xref: /openbmc/linux/drivers/soc/qcom/rpmh-rsc.c (revision d6344cc8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2023-2024, Qualcomm Innovation Center, Inc. All rights reserved.
5  */
6 
7 #define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME
8 
9 #include <linux/atomic.h>
10 #include <linux/cpu_pm.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/iopoll.h>
15 #include <linux/kernel.h>
16 #include <linux/ktime.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/notifier.h>
20 #include <linux/of.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_domain.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/wait.h>
29 
30 #include <clocksource/arm_arch_timer.h>
31 #include <soc/qcom/cmd-db.h>
32 #include <soc/qcom/tcs.h>
33 #include <dt-bindings/soc/qcom,rpmh-rsc.h>
34 
35 #include "rpmh-internal.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include "trace-rpmh.h"
39 
40 
41 #define RSC_DRV_ID			0
42 
43 #define MAJOR_VER_MASK			0xFF
44 #define MAJOR_VER_SHIFT			16
45 #define MINOR_VER_MASK			0xFF
46 #define MINOR_VER_SHIFT			8
47 
48 enum {
49 	RSC_DRV_TCS_OFFSET,
50 	RSC_DRV_CMD_OFFSET,
51 	DRV_SOLVER_CONFIG,
52 	DRV_PRNT_CHLD_CONFIG,
53 	RSC_DRV_IRQ_ENABLE,
54 	RSC_DRV_IRQ_STATUS,
55 	RSC_DRV_IRQ_CLEAR,
56 	RSC_DRV_CMD_WAIT_FOR_CMPL,
57 	RSC_DRV_CONTROL,
58 	RSC_DRV_STATUS,
59 	RSC_DRV_CMD_ENABLE,
60 	RSC_DRV_CMD_MSGID,
61 	RSC_DRV_CMD_ADDR,
62 	RSC_DRV_CMD_DATA,
63 	RSC_DRV_CMD_STATUS,
64 	RSC_DRV_CMD_RESP_DATA,
65 };
66 
67 /* DRV HW Solver Configuration Information Register */
68 #define DRV_HW_SOLVER_MASK		1
69 #define DRV_HW_SOLVER_SHIFT		24
70 
71 /* DRV TCS Configuration Information Register */
72 #define DRV_NUM_TCS_MASK		0x3F
73 #define DRV_NUM_TCS_SHIFT		6
74 #define DRV_NCPT_MASK			0x1F
75 #define DRV_NCPT_SHIFT			27
76 
77 /* Offsets for CONTROL TCS Registers */
78 #define RSC_DRV_CTL_TCS_DATA_HI		0x38
79 #define RSC_DRV_CTL_TCS_DATA_HI_MASK	0xFFFFFF
80 #define RSC_DRV_CTL_TCS_DATA_HI_VALID	BIT(31)
81 #define RSC_DRV_CTL_TCS_DATA_LO		0x40
82 #define RSC_DRV_CTL_TCS_DATA_LO_MASK	0xFFFFFFFF
83 #define RSC_DRV_CTL_TCS_DATA_SIZE	32
84 
85 #define TCS_AMC_MODE_ENABLE		BIT(16)
86 #define TCS_AMC_MODE_TRIGGER		BIT(24)
87 
88 /* TCS CMD register bit mask */
89 #define CMD_MSGID_LEN			8
90 #define CMD_MSGID_RESP_REQ		BIT(8)
91 #define CMD_MSGID_WRITE			BIT(16)
92 #define CMD_STATUS_ISSUED		BIT(8)
93 #define CMD_STATUS_COMPL		BIT(16)
94 
95 /*
96  * Here's a high level overview of how all the registers in RPMH work
97  * together:
98  *
99  * - The main rpmh-rsc address is the base of a register space that can
100  *   be used to find overall configuration of the hardware
101  *   (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register
102  *   space are all the TCS blocks. The offset of the TCS blocks is
103  *   specified in the device tree by "qcom,tcs-offset" and used to
104  *   compute tcs_base.
105  * - TCS blocks come one after another. Type, count, and order are
106  *   specified by the device tree as "qcom,tcs-config".
107  * - Each TCS block has some registers, then space for up to 16 commands.
108  *   Note that though address space is reserved for 16 commands, fewer
109  *   might be present. See ncpt (num cmds per TCS).
