xref: /openbmc/linux/drivers/soc/qcom/rpmh-rsc.c (revision c496daeb863093a046e0bb8db7265bf45d91775a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
4  */
5 
6 #define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME
7 
8 #include <linux/atomic.h>
9 #include <linux/cpu_pm.h>
10 #include <linux/delay.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/ktime.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/notifier.h>
19 #include <linux/of.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_domain.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/wait.h>
28 
29 #include <clocksource/arm_arch_timer.h>
30 #include <soc/qcom/cmd-db.h>
31 #include <soc/qcom/tcs.h>
32 #include <dt-bindings/soc/qcom,rpmh-rsc.h>
33 
34 #include "rpmh-internal.h"
35 
36 #define CREATE_TRACE_POINTS
37 #include "trace-rpmh.h"
38 
39 
40 #define RSC_DRV_ID			0
41 
42 #define MAJOR_VER_MASK			0xFF
43 #define MAJOR_VER_SHIFT			16
44 #define MINOR_VER_MASK			0xFF
45 #define MINOR_VER_SHIFT			8
46 
47 enum {
48 	RSC_DRV_TCS_OFFSET,
49 	RSC_DRV_CMD_OFFSET,
50 	DRV_SOLVER_CONFIG,
51 	DRV_PRNT_CHLD_CONFIG,
52 	RSC_DRV_IRQ_ENABLE,
53 	RSC_DRV_IRQ_STATUS,
54 	RSC_DRV_IRQ_CLEAR,
55 	RSC_DRV_CMD_WAIT_FOR_CMPL,
56 	RSC_DRV_CONTROL,
57 	RSC_DRV_STATUS,
58 	RSC_DRV_CMD_ENABLE,
59 	RSC_DRV_CMD_MSGID,
60 	RSC_DRV_CMD_ADDR,
61 	RSC_DRV_CMD_DATA,
62 	RSC_DRV_CMD_STATUS,
63 	RSC_DRV_CMD_RESP_DATA,
64 };
65 
66 /* DRV HW Solver Configuration Information Register */
67 #define DRV_HW_SOLVER_MASK		1
68 #define DRV_HW_SOLVER_SHIFT		24
69 
70 /* DRV TCS Configuration Information Register */
71 #define DRV_NUM_TCS_MASK		0x3F
72 #define DRV_NUM_TCS_SHIFT		6
73 #define DRV_NCPT_MASK			0x1F
74 #define DRV_NCPT_SHIFT			27
75 
76 /* Offsets for CONTROL TCS Registers */
77 #define RSC_DRV_CTL_TCS_DATA_HI		0x38
78 #define RSC_DRV_CTL_TCS_DATA_HI_MASK	0xFFFFFF
79 #define RSC_DRV_CTL_TCS_DATA_HI_VALID	BIT(31)
80 #define RSC_DRV_CTL_TCS_DATA_LO		0x40
81 #define RSC_DRV_CTL_TCS_DATA_LO_MASK	0xFFFFFFFF
82 #define RSC_DRV_CTL_TCS_DATA_SIZE	32
83 
84 #define TCS_AMC_MODE_ENABLE		BIT(16)
85 #define TCS_AMC_MODE_TRIGGER		BIT(24)
86 
87 /* TCS CMD register bit mask */
88 #define CMD_MSGID_LEN			8
89 #define CMD_MSGID_RESP_REQ		BIT(8)
90 #define CMD_MSGID_WRITE			BIT(16)
91 #define CMD_STATUS_ISSUED		BIT(8)
92 #define CMD_STATUS_COMPL		BIT(16)
93 
94 /*
95  * Here's a high level overview of how all the registers in RPMH work
96  * together:
97  *
98  * - The main rpmh-rsc address is the base of a register space that can
99  *   be used to find overall configuration of the hardware
100  *   (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register
101  *   space are all the TCS blocks. The offset of the TCS blocks is
102  *   specified in the device tree by "qcom,tcs-offset" and used to
103  *   compute tcs_base.
104  * - TCS blocks come one after another. Type, count, and order are
105  *   specified by the device tree as "qcom,tcs-config".
106  * - Each TCS block has some registers, then space for up to 16 commands.
107  *   Note that though address space is reserved for 16 commands, fewer
108  *   might be present. See ncpt (num cmds per TCS).
