xref: /openbmc/linux/drivers/soc/qcom/smem.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Copyright (c) 2015, Sony Mobile Communications AB.
3  * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 and
7  * only version 2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/hwspinlock.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/platform_device.h>
21 #include <linux/sizes.h>
22 #include <linux/slab.h>
23 #include <linux/soc/qcom/smem.h>
24 
25 /*
26  * The Qualcomm shared memory system is a allocate only heap structure that
27  * consists of one of more memory areas that can be accessed by the processors
28  * in the SoC.
29  *
30  * All systems contains a global heap, accessible by all processors in the SoC,
31  * with a table of contents data structure (@smem_header) at the beginning of
32  * the main shared memory block.
33  *
34  * The global header contains meta data for allocations as well as a fixed list
35  * of 512 entries (@smem_global_entry) that can be initialized to reference
36  * parts of the shared memory space.
37  *
38  *
39  * In addition to this global heap a set of "private" heaps can be set up at
40  * boot time with access restrictions so that only certain processor pairs can
41  * access the data.
42  *
43  * These partitions are referenced from an optional partition table
44  * (@smem_ptable), that is found 4kB from the end of the main smem region. The
45  * partition table entries (@smem_ptable_entry) lists the involved processors
46  * (or hosts) and their location in the main shared memory region.
47  *
48  * Each partition starts with a header (@smem_partition_header) that identifies
49  * the partition and holds properties for the two internal memory regions. The
50  * two regions are cached and non-cached memory respectively. Each region
51  * contain a link list of allocation headers (@smem_private_entry) followed by
52  * their data.
53  *
54  * Items in the non-cached region are allocated from the start of the partition
55  * while items in the cached region are allocated from the end. The free area
56  * is hence the region between the cached and non-cached offsets. The header of
57  * cached items comes after the data.
58  *
59  * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
60  * for the global heap. A new global partition is created from the global heap
61  * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
62  * set by the bootloader.
63  *
64  * To synchronize allocations in the shared memory heaps a remote spinlock must
65  * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
66  * platforms.
67  *
68  */
69 
70 /*
71  * The version member of the smem header contains an array of versions for the
72  * various software components in the SoC. We verify that the boot loader
73  * version is a valid version as a sanity check.
74  */
75 #define SMEM_MASTER_SBL_VERSION_INDEX	7
76 #define SMEM_GLOBAL_HEAP_VERSION	11
77 #define SMEM_GLOBAL_PART_VERSION	12
78 
79 /*
80  * The first 8 items are only to be allocated by the boot loader while
81  * initializing the heap.
82  */
83 #define SMEM_ITEM_LAST_FIXED	8
84 
85 /* Highest accepted item number, for both global and private heaps */
86 #define SMEM_ITEM_COUNT		512
87 
88 /* Processor/host identifier for the application processor */
89 #define SMEM_HOST_APPS		0
90 
91 /* Processor/host identifier for the global partition */
92 #define SMEM_GLOBAL_HOST	0xfffe
93 
94 /* Max number of processors/hosts in a system */
95 #define SMEM_HOST_COUNT		10
96 
97 /**
98   * struct smem_proc_comm - proc_comm communication struct (legacy)
99   * @command:	current command to be executed
100   * @status:	status of the currently requested command
101   * @params:	parameters to the command
102   */
103 struct smem_proc_comm {
104 	__le32 command;
105 	__le32 status;
106 	__le32 params[2];
107 };
108 
109 /**
110  * struct smem_global_entry - entry to reference smem items on the heap
111  * @allocated:	boolean to indicate if this entry is used
112  * @offset:	offset to the allocated space
113  * @size:	size of the allocated space, 8 byte aligned
114  * @aux_base:	base address for the memory region used by this unit, or 0 for
115  *		the default region. bits 0,1 are reserved
116  */
117 struct smem_global_entry {
