xref: /openbmc/linux/drivers/soc/qcom/smem.c (revision 5927145e)
1 /*
2  * Copyright (c) 2015, Sony Mobile Communications AB.
3  * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 and
7  * only version 2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/hwspinlock.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/soc/qcom/smem.h>
23 
24 /*
25  * The Qualcomm shared memory system is a allocate only heap structure that
26  * consists of one of more memory areas that can be accessed by the processors
27  * in the SoC.
28  *
29  * All systems contains a global heap, accessible by all processors in the SoC,
30  * with a table of contents data structure (@smem_header) at the beginning of
31  * the main shared memory block.
32  *
33  * The global header contains meta data for allocations as well as a fixed list
34  * of 512 entries (@smem_global_entry) that can be initialized to reference
35  * parts of the shared memory space.
36  *
37  *
38  * In addition to this global heap a set of "private" heaps can be set up at
39  * boot time with access restrictions so that only certain processor pairs can
40  * access the data.
41  *
42  * These partitions are referenced from an optional partition table
43  * (@smem_ptable), that is found 4kB from the end of the main smem region. The
44  * partition table entries (@smem_ptable_entry) lists the involved processors
45  * (or hosts) and their location in the main shared memory region.
46  *
47  * Each partition starts with a header (@smem_partition_header) that identifies
48  * the partition and holds properties for the two internal memory regions. The
49  * two regions are cached and non-cached memory respectively. Each region
50  * contain a link list of allocation headers (@smem_private_entry) followed by
51  * their data.
52  *
53  * Items in the non-cached region are allocated from the start of the partition
54  * while items in the cached region are allocated from the end. The free area
55  * is hence the region between the cached and non-cached offsets. The header of
56  * cached items comes after the data.
57  *
58  * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
59  * for the global heap. A new global partition is created from the global heap
60  * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
61  * set by the bootloader.
62  *
63  * To synchronize allocations in the shared memory heaps a remote spinlock must
64  * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
65  * platforms.
66  *
67  */
68 
69 /*
70  * The version member of the smem header contains an array of versions for the
71  * various software components in the SoC. We verify that the boot loader
72  * version is a valid version as a sanity check.
73  */
74 #define SMEM_MASTER_SBL_VERSION_INDEX	7
75 #define SMEM_GLOBAL_HEAP_VERSION	11
76 #define SMEM_GLOBAL_PART_VERSION	12
77 
78 /*
79  * The first 8 items are only to be allocated by the boot loader while
80  * initializing the heap.
81  */
82 #define SMEM_ITEM_LAST_FIXED	8
83 
84 /* Highest accepted item number, for both global and private heaps */
85 #define SMEM_ITEM_COUNT		512
86 
87 /* Processor/host identifier for the application processor */
88 #define SMEM_HOST_APPS		0
89 
90 /* Processor/host identifier for the global partition */
91 #define SMEM_GLOBAL_HOST	0xfffe
92 
93 /* Max number of processors/hosts in a system */
94 #define SMEM_HOST_COUNT		10
95 
96 /**
97   * struct smem_proc_comm - proc_comm communication struct (legacy)
98   * @command:	current command to be executed
99   * @status:	status of the currently requested command
100   * @params:	parameters to the command
101   */
102 struct smem_proc_comm {
103 	__le32 command;
104 	__le32 status;
105 	__le32 params[2];
106 };
107 
108 /**
109  * struct smem_global_entry - entry to reference smem items on the heap
110  * @allocated:	boolean to indicate if this entry is used
111  * @offset:	offset to the allocated space
112  * @size:	size of the allocated space, 8 byte aligned
113  * @aux_base:	base address for the memory region used by this unit, or 0 for
114  *		the default region. bits 0,1 are reserved
115  */
116 struct smem_global_entry {
117 	__le32 allocated;
118 	__le32 offset;
119 	__le32 size;
120 	__le32 aux_base; /* bits 1:0 reserved */
121 };
