1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015, Sony Mobile Communications AB.
4 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5 */
6
7 #include <linux/hwspinlock.h>
8 #include <linux/io.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_address.h>
12 #include <linux/of_reserved_mem.h>
13 #include <linux/platform_device.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/soc/qcom/smem.h>
17 #include <linux/soc/qcom/socinfo.h>
18
19 /*
20 * The Qualcomm shared memory system is a allocate only heap structure that
21 * consists of one of more memory areas that can be accessed by the processors
22 * in the SoC.
23 *
24 * All systems contains a global heap, accessible by all processors in the SoC,
25 * with a table of contents data structure (@smem_header) at the beginning of
26 * the main shared memory block.
27 *
28 * The global header contains meta data for allocations as well as a fixed list
29 * of 512 entries (@smem_global_entry) that can be initialized to reference
30 * parts of the shared memory space.
31 *
32 *
33 * In addition to this global heap a set of "private" heaps can be set up at
34 * boot time with access restrictions so that only certain processor pairs can
35 * access the data.
36 *
37 * These partitions are referenced from an optional partition table
38 * (@smem_ptable), that is found 4kB from the end of the main smem region. The
39 * partition table entries (@smem_ptable_entry) lists the involved processors
40 * (or hosts) and their location in the main shared memory region.
41 *
42 * Each partition starts with a header (@smem_partition_header) that identifies
43 * the partition and holds properties for the two internal memory regions. The
44 * two regions are cached and non-cached memory respectively. Each region
45 * contain a link list of allocation headers (@smem_private_entry) followed by
46 * their data.
47 *
48 * Items in the non-cached region are allocated from the start of the partition
49 * while items in the cached region are allocated from the end. The free area
50 * is hence the region between the cached and non-cached offsets. The header of
51 * cached items comes after the data.
52 *
53 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
54 * for the global heap. A new global partition is created from the global heap
55 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
56 * set by the bootloader.
57 *
58 * To synchronize allocations in the shared memory heaps a remote spinlock must
59 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
60 * platforms.
61 *
62 */
63
64 /*
65 * The version member of the smem header contains an array of versions for the
66 * various software components in the SoC. We verify that the boot loader
67 * version is a valid version as a sanity check.
68 */
69 #define SMEM_MASTER_SBL_VERSION_INDEX 7
70 #define SMEM_GLOBAL_HEAP_VERSION 11
71 #define SMEM_GLOBAL_PART_VERSION 12
72
73 /*
74 * The first 8 items are only to be allocated by the boot loader while
75 * initializing the heap.
76 */
77 #define SMEM_ITEM_LAST_FIXED 8
78
79 /* Highest accepted item number, for both global and private heaps */
80 #define SMEM_ITEM_COUNT 512
81
82 /* Processor/host identifier for the application processor */
83 #define SMEM_HOST_APPS 0
84
85 /* Processor/host identifier for the global partition */
86 #define SMEM_GLOBAL_HOST 0xfffe
87
88 /* Max number of processors/hosts in a system */
89 #define SMEM_HOST_COUNT 20
90
91 /**
92 * struct smem_proc_comm - proc_comm communication struct (legacy)
93 * @command: current command to be executed
94 * @status: status of the currently requested command
95 * @params: parameters to the command
96 */
97 struct smem_proc_comm {
98 __le32 command;
99 __le32 status;
100 __le32 params[2];
101 };
102
103 /**
104 * struct smem_global_entry - entry to reference smem items on the heap
105 * @allocated: boolean to indicate if this entry is used
106 * @offset: offset to the allocated space
107 * @size: size of the allocated space, 8 byte aligned
108 * @aux_base: base address for the memory region used by this unit, or 0 for
109 * the default region. bits 0,1 are reserved
110 */
111 struct smem_global_entry {
112 __le32 allocated;
113 __le32 offset;
114 __le32 size;
115 __le32 aux_base; /* bits 1:0 reserved */
116 };
117 #define AUX_BASE_MASK 0xfffffffc
118
119 /**
120 * struct smem_header - header found in beginning of primary smem region
121 * @proc_comm: proc_comm communication interface (legacy)
122 * @version: array of versions for the various subsystems
123 * @initialized: boolean to indicate that smem is initialized
124 * @free_offset: index of the first unallocated byte in smem
125 * @available: number of bytes available for allocation
126 * @reserved: reserved field, must be 0
127 * @toc: array of references to items
128 */
129 struct smem_header {
130 struct smem_proc_comm proc_comm[4];
131 __le32 version[32];
132 __le32 initialized;
133 __le32 free_offset;
134 __le32 available;
135 __le32 reserved;
136 struct smem_global_entry toc[SMEM_ITEM_COUNT];
