 {
1182 	platform_device_unregister(__smem->socinfo);
1183 
1184 	hwspin_lock_free(__smem->hwlock);
1185 	__smem = NULL;
1186 
1187 	return 0;
1188 }
1189 
1190 static const struct of_device_id qcom_smem_of_match[] = {
1191 	{ .compatible = "qcom,smem" },
1192 	{}
1193 };
1194 MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
1195 
1196 static struct platform_driver qcom_smem_driver = {
1197 	.probe = qcom_smem_probe,
1198 	.remove = qcom_smem_remove,
1199 	.driver  = {
1200 		.name = "qcom-smem",
1201 		.of_match_table = qcom_smem_of_match,
1202 		.suppress_bind_attrs = true,
1203 	},
1204 };
1205 
1206 static int __init qcom_smem_init(void)
1207 {
1208 	return platform_driver_register(&qcom_smem_driver);
1209 }
1210 arch_initcall(qcom_smem_init);
1211 
1212 static void __exit qcom_smem_exit(void)
1213 {
1214 	platform_driver_unregister(&qcom_smem_driver);
1215 }
1216 module_exit(qcom_smem_exit)
1217 
1218 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1219 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1220 MODULE_LICENSE("GPL v2");
1221