122 #define AUX_BASE_MASK		0xfffffffc
123 
124 /**
125  * struct smem_header - header found in beginning of primary smem region
126  * @proc_comm:		proc_comm communication interface (legacy)
127  * @version:		array of versions for the various subsystems
128  * @initialized:	boolean to indicate that smem is initialized
129  * @free_offset:	index of the first unallocated byte in smem
130  * @available:		number of bytes available for allocation
131  * @reserved:		reserved field, must be 0
132  * toc:			array of references to items
133  */
134 struct smem_header {
135 	struct smem_proc_comm proc_comm[4];
136 	__le32 version[32];
137 	__le32 initialized;
138 	__le32 free_offset;
139 	__le32 available;
140 	__le32 reserved;
141 	struct smem_global_entry toc[SMEM_ITEM_COUNT];
142 };
143 
144 /**
145  * struct smem_ptable_entry - one entry in the @smem_ptable list
146  * @offset:	offset, within the main shared memory region, of the partition
147  * @size:	size of the partition
148  * @flags:	flags for the partition (currently unused)
149  * @host0:	first processor/host with access to this partition
150  * @host1:	second processor/host with access to this partition
151  * @cacheline:	alignment for "cached" entries
152  * @reserved:	reserved entries for later use
153  */
154 struct smem_ptable_entry {
155 	__le32 offset;
156 	__le32 size;
157 	__le32 flags;
158 	__le16 host0;
159 	__le16 host1;
160 	__le32 cacheline;
161 	__le32 reserved[7];
162 };
163 
164 /**
165  * struct smem_ptable - partition table for the private partitions
166  * @magic:	magic number, must be SMEM_PTABLE_MAGIC
167  * @version:	version of the partition table
168  * @num_entries: number of partitions in the table
169  * @reserved:	for now reserved entries
170  * @entry:	list of @smem_ptable_entry for the @num_entries partitions
171  */
172 struct smem_ptable {
173 	u8 magic[4];
174 	__le32 version;
175 	__le32 num_entries;
176 	__le32 reserved[5];
177 	struct smem_ptable_entry entry[];
178 };
179 
180 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
181 
182 /**
183  * struct smem_partition_header - header of the partitions
184  * @magic:	magic number, must be SMEM_PART_MAGIC
185  * @host0:	first processor/host with access to this partition
186  * @host1:	second processor/host with access to this partition
187  * @size:	size of the partition
188  * @offset_free_uncached: offset to the first free byte of uncached memory in
189  *		this partition
190  * @offset_free_cached: offset to the first free byte of cached memory in this
191  *		partition
192  * @reserved:	for now reserved entries
193  */
194 struct smem_partition_header {
195 	u8 magic[4];
196 	__le16 host0;
197 	__le16 host1;
198 	__le32 size;
199 	__le32 offset_free_uncached;
200 	__le32 offset_free_cached;
201 	__le32 reserved[3];
202 };
203 
204 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
205 
206 /**
207  * struct smem_private_entry - header of each item in the private partition
208  * @canary:	magic number, must be SMEM_PRIVATE_CANARY
209  * @item:	identifying number of the smem item
210  * @size:	size of the data, including padding bytes
211  * @padding_data: number of bytes of padding of data
212  * @padding_hdr: number of bytes of padding between the header and the data
213  * @reserved:	for now reserved entry
214  */
215 struct smem_private_entry {
216 	u16 canary; /* bytes are the same so no swapping needed */
217 	__le16 item;
218 	__le32 size; /* includes padding bytes */
219 	__le16 padding_data;
220 	__le16 padding_hdr;
221 	__le32 reserved;
222 };
223 #define SMEM_PRIVATE_CANARY	0xa5a5
224 
225 /**
226  * struct smem_info - smem region info located after the table of contents
227  * @magic:	magic number, must be SMEM_INFO_MAGIC
228  * @size:	size of the smem region
229  * @base_addr:	base address of the smem region
230  * @reserved:	for now reserved entry
231  * @num_items:	highest accepted item number
232  */
233 struct smem_info {
234 	u8 magic[4];
235 	__le32 size;
236 	__le32 base_addr;
237 	__le32 reserved;
238 	__le16 num_items;
239 };
240 
241 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
242 
243 /**
244  * struct smem_region - representation of a chunk of memory used for smem
245  * @aux_base:	identifier of aux_mem base