137 };
138
139 /**
140 * struct smem_ptable_entry - one entry in the @smem_ptable list
141 * @offset: offset, within the main shared memory region, of the partition
142 * @size: size of the partition
143 * @flags: flags for the partition (currently unused)
144 * @host0: first processor/host with access to this partition
145 * @host1: second processor/host with access to this partition
146 * @cacheline: alignment for "cached" entries
147 * @reserved: reserved entries for later use
148 */
149 struct smem_ptable_entry {
150 __le32 offset;
151 __le32 size;
152 __le32 flags;
153 __le16 host0;
154 __le16 host1;
155 __le32 cacheline;
156 __le32 reserved[7];
157 };
158
159 /**
160 * struct smem_ptable - partition table for the private partitions
161 * @magic: magic number, must be SMEM_PTABLE_MAGIC
162 * @version: version of the partition table
163 * @num_entries: number of partitions in the table
164 * @reserved: for now reserved entries
165 * @entry: list of @smem_ptable_entry for the @num_entries partitions
166 */
167 struct smem_ptable {
168 u8 magic[4];
169 __le32 version;
170 __le32 num_entries;
171 __le32 reserved[5];
172 struct smem_ptable_entry entry[];
173 };
174
175 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
176
177 /**
178 * struct smem_partition_header - header of the partitions
179 * @magic: magic number, must be SMEM_PART_MAGIC
180 * @host0: first processor/host with access to this partition
181 * @host1: second processor/host with access to this partition
182 * @size: size of the partition
183 * @offset_free_uncached: offset to the first free byte of uncached memory in
184 * this partition
185 * @offset_free_cached: offset to the first free byte of cached memory in this
186 * partition
187 * @reserved: for now reserved entries
188 */
189 struct smem_partition_header {
190 u8 magic[4];
191 __le16 host0;
192 __le16 host1;
193 __le32 size;
194 __le32 offset_free_uncached;
195 __le32 offset_free_cached;
196 __le32 reserved[3];
197 };
198
199 /**
200 * struct smem_partition - describes smem partition
201 * @virt_base: starting virtual address of partition
202 * @phys_base: starting physical address of partition
203 * @cacheline: alignment for "cached" entries
204 * @size: size of partition
205 */
206 struct smem_partition {
207 void __iomem *virt_base;
208 phys_addr_t phys_base;
209 size_t cacheline;
210 size_t size;
211 };
212
213 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
214
215 /**
216 * struct smem_private_entry - header of each item in the private partition
217 * @canary: magic number, must be SMEM_PRIVATE_CANARY
218 * @item: identifying number of the smem item
219 * @size: size of the data, including padding bytes
220 * @padding_data: number of bytes of padding of data
221 * @padding_hdr: number of bytes of padding between the header and the data
222 * @reserved: for now reserved entry
223 */
224 struct smem_private_entry {
225 u16 canary; /* bytes are the same so no swapping needed */
226 __le16 item;
227 __le32 size; /* includes padding bytes */
228 __le16 padding_data;
229 __le16 padding_hdr;
230 __le32 reserved;
231 };
232 #define SMEM_PRIVATE_CANARY 0xa5a5
233
234 /**
235 * struct smem_info - smem region info located after the table of contents
236 * @magic: magic number, must be SMEM_INFO_MAGIC
237 * @size: size of the smem region
238 * @base_addr: base address of the smem region
239 * @reserved: for now reserved entry
240 * @num_items: highest accepted item number
241 */
242 struct smem_info {
243 u8 magic[4];
244 __le32 size;
245 __le32 base_addr;
246 __le32 reserved;
247 __le16 num_items;
248 };
249
250 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
251
252 /**
253 * struct smem_region - representation of a chunk of memory used for smem
254 * @aux_base: identifier of aux_mem base
255 * @virt_base: virtual base address of memory with this aux_mem identifier
256 * @size: size of the memory region
257 */
258 struct smem_region {
259 phys_addr_t aux_base;
260 void __iomem *virt_base;
261 size_t size;
262 };
263
264 /**
265 * struct qcom_smem - device data for the smem device
266 * @dev: device pointer
267 * @hwlock: reference to a hwspinlock
268 * @ptable: virtual base of partition table
269 * @global_partition: describes for global partition when in use
270 * @partitions: list of partitions of current processor/host
271 * @item_count: max accepted item number
272 * @socinfo: platform device pointer
273 * @num_regions: number of @regions
274 * @regions: list of the memory regions defining the shared memory
275 */
276 struct qcom_smem {
277 struct device *dev;
278
279 struct hwspinlock *hwlock;
280
281 u32 item_count;
282 struct platform_device *socinfo;
283 struct smem_ptable *ptable;
284 struct smem_partition global_partition;
285 struct smem_partition partitions[SMEM_HOST_COUNT];
286
287 unsigned num_regions;
288 struct smem_region regions[];
289 };
290
291 static void *
phdr_to_last_uncached_entry(struct smem_partition_header * phdr)292 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