110  *
111  * Here's a picture:
112  *
113  *  +---------------------------------------------------+
114  *  |RSC                                                |
115  *  | ctrl                                              |
116  *  |                                                   |
117  *  | Drvs:                                             |
118  *  | +-----------------------------------------------+ |
119  *  | |DRV0                                           | |
120  *  | | ctrl/config                                   | |
121  *  | | IRQ                                           | |
122  *  | |                                               | |
123  *  | | TCSes:                                        | |
124  *  | | +------------------------------------------+  | |
125  *  | | |TCS0  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
126  *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
127  *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
128  *  | | +------------------------------------------+  | |
129  *  | | +------------------------------------------+  | |
130  *  | | |TCS1  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
131  *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
132  *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
133  *  | | +------------------------------------------+  | |
134  *  | | +------------------------------------------+  | |
135  *  | | |TCS2  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
136  *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
137  *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
138  *  | | +------------------------------------------+  | |
139  *  | |                    ......                     | |
140  *  | +-----------------------------------------------+ |
141  *  | +-----------------------------------------------+ |
142  *  | |DRV1                                           | |
143  *  | | (same as DRV0)                                | |
144  *  | +-----------------------------------------------+ |
145  *  |                      ......                       |
146  *  +---------------------------------------------------+
147  */
148 
149 #define USECS_TO_CYCLES(time_usecs)			\
150 	xloops_to_cycles((time_usecs) * 0x10C7UL)
151 
152 static inline unsigned long xloops_to_cycles(u64 xloops)
153 {
154 	return (xloops * loops_per_jiffy * HZ) >> 32;
155 }
156 
157 static u32 rpmh_rsc_reg_offset_ver_2_7[] = {
158 	[RSC_DRV_TCS_OFFSET]		= 672,
159 	[RSC_DRV_CMD_OFFSET]		= 20,
160 	[DRV_SOLVER_CONFIG]		= 0x04,
161 	[DRV_PRNT_CHLD_CONFIG]		= 0x0C,
162 	[RSC_DRV_IRQ_ENABLE]		= 0x00,
163 	[RSC_DRV_IRQ_STATUS]		= 0x04,
164 	[RSC_DRV_IRQ_CLEAR]		= 0x08,
165 	[RSC_DRV_CMD_WAIT_FOR_CMPL]	= 0x10,
166 	[RSC_DRV_CONTROL]		= 0x14,
167 	[RSC_DRV_STATUS]		= 0x18,
168 	[RSC_DRV_CMD_ENABLE]		= 0x1C,
169 	[RSC_DRV_CMD_MSGID]		= 0x30,
170 	[RSC_DRV_CMD_ADDR]		= 0x34,
171 	[RSC_DRV_CMD_DATA]		= 0x38,
172 	[RSC_DRV_CMD_STATUS]		= 0x3C,
173 	[RSC_DRV_CMD_RESP_DATA]		= 0x40,
174 };
175 
176 static u32 rpmh_rsc_reg_offset_ver_3_0[] = {
177 	[RSC_DRV_TCS_OFFSET]		= 672,
178 	[RSC_DRV_CMD_OFFSET]		= 24,
179 	[DRV_SOLVER_CONFIG]		= 0x04,
180 	[DRV_PRNT_CHLD_CONFIG]		= 0x0C,
181 	[RSC_DRV_IRQ_ENABLE]		= 0x00,
182 	[RSC_DRV_IRQ_STATUS]		= 0x04,
183 	[RSC_DRV_IRQ_CLEAR]		= 0x08,
184 	[RSC_DRV_CMD_WAIT_FOR_CMPL]	= 0x20,
185 	[RSC_DRV_CONTROL]		= 0x24,
186 	[RSC_DRV_STATUS]		= 0x28,
187 	[RSC_DRV_CMD_ENABLE]		= 0x2C,
188 	[RSC_DRV_CMD_MSGID]		= 0x34,
189 	[RSC_DRV_CMD_ADDR]		= 0x38,
190 	[RSC_DRV_CMD_DATA]		= 0x3C,
191 	[RSC_DRV_CMD_STATUS]		= 0x40,
192 	[RSC_DRV_CMD_RESP_DATA]		= 0x44,
193 };
194 
195 static inline void __iomem *
196 tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id)
197 {
198 	return drv->tcs_base + drv->regs[RSC_DRV_TCS_OFFSET] * tcs_id + reg;
199 }
200 
201 static inline void __iomem *
202 tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id)
203 {
204 	return tcs_reg_addr(drv, reg, tcs_id) + drv->regs[RSC_DRV_CMD_OFFSET] * cmd_id;
205 }
206 
207 static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
208 			int cmd_id)
209 {
210 	return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
211 }
212 
213 static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id)
214 {
215 	return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id));
216 }
217 
218 static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
219 			  int cmd_id, u32 data)
220 {
221 	writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
222 }
223 
224 static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id,
225 			  u32 data)
226 {
227 	writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id));
228 }
229 
230 static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id,
231 			       u32 data)
232 {
233 	int i;
234 
235 	writel(data, tcs_reg_addr(drv, reg, tcs_id));
236 
237 	/*
238 	 * Wait until we read back the same value.  Use a counter rather than
239 	 * ktime for timeout since this may be called after timekeeping stops.
240 	 */
241 	for (i = 0; i < USEC_PER_SEC; i++) {
242 		if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data)
243 			return;
244 		udelay(1);
245 	}
246 	pr_err("%s: error writing %#x to %d:%#x\n", drv->name,
247 	       data, tcs_id, reg);
248 }
249 
250 /**
251  * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake).
252  * @drv:  The RSC controller.
253  * @type: SLEEP_TCS or WAKE_TCS
254  *
255  * This will clear the "slots" variable of the given tcs_group and also
256  * tell the hardware to forget about all entries.
257  *
258  * The caller must ensure that no other RPMH actions are happening when this
259  * function is called, since otherwise the device may immediately become
260  * used again even before this function exits.
261  */
262 static void tcs_invalidate(struct rsc_drv *drv, int type)
263 {
264 	int m;
265 	struct tcs_group *tcs = &drv->tcs[type];
266 
267 	/* Caller ensures nobody else is running so no lock */
268 	if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS))
269 		return;
270 
271 	for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++)
272 		write_tcs_reg_sync(drv, drv->regs[RSC_DRV_CMD_ENABLE], m, 0);
273 
274 	bitmap_zero(tcs->slots, MAX_TCS_SLOTS);
275 }
276 
277 /**
278  * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes.
279  * @drv: The RSC controller.
280  *
281  * The caller must ensure that no other RPMH actions are happening when this
282  * function is called, since otherwise the device may immediately become
283  * used again even before this function exits.
284  */
285 void rpmh_rsc_invalidate(struct rsc_drv *drv)
286 {
287 	tcs_invalidate(drv, SLEEP_TCS);
288 	tcs_invalidate(drv, WAKE_TCS);
289 }
290 
291 /**
292  * get_tcs_for_msg() - Get the tcs_group used to send the given message.