246  * @virt_base:	virtual base address of memory with this aux_mem identifier
247  * @size:	size of the memory region
248  */
249 struct smem_region {
250 	u32 aux_base;
251 	void __iomem *virt_base;
252 	size_t size;
253 };
254 
255 /**
256  * struct qcom_smem - device data for the smem device
257  * @dev:	device pointer
258  * @hwlock:	reference to a hwspinlock
259  * @global_partition:	pointer to global partition when in use
260  * @global_cacheline:	cacheline size for global partition
261  * @partitions:	list of pointers to partitions affecting the current
262  *		processor/host
263  * @cacheline:	list of cacheline sizes for each host
264  * @item_count: max accepted item number
265  * @num_regions: number of @regions
266  * @regions:	list of the memory regions defining the shared memory
267  */
268 struct qcom_smem {
269 	struct device *dev;
270 
271 	struct hwspinlock *hwlock;
272 
273 	struct smem_partition_header *global_partition;
274 	size_t global_cacheline;
275 	struct smem_partition_header *partitions[SMEM_HOST_COUNT];
276 	size_t cacheline[SMEM_HOST_COUNT];
277 	u32 item_count;
278 
279 	unsigned num_regions;
280 	struct smem_region regions[0];
281 };
282 
283 static struct smem_private_entry *
284 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
285 {
286 	void *p = phdr;
287 
288 	return p + le32_to_cpu(phdr->offset_free_uncached);
289 }
290 
291 static void *phdr_to_first_cached_entry(struct smem_partition_header *phdr,
292 					size_t cacheline)
293 {
294 	void *p = phdr;
295 
296 	return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*phdr), cacheline);
297 }
298 
299 static void *phdr_to_last_cached_entry(struct smem_partition_header *phdr)
300 {
301 	void *p = phdr;
302 
303 	return p + le32_to_cpu(phdr->offset_free_cached);
304 }
305 
306 static struct smem_private_entry *
307 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
308 {
309 	void *p = phdr;
310 
311 	return p + sizeof(*phdr);
312 }
313 
314 static struct smem_private_entry *
315 uncached_entry_next(struct smem_private_entry *e)
316 {
317 	void *p = e;
318 
319 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
320 	       le32_to_cpu(e->size);
321 }
322 
323 static struct smem_private_entry *
324 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
325 {
326 	void *p = e;
327 
328 	return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
329 }
330 
331 static void *uncached_entry_to_item(struct smem_private_entry *e)
332 {
333 	void *p = e;
334 
335 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
336 }
337 
338 static void *cached_entry_to_item(struct smem_private_entry *e)
339 {
340 	void *p = e;
341 
342 	return p - le32_to_cpu(e->size);
343 }
344 
345 /* Pointer to the one and only smem handle */
346 static struct qcom_smem *__smem;
347 
348 /* Timeout (ms) for the trylock of remote spinlocks */
349 #define HWSPINLOCK_TIMEOUT	1000
350 
351 static int qcom_smem_alloc_private(struct qcom_smem *smem,
352 				   struct smem_partition_header *phdr,
353 				   unsigned item,
354 				   size_t size)
355 {
356 	struct smem_private_entry *hdr, *end;
357 	size_t alloc_size;
358 	void *cached;
359 
360 	hdr = phdr_to_first_uncached_entry(phdr);
361 	end = phdr_to_last_uncached_entry(phdr);
362 	cached = phdr_to_last_cached_entry(phdr);
363 
364 	while (hdr < end) {
365 		if (hdr->canary != SMEM_PRIVATE_CANARY) {
366 			dev_err(smem->dev,
367 				"Found invalid canary in hosts %d:%d partition\n",
368 				phdr->host0, phdr->host1);
369 			return -EINVAL;
370 		}
371 
372 		if (le16_to_cpu(hdr->item) == item)
373 			return -EEXIST;
374 
375 		hdr = uncached_entry_next(hdr);
376 	}
377 
378 	/* Check that we don't grow into the cached region */
379 	alloc_size = sizeof(*hdr) + ALIGN(size, 8);
380 	if ((void *)hdr + alloc_size >= cached) {
381 		dev_err(smem->dev, "Out of memory\n");
382 		return -ENOSPC;
383 	}
384 
385 	hdr->canary = SMEM_PRIVATE_CANARY;
386 	hdr->item = cpu_to_le16(item);
387 	hdr->size = cpu_to_le32(ALIGN(size, 8));
388 	hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
389 	hdr->padding_hdr = 0;
390 
391 	/*
392 	 * Ensure the header is written before we advance the free offset, so
393 	 * that remote processors that does not take the remote spinlock still
394 	 * gets a consistent view of the linked list.