293 {
294 void *p = phdr;
295
296 return p + le32_to_cpu(phdr->offset_free_uncached);
297 }
298
299 static struct smem_private_entry *
phdr_to_first_cached_entry(struct smem_partition_header * phdr,size_t cacheline)300 phdr_to_first_cached_entry(struct smem_partition_header *phdr,
301 size_t cacheline)
302 {
303 void *p = phdr;
304 struct smem_private_entry *e;
305
306 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
307 }
308
309 static void *
phdr_to_last_cached_entry(struct smem_partition_header * phdr)310 phdr_to_last_cached_entry(struct smem_partition_header *phdr)
311 {
312 void *p = phdr;
313
314 return p + le32_to_cpu(phdr->offset_free_cached);
315 }
316
317 static struct smem_private_entry *
phdr_to_first_uncached_entry(struct smem_partition_header * phdr)318 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
319 {
320 void *p = phdr;
321
322 return p + sizeof(*phdr);
323 }
324
325 static struct smem_private_entry *
uncached_entry_next(struct smem_private_entry * e)326 uncached_entry_next(struct smem_private_entry *e)
327 {
328 void *p = e;
329
330 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
331 le32_to_cpu(e->size);
332 }
333
334 static struct smem_private_entry *
cached_entry_next(struct smem_private_entry * e,size_t cacheline)335 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
336 {
337 void *p = e;
338
339 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
340 }
341
uncached_entry_to_item(struct smem_private_entry * e)342 static void *uncached_entry_to_item(struct smem_private_entry *e)
343 {
344 void *p = e;
345
346 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
347 }
348
cached_entry_to_item(struct smem_private_entry * e)349 static void *cached_entry_to_item(struct smem_private_entry *e)
350 {
351 void *p = e;
352
353 return p - le32_to_cpu(e->size);
354 }
355
356 /* Pointer to the one and only smem handle */
357 static struct qcom_smem *__smem;
358
359 /* Timeout (ms) for the trylock of remote spinlocks */
360 #define HWSPINLOCK_TIMEOUT 1000
361
362 /* The qcom hwspinlock id is always plus one from the smem host id */
363 #define SMEM_HOST_ID_TO_HWSPINLOCK_ID(__x) ((__x) + 1)
364
365 /**
366 * qcom_smem_bust_hwspin_lock_by_host() - bust the smem hwspinlock for a host
367 * @host: remote processor id
368 *
369 * Busts the hwspin_lock for the given smem host id. This helper is intended
370 * for remoteproc drivers that manage remoteprocs with an equivalent smem
371 * driver instance in the remote firmware. Drivers can force a release of the
372 * smem hwspin_lock if the rproc unexpectedly goes into a bad state.
373 *
374 * Context: Process context.
375 *
376 * Returns: 0 on success, otherwise negative errno.
377 */
qcom_smem_bust_hwspin_lock_by_host(unsigned int host)378 int qcom_smem_bust_hwspin_lock_by_host(unsigned int host)
379 {
380 /* This function is for remote procs, so ignore SMEM_HOST_APPS */
381 if (host == SMEM_HOST_APPS || host >= SMEM_HOST_COUNT)
382 return -EINVAL;
383
384 return hwspin_lock_bust(__smem->hwlock, SMEM_HOST_ID_TO_HWSPINLOCK_ID(host));
385 }
386 EXPORT_SYMBOL_GPL(qcom_smem_bust_hwspin_lock_by_host);
387
388 /**
389 * qcom_smem_is_available() - Check if SMEM is available
390 *
391 * Return: true if SMEM is available, false otherwise.
392 */
qcom_smem_is_available(void)393 bool qcom_smem_is_available(void)
394 {
395 return !!__smem;
396 }
397 EXPORT_SYMBOL(qcom_smem_is_available);
398
qcom_smem_alloc_private(struct qcom_smem * smem,struct smem_partition * part,unsigned item,size_t size)399 static int qcom_smem_alloc_private(struct qcom_smem *smem,
400 struct smem_partition *part,
401 unsigned item,
402 size_t size)
403 {
404 struct smem_private_entry *hdr, *end;
405 struct smem_partition_header *phdr;
406 size_t alloc_size;
407 void *cached;
408 void *p_end;
409
410 phdr = (struct smem_partition_header __force *)part->virt_base;
411 p_end = (void *)phdr + part->size;
412
413 hdr = phdr_to_first_uncached_entry(phdr);
414 end = phdr_to_last_uncached_entry(phdr);
415 cached = phdr_to_last_cached_entry(phdr);
416
417 if (WARN_ON((void *)end > p_end || cached > p_end))
418 return -EINVAL;
419
420 while (hdr < end) {
421 if (hdr->canary != SMEM_PRIVATE_CANARY)
422 goto bad_canary;
423 if (le16_to_cpu(hdr->item) == item)
424 return -EEXIST;
425
426 hdr = uncached_entry_next(hdr);
427 }
428
429 if (WARN_ON((void *)hdr > p_end))
430 return -EINVAL;
431
432 /* Check that we don't grow into the cached region */
433 alloc_size = sizeof(*hdr) + ALIGN(size, 8);
434 if ((void *)hdr + alloc_size > cached) {
435 dev_err(smem->dev, "Out of memory\n");
436 return -ENOSPC;
437 }
438
439 hdr->canary = SMEM_PRIVATE_CANARY;
440 hdr->item = cpu_to_le16(item);
441 hdr->size = cpu_to_le32(ALIGN(size, 8));
442 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
443 hdr->padding_hdr = 0;
444
445 /*
446 * Ensure the header is written before we advance the free offset, so
447 * that remote processors that does not take the remote spinlock still
448 * gets a consistent view of the linked list.