118 	__le32 allocated;
119 	__le32 offset;
120 	__le32 size;
121 	__le32 aux_base; /* bits 1:0 reserved */
122 };
123 #define AUX_BASE_MASK		0xfffffffc
124 
125 /**
126  * struct smem_header - header found in beginning of primary smem region
127  * @proc_comm:		proc_comm communication interface (legacy)
128  * @version:		array of versions for the various subsystems
129  * @initialized:	boolean to indicate that smem is initialized
130  * @free_offset:	index of the first unallocated byte in smem
131  * @available:		number of bytes available for allocation
132  * @reserved:		reserved field, must be 0
133  * toc:			array of references to items
134  */
135 struct smem_header {
136 	struct smem_proc_comm proc_comm[4];
137 	__le32 version[32];
138 	__le32 initialized;
139 	__le32 free_offset;
140 	__le32 available;
141 	__le32 reserved;
142 	struct smem_global_entry toc[SMEM_ITEM_COUNT];
143 };
144 
145 /**
146  * struct smem_ptable_entry - one entry in the @smem_ptable list
147  * @offset:	offset, within the main shared memory region, of the partition
148  * @size:	size of the partition
149  * @flags:	flags for the partition (currently unused)
150  * @host0:	first processor/host with access to this partition
151  * @host1:	second processor/host with access to this partition
152  * @cacheline:	alignment for "cached" entries
153  * @reserved:	reserved entries for later use
154  */
155 struct smem_ptable_entry {
156 	__le32 offset;
157 	__le32 size;
158 	__le32 flags;
159 	__le16 host0;
160 	__le16 host1;
161 	__le32 cacheline;
162 	__le32 reserved[7];
163 };
164 
165 /**
166  * struct smem_ptable - partition table for the private partitions
167  * @magic:	magic number, must be SMEM_PTABLE_MAGIC
168  * @version:	version of the partition table
169  * @num_entries: number of partitions in the table
170  * @reserved:	for now reserved entries
171  * @entry:	list of @smem_ptable_entry for the @num_entries partitions
172  */
173 struct smem_ptable {
174 	u8 magic[4];
175 	__le32 version;
176 	__le32 num_entries;
177 	__le32 reserved[5];
178 	struct smem_ptable_entry entry[];
179 };
180 
181 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
182 
183 /**
184  * struct smem_partition_header - header of the partitions
185  * @magic:	magic number, must be SMEM_PART_MAGIC
186  * @host0:	first processor/host with access to this partition
187  * @host1:	second processor/host with access to this partition
188  * @size:	size of the partition
189  * @offset_free_uncached: offset to the first free byte of uncached memory in
190  *		this partition
191  * @offset_free_cached: offset to the first free byte of cached memory in this
192  *		partition
193  * @reserved:	for now reserved entries
194  */
195 struct smem_partition_header {
196 	u8 magic[4];
197 	__le16 host0;
198 	__le16 host1;
199 	__le32 size;
200 	__le32 offset_free_uncached;
201 	__le32 offset_free_cached;
202 	__le32 reserved[3];
203 };
204 
205 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
206 
207 /**
208  * struct smem_private_entry - header of each item in the private partition
209  * @canary:	magic number, must be SMEM_PRIVATE_CANARY
210  * @item:	identifying number of the smem item
211  * @size:	size of the data, including padding bytes
212  * @padding_data: number of bytes of padding of data
213  * @padding_hdr: number of bytes of padding between the header and the data
214  * @reserved:	for now reserved entry
215  */
216 struct smem_private_entry {
217 	u16 canary; /* bytes are the same so no swapping needed */
218 	__le16 item;
219 	__le32 size; /* includes padding bytes */
220 	__le16 padding_data;
221 	__le16 padding_hdr;
222 	__le32 reserved;
223 };
224 #define SMEM_PRIVATE_CANARY	0xa5a5
225 
226 /**
227  * struct smem_info - smem region info located after the table of contents
228  * @magic:	magic number, must be SMEM_INFO_MAGIC
229  * @size:	size of the smem region
230  * @base_addr:	base address of the smem region
231  * @reserved:	for now reserved entry
232  * @num_items:	highest accepted item number
233  */
234 struct smem_info {
235 	u8 magic[4];
236 	__le32 size;
237 	__le32 base_addr;
238 	__le32 reserved;
239 	__le16 num_items;
240 };
241 
242 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
243 
244 /**