395 	 */
396 	wmb();
397 	le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
398 
399 	return 0;
400 }
401 
402 static int qcom_smem_alloc_global(struct qcom_smem *smem,
403 				  unsigned item,
404 				  size_t size)
405 {
406 	struct smem_global_entry *entry;
407 	struct smem_header *header;
408 
409 	header = smem->regions[0].virt_base;
410 	entry = &header->toc[item];
411 	if (entry->allocated)
412 		return -EEXIST;
413 
414 	size = ALIGN(size, 8);
415 	if (WARN_ON(size > le32_to_cpu(header->available)))
416 		return -ENOMEM;
417 
418 	entry->offset = header->free_offset;
419 	entry->size = cpu_to_le32(size);
420 
421 	/*
422 	 * Ensure the header is consistent before we mark the item allocated,
423 	 * so that remote processors will get a consistent view of the item
424 	 * even though they do not take the spinlock on read.
425 	 */
426 	wmb();
427 	entry->allocated = cpu_to_le32(1);
428 
429 	le32_add_cpu(&header->free_offset, size);
430 	le32_add_cpu(&header->available, -size);
431 
432 	return 0;
433 }
434 
435 /**
436  * qcom_smem_alloc() - allocate space for a smem item
437  * @host:	remote processor id, or -1
438  * @item:	smem item handle
439  * @size:	number of bytes to be allocated
440  *
441  * Allocate space for a given smem item of size @size, given that the item is
442  * not yet allocated.
443  */
444 int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
445 {
446 	struct smem_partition_header *phdr;
447 	unsigned long flags;
448 	int ret;
449 
450 	if (!__smem)
451 		return -EPROBE_DEFER;
452 
453 	if (item < SMEM_ITEM_LAST_FIXED) {
454 		dev_err(__smem->dev,
455 			"Rejecting allocation of static entry %d\n", item);
456 		return -EINVAL;
457 	}
458 
459 	if (WARN_ON(item >= __smem->item_count))
460 		return -EINVAL;
461 
462 	ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
463 					  HWSPINLOCK_TIMEOUT,
464 					  &flags);
465 	if (ret)
466 		return ret;
467 
468 	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
469 		phdr = __smem->partitions[host];
470 		ret = qcom_smem_alloc_private(__smem, phdr, item, size);
471 	} else if (__smem->global_partition) {
472 		phdr = __smem->global_partition;
473 		ret = qcom_smem_alloc_private(__smem, phdr, item, size);
474 	} else {
475 		ret = qcom_smem_alloc_global(__smem, item, size);
476 	}
477 
478 	hwspin_unlock_irqrestore(__smem->hwlock, &flags);
479 
480 	return ret;
481 }
482 EXPORT_SYMBOL(qcom_smem_alloc);
483 
484 static void *qcom_smem_get_global(struct qcom_smem *smem,
485 				  unsigned item,
486 				  size_t *size)
487 {
488 	struct smem_header *header;
489 	struct smem_region *area;
490 	struct smem_global_entry *entry;
491 	u32 aux_base;
492 	unsigned i;
493 
494 	header = smem->regions[0].virt_base;
495 	entry = &header->toc[item];
496 	if (!entry->allocated)
497 		return ERR_PTR(-ENXIO);
498 
499 	aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
500 
501 	for (i = 0; i < smem->num_regions; i++) {
502 		area = &smem->regions[i];
503 
504 		if (area->aux_base == aux_base || !aux_base) {
505 			if (size != NULL)
506 				*size = le32_to_cpu(entry->size);
507 			return area->virt_base + le32_to_cpu(entry->offset);