449 */
450 wmb();
451 le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
452
453 return 0;
454 bad_canary:
455 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
456 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
457
458 return -EINVAL;
459 }
460
qcom_smem_alloc_global(struct qcom_smem * smem,unsigned item,size_t size)461 static int qcom_smem_alloc_global(struct qcom_smem *smem,
462 unsigned item,
463 size_t size)
464 {
465 struct smem_global_entry *entry;
466 struct smem_header *header;
467
468 header = smem->regions[0].virt_base;
469 entry = &header->toc[item];
470 if (entry->allocated)
471 return -EEXIST;
472
473 size = ALIGN(size, 8);
474 if (WARN_ON(size > le32_to_cpu(header->available)))
475 return -ENOMEM;
476
477 entry->offset = header->free_offset;
478 entry->size = cpu_to_le32(size);
479
480 /*
481 * Ensure the header is consistent before we mark the item allocated,
482 * so that remote processors will get a consistent view of the item
483 * even though they do not take the spinlock on read.
484 */
485 wmb();
486 entry->allocated = cpu_to_le32(1);
487
488 le32_add_cpu(&header->free_offset, size);
489 le32_add_cpu(&header->available, -size);
490
491 return 0;
492 }
493
494 /**
495 * qcom_smem_alloc() - allocate space for a smem item
496 * @host: remote processor id, or -1
497 * @item: smem item handle
498 * @size: number of bytes to be allocated
499 *
500 * Allocate space for a given smem item of size @size, given that the item is
501 * not yet allocated.
502 */
qcom_smem_alloc(unsigned host,unsigned item,size_t size)503 int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
504 {
505 struct smem_partition *part;
506 unsigned long flags;
507 int ret;
508
509 if (!__smem)
510 return -EPROBE_DEFER;
511
512 if (item < SMEM_ITEM_LAST_FIXED) {
513 dev_err(__smem->dev,
514 "Rejecting allocation of static entry %d\n", item);
515 return -EINVAL;
516 }
517
518 if (WARN_ON(item >= __smem->item_count))
519 return -EINVAL;
520
521 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
522 HWSPINLOCK_TIMEOUT,
523 &flags);
524 if (ret)
525 return ret;
526
527 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
528 part = &__smem->partitions[host];
529 ret = qcom_smem_alloc_private(__smem, part, item, size);
530 } else if (__smem->global_partition.virt_base) {
531 part = &__smem->global_partition;
532 ret = qcom_smem_alloc_private(__smem, part, item, size);
533 } else {
534 ret = qcom_smem_alloc_global(__smem, item, size);
535 }
536
537 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
538
539 return ret;
540 }
541 EXPORT_SYMBOL_GPL(qcom_smem_alloc);
542
qcom_smem_get_global(struct qcom_smem * smem,unsigned item,size_t * size)543 static void *qcom_smem_get_global(struct qcom_smem *smem,
544 unsigned item,
545 size_t *size)
546 {
547 struct smem_header *header;
548 struct smem_region *region;
549 struct smem_global_entry *entry;
550 u64 entry_offset;
551 u32 e_size;
552 u32 aux_base;
553 unsigned i;
554
555 header = smem->regions[0].virt_base;
556 entry = &header->toc[item];
557 if (!entry->allocated)
558 return ERR_PTR(-ENXIO);
559
560 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
561
562 for (i = 0; i < smem->num_regions; i++) {
563 region = &smem->regions[i];
564
565 if ((u32)region->aux_base == aux_base || !aux_base) {
566 e_size = le32_to_cpu(entry->size);
567 entry_offset = le32_to_cpu(entry->offset);
568
569 if (WARN_ON(e_size + entry_offset > region->size))
570 return ERR_PTR(-EINVAL);
571
572 if (size != NULL)
573 *size = e_size;
574
575 return region->virt_base + entry_offset;
576 }
577 }
578
579 return ERR_PTR(-ENOENT);
580 }
581
qcom_smem_get_private(struct qcom_smem * smem,struct smem_partition * part,unsigned item,size_t * size)582 static void *qcom_smem_get_private(struct qcom_smem *smem,
583 struct smem_partition *part,
584 unsigned item,
585 size_t *size)
586 {
587 struct smem_private_entry *e, *end;
588 struct smem_partition_header *phdr;
589 void *item_ptr, *p_end;
590 u32 padding_data;
591 u32 e_size;
592
593 phdr = (struct smem_partition_header __force *)part->virt_base;
594 p_end = (void *)phdr + part->size;
595
596 e = phdr_to_first_uncached_entry(phdr);
597 end = phdr_to_last_uncached_entry(phdr);
598
599 while (e < end) {
600 if (e->canary != SMEM_PRIVATE_CANARY)
601 goto invalid_canary;
602
603 if (le16_to_cpu(e->item) == item) {
604 if (size != NULL) {
605 e_size = le32_to_cpu(e->size);
606 padding_data = le16_to_cpu(e->padding_data);
607
608 if (WARN_ON(e_size > part->size || padding_data > e_size))
609 return ERR_PTR(-EINVAL);
610
611 *size = e_size - padding_data;