245  * struct smem_region - representation of a chunk of memory used for smem
246  * @aux_base:	identifier of aux_mem base
247  * @virt_base:	virtual base address of memory with this aux_mem identifier
248  * @size:	size of the memory region
249  */
250 struct smem_region {
251 	u32 aux_base;
252 	void __iomem *virt_base;
253 	size_t size;
254 };
255 
256 /**
257  * struct qcom_smem - device data for the smem device
258  * @dev:	device pointer
259  * @hwlock:	reference to a hwspinlock
260  * @global_partition:	pointer to global partition when in use
261  * @global_cacheline:	cacheline size for global partition
262  * @partitions:	list of pointers to partitions affecting the current
263  *		processor/host
264  * @cacheline:	list of cacheline sizes for each host
265  * @item_count: max accepted item number
266  * @num_regions: number of @regions
267  * @regions:	list of the memory regions defining the shared memory
268  */
269 struct qcom_smem {
270 	struct device *dev;
271 
272 	struct hwspinlock *hwlock;
273 
274 	struct smem_partition_header *global_partition;
275 	size_t global_cacheline;
276 	struct smem_partition_header *partitions[SMEM_HOST_COUNT];
277 	size_t cacheline[SMEM_HOST_COUNT];
278 	u32 item_count;
279 
280 	unsigned num_regions;
281 	struct smem_region regions[];
282 };
283 
284 static void *
285 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
286 {
287 	void *p = phdr;
288 
289 	return p + le32_to_cpu(phdr->offset_free_uncached);
290 }
291 
292 static struct smem_private_entry *
293 phdr_to_first_cached_entry(struct smem_partition_header *phdr,
294 					size_t cacheline)
295 {
296 	void *p = phdr;
297 	struct smem_private_entry *e;
298 
299 	return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
300 }
301 
302 static void *
303 phdr_to_last_cached_entry(struct smem_partition_header *phdr)
304 {
305 	void *p = phdr;
306 
307 	return p + le32_to_cpu(phdr->offset_free_cached);
308 }
309 
310 static struct smem_private_entry *
311 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
312 {
313 	void *p = phdr;
314 
315 	return p + sizeof(*phdr);
316 }
317 
318 static struct smem_private_entry *
319 uncached_entry_next(struct smem_private_entry *e)
320 {
321 	void *p = e;
322 
323 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
324 	       le32_to_cpu(e->size);
325 }
326 
327 static struct smem_private_entry *
328 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
329 {
330 	void *p = e;
331 
332 	return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
333 }
334 
335 static void *uncached_entry_to_item(struct smem_private_entry *e)
336 {
337 	void *p = e;
338 
339 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
340 }
341 
342 static void *cached_entry_to_item(struct smem_private_entry *e)
343 {
344 	void *p = e;
345 
346 	return p - le32_to_cpu(e->size);
347 }
348 
349 /* Pointer to the one and only smem handle */
350 static struct qcom_smem *__smem;
351 
352 /* Timeout (ms) for the trylock of remote spinlocks */
353 #define HWSPINLOCK_TIMEOUT	1000
354 
355 static int qcom_smem_alloc_private(struct qcom_smem *smem,
356 				   struct smem_partition_header *phdr,
357 				   unsigned item,
358 				   size_t size)
359 {
360 	struct smem_private_entry *hdr, *end;
361 	size_t alloc_size;
362 	void *cached;
363 
364 	hdr = phdr_to_first_uncached_entry(phdr);
365 	end = phdr_to_last_uncached_entry(phdr);
366 	cached = phdr_to_last_cached_entry(phdr);
367 
368 	while (hdr < end) {
369 		if (hdr->canary != SMEM_PRIVATE_CANARY)
370 			goto bad_canary;
371 		if (le16_to_cpu(hdr->item) == item)
372 			return -EEXIST;
373 
374 		hdr = uncached_entry_next(hdr);
375 	}
376 
377 	/* Check that we don't grow into the cached region */
378 	alloc_size = sizeof(*hdr) + ALIGN(size, 8);
379 	if ((void *)hdr + alloc_size > cached) {
380 		dev_err(smem->dev, "Out of memory\n");
381 		return -ENOSPC;
382 	}
383 
384 	hdr->canary = SMEM_PRIVATE_CANARY;
385 	hdr->item = cpu_to_le16(item);
386 	hdr->size = cpu_to_le32(ALIGN(size, 8));
387 	hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
388 	hdr->padding_hdr = 0;
389 
390 	/*
391 	 * Ensure the header is written before we advance the free offset, so
392 	 * that remote processors that does not take the remote spinlock still
393 	 * gets a consistent view of the linked list.