293  * @drv: The RSC controller.
294  * @msg: The message we want to send.
295  *
296  * This is normally pretty straightforward except if we are trying to send
297  * an ACTIVE_ONLY message but don't have any active_only TCSes.
298  *
299  * Return: A pointer to a tcs_group or an ERR_PTR.
300  */
301 static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv,
302 					 const struct tcs_request *msg)
303 {
304 	int type;
305 	struct tcs_group *tcs;
306 
307 	switch (msg->state) {
308 	case RPMH_ACTIVE_ONLY_STATE:
309 		type = ACTIVE_TCS;
310 		break;
311 	case RPMH_WAKE_ONLY_STATE:
312 		type = WAKE_TCS;
313 		break;
314 	case RPMH_SLEEP_STATE:
315 		type = SLEEP_TCS;
316 		break;
317 	default:
318 		return ERR_PTR(-EINVAL);
319 	}
320 
321 	/*
322 	 * If we are making an active request on a RSC that does not have a
323 	 * dedicated TCS for active state use, then re-purpose a wake TCS to
324 	 * send active votes. This is safe because we ensure any active-only
325 	 * transfers have finished before we use it (maybe by running from
326 	 * the last CPU in PM code).
327 	 */
328 	tcs = &drv->tcs[type];
329 	if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs)
330 		tcs = &drv->tcs[WAKE_TCS];
331 
332 	return tcs;
333 }
334 
335 /**
336  * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS.
337  * @drv:    The RSC controller.
338  * @tcs_id: The global ID of this TCS.
339  *
340  * For ACTIVE_ONLY transfers we want to call back into the client when the
341  * transfer finishes. To do this we need the "request" that the client
342  * originally provided us. This function grabs the request that we stashed
343  * when we started the transfer.
344  *
345  * This only makes sense for ACTIVE_ONLY transfers since those are the only
346  * ones we track sending (the only ones we enable interrupts for and the only
347  * ones we call back to the client for).
348  *
349  * Return: The stashed request.
350  */
351 static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv,
352 						  int tcs_id)
353 {
354 	struct tcs_group *tcs;
355 	int i;
356 
357 	for (i = 0; i < TCS_TYPE_NR; i++) {
358 		tcs = &drv->tcs[i];
359 		if (tcs->mask & BIT(tcs_id))
360 			return tcs->req[tcs_id - tcs->offset];
361 	}
362 
363 	return NULL;
364 }
365 
366 /**
367  * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS
368  * @drv:     The controller.
369  * @tcs_id:  The global ID of this TCS.
370  * @trigger: If true then untrigger/retrigger. If false then just untrigger.
371  *
372  * In the normal case we only ever call with "trigger=true" to start a
373  * transfer. That will un-trigger/disable the TCS from the last transfer
374  * then trigger/enable for this transfer.
375  *
376  * If we borrowed a wake TCS for an active-only transfer we'll also call
377  * this function with "trigger=false" to just do the un-trigger/disable
378  * before using the TCS for wake purposes again.
379  *
380  * Note that the AP is only in charge of triggering active-only transfers.
381  * The AP never triggers sleep/wake values using this function.
382  */
383 static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger)
384 {
385 	u32 enable;
386 	u32 reg = drv->regs[RSC_DRV_CONTROL];
387 
388 	/*
389 	 * HW req: Clear the DRV_CONTROL and enable TCS again
390 	 * While clearing ensure that the AMC mode trigger is cleared
391 	 * and then the mode enable is cleared.
392 	 */
393 	enable = read_tcs_reg(drv, reg, tcs_id);
394 	enable &= ~TCS_AMC_MODE_TRIGGER;
395 	write_tcs_reg_sync(drv, reg, tcs_id, enable);
396 	enable &= ~TCS_AMC_MODE_ENABLE;
397 	write_tcs_reg_sync(drv, reg, tcs_id, enable);
398 
399 	if (trigger) {
400 		/* Enable the AMC mode on the TCS and then trigger the TCS */
401 		enable = TCS_AMC_MODE_ENABLE;
402 		write_tcs_reg_sync(drv, reg, tcs_id, enable);
403 		enable |= TCS_AMC_MODE_TRIGGER;
404 		write_tcs_reg(drv, reg, tcs_id, enable);
405 	}
406 }
407 
408 /**
409  * enable_tcs_irq() - Enable or disable interrupts on the given TCS.
410  * @drv:     The controller.
411  * @tcs_id:  The global ID of this TCS.
412  * @enable:  If true then enable; if false then disable
413  *
414  * We only ever call this when we borrow a wake TCS for an active-only
415  * transfer. For active-only TCSes interrupts are always left enabled.
416  */
417 static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable)
418 {
419 	u32 data;
420 	u32 reg = drv->regs[RSC_DRV_IRQ_ENABLE];
421 
422 	data = readl_relaxed(drv->tcs_base + reg);
423 	if (enable)
424 		data |= BIT(tcs_id);
425 	else
426 		data &= ~BIT(tcs_id);
427 	writel_relaxed(data, drv->tcs_base + reg);
428 }
429 
430 /**
431  * tcs_tx_done() - TX Done interrupt handler.
432  * @irq: The IRQ number (ignored).
433  * @p:   Pointer to "struct rsc_drv".
434  *
435  * Called for ACTIVE_ONLY transfers (those are the only ones we enable the
436  * IRQ for) when a transfer is done.