612 }
613
614 item_ptr = uncached_entry_to_item(e);
615 if (WARN_ON(item_ptr > p_end))
616 return ERR_PTR(-EINVAL);
617
618 return item_ptr;
619 }
620
621 e = uncached_entry_next(e);
622 }
623
624 if (WARN_ON((void *)e > p_end))
625 return ERR_PTR(-EINVAL);
626
627 /* Item was not found in the uncached list, search the cached list */
628
629 e = phdr_to_first_cached_entry(phdr, part->cacheline);
630 end = phdr_to_last_cached_entry(phdr);
631
632 if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end))
633 return ERR_PTR(-EINVAL);
634
635 while (e > end) {
636 if (e->canary != SMEM_PRIVATE_CANARY)
637 goto invalid_canary;
638
639 if (le16_to_cpu(e->item) == item) {
640 if (size != NULL) {
641 e_size = le32_to_cpu(e->size);
642 padding_data = le16_to_cpu(e->padding_data);
643
644 if (WARN_ON(e_size > part->size || padding_data > e_size))
645 return ERR_PTR(-EINVAL);
646
647 *size = e_size - padding_data;
648 }
649
650 item_ptr = cached_entry_to_item(e);
651 if (WARN_ON(item_ptr < (void *)phdr))
652 return ERR_PTR(-EINVAL);
653
654 return item_ptr;
655 }
656
657 e = cached_entry_next(e, part->cacheline);
658 }
659
660 if (WARN_ON((void *)e < (void *)phdr))
661 return ERR_PTR(-EINVAL);
662
663 return ERR_PTR(-ENOENT);
664
665 invalid_canary:
666 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
667 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
668
669 return ERR_PTR(-EINVAL);
670 }
671
672 /**
673 * qcom_smem_get() - resolve ptr of size of a smem item
674 * @host: the remote processor, or -1
675 * @item: smem item handle
676 * @size: pointer to be filled out with size of the item
677 *
678 * Looks up smem item and returns pointer to it. Size of smem
679 * item is returned in @size.
680 */
qcom_smem_get(unsigned host,unsigned item,size_t * size)681 void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
682 {
683 struct smem_partition *part;
684 unsigned long flags;
685 int ret;
686 void *ptr = ERR_PTR(-EPROBE_DEFER);
687
688 if (!__smem)
689 return ptr;
690
691 if (WARN_ON(item >= __smem->item_count))
692 return ERR_PTR(-EINVAL);
693
694 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
695 HWSPINLOCK_TIMEOUT,
696 &flags);
697 if (ret)
698 return ERR_PTR(ret);
699
700 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
701 part = &__smem->partitions[host];
702 ptr = qcom_smem_get_private(__smem, part, item, size);
703 } else if (__smem->global_partition.virt_base) {
704 part = &__smem->global_partition;
705 ptr = qcom_smem_get_private(__smem, part, item, size);
706 } else {
707 ptr = qcom_smem_get_global(__smem, item, size);
708 }
709
710 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
711
712 return ptr;
713
714 }
715 EXPORT_SYMBOL_GPL(qcom_smem_get);
716
717 /**
718 * qcom_smem_get_free_space() - retrieve amount of free space in a partition
719 * @host: the remote processor identifying a partition, or -1
720 *
721 * To be used by smem clients as a quick way to determine if any new
722 * allocations has been made.
723 */
qcom_smem_get_free_space(unsigned host)724 int qcom_smem_get_free_space(unsigned host)
725 {
726 struct smem_partition *part;
727 struct smem_partition_header *phdr;
728 struct smem_header *header;
729 unsigned ret;
730
731 if (!__smem)
732 return -EPROBE_DEFER;
733
734 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
735 part = &__smem->partitions[host];
736 phdr = part->virt_base;
737 ret = le32_to_cpu(phdr->offset_free_cached) -
738 le32_to_cpu(phdr->offset_free_uncached);
739
740 if (ret > le32_to_cpu(part->size))
741 return -EINVAL;
742 } else if (__smem->global_partition.virt_base) {
743 part = &__smem->global_partition;
744 phdr = part->virt_base;
745 ret = le32_to_cpu(phdr->offset_free_cached) -
746 le32_to_cpu(phdr->offset_free_uncached);
747
748 if (ret > le32_to_cpu(part->size))
749 return -EINVAL;
750 } else {
751 header = __smem->regions[0].virt_base;
752 ret = le32_to_cpu(header->available);
753
754 if (ret > __smem->regions[0].size)
755 return -EINVAL;
756 }
757
758 return ret;
759 }
760 EXPORT_SYMBOL_GPL(qcom_smem_get_free_space);
761
addr_in_range(void __iomem * base,size_t size,void * addr)762 static bool addr_in_range(void __iomem *base, size_t size, void *addr)
763 {
764 return base && ((void __iomem *)addr >= base && (void __iomem *)addr < base + size);
765 }
766
767 /**
768 * qcom_smem_virt_to_phys() - return the physical address associated
769 * with an smem item pointer (previously returned by qcom_smem_get()
770 * @p: the virtual address to convert
771 *
772 * Returns 0 if the pointer provided is not within any smem region.