394 	 */
395 	wmb();
396 	le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
397 
398 	return 0;
399 bad_canary:
400 	dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
401 		le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
402 
403 	return -EINVAL;
404 }
405 
406 static int qcom_smem_alloc_global(struct qcom_smem *smem,
407 				  unsigned item,
408 				  size_t size)
409 {
410 	struct smem_global_entry *entry;
411 	struct smem_header *header;
412 
413 	header = smem->regions[0].virt_base;
414 	entry = &header->toc[item];
415 	if (entry->allocated)
416 		return -EEXIST;
417 
418 	size = ALIGN(size, 8);
419 	if (WARN_ON(size > le32_to_cpu(header->available)))
420 		return -ENOMEM;
421 
422 	entry->offset = header->free_offset;
423 	entry->size = cpu_to_le32(size);
424 
425 	/*
426 	 * Ensure the header is consistent before we mark the item allocated,
427 	 * so that remote processors will get a consistent view of the item
428 	 * even though they do not take the spinlock on read.
429 	 */
430 	wmb();
431 	entry->allocated = cpu_to_le32(1);
432 
433 	le32_add_cpu(&header->free_offset, size);
434 	le32_add_cpu(&header->available, -size);
435 
436 	return 0;
437 }
438 
439 /**
440  * qcom_smem_alloc() - allocate space for a smem item
441  * @host:	remote processor id, or -1
442  * @item:	smem item handle
443  * @size:	number of bytes to be allocated
444  *
445  * Allocate space for a given smem item of size @size, given that the item is
446  * not yet allocated.
447  */
448 int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
449 {
450 	struct smem_partition_header *phdr;
451 	unsigned long flags;
452 	int ret;
453 
454 	if (!__smem)
455 		return -EPROBE_DEFER;
456 
457 	if (item < SMEM_ITEM_LAST_FIXED) {
458 		dev_err(__smem->dev,
459 			"Rejecting allocation of static entry %d\n", item);
460 		return -EINVAL;
461 	}
462 
463 	if (WARN_ON(item >= __smem->item_count))
464 		return -EINVAL;
465 
466 	ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
467 					  HWSPINLOCK_TIMEOUT,
468 					  &flags);
469 	if (ret)
470 		return ret;
471 
472 	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
473 		phdr = __smem->partitions[host];
474 		ret = qcom_smem_alloc_private(__smem, phdr, item, size);
475 	} else if (__smem->global_partition) {
476 		phdr = __smem->global_partition;
477 		ret = qcom_smem_alloc_private(__smem, phdr, item, size);
478 	} else {
479 		ret = qcom_smem_alloc_global(__smem, item, size);
480 	}
481 
482 	hwspin_unlock_irqrestore(__smem->hwlock, &flags);
483 
484 	return ret;
485 }
486 EXPORT_SYMBOL(qcom_smem_alloc);
487 
488 static void *qcom_smem_get_global(struct qcom_smem *smem,
489 				  unsigned item,
490 				  size_t *size)
491 {
492 	struct smem_header *header;
493 	struct smem_region *region;
494 	struct smem_global_entry *entry;
495 	u32 aux_base;
496 	unsigned i;
497 
498 	header = smem->regions[0].virt_base;
499 	entry = &header->toc[item];
500 	if (!entry->allocated)
501 		return ERR_PTR(-ENXIO);
502 
503 	aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
504 
505 	for (i = 0; i < smem->num_regions; i++) {
506 		region = &smem->regions[i];
507 
508 		if (region->aux_base == aux_base || !aux_base) {
509 			if (size != NULL)
510 				*size = le32_to_cpu(entry->size);