508 		}
509 	}
510 
511 	return ERR_PTR(-ENOENT);
512 }
513 
514 static void *qcom_smem_get_private(struct qcom_smem *smem,
515 				   struct smem_partition_header *phdr,
516 				   size_t cacheline,
517 				   unsigned item,
518 				   size_t *size)
519 {
520 	struct smem_private_entry *e, *end;
521 
522 	e = phdr_to_first_uncached_entry(phdr);
523 	end = phdr_to_last_uncached_entry(phdr);
524 
525 	while (e < end) {
526 		if (e->canary != SMEM_PRIVATE_CANARY)
527 			goto invalid_canary;
528 
529 		if (le16_to_cpu(e->item) == item) {
530 			if (size != NULL)
531 				*size = le32_to_cpu(e->size) -
532 					le16_to_cpu(e->padding_data);
533 
534 			return uncached_entry_to_item(e);
535 		}
536 
537 		e = uncached_entry_next(e);
538 	}
539 
540 	/* Item was not found in the uncached list, search the cached list */
541 
542 	e = phdr_to_first_cached_entry(phdr, cacheline);
543 	end = phdr_to_last_cached_entry(phdr);
544 
545 	while (e > end) {
546 		if (e->canary != SMEM_PRIVATE_CANARY)
547 			goto invalid_canary;
548 
549 		if (le16_to_cpu(e->item) == item) {
550 			if (size != NULL)
551 				*size = le32_to_cpu(e->size) -
552 					le16_to_cpu(e->padding_data);
553 
554 			return cached_entry_to_item(e);
555 		}
556 
557 		e = cached_entry_next(e, cacheline);
558 	}
559 
560 	return ERR_PTR(-ENOENT);
561 
562 invalid_canary:
563 	dev_err(smem->dev, "Found invalid canary in hosts %d:%d partition\n",
564 			phdr->host0, phdr->host1);
565 
566 	return ERR_PTR(-EINVAL);
567 }
568 
569 /**
570  * qcom_smem_get() - resolve ptr of size of a smem item
571  * @host:	the remote processor, or -1
572  * @item:	smem item handle
573  * @size:	pointer to be filled out with size of the item
574  *
575  * Looks up smem item and returns pointer to it. Size of smem
576  * item is returned in @size.
577  */
578 void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
579 {
580 	struct smem_partition_header *phdr;
581 	unsigned long flags;
582 	size_t cacheln;
583 	int ret;
584 	void *ptr = ERR_PTR(-EPROBE_DEFER);
585 
586 	if (!__smem)
587 		return ptr;
588 
589 	if (WARN_ON(item >= __smem->item_count))
590 		return ERR_PTR(-EINVAL);
591 
592 	ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
593 					  HWSPINLOCK_TIMEOUT,
594 					  &flags);
595 	if (ret)
596 		return ERR_PTR(ret);
597 
598 	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
599 		phdr = __smem->partitions[host];
600 		cacheln = __smem->cacheline[host];
601 		ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
602 	} else if (__smem->global_partition) {
603 		phdr = __smem->global_partition;
604 		cacheln = __smem->global_cacheline;
605 		ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
606 	} else {
607 		ptr = qcom_smem_get_global(__smem, item, size);
608 	}
609 
610 	hwspin_unlock_irqrestore(__smem->hwlock, &flags);
611 
612 	return ptr;
613 
614 }
615 EXPORT_SYMBOL(qcom_smem_get);
616 
617 /**
618  * qcom_smem_get_free_space() - retrieve amount of free space in a partition
619  * @host:	the remote processor identifying a partition, or -1
620  *
621  * To be used by smem clients as a quick way to determine if any new
622  * allocations has been made.