773 */
qcom_smem_virt_to_phys(void * p)774 phys_addr_t qcom_smem_virt_to_phys(void *p)
775 {
776 struct smem_partition *part;
777 struct smem_region *area;
778 u64 offset;
779 u32 i;
780
781 for (i = 0; i < SMEM_HOST_COUNT; i++) {
782 part = &__smem->partitions[i];
783
784 if (addr_in_range(part->virt_base, part->size, p)) {
785 offset = p - part->virt_base;
786
787 return (phys_addr_t)part->phys_base + offset;
788 }
789 }
790
791 part = &__smem->global_partition;
792
793 if (addr_in_range(part->virt_base, part->size, p)) {
794 offset = p - part->virt_base;
795
796 return (phys_addr_t)part->phys_base + offset;
797 }
798
799 for (i = 0; i < __smem->num_regions; i++) {
800 area = &__smem->regions[i];
801
802 if (addr_in_range(area->virt_base, area->size, p)) {
803 offset = p - area->virt_base;
804
805 return (phys_addr_t)area->aux_base + offset;
806 }
807 }
808
809 return 0;
810 }
811 EXPORT_SYMBOL_GPL(qcom_smem_virt_to_phys);
812
813 /**
814 * qcom_smem_get_soc_id() - return the SoC ID
815 * @id: On success, we return the SoC ID here.
816 *
817 * Look up SoC ID from HW/SW build ID and return it.
818 *
819 * Return: 0 on success, negative errno on failure.
820 */
qcom_smem_get_soc_id(u32 * id)821 int qcom_smem_get_soc_id(u32 *id)
822 {
823 struct socinfo *info;
824
825 info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL);
826 if (IS_ERR(info))
827 return PTR_ERR(info);
828
829 *id = __le32_to_cpu(info->id);
830
831 return 0;
832 }
833 EXPORT_SYMBOL_GPL(qcom_smem_get_soc_id);
834
qcom_smem_get_sbl_version(struct qcom_smem * smem)835 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
836 {
837 struct smem_header *header;
838 __le32 *versions;
839
840 header = smem->regions[0].virt_base;
841 versions = header->version;
842
843 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
844 }
845
qcom_smem_get_ptable(struct qcom_smem * smem)846 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
847 {
848 struct smem_ptable *ptable;
849 u32 version;
850
851 ptable = smem->ptable;
852 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
853 return ERR_PTR(-ENOENT);
854
855 version = le32_to_cpu(ptable->version);
856 if (version != 1) {
857 dev_err(smem->dev,
858 "Unsupported partition header version %d\n", version);
859 return ERR_PTR(-EINVAL);
860 }
861 return ptable;
862 }
863
qcom_smem_get_item_count(struct qcom_smem * smem)864 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
865 {
866 struct smem_ptable *ptable;
867 struct smem_info *info;
868
869 ptable = qcom_smem_get_ptable(smem);
870 if (IS_ERR_OR_NULL(ptable))
871 return SMEM_ITEM_COUNT;
872
873 info = (struct smem_info *)&ptable->entry[ptable->num_entries];
874 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
875 return SMEM_ITEM_COUNT;
876
877 return le16_to_cpu(info->num_items);
878 }
879
880 /*
881 * Validate the partition header for a partition whose partition
882 * table entry is supplied. Returns a pointer to its header if
883 * valid, or a null pointer otherwise.
884 */
885 static struct smem_partition_header *
qcom_smem_partition_header(struct qcom_smem * smem,struct smem_ptable_entry * entry,u16 host0,u16 host1)886 qcom_smem_partition_header(struct qcom_smem *smem,
887 struct smem_ptable_entry *entry, u16 host0, u16 host1)
888 {
889 struct smem_partition_header *header;
890 u32 phys_addr;
891 u32 size;
892
893 phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset);
894 header = devm_ioremap_wc(smem->dev, phys_addr, le32_to_cpu(entry->size));
895
896 if (!header)
897 return NULL;
898
899 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
900 dev_err(smem->dev, "bad partition magic %4ph\n", header->magic);
901 return NULL;
902 }
903
904 if (host0 != le16_to_cpu(header->host0)) {
905 dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
906 host0, le16_to_cpu(header->host0));
907 return NULL;
908 }
909 if (host1 != le16_to_cpu(header->host1)) {
910 dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
911 host1, le16_to_cpu(header->host1));
912 return NULL;
913 }
914
915 size = le32_to_cpu(header->size);
916 if (size != le32_to_cpu(entry->size)) {
917 dev_err(smem->dev, "bad partition size (%u != %u)\n",
918 size, le32_to_cpu(entry->size));
919 return NULL;
920 }
921
922 if (le32_to_cpu(header->offset_free_uncached) > size) {
923 dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
924 le32_to_cpu(header->offset_free_uncached), size);
925 return NULL;
926 }
927
928 return header;
929 }
930
qcom_smem_set_global_partition(struct qcom_smem * smem)931 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
932 {
933 struct smem_partition_header *header;
934 struct smem_ptable_entry *entry;
935 struct smem_ptable *ptable;
936 bool found = false;
937 int i;
938
939 if (smem->global_partition.virt_base) {
940 dev_err(smem->dev, "Already found the global partition\n");
941 return -EINVAL;
942 }
943
944 ptable = qcom_smem_get_ptable(smem);
945 if (IS_ERR(ptable))
946 return PTR_ERR(ptable);
947
948 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
949 entry = &ptable->entry[i];