511 			return region->virt_base + le32_to_cpu(entry->offset);
512 		}
513 	}
514 
515 	return ERR_PTR(-ENOENT);
516 }
517 
518 static void *qcom_smem_get_private(struct qcom_smem *smem,
519 				   struct smem_partition_header *phdr,
520 				   size_t cacheline,
521 				   unsigned item,
522 				   size_t *size)
523 {
524 	struct smem_private_entry *e, *end;
525 
526 	e = phdr_to_first_uncached_entry(phdr);
527 	end = phdr_to_last_uncached_entry(phdr);
528 
529 	while (e < end) {
530 		if (e->canary != SMEM_PRIVATE_CANARY)
531 			goto invalid_canary;
532 
533 		if (le16_to_cpu(e->item) == item) {
534 			if (size != NULL)
535 				*size = le32_to_cpu(e->size) -
536 					le16_to_cpu(e->padding_data);
537 
538 			return uncached_entry_to_item(e);
539 		}
540 
541 		e = uncached_entry_next(e);
542 	}
543 
544 	/* Item was not found in the uncached list, search the cached list */
545 
546 	e = phdr_to_first_cached_entry(phdr, cacheline);
547 	end = phdr_to_last_cached_entry(phdr);
548 
549 	while (e > end) {
550 		if (e->canary != SMEM_PRIVATE_CANARY)
551 			goto invalid_canary;
552 
553 		if (le16_to_cpu(e->item) == item) {
554 			if (size != NULL)
555 				*size = le32_to_cpu(e->size) -
556 					le16_to_cpu(e->padding_data);
557 
558 			return cached_entry_to_item(e);
559 		}
560 
561 		e = cached_entry_next(e, cacheline);
562 	}
563 
564 	return ERR_PTR(-ENOENT);
565 
566 invalid_canary:
567 	dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
568 			le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
569 
570 	return ERR_PTR(-EINVAL);
571 }
572 
573 /**
574  * qcom_smem_get() - resolve ptr of size of a smem item
575  * @host:	the remote processor, or -1
576  * @item:	smem item handle
577  * @size:	pointer to be filled out with size of the item
578  *
579  * Looks up smem item and returns pointer to it. Size of smem
580  * item is returned in @size.
581  */
582 void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
583 {
584 	struct smem_partition_header *phdr;
585 	unsigned long flags;
586 	size_t cacheln;
587 	int ret;
588 	void *ptr = ERR_PTR(-EPROBE_DEFER);
589 
590 	if (!__smem)
591 		return ptr;
592 
593 	if (WARN_ON(item >= __smem->item_count))
594 		return ERR_PTR(-EINVAL);
595 
596 	ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
597 					  HWSPINLOCK_TIMEOUT,
598 					  &flags);
599 	if (ret)
600 		return ERR_PTR(ret);
601 
602 	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
603 		phdr = __smem->partitions[host];
604 		cacheln = __smem->cacheline[host];
605 		ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
606 	} else if (__smem->global_partition) {
607 		phdr = __smem->global_partition;
608 		cacheln = __smem->global_cacheline;
609 		ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
610 	} else {
611 		ptr = qcom_smem_get_global(__smem, item, size);
612 	}
613 
614 	hwspin_unlock_irqrestore(__smem->hwlock, &flags);
615 
616 	return ptr;
617 
618 }
619 EXPORT_SYMBOL(qcom_smem_get);
620 
621 /**
622  * qcom_smem_get_free_space() - retrieve amount of free space in a partition
623  * @host:	the remote processor identifying a partition, or -1
624  *
625  * To be used by smem clients as a quick way to determine if any new
626  * allocations has been made.