437  *
438  * Return: IRQ_HANDLED
439  */
440 static irqreturn_t tcs_tx_done(int irq, void *p)
441 {
442 	struct rsc_drv *drv = p;
443 	int i;
444 	unsigned long irq_status;
445 	const struct tcs_request *req;
446 
447 	irq_status = readl_relaxed(drv->tcs_base + drv->regs[RSC_DRV_IRQ_STATUS]);
448 
449 	for_each_set_bit(i, &irq_status, BITS_PER_TYPE(u32)) {
450 		req = get_req_from_tcs(drv, i);
451 		if (WARN_ON(!req))
452 			goto skip;
453 
454 		trace_rpmh_tx_done(drv, i, req);
455 
456 		/*
457 		 * If wake tcs was re-purposed for sending active
458 		 * votes, clear AMC trigger & enable modes and
459 		 * disable interrupt for this TCS
460 		 */
461 		if (!drv->tcs[ACTIVE_TCS].num_tcs)
462 			__tcs_set_trigger(drv, i, false);
463 skip:
464 		/* Reclaim the TCS */
465 		write_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], i, 0);
466 		writel_relaxed(BIT(i), drv->tcs_base + drv->regs[RSC_DRV_IRQ_CLEAR]);
467 		spin_lock(&drv->lock);
468 		clear_bit(i, drv->tcs_in_use);
469 		/*
470 		 * Disable interrupt for WAKE TCS to avoid being
471 		 * spammed with interrupts coming when the solver
472 		 * sends its wake votes.
473 		 */
474 		if (!drv->tcs[ACTIVE_TCS].num_tcs)
475 			enable_tcs_irq(drv, i, false);
476 		spin_unlock(&drv->lock);
477 		wake_up(&drv->tcs_wait);
478 		if (req)
479 			rpmh_tx_done(req);
480 	}
481 
482 	return IRQ_HANDLED;
483 }
484 
485 /**
486  * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger.
487  * @drv:    The controller.
488  * @tcs_id: The global ID of this TCS.
489  * @cmd_id: The index within the TCS to start writing.
490  * @msg:    The message we want to send, which will contain several addr/data
491  *          pairs to program (but few enough that they all fit in one TCS).
492  *
493  * This is used for all types of transfers (active, sleep, and wake).
494  */
495 static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id,
496 			       const struct tcs_request *msg)
497 {
498 	u32 msgid;
499 	u32 cmd_msgid = CMD_MSGID_LEN | CMD_MSGID_WRITE;
500 	u32 cmd_enable = 0;
501 	struct tcs_cmd *cmd;
502 	int i, j;
503 
504 	/* Convert all commands to RR when the request has wait_for_compl set */
505 	cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0;
506 
507 	for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) {
508 		cmd = &msg->cmds[i];
509 		cmd_enable |= BIT(j);
510 		msgid = cmd_msgid;
511 		/*
512 		 * Additionally, if the cmd->wait is set, make the command
513 		 * response reqd even if the overall request was fire-n-forget.
514 		 */
515 		msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0;
516 
517 		write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_MSGID], tcs_id, j, msgid);
518 		write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_ADDR], tcs_id, j, cmd->addr);
519 		write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_DATA], tcs_id, j, cmd->data);
520 		trace_rpmh_send_msg(drv, tcs_id, msg->state, j, msgid, cmd);
521 	}
522 
523 	cmd_enable |= read_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id);
524 	write_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id, cmd_enable);
525 }
526 
527 /**
528  * check_for_req_inflight() - Look to see if conflicting cmds are in flight.
529  * @drv: The controller.
530  * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers.
531  * @msg: The message we want to send, which will contain several addr/data
532  *       pairs to program (but few enough that they all fit in one TCS).
533  *
534  * This will walk through the TCSes in the group and check if any of them
535  * appear to be sending to addresses referenced in the message. If it finds
536  * one it'll return -EBUSY.
537  *
538  * Only for use for active-only transfers.
539  *
540  * Must be called with the drv->lock held since that protects tcs_in_use.
541  *
542  * Return: 0 if nothing in flight or -EBUSY if we should try again later.
543  *         The caller must re-enable interrupts between tries since that's
544  *         the only way tcs_in_use will ever be updated and the only way
545  *         RSC_DRV_CMD_ENABLE will ever be cleared.
546  */
547 static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs,
548 				  const struct tcs_request *msg)
549 {
550 	unsigned long curr_enabled;
551 	u32 addr;
552 	int j, k;
553 	int i = tcs->offset;
554 
555 	for_each_set_bit_from(i, drv->tcs_in_use, tcs->offset + tcs->num_tcs) {
556 		curr_enabled = read_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], i);
557 
558 		for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) {
559 			addr = read_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_ADDR], i, j);
560 			for (k = 0; k < msg->num_cmds; k++) {
561 				if (cmd_db_match_resource_addr(msg->cmds[k].addr, addr))
562 					return -EBUSY;
563 			}
564 		}
565 	}
566 
567 	return 0;
568 }
569 
570 /**
571  * find_free_tcs() - Find free tcs in the given tcs_group; only for active.
572  * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if
573  *       we borrowed it because there are zero active-only ones).
574  *
575  * Must be called with the drv->lock held since that protects tcs_in_use.
576  *
577  * Return: The first tcs that's free or -EBUSY if all in use.
578  */
579 static int find_free_tcs(struct tcs_group *tcs)
580 {
581 	const struct rsc_drv *drv = tcs->drv;
582 	unsigned long i;
583 	unsigned long max = tcs->offset + tcs->num_tcs;
584 
585 	i = find_next_zero_bit(drv->tcs_in_use, max, tcs->offset);
586 	if (i >= max)
587 		return -EBUSY;
588 
589 	return i;
590 }
591 
592 /**
593  * claim_tcs_for_req() - Claim a tcs in the given tcs_group; only for active.