950 if (!le32_to_cpu(entry->offset))
951 continue;
952 if (!le32_to_cpu(entry->size))
953 continue;
954
955 if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
956 continue;
957
958 if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
959 found = true;
960 break;
961 }
962 }
963
964 if (!found) {
965 dev_err(smem->dev, "Missing entry for global partition\n");
966 return -EINVAL;
967 }
968
969 header = qcom_smem_partition_header(smem, entry,
970 SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
971 if (!header)
972 return -EINVAL;
973
974 smem->global_partition.virt_base = (void __iomem *)header;
975 smem->global_partition.phys_base = smem->regions[0].aux_base +
976 le32_to_cpu(entry->offset);
977 smem->global_partition.size = le32_to_cpu(entry->size);
978 smem->global_partition.cacheline = le32_to_cpu(entry->cacheline);
979
980 return 0;
981 }
982
983 static int
qcom_smem_enumerate_partitions(struct qcom_smem * smem,u16 local_host)984 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
985 {
986 struct smem_partition_header *header;
987 struct smem_ptable_entry *entry;
988 struct smem_ptable *ptable;
989 u16 remote_host;
990 u16 host0, host1;
991 int i;
992
993 ptable = qcom_smem_get_ptable(smem);
994 if (IS_ERR(ptable))
995 return PTR_ERR(ptable);
996
997 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
998 entry = &ptable->entry[i];
999 if (!le32_to_cpu(entry->offset))
1000 continue;
1001 if (!le32_to_cpu(entry->size))
1002 continue;
1003
1004 host0 = le16_to_cpu(entry->host0);
1005 host1 = le16_to_cpu(entry->host1);
1006 if (host0 == local_host)
1007 remote_host = host1;
1008 else if (host1 == local_host)
1009 remote_host = host0;
1010 else
1011 continue;
1012
1013 if (remote_host >= SMEM_HOST_COUNT) {
1014 dev_err(smem->dev, "bad host %u\n", remote_host);
1015 return -EINVAL;
1016 }
1017
1018 if (smem->partitions[remote_host].virt_base) {
1019 dev_err(smem->dev, "duplicate host %u\n", remote_host);
1020 return -EINVAL;
1021 }
1022
1023 header = qcom_smem_partition_header(smem, entry, host0, host1);
1024 if (!header)
1025 return -EINVAL;
1026
1027 smem->partitions[remote_host].virt_base = (void __iomem *)header;
1028 smem->partitions[remote_host].phys_base = smem->regions[0].aux_base +
1029 le32_to_cpu(entry->offset);
1030 smem->partitions[remote_host].size = le32_to_cpu(entry->size);
1031 smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline);
1032 }
1033
1034 return 0;
1035 }
1036
qcom_smem_map_toc(struct qcom_smem * smem,struct smem_region * region)1037 static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region)
1038 {
1039 u32 ptable_start;
1040
1041 /* map starting 4K for smem header */
1042 region->virt_base = devm_ioremap_wc(smem->dev, region->aux_base, SZ_4K);
1043 ptable_start = region->aux_base + region->size - SZ_4K;
1044 /* map last 4k for toc */
1045 smem->ptable = devm_ioremap_wc(smem->dev, ptable_start, SZ_4K);
1046
1047 if (!region->virt_base || !smem->ptable)
1048 return -ENOMEM;
1049
1050 return 0;
1051 }
1052
qcom_smem_map_global(struct qcom_smem * smem,u32 size)1053 static int qcom_smem_map_global(struct qcom_smem *smem, u32 size)
1054 {
1055 u32 phys_addr;
1056
1057 phys_addr = smem->regions[0].aux_base;
1058
1059 smem->regions[0].size = size;
1060 smem->regions[0].virt_base = devm_ioremap_wc(smem->dev, phys_addr, size);
1061
1062 if (!smem->regions[0].virt_base)
1063 return -ENOMEM;
1064
1065 return 0;
1066 }
1067
qcom_smem_resolve_mem(struct qcom_smem * smem,const char * name,struct smem_region * region)1068 static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name,
1069 struct smem_region *region)
1070 {
1071 struct device *dev = smem->dev;
1072 struct device_node *np;
1073 struct resource r;
1074 int ret;
1075
1076 np = of_parse_phandle(dev->of_node, name, 0);
1077 if (!np) {
1078 dev_err(dev, "No %s specified\n", name);
1079 return -EINVAL;
1080 }
1081
1082 ret = of_address_to_resource(np, 0, &r);
1083 of_node_put(np);
1084 if (ret)
1085 return ret;
1086
1087 region->aux_base = r.start;
1088 region->size = resource_size(&r);
1089
1090 return 0;
1091 }
1092
qcom_smem_probe(struct platform_device * pdev)1093 static int qcom_smem_probe(struct platform_device *pdev)
1094 {
1095 struct smem_header *header;
1096 struct reserved_mem *rmem;
1097 struct qcom_smem *smem;
1098 unsigned long flags;
1099 int num_regions;
1100 int hwlock_id;
1101 u32 version;
1102 u32 size;
1103 int ret;
1104 int i;
1105
1106 num_regions = 1;
1107 if (of_property_present(pdev->dev.of_node, "qcom,rpm-msg-ram"))
1108 num_regions++;
1109
1110 smem = devm_kzalloc(&pdev->dev, struct_size(smem, regions, num_regions),
1111 GFP_KERNEL);
1112 if (!smem)
1113 return -ENOMEM;
1114
1115 smem->dev = &pdev->dev;
1116 smem->num_regions = num_regions;
1117
1118 rmem = of_reserved_mem_lookup(pdev->dev.of_node);
1119 if (rmem) {
1120 smem->regions[0].aux_base = rmem->base;
1121 smem->regions[0].size = rmem->size;
1122 } else {
1123 /*
1124 * Fall back to the memory-region reference, if we're not a
1125 * reserved-memory node.