627  */
628 int qcom_smem_get_free_space(unsigned host)
629 {
630 	struct smem_partition_header *phdr;
631 	struct smem_header *header;
632 	unsigned ret;
633 
634 	if (!__smem)
635 		return -EPROBE_DEFER;
636 
637 	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
638 		phdr = __smem->partitions[host];
639 		ret = le32_to_cpu(phdr->offset_free_cached) -
640 		      le32_to_cpu(phdr->offset_free_uncached);
641 	} else if (__smem->global_partition) {
642 		phdr = __smem->global_partition;
643 		ret = le32_to_cpu(phdr->offset_free_cached) -
644 		      le32_to_cpu(phdr->offset_free_uncached);
645 	} else {
646 		header = __smem->regions[0].virt_base;
647 		ret = le32_to_cpu(header->available);
648 	}
649 
650 	return ret;
651 }
652 EXPORT_SYMBOL(qcom_smem_get_free_space);
653 
654 /**
655  * qcom_smem_virt_to_phys() - return the physical address associated
656  * with an smem item pointer (previously returned by qcom_smem_get()
657  * @p:	the virtual address to convert
658  *
659  * Returns 0 if the pointer provided is not within any smem region.
660  */
661 phys_addr_t qcom_smem_virt_to_phys(void *p)
662 {
663 	unsigned i;
664 
665 	for (i = 0; i < __smem->num_regions; i++) {
666 		struct smem_region *region = &__smem->regions[i];
667 
668 		if (p < region->virt_base)
669 			continue;
670 		if (p < region->virt_base + region->size) {
671 			u64 offset = p - region->virt_base;
672 
673 			return (phys_addr_t)region->aux_base + offset;
674 		}
675 	}
676 
677 	return 0;
678 }
679 EXPORT_SYMBOL(qcom_smem_virt_to_phys);
680 
681 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
682 {
683 	struct smem_header *header;
684 	__le32 *versions;
685 
686 	header = smem->regions[0].virt_base;
687 	versions = header->version;
688 
689 	return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
690 }
691 
692 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
693 {
694 	struct smem_ptable *ptable;
695 	u32 version;
696 
697 	ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
698 	if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
699 		return ERR_PTR(-ENOENT);
700 
701 	version = le32_to_cpu(ptable->version);
702 	if (version != 1) {
703 		dev_err(smem->dev,
704 			"Unsupported partition header version %d\n", version);
705 		return ERR_PTR(-EINVAL);
706 	}
707 	return ptable;
708 }
709 
710 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
711 {
712 	struct smem_ptable *ptable;
713 	struct smem_info *info;
714 
715 	ptable = qcom_smem_get_ptable(smem);
716 	if (IS_ERR_OR_NULL(ptable))
717 		return SMEM_ITEM_COUNT;
718 
719 	info = (struct smem_info *)&ptable->entry[ptable->num_entries];
720 	if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
721 		return SMEM_ITEM_COUNT;
722 
723 	return le16_to_cpu(info->num_items);
724 }
725 
726 /*
727  * Validate the partition header for a partition whose partition
728  * table entry is supplied.  Returns a pointer to its header if
729  * valid, or a null pointer otherwise.