594  * @drv: The controller.
595  * @tcs: The tcs_group used for ACTIVE_ONLY transfers.
596  * @msg: The data to be sent.
597  *
598  * Claims a tcs in the given tcs_group while making sure that no existing cmd
599  * is in flight that would conflict with the one in @msg.
600  *
601  * Context: Must be called with the drv->lock held since that protects
602  * tcs_in_use.
603  *
604  * Return: The id of the claimed tcs or -EBUSY if a matching msg is in flight
605  * or the tcs_group is full.
606  */
607 static int claim_tcs_for_req(struct rsc_drv *drv, struct tcs_group *tcs,
608 			     const struct tcs_request *msg)
609 {
610 	int ret;
611 
612 	/*
613 	 * The h/w does not like if we send a request to the same address,
614 	 * when one is already in-flight or being processed.
615 	 */
616 	ret = check_for_req_inflight(drv, tcs, msg);
617 	if (ret)
618 		return ret;
619 
620 	return find_free_tcs(tcs);
621 }
622 
623 /**
624  * rpmh_rsc_send_data() - Write / trigger active-only message.
625  * @drv: The controller.
626  * @msg: The data to be sent.
627  *
628  * NOTES:
629  * - This is only used for "ACTIVE_ONLY" since the limitations of this
630  *   function don't make sense for sleep/wake cases.
631  * - To do the transfer, we will grab a whole TCS for ourselves--we don't
632  *   try to share. If there are none available we'll wait indefinitely
633  *   for a free one.
634  * - This function will not wait for the commands to be finished, only for
635  *   data to be programmed into the RPMh. See rpmh_tx_done() which will
636  *   be called when the transfer is fully complete.
637  * - This function must be called with interrupts enabled. If the hardware
638  *   is busy doing someone else's transfer we need that transfer to fully
639  *   finish so that we can have the hardware, and to fully finish it needs
640  *   the interrupt handler to run. If the interrupts is set to run on the
641  *   active CPU this can never happen if interrupts are disabled.
642  *
643  * Return: 0 on success, -EINVAL on error.
644  */
645 int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg)
646 {
647 	struct tcs_group *tcs;
648 	int tcs_id;
649 
650 	might_sleep();
651 
652 	tcs = get_tcs_for_msg(drv, msg);
653 	if (IS_ERR(tcs))
654 		return PTR_ERR(tcs);
655 
656 	spin_lock_irq(&drv->lock);
657 
658 	/* Wait forever for a free tcs. It better be there eventually! */
659 	wait_event_lock_irq(drv->tcs_wait,
660 			    (tcs_id = claim_tcs_for_req(drv, tcs, msg)) >= 0,
661 			    drv->lock);
662 
663 	tcs->req[tcs_id - tcs->offset] = msg;
664 	set_bit(tcs_id, drv->tcs_in_use);
665 	if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) {
666 		/*
667 		 * Clear previously programmed WAKE commands in selected
668 		 * repurposed TCS to avoid triggering them. tcs->slots will be
669 		 * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate()
670 		 */
671 		write_tcs_reg_sync(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id, 0);
672 		enable_tcs_irq(drv, tcs_id, true);
673 	}
674 	spin_unlock_irq(&drv->lock);
675 
676 	/*
677 	 * These two can be done after the lock is released because:
678 	 * - We marked "tcs_in_use" under lock.
679 	 * - Once "tcs_in_use" has been marked nobody else could be writing
680 	 *   to these registers until the interrupt goes off.
681 	 * - The interrupt can't go off until we trigger w/ the last line
682 	 *   of __tcs_set_trigger() below.
683 	 */
684 	__tcs_buffer_write(drv, tcs_id, 0, msg);
685 	__tcs_set_trigger(drv, tcs_id, true);
686 
687 	return 0;
688 }
689 
690 /**
691  * find_slots() - Find a place to write the given message.
692  * @tcs:    The tcs group to search.
693  * @msg:    The message we want to find room for.
694  * @tcs_id: If we return 0 from the function, we return the global ID of the
695  *          TCS to write to here.
696  * @cmd_id: If we return 0 from the function, we return the index of
697  *          the command array of the returned TCS where the client should
698  *          start writing the message.
699  *
700  * Only for use on sleep/wake TCSes since those are the only ones we maintain
701  * tcs->slots for.
702  *
703  * Return: -ENOMEM if there was no room, else 0.
704  */
705 static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg,
706 		      int *tcs_id, int *cmd_id)
707 {
708 	int slot, offset;
709 	int i = 0;
710 
711 	/* Do over, until we can fit the full payload in a single TCS */
712 	do {
713 		slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS,
714 						  i, msg->num_cmds, 0);
715 		if (slot >= tcs->num_tcs * tcs->ncpt)
716 			return -ENOMEM;
717 		i += tcs->ncpt;
718 	} while (slot + msg->num_cmds - 1 >= i);
719 
720 	bitmap_set(tcs->slots, slot, msg->num_cmds);
721 
722 	offset = slot / tcs->ncpt;
723 	*tcs_id = offset + tcs->offset;
724 	*cmd_id = slot % tcs->ncpt;
725 
726 	return 0;
727 }
728 
729 /**
730  * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger.
731  * @drv: The controller.
732  * @msg: The data to be written to the controller.
733  *
734  * This should only be called for sleep/wake state, never active-only
735  * state.
736  *
737  * The caller must ensure that no other RPMH actions are happening and the
738  * controller is idle when this function is called since it runs lockless.
739  *
740  * Return: 0 if no error; else -error.