623  */
624 int qcom_smem_get_free_space(unsigned host)
625 {
626 	struct smem_partition_header *phdr;
627 	struct smem_header *header;
628 	unsigned ret;
629 
630 	if (!__smem)
631 		return -EPROBE_DEFER;
632 
633 	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
634 		phdr = __smem->partitions[host];
635 		ret = le32_to_cpu(phdr->offset_free_cached) -
636 		      le32_to_cpu(phdr->offset_free_uncached);
637 	} else if (__smem->global_partition) {
638 		phdr = __smem->global_partition;
639 		ret = le32_to_cpu(phdr->offset_free_cached) -
640 		      le32_to_cpu(phdr->offset_free_uncached);
641 	} else {
642 		header = __smem->regions[0].virt_base;
643 		ret = le32_to_cpu(header->available);
644 	}
645 
646 	return ret;
647 }
648 EXPORT_SYMBOL(qcom_smem_get_free_space);
649 
650 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
651 {
652 	struct smem_header *header;
653 	__le32 *versions;
654 
655 	header = smem->regions[0].virt_base;
656 	versions = header->version;
657 
658 	return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
659 }
660 
661 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
662 {
663 	struct smem_ptable *ptable;
664 	u32 version;
665 
666 	ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
667 	if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
668 		return ERR_PTR(-ENOENT);
669 
670 	version = le32_to_cpu(ptable->version);
671 	if (version != 1) {
672 		dev_err(smem->dev,
673 			"Unsupported partition header version %d\n", version);
674 		return ERR_PTR(-EINVAL);
675 	}
676 	return ptable;
677 }
678 
679 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
680 {
681 	struct smem_ptable *ptable;
682 	struct smem_info *info;
683 
684 	ptable = qcom_smem_get_ptable(smem);
685 	if (IS_ERR_OR_NULL(ptable))
686 		return SMEM_ITEM_COUNT;
687 
688 	info = (struct smem_info *)&ptable->entry[ptable->num_entries];
689 	if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
690 		return SMEM_ITEM_COUNT;
691 
692 	return le16_to_cpu(info->num_items);
693 }
694 
695 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
696 {
697 	struct smem_partition_header *header;
698 	struct smem_ptable_entry *entry = NULL;
699 	struct smem_ptable *ptable;
700 	u32 host0, host1, size;
701 	int i;
702 
703 	ptable = qcom_smem_get_ptable(smem);
704 	if (IS_ERR(ptable))
705 		return PTR_ERR(ptable);
706 
707 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
708 		entry = &ptable->entry[i];
709 		host0 = le16_to_cpu(entry->host0);
710 		host1 = le16_to_cpu(entry->host1);
711 
712 		if (host0 == SMEM_GLOBAL_HOST && host0 == host1)
713 			break;
714 	}
715 
716 	if (!entry) {
717 		dev_err(smem->dev, "Missing entry for global partition\n");
718 		return -EINVAL;
719 	}
720 
721 	if (!le32_to_cpu(entry->offset) || !le32_to_cpu(entry->size)) {
722 		dev_err(smem->dev, "Invalid entry for global partition\n");
723 		return -EINVAL;
724 	}
725 
726 	if (smem->global_partition) {
727 		dev_err(smem->dev, "Already found the global partition\n");
728 		return -EINVAL;
729 	}
730 
731 	header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
732 	host0 = le16_to_cpu(header->host0);
733 	host1 = le16_to_cpu(header->host1);
734 
735 	if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
736 		dev_err(smem->dev, "Global partition has invalid magic\n");
737 		return -EINVAL;
738 	}
739 
740 	if (host0 != SMEM_GLOBAL_HOST && host1 != SMEM_GLOBAL_HOST) {