730  */
731 static struct smem_partition_header *
732 qcom_smem_partition_header(struct qcom_smem *smem,
733 		struct smem_ptable_entry *entry, u16 host0, u16 host1)
734 {
735 	struct smem_partition_header *header;
736 	u32 size;
737 
738 	header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
739 
740 	if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
741 		dev_err(smem->dev, "bad partition magic %02x %02x %02x %02x\n",
742 			header->magic[0], header->magic[1],
743 			header->magic[2], header->magic[3]);
744 		return NULL;
745 	}
746 
747 	if (host0 != le16_to_cpu(header->host0)) {
748 		dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
749 				host0, le16_to_cpu(header->host0));
750 		return NULL;
751 	}
752 	if (host1 != le16_to_cpu(header->host1)) {
753 		dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
754 				host1, le16_to_cpu(header->host1));
755 		return NULL;
756 	}
757 
758 	size = le32_to_cpu(header->size);
759 	if (size != le32_to_cpu(entry->size)) {
760 		dev_err(smem->dev, "bad partition size (%u != %u)\n",
761 			size, le32_to_cpu(entry->size));
762 		return NULL;
763 	}
764 
765 	if (le32_to_cpu(header->offset_free_uncached) > size) {
766 		dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
767 			le32_to_cpu(header->offset_free_uncached), size);
768 		return NULL;
769 	}
770 
771 	return header;
772 }
773 
774 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
775 {
776 	struct smem_partition_header *header;
777 	struct smem_ptable_entry *entry;
778 	struct smem_ptable *ptable;
779 	bool found = false;
780 	int i;
781 
782 	if (smem->global_partition) {
783 		dev_err(smem->dev, "Already found the global partition\n");
784 		return -EINVAL;
785 	}
786 
787 	ptable = qcom_smem_get_ptable(smem);
788 	if (IS_ERR(ptable))
789 		return PTR_ERR(ptable);
790 
791 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
792 		entry = &ptable->entry[i];
793 		if (!le32_to_cpu(entry->offset))
794 			continue;
795 		if (!le32_to_cpu(entry->size))
796 			continue;
797 
798 		if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
799 			continue;
800 
801 		if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
802 			found = true;
803 			break;
804 		}
805 	}
806 
807 	if (!found) {
808 		dev_err(smem->dev, "Missing entry for global partition\n");
809 		return -EINVAL;
810 	}
811 
812 	header = qcom_smem_partition_header(smem, entry,
813 				SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
814 	if (!header)
815 		return -EINVAL;
816 
817 	smem->global_partition = header;
818 	smem->global_cacheline = le32_to_cpu(entry->cacheline);
819 
820 	return 0;
821 }
822 
823 static int
824 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
825 {
826 	struct smem_partition_header *header;
827 	struct smem_ptable_entry *entry;
828 	struct smem_ptable *ptable;
829 	unsigned int remote_host;
830 	u16 host0, host1;
831 	int i;
832 
833 	ptable = qcom_smem_get_ptable(smem);
834 	if (IS_ERR(ptable))
835 		return PTR_ERR(ptable);
836 
837 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
838 		entry = &ptable->entry[i];
839 		if (!le32_to_cpu(entry->offset))
840 			continue;
841 		if (!le32_to_cpu(entry->size))
842 			continue;
843 
844 		host0 = le16_to_cpu(entry->host0);
845 		host1 = le16_to_cpu(entry->host1);
846 		if (host0 == local_host)
847 			remote_host = host1;
848 		else if (host1 == local_host)
849 			remote_host = host0;
850 		else
851 			continue;
852 
853 		if (remote_host >= SMEM_HOST_COUNT) {
854 			dev_err(smem->dev, "bad host %hu\n", remote_host);
855 			return -EINVAL;
856 		}
857 
858 		if (smem->partitions[remote_host]) {
859 			dev_err(smem->dev, "duplicate host %hu\n", remote_host);
860 			return -EINVAL;
861 		}
862 
863 		header = qcom_smem_partition_header(smem, entry, host0, host1);
864 		if (!header)
865 			return -EINVAL;
866 
867 		smem->partitions[remote_host] = header;
868 		smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline);