1126 */
1127 ret = qcom_smem_resolve_mem(smem, "memory-region", &smem->regions[0]);
1128 if (ret)
1129 return ret;
1130 }
1131
1132 if (num_regions > 1) {
1133 ret = qcom_smem_resolve_mem(smem, "qcom,rpm-msg-ram", &smem->regions[1]);
1134 if (ret)
1135 return ret;
1136 }
1137
1138
1139 ret = qcom_smem_map_toc(smem, &smem->regions[0]);
1140 if (ret)
1141 return ret;
1142
1143 for (i = 1; i < num_regions; i++) {
1144 smem->regions[i].virt_base = devm_ioremap_wc(&pdev->dev,
1145 smem->regions[i].aux_base,
1146 smem->regions[i].size);
1147 if (!smem->regions[i].virt_base) {
1148 dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base);
1149 return -ENOMEM;
1150 }
1151 }
1152
1153 header = smem->regions[0].virt_base;
1154 if (le32_to_cpu(header->initialized) != 1 ||
1155 le32_to_cpu(header->reserved)) {
1156 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
1157 return -EINVAL;
1158 }
1159
1160 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
1161 if (hwlock_id < 0) {
1162 if (hwlock_id != -EPROBE_DEFER)
1163 dev_err(&pdev->dev, "failed to retrieve hwlock\n");
1164 return hwlock_id;
1165 }
1166
1167 smem->hwlock = hwspin_lock_request_specific(hwlock_id);
1168 if (!smem->hwlock)
1169 return -ENXIO;
1170
1171 ret = hwspin_lock_timeout_irqsave(smem->hwlock, HWSPINLOCK_TIMEOUT, &flags);
1172 if (ret)
1173 return ret;
1174 size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset);
1175 hwspin_unlock_irqrestore(smem->hwlock, &flags);
1176
1177 version = qcom_smem_get_sbl_version(smem);
1178 /*
1179 * smem header mapping is required only in heap version scheme, so unmap
1180 * it here. It will be remapped in qcom_smem_map_global() when whole
1181 * partition is mapped again.
1182 */
1183 devm_iounmap(smem->dev, smem->regions[0].virt_base);
1184 switch (version >> 16) {
1185 case SMEM_GLOBAL_PART_VERSION:
1186 ret = qcom_smem_set_global_partition(smem);
1187 if (ret < 0)
1188 return ret;
1189 smem->item_count = qcom_smem_get_item_count(smem);
1190 break;
1191 case SMEM_GLOBAL_HEAP_VERSION:
1192 qcom_smem_map_global(smem, size);
1193 smem->item_count = SMEM_ITEM_COUNT;
1194 break;
1195 default:
1196 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
1197 return -EINVAL;
1198 }
1199
1200 BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
1201 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
1202 if (ret < 0 && ret != -ENOENT)
1203 return ret;
1204
1205 __smem = smem;
1206
1207 smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo",
1208 PLATFORM_DEVID_NONE, NULL,
1209 0);
1210 if (IS_ERR(smem->socinfo))
1211 dev_dbg(&pdev->dev, "failed to register socinfo device\n");
1212
1213 return 0;
1214 }
1215
qcom_smem_remove(struct platform_device * pdev)1216 static int qcom_smem_remove(struct platform_device *pdev)
1217 {
1218 platform_device_unregister(__smem->socinfo);
1219
1220 hwspin_lock_free(__smem->hwlock);
1221 __smem = NULL;
1222
1223 return 0;
1224 }
1225
1226 static const struct of_device_id qcom_smem_of_match[] = {
1227 { .compatible = "qcom,smem" },
1228 {}
1229 };
1230 MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
1231
1232 static struct platform_driver qcom_smem_driver = {
1233 .probe = qcom_smem_probe,
1234 .remove = qcom_smem_remove,
1235 .driver = {
1236 .name = "qcom-smem",
1237 .of_match_table = qcom_smem_of_match,
1238 .suppress_bind_attrs = true,
1239 },
1240 };
1241
qcom_smem_init(void)1242 static int __init qcom_smem_init(void)
1243 {
1244 return platform_driver_register(&qcom_smem_driver);
1245 }
1246 arch_initcall(qcom_smem_init);
1247
qcom_smem_exit(void)1248 static void __exit qcom_smem_exit(void)
1249 {
1250 platform_driver_unregister(&qcom_smem_driver);
1251 }
1252 module_exit(qcom_smem_exit)
1253
1254 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1255 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1256 MODULE_LICENSE("GPL v2");
1257