741 		dev_err(smem->dev, "Global partition hosts are invalid\n");
742 		return -EINVAL;
743 	}
744 
745 	if (le32_to_cpu(header->size) != le32_to_cpu(entry->size)) {
746 		dev_err(smem->dev, "Global partition has invalid size\n");
747 		return -EINVAL;
748 	}
749 
750 	size = le32_to_cpu(header->offset_free_uncached);
751 	if (size > le32_to_cpu(header->size)) {
752 		dev_err(smem->dev,
753 			"Global partition has invalid free pointer\n");
754 		return -EINVAL;
755 	}
756 
757 	smem->global_partition = header;
758 	smem->global_cacheline = le32_to_cpu(entry->cacheline);
759 
760 	return 0;
761 }
762 
763 static int qcom_smem_enumerate_partitions(struct qcom_smem *smem,
764 					  unsigned int local_host)
765 {
766 	struct smem_partition_header *header;
767 	struct smem_ptable_entry *entry;
768 	struct smem_ptable *ptable;
769 	unsigned int remote_host;
770 	u32 host0, host1;
771 	int i;
772 
773 	ptable = qcom_smem_get_ptable(smem);
774 	if (IS_ERR(ptable))
775 		return PTR_ERR(ptable);
776 
777 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
778 		entry = &ptable->entry[i];
779 		host0 = le16_to_cpu(entry->host0);
780 		host1 = le16_to_cpu(entry->host1);
781 
782 		if (host0 != local_host && host1 != local_host)
783 			continue;
784 
785 		if (!le32_to_cpu(entry->offset))
786 			continue;
787 
788 		if (!le32_to_cpu(entry->size))
789 			continue;
790 
791 		if (host0 == local_host)
792 			remote_host = host1;
793 		else
794 			remote_host = host0;
795 
796 		if (remote_host >= SMEM_HOST_COUNT) {
797 			dev_err(smem->dev,
798 				"Invalid remote host %d\n",
799 				remote_host);
800 			return -EINVAL;
801 		}
802 
803 		if (smem->partitions[remote_host]) {
804 			dev_err(smem->dev,
805 				"Already found a partition for host %d\n",
806 				remote_host);
807 			return -EINVAL;
808 		}
809 
810 		header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
811 		host0 = le16_to_cpu(header->host0);
812 		host1 = le16_to_cpu(header->host1);
813 
814 		if (memcmp(header->magic, SMEM_PART_MAGIC,
815 			    sizeof(header->magic))) {
816 			dev_err(smem->dev,
817 				"Partition %d has invalid magic\n", i);
818 			return -EINVAL;
819 		}
820 
821 		if (host0 != local_host && host1 != local_host) {
822 			dev_err(smem->dev,
823 				"Partition %d hosts are invalid\n", i);
824 			return -EINVAL;
825 		}
826 
827 		if (host0 != remote_host && host1 != remote_host) {
828 			dev_err(smem->dev,
829 				"Partition %d hosts are invalid\n", i);
830 			return -EINVAL;
831 		}
832 
833 		if (le32_to_cpu(header->size) != le32_to_cpu(entry->size)) {
834 			dev_err(smem->dev,
835 				"Partition %d has invalid size\n", i);
836 			return -EINVAL;
837 		}
838 
839 		if (le32_to_cpu(header->offset_free_uncached) > le32_to_cpu(header->size)) {
840 			dev_err(smem->dev,
841 				"Partition %d has invalid free pointer\n", i);
842 			return -EINVAL;
843 		}
844 
845 		smem->partitions[remote_host] = header;
846 		smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline);
847 	}
848 
849 	return 0;
850 }
851 
852 static int qcom_smem_map_memory(struct qcom_smem *smem, struct device *dev,
853 				const char *name, int i)
854 {
855 	struct device_node *np;
856 	struct resource r;
857 	int ret;
858 
859 	np = of_parse_phandle(dev->of_node, name, 0);
860 	if (!np) {
861 		dev_err(dev, "No %s specified\n", name);
862 		return -EINVAL;
863 	}
864 
865 	ret = of_address_to_resource(np, 0, &r);