741  */
742 int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg)
743 {
744 	struct tcs_group *tcs;
745 	int tcs_id = 0, cmd_id = 0;
746 	int ret;
747 
748 	tcs = get_tcs_for_msg(drv, msg);
749 	if (IS_ERR(tcs))
750 		return PTR_ERR(tcs);
751 
752 	/* find the TCS id and the command in the TCS to write to */
753 	ret = find_slots(tcs, msg, &tcs_id, &cmd_id);
754 	if (!ret)
755 		__tcs_buffer_write(drv, tcs_id, cmd_id, msg);
756 
757 	return ret;
758 }
759 
760 /**
761  * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy.
762  * @drv: The controller
763  *
764  * Checks if any of the AMCs are busy in handling ACTIVE sets.
765  * This is called from the last cpu powering down before flushing
766  * SLEEP and WAKE sets. If AMCs are busy, controller can not enter
767  * power collapse, so deny from the last cpu's pm notification.
768  *
769  * Context: Must be called with the drv->lock held.
770  *
771  * Return:
772  * * False		- AMCs are idle
773  * * True		- AMCs are busy
774  */
775 static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv)
776 {
777 	unsigned long set;
778 	const struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS];
779 	unsigned long max;
780 
781 	/*
782 	 * If we made an active request on a RSC that does not have a
783 	 * dedicated TCS for active state use, then re-purposed wake TCSes
784 	 * should be checked for not busy, because we used wake TCSes for
785 	 * active requests in this case.
786 	 */
787 	if (!tcs->num_tcs)
788 		tcs = &drv->tcs[WAKE_TCS];
789 
790 	max = tcs->offset + tcs->num_tcs;
791 	set = find_next_bit(drv->tcs_in_use, max, tcs->offset);
792 
793 	return set < max;
794 }
795 
796 /**
797  * rpmh_rsc_write_next_wakeup() - Write next wakeup in CONTROL_TCS.
798  * @drv: The controller
799  *
800  * Writes maximum wakeup cycles when called from suspend.
801  * Writes earliest hrtimer wakeup when called from idle.
802  */
803 void rpmh_rsc_write_next_wakeup(struct rsc_drv *drv)
804 {
805 	ktime_t now, wakeup;
806 	u64 wakeup_us, wakeup_cycles = ~0;
807 	u32 lo, hi;
808 
809 	if (!drv->tcs[CONTROL_TCS].num_tcs || !drv->genpd_nb.notifier_call)
810 		return;
811 
812 	/* Set highest time when system (timekeeping) is suspended */
813 	if (system_state == SYSTEM_SUSPEND)
814 		goto exit;
815 
816 	/* Find the earliest hrtimer wakeup from online cpus */
817 	wakeup = dev_pm_genpd_get_next_hrtimer(drv->dev);
818 
819 	/* Find the relative wakeup in kernel time scale */
820 	now = ktime_get();
821 	wakeup = ktime_sub(wakeup, now);
822 	wakeup_us = ktime_to_us(wakeup);
823 
824 	/* Convert the wakeup to arch timer scale */
825 	wakeup_cycles = USECS_TO_CYCLES(wakeup_us);
826 	wakeup_cycles += arch_timer_read_counter();
827 
828 exit:
829 	lo = wakeup_cycles & RSC_DRV_CTL_TCS_DATA_LO_MASK;
830 	hi = wakeup_cycles >> RSC_DRV_CTL_TCS_DATA_SIZE;
831 	hi &= RSC_DRV_CTL_TCS_DATA_HI_MASK;
832 	hi |= RSC_DRV_CTL_TCS_DATA_HI_VALID;
833 
834 	writel_relaxed(lo, drv->base + RSC_DRV_CTL_TCS_DATA_LO);
835 	writel_relaxed(hi, drv->base + RSC_DRV_CTL_TCS_DATA_HI);
836 }
837 
838 /**
839  * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy.
840  * @nfb:    Pointer to the notifier block in struct rsc_drv.
841  * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT.
842  * @v:      Unused
843  *
844  * This function is given to cpu_pm_register_notifier so we can be informed
845  * about when CPUs go down. When all CPUs go down we know no more active
846  * transfers will be started so we write sleep/wake sets. This function gets
847  * called from cpuidle code paths and also at system suspend time.
848  *
849  * If its last CPU going down and AMCs are not busy then writes cached sleep
850  * and wake messages to TCSes. The firmware then takes care of triggering
851  * them when entering deepest low power modes.
852  *
853  * Return: See cpu_pm_register_notifier()
854  */
855 static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb,
856 				    unsigned long action, void *v)
857 {
858 	struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm);
859 	int ret = NOTIFY_OK;
860 	int cpus_in_pm;
861 
862 	switch (action) {
863 	case CPU_PM_ENTER:
864 		cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm);
865 		/*
866 		 * NOTE: comments for num_online_cpus() point out that it's
867 		 * only a snapshot so we need to be careful. It should be OK
868 		 * for us to use, though.  It's important for us not to miss
869 		 * if we're the last CPU going down so it would only be a
870 		 * problem if a CPU went offline right after we did the check
871 		 * AND that CPU was not idle AND that CPU was the last non-idle
872 		 * CPU. That can't happen. CPUs would have to come out of idle
873 		 * before the CPU could go offline.