109  *
110  * Here's a picture:
111  *
112  *  +---------------------------------------------------+
113  *  |RSC                                                |
114  *  | ctrl                                              |
115  *  |                                                   |
116  *  | Drvs:                                             |
117  *  | +-----------------------------------------------+ |
118  *  | |DRV0                                           | |
119  *  | | ctrl/config                                   | |
120  *  | | IRQ                                           | |
121  *  | |                                               | |
122  *  | | TCSes:                                        | |
123  *  | | +------------------------------------------+  | |
124  *  | | |TCS0  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
125  *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
126  *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
127  *  | | +------------------------------------------+  | |
128  *  | | +------------------------------------------+  | |
129  *  | | |TCS1  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
130  *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
131  *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
132  *  | | +------------------------------------------+  | |
133  *  | | +------------------------------------------+  | |
134  *  | | |TCS2  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
135  *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
136  *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
137  *  | | +------------------------------------------+  | |
138  *  | |                    ......                     | |
139  *  | +-----------------------------------------------+ |
140  *  | +-----------------------------------------------+ |
141  *  | |DRV1                                           | |
142  *  | | (same as DRV0)                                | |
143  *  | +-----------------------------------------------+ |
144  *  |                      ......                       |
145  *  +---------------------------------------------------+
146  */
147 
148 #define USECS_TO_CYCLES(time_usecs)			\
149 	xloops_to_cycles((time_usecs) * 0x10C7UL)
150 
151 static inline unsigned long xloops_to_cycles(u64 xloops)
152 {
153 	return (xloops * loops_per_jiffy * HZ) >> 32;
154 }
155 
156 static u32 rpmh_rsc_reg_offset_ver_2_7[] = {
157 	[RSC_DRV_TCS_OFFSET]		= 672,
158 	[RSC_DRV_CMD_OFFSET]		= 20,
159 	[DRV_SOLVER_CONFIG]		= 0x04,
160 	[DRV_PRNT_CHLD_CONFIG]		= 0x0C,
161 	[RSC_DRV_IRQ_ENABLE]		= 0x00,
162 	[RSC_DRV_IRQ_STATUS]		= 0x04,
163 	[RSC_DRV_IRQ_CLEAR]		= 0x08,
164 	[RSC_DRV_CMD_WAIT_FOR_CMPL]	= 0x10,
165 	[RSC_DRV_CONTROL]		= 0x14,
166 	[RSC_DRV_STATUS]		= 0x18,
167 	[RSC_DRV_CMD_ENABLE]		= 0x1C,
168 	[RSC_DRV_CMD_MSGID]		= 0x30,
169 	[RSC_DRV_CMD_ADDR]		= 0x34,
170 	[RSC_DRV_CMD_DATA]		= 0x38,
171 	[RSC_DRV_CMD_STATUS]		= 0x3C,
172 	[RSC_DRV_CMD_RESP_DATA]		= 0x40,
173 };
174 
175 static u32 rpmh_rsc_reg_offset_ver_3_0[] = {
176 	[RSC_DRV_TCS_OFFSET]		= 672,
177 	[RSC_DRV_CMD_OFFSET]		= 24,
178 	[DRV_SOLVER_CONFIG]		= 0x04,
179 	[DRV_PRNT_CHLD_CONFIG]		= 0x0C,
180 	[RSC_DRV_IRQ_ENABLE]		= 0x00,
181 	[RSC_DRV_IRQ_STATUS]		= 0x04,
182 	[RSC_DRV_IRQ_CLEAR]		= 0x08,
183 	[RSC_DRV_CMD_WAIT_FOR_CMPL]	= 0x20,
184 	[RSC_DRV_CONTROL]		= 0x24,
185 	[RSC_DRV_STATUS]		= 0x28,
186 	[RSC_DRV_CMD_ENABLE]		= 0x2C,
187 	[RSC_DRV_CMD_MSGID]		= 0x34,
188 	[RSC_DRV_CMD_ADDR]		= 0x38,
189 	[RSC_DRV_CMD_DATA]		= 0x3C,
190 	[RSC_DRV_CMD_STATUS]		= 0x40,
191 	[RSC_DRV_CMD_RESP_DATA]		= 0x44,
192 };
193 
194 static inline void __iomem *
195 tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id)
196 {
197 	return drv->tcs_base + drv->regs[RSC_DRV_TCS_OFFSET] * tcs_id + reg;
198 }
199 
200 static inline void __iomem *
201 tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id)
202 {
203 	return tcs_reg_addr(drv, reg, tcs_id) + drv->regs[RSC_DRV_CMD_OFFSET] * cmd_id;
204 }
205 
206 static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
207 			int cmd_id)
208 {
209 	return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
210 }
211 
212 static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id)
213 {
214 	return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id));
215 }
216 
217 static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
218 			  int cmd_id, u32 data)
219 {
220 	writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
221 }
222 
223 static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id,
224 			  u32 data)
225 {
226 	writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id));
227 }
228 
229 static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id,
230 			       u32 data)
231 {
232 	int i;
233 
234 	writel(data, tcs_reg_addr(drv, reg, tcs_id));
235 
236 	/*
237 	 * Wait until we read back the same value.  Use a counter rather than
238 	 * ktime for timeout since this may be called after timekeeping stops.