869 	}
870 
871 	return 0;
872 }
873 
874 static int qcom_smem_map_memory(struct qcom_smem *smem, struct device *dev,
875 				const char *name, int i)
876 {
877 	struct device_node *np;
878 	struct resource r;
879 	resource_size_t size;
880 	int ret;
881 
882 	np = of_parse_phandle(dev->of_node, name, 0);
883 	if (!np) {
884 		dev_err(dev, "No %s specified\n", name);
885 		return -EINVAL;
886 	}
887 
888 	ret = of_address_to_resource(np, 0, &r);
889 	of_node_put(np);
890 	if (ret)
891 		return ret;
892 	size = resource_size(&r);
893 
894 	smem->regions[i].virt_base = devm_ioremap_wc(dev, r.start, size);
895 	if (!smem->regions[i].virt_base)
896 		return -ENOMEM;
897 	smem->regions[i].aux_base = (u32)r.start;
898 	smem->regions[i].size = size;
899 
900 	return 0;
901 }
902 
903 static int qcom_smem_probe(struct platform_device *pdev)
904 {
905 	struct smem_header *header;
906 	struct qcom_smem *smem;
907 	size_t array_size;
908 	int num_regions;
909 	int hwlock_id;
910 	u32 version;
911 	int ret;
912 
913 	num_regions = 1;
914 	if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL))
915 		num_regions++;
916 
917 	array_size = num_regions * sizeof(struct smem_region);
918 	smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL);
919 	if (!smem)
920 		return -ENOMEM;
921 
922 	smem->dev = &pdev->dev;
923 	smem->num_regions = num_regions;
924 
925 	ret = qcom_smem_map_memory(smem, &pdev->dev, "memory-region", 0);
926 	if (ret)
927 		return ret;
928 
929 	if (num_regions > 1 && (ret = qcom_smem_map_memory(smem, &pdev->dev,
930 					"qcom,rpm-msg-ram", 1)))
931 		return ret;
932 
933 	header = smem->regions[0].virt_base;
934 	if (le32_to_cpu(header->initialized) != 1 ||
935 	    le32_to_cpu(header->reserved)) {
936 		dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
937 		return -EINVAL;
938 	}
939 
940 	version = qcom_smem_get_sbl_version(smem);
941 	switch (version >> 16) {
942 	case SMEM_GLOBAL_PART_VERSION:
943 		ret = qcom_smem_set_global_partition(smem);
944 		if (ret < 0)
945 			return ret;
946 		smem->item_count = qcom_smem_get_item_count(smem);
947 		break;
948 	case SMEM_GLOBAL_HEAP_VERSION:
949 		smem->item_count = SMEM_ITEM_COUNT;
950 		break;
951 	default:
952 		dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
953 		return -EINVAL;
954 	}
955 
956 	BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
957 	ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
958 	if (ret < 0 && ret != -ENOENT)
959 		return ret;
960 
961 	hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
962 	if (hwlock_id < 0) {
963 		if (hwlock_id != -EPROBE_DEFER)
964 			dev_err(&pdev->dev, "failed to retrieve hwlock\n");
965 		return hwlock_id;
966 	}
967 
968 	smem->hwlock = hwspin_lock_request_specific(hwlock_id);
969 	if (!smem->hwlock)
970 		return -ENXIO;
971 
972 	__smem = smem;
973 
974 	return 0;
975 }
976 
977 static int qcom_smem_remove(struct platform_device *pdev)
978 {
979 	hwspin_lock_free(__smem->hwlock);
980 	__smem = NULL;
981 
982 	return 0;
983 }
984 
985 static const struct of_device_id qcom_smem_of_match[] = {
986 	{ .compatible = "qcom,smem" },
987 	{}
988 };
989 MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
990 
991 static struct platform_driver qcom_smem_driver = {
992 	.probe = qcom_smem_probe,
993 	.remove = qcom_smem_remove,
994 	.driver  = {
995 		.name = "qcom-smem",
996 		.of_match_table = qcom_smem_of_match,
997 		.suppress_bind_attrs = true,
998 	},
999 };
1000 
1001 static int __init qcom_smem_init(void)
1002 {
1003 	return platform_driver_register(&qcom_smem_driver);
1004 }
1005 arch_initcall(qcom_smem_init);
1006 
1007 static void __exit qcom_smem_exit(void)
1008 {
1009 	platform_driver_unregister(&qcom_smem_driver);
1010 }
1011 module_exit(qcom_smem_exit)
1012 
1013 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1014 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1015 MODULE_LICENSE("GPL v2");
1016