874 		 */
875 		if (cpus_in_pm < num_online_cpus())
876 			return NOTIFY_OK;
877 		break;
878 	case CPU_PM_ENTER_FAILED:
879 	case CPU_PM_EXIT:
880 		atomic_dec(&drv->cpus_in_pm);
881 		return NOTIFY_OK;
882 	default:
883 		return NOTIFY_DONE;
884 	}
885 
886 	/*
887 	 * It's likely we're on the last CPU. Grab the drv->lock and write
888 	 * out the sleep/wake commands to RPMH hardware. Grabbing the lock
889 	 * means that if we race with another CPU coming up we are still
890 	 * guaranteed to be safe. If another CPU came up just after we checked
891 	 * and has grabbed the lock or started an active transfer then we'll
892 	 * notice we're busy and abort. If another CPU comes up after we start
893 	 * flushing it will be blocked from starting an active transfer until
894 	 * we're done flushing. If another CPU starts an active transfer after
895 	 * we release the lock we're still OK because we're no longer the last
896 	 * CPU.
897 	 */
898 	if (spin_trylock(&drv->lock)) {
899 		if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))
900 			ret = NOTIFY_BAD;
901 		spin_unlock(&drv->lock);
902 	} else {
903 		/* Another CPU must be up */
904 		return NOTIFY_OK;
905 	}
906 
907 	if (ret == NOTIFY_BAD) {
908 		/* Double-check if we're here because someone else is up */
909 		if (cpus_in_pm < num_online_cpus())
910 			ret = NOTIFY_OK;
911 		else
912 			/* We won't be called w/ CPU_PM_ENTER_FAILED */
913 			atomic_dec(&drv->cpus_in_pm);
914 	}
915 
916 	return ret;
917 }
918 
919 /**
920  * rpmh_rsc_pd_callback() - Check if any of the AMCs are busy.
921  * @nfb:    Pointer to the genpd notifier block in struct rsc_drv.
922  * @action: GENPD_NOTIFY_PRE_OFF, GENPD_NOTIFY_OFF, GENPD_NOTIFY_PRE_ON or GENPD_NOTIFY_ON.
923  * @v:      Unused
924  *
925  * This function is given to dev_pm_genpd_add_notifier() so we can be informed
926  * about when cluster-pd is going down. When cluster go down we know no more active
927  * transfers will be started so we write sleep/wake sets. This function gets
928  * called from cpuidle code paths and also at system suspend time.
929  *
930  * If AMCs are not busy then writes cached sleep and wake messages to TCSes.
931  * The firmware then takes care of triggering them when entering deepest low power modes.
932  *
933  * Return:
934  * * NOTIFY_OK          - success
935  * * NOTIFY_BAD         - failure
936  */
937 static int rpmh_rsc_pd_callback(struct notifier_block *nfb,
938 				unsigned long action, void *v)
939 {
940 	struct rsc_drv *drv = container_of(nfb, struct rsc_drv, genpd_nb);
941 
942 	/* We don't need to lock as genpd on/off are serialized */
943 	if ((action == GENPD_NOTIFY_PRE_OFF) &&
944 	    (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client)))
945 		return NOTIFY_BAD;
946 
947 	return NOTIFY_OK;
948 }
949 
950 static int rpmh_rsc_pd_attach(struct rsc_drv *drv, struct device *dev)
951 {
952 	int ret;
953 
954 	pm_runtime_enable(dev);
955 	drv->genpd_nb.notifier_call = rpmh_rsc_pd_callback;
956 	ret = dev_pm_genpd_add_notifier(dev, &drv->genpd_nb);
957 	if (ret)
958 		pm_runtime_disable(dev);
959 
960 	return ret;
961 }
962 
963 static int rpmh_probe_tcs_config(struct platform_device *pdev, struct rsc_drv *drv)
964 {
965 	struct tcs_type_config {
966 		u32 type;
967 		u32 n;
968 	} tcs_cfg[TCS_TYPE_NR] = { { 0 } };
969 	struct device_node *dn = pdev->dev.of_node;
970 	u32 config, max_tcs, ncpt, offset;
971 	int i, ret, n, st = 0;
972 	struct tcs_group *tcs;
973 
974 	ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset);
975 	if (ret)
976 		return ret;
977 	drv->tcs_base = drv->base + offset;
978 
979 	config = readl_relaxed(drv->base + drv->regs[DRV_PRNT_CHLD_CONFIG]);
980 
981 	max_tcs = config;
982 	max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id);
983 	max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id);
984 
985 	ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT);
986 	ncpt = ncpt >> DRV_NCPT_SHIFT;
987 
988 	n = of_property_count_u32_elems(dn, "qcom,tcs-config");
989 	if (n != 2 * TCS_TYPE_NR)
990 		return -EINVAL;
991 
992 	for (i = 0; i < TCS_TYPE_NR; i++) {
993 		ret = of_property_read_u32_index(dn, "qcom,tcs-config",
994 						 i * 2, &tcs_cfg[i].type);
995 		if (ret)
996 			return ret;
997 		if (tcs_cfg[i].type >= TCS_TYPE_NR)
998 			return -EINVAL;
999 
1000 		ret = of_property_read_u32_index(dn, "qcom,tcs-config",
1001 						 i * 2 + 1, &tcs_cfg[i].n);
1002 		if (ret)
1003 			return ret;
1004 		if (tcs_cfg[i].n > MAX_TCS_PER_TYPE)
1005 			return -EINVAL;
1006 	}
1007 
1008 	for (i = 0; i < TCS_TYPE_NR; i++) {
1009 		tcs = &drv->tcs[tcs_cfg[i].type];
1010 		if (tcs->drv)
1011 			return -EINVAL;
1012 		tcs->drv = drv;
1013 		tcs->type = tcs_cfg[i].type;
1014 		tcs->num_tcs = tcs_cfg[i].n;
1015 		tcs->ncpt = ncpt;
1016 
1017 		if (!tcs->num_tcs || tcs->type == CONTROL_TCS)
1018 			continue;
1019 
1020 		if (st + tcs->num_tcs > max_tcs ||
1021 		    st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask))
1022 			return -EINVAL;
1023 
1024 		tcs->mask = ((1 << tcs->num_tcs) - 1) << st;
1025 		tcs->offset = st;
1026 		st += tcs->num_tcs;
1027 	}
1028 
1029 	drv->num_tcs = st;
1030 
1031 	return 0;
1032 }
1033 
1034 static int rpmh_rsc_probe(struct platform_device *pdev)
1035 {
1036 	struct device_node *dn = pdev->dev.of_node;
1037 	struct rsc_drv *drv;
1038 	char drv_id[10] = {0};
1039 	int ret, irq;
1040 	u32 solver_config;
1041 	u32 rsc_id;
1042 
1043 	/*
1044 	 * Even though RPMh doesn't directly use cmd-db, all of its children
1045 	 * do. To avoid adding this check to our children we'll do it now.