866 	of_node_put(np);
867 	if (ret)
868 		return ret;
869 
870 	smem->regions[i].aux_base = (u32)r.start;
871 	smem->regions[i].size = resource_size(&r);
872 	smem->regions[i].virt_base = devm_ioremap_wc(dev, r.start, resource_size(&r));
873 	if (!smem->regions[i].virt_base)
874 		return -ENOMEM;
875 
876 	return 0;
877 }
878 
879 static int qcom_smem_probe(struct platform_device *pdev)
880 {
881 	struct smem_header *header;
882 	struct qcom_smem *smem;
883 	size_t array_size;
884 	int num_regions;
885 	int hwlock_id;
886 	u32 version;
887 	int ret;
888 
889 	num_regions = 1;
890 	if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL))
891 		num_regions++;
892 
893 	array_size = num_regions * sizeof(struct smem_region);
894 	smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL);
895 	if (!smem)
896 		return -ENOMEM;
897 
898 	smem->dev = &pdev->dev;
899 	smem->num_regions = num_regions;
900 
901 	ret = qcom_smem_map_memory(smem, &pdev->dev, "memory-region", 0);
902 	if (ret)
903 		return ret;
904 
905 	if (num_regions > 1 && (ret = qcom_smem_map_memory(smem, &pdev->dev,
906 					"qcom,rpm-msg-ram", 1)))
907 		return ret;
908 
909 	header = smem->regions[0].virt_base;
910 	if (le32_to_cpu(header->initialized) != 1 ||
911 	    le32_to_cpu(header->reserved)) {
912 		dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
913 		return -EINVAL;
914 	}
915 
916 	version = qcom_smem_get_sbl_version(smem);
917 	switch (version >> 16) {
918 	case SMEM_GLOBAL_PART_VERSION:
919 		ret = qcom_smem_set_global_partition(smem);
920 		if (ret < 0)
921 			return ret;
922 		smem->item_count = qcom_smem_get_item_count(smem);
923 		break;
924 	case SMEM_GLOBAL_HEAP_VERSION:
925 		smem->item_count = SMEM_ITEM_COUNT;
926 		break;
927 	default:
928 		dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
929 		return -EINVAL;
930 	}
931 
932 	ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
933 	if (ret < 0 && ret != -ENOENT)
934 		return ret;
935 
936 	hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
937 	if (hwlock_id < 0) {
938 		if (hwlock_id != -EPROBE_DEFER)
939 			dev_err(&pdev->dev, "failed to retrieve hwlock\n");
940 		return hwlock_id;
941 	}
942 
943 	smem->hwlock = hwspin_lock_request_specific(hwlock_id);
944 	if (!smem->hwlock)
945 		return -ENXIO;
946 
947 	__smem = smem;
948 
949 	return 0;
950 }
951 
952 static int qcom_smem_remove(struct platform_device *pdev)
953 {
954 	hwspin_lock_free(__smem->hwlock);
955 	__smem = NULL;
956 
957 	return 0;
958 }
959 
960 static const struct of_device_id qcom_smem_of_match[] = {
961 	{ .compatible = "qcom,smem" },
962 	{}
963 };
964 MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
965 
966 static struct platform_driver qcom_smem_driver = {
967 	.probe = qcom_smem_probe,
968 	.remove = qcom_smem_remove,
969 	.driver  = {
970 		.name = "qcom-smem",
971 		.of_match_table = qcom_smem_of_match,
972 		.suppress_bind_attrs = true,
973 	},
974 };
975 
976 static int __init qcom_smem_init(void)
977 {
978 	return platform_driver_register(&qcom_smem_driver);
979 }
980 arch_initcall(qcom_smem_init);
981 
982 static void __exit qcom_smem_exit(void)
983 {
984 	platform_driver_unregister(&qcom_smem_driver);
985 }
986 module_exit(qcom_smem_exit)
987 
988 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
989 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
990 MODULE_LICENSE("GPL v2");
991