1046 	 */
1047 	ret = cmd_db_ready();
1048 	if (ret) {
1049 		if (ret != -EPROBE_DEFER)
1050 			dev_err(&pdev->dev, "Command DB not available (%d)\n",
1051 									ret);
1052 		return ret;
1053 	}
1054 
1055 	drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
1056 	if (!drv)
1057 		return -ENOMEM;
1058 
1059 	ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id);
1060 	if (ret)
1061 		return ret;
1062 
1063 	drv->name = of_get_property(dn, "label", NULL);
1064 	if (!drv->name)
1065 		drv->name = dev_name(&pdev->dev);
1066 
1067 	snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id);
1068 	drv->base = devm_platform_ioremap_resource_byname(pdev, drv_id);
1069 	if (IS_ERR(drv->base))
1070 		return PTR_ERR(drv->base);
1071 
1072 	rsc_id = readl_relaxed(drv->base + RSC_DRV_ID);
1073 	drv->ver.major = rsc_id & (MAJOR_VER_MASK << MAJOR_VER_SHIFT);
1074 	drv->ver.major >>= MAJOR_VER_SHIFT;
1075 	drv->ver.minor = rsc_id & (MINOR_VER_MASK << MINOR_VER_SHIFT);
1076 	drv->ver.minor >>= MINOR_VER_SHIFT;
1077 
1078 	if (drv->ver.major == 3)
1079 		drv->regs = rpmh_rsc_reg_offset_ver_3_0;
1080 	else
1081 		drv->regs = rpmh_rsc_reg_offset_ver_2_7;
1082 
1083 	ret = rpmh_probe_tcs_config(pdev, drv);
1084 	if (ret)
1085 		return ret;
1086 
1087 	spin_lock_init(&drv->lock);
1088 	init_waitqueue_head(&drv->tcs_wait);
1089 	bitmap_zero(drv->tcs_in_use, MAX_TCS_NR);
1090 
1091 	irq = platform_get_irq(pdev, drv->id);
1092 	if (irq < 0)
1093 		return irq;
1094 
1095 	ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done,
1096 			       IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND,
1097 			       drv->name, drv);
1098 	if (ret)
1099 		return ret;
1100 
1101 	/*
1102 	 * CPU PM/genpd notification are not required for controllers that support
1103 	 * 'HW solver' mode where they can be in autonomous mode executing low
1104 	 * power mode to power down.
1105 	 */
1106 	solver_config = readl_relaxed(drv->base + drv->regs[DRV_SOLVER_CONFIG]);
1107 	solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT;
1108 	solver_config = solver_config >> DRV_HW_SOLVER_SHIFT;
1109 	if (!solver_config) {
1110 		if (pdev->dev.pm_domain) {
1111 			ret = rpmh_rsc_pd_attach(drv, &pdev->dev);
1112 			if (ret)
1113 				return ret;
1114 		} else {
1115 			drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback;
1116 			cpu_pm_register_notifier(&drv->rsc_pm);
1117 		}
1118 	}
1119 
1120 	/* Enable the active TCS to send requests immediately */
1121 	writel_relaxed(drv->tcs[ACTIVE_TCS].mask,
1122 		       drv->tcs_base + drv->regs[RSC_DRV_IRQ_ENABLE]);
1123 
1124 	spin_lock_init(&drv->client.cache_lock);
1125 	INIT_LIST_HEAD(&drv->client.cache);
1126 	INIT_LIST_HEAD(&drv->client.batch_cache);
1127 
1128 	dev_set_drvdata(&pdev->dev, drv);
1129 	drv->dev = &pdev->dev;
1130 
1131 	ret = devm_of_platform_populate(&pdev->dev);
1132 	if (ret && pdev->dev.pm_domain) {
1133 		dev_pm_genpd_remove_notifier(&pdev->dev);
1134 		pm_runtime_disable(&pdev->dev);
1135 	}
1136 
1137 	return ret;
1138 }
1139 
1140 static const struct of_device_id rpmh_drv_match[] = {
1141 	{ .compatible = "qcom,rpmh-rsc", },
1142 	{ }
1143 };
1144 MODULE_DEVICE_TABLE(of, rpmh_drv_match);
1145 
1146 static struct platform_driver rpmh_driver = {
1147 	.probe = rpmh_rsc_probe,
1148 	.driver = {
1149 		  .name = "rpmh",
1150 		  .of_match_table = rpmh_drv_match,
1151 		  .suppress_bind_attrs = true,
1152 	},
1153 };
1154 
1155 static int __init rpmh_driver_init(void)
1156 {
1157 	return platform_driver_register(&rpmh_driver);
1158 }
1159 arch_initcall(rpmh_driver_init);
1160 
1161 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. RPMh Driver");
1162 MODULE_LICENSE("GPL v2");
1163