239 	 */
240 	for (i = 0; i < USEC_PER_SEC; i++) {
241 		if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data)
242 			return;
243 		udelay(1);
244 	}
245 	pr_err("%s: error writing %#x to %d:%#x\n", drv->name,
246 	       data, tcs_id, reg);
247 }
248 
249 /**
250  * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake).
251  * @drv:  The RSC controller.
252  * @type: SLEEP_TCS or WAKE_TCS
253  *
254  * This will clear the "slots" variable of the given tcs_group and also
255  * tell the hardware to forget about all entries.
256  *
257  * The caller must ensure that no other RPMH actions are happening when this
258  * function is called, since otherwise the device may immediately become
259  * used again even before this function exits.
260  */
261 static void tcs_invalidate(struct rsc_drv *drv, int type)
262 {
263 	int m;
264 	struct tcs_group *tcs = &drv->tcs[type];
265 
266 	/* Caller ensures nobody else is running so no lock */
267 	if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS))
268 		return;
269 
270 	for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++)
271 		write_tcs_reg_sync(drv, drv->regs[RSC_DRV_CMD_ENABLE], m, 0);
272 
273 	bitmap_zero(tcs->slots, MAX_TCS_SLOTS);
274 }
275 
276 /**
277  * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes.
278  * @drv: The RSC controller.
279  *
280  * The caller must ensure that no other RPMH actions are happening when this
281  * function is called, since otherwise the device may immediately become
282  * used again even before this function exits.
283  */
284 void rpmh_rsc_invalidate(struct rsc_drv *drv)
285 {
286 	tcs_invalidate(drv, SLEEP_TCS);
287 	tcs_invalidate(drv, WAKE_TCS);
288 }
289 
290 /**
291  * get_tcs_for_msg() - Get the tcs_group used to send the given message.
292  * @drv: The RSC controller.
293  * @msg: The message we want to send.
294  *
295  * This is normally pretty straightforward except if we are trying to send
296  * an ACTIVE_ONLY message but don't have any active_only TCSes.
297  *
298  * Return: A pointer to a tcs_group or an ERR_PTR.
299  */
300 static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv,
301 					 const struct tcs_request *msg)
302 {
303 	int type;
304 	struct tcs_group *tcs;
305 
306 	switch (msg->state) {
307 	case RPMH_ACTIVE_ONLY_STATE:
308 		type = ACTIVE_TCS;
309 		break;
310 	case RPMH_WAKE_ONLY_STATE:
311 		type = WAKE_TCS;
312 		break;
313 	case RPMH_SLEEP_STATE:
314 		type = SLEEP_TCS;
315 		break;
316 	default:
317 		return ERR_PTR(-EINVAL);
318 	}
319 
320 	/*
321 	 * If we are making an active request on a RSC that does not have a
322 	 * dedicated TCS for active state use, then re-purpose a wake TCS to
323 	 * send active votes. This is safe because we ensure any active-only
324 	 * transfers have finished before we use it (maybe by running from
325 	 * the last CPU in PM code).
326 	 */
327 	tcs = &drv->tcs[type];
328 	if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs)
329 		tcs = &drv->tcs[WAKE_TCS];
330 
331 	return tcs;
332 }
333 
334 /**
335  * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS.
336  * @drv:    The RSC controller.
337  * @tcs_id: The global ID of this TCS.
338  *
339  * For ACTIVE_ONLY transfers we want to call back into the client when the
340  * transfer finishes. To do this we need the "request" that the client
341  * originally provided us. This function grabs the request that we stashed
342  * when we started the transfer.
343  *
344  * This only makes sense for ACTIVE_ONLY transfers since those are the only
345  * ones we track sending (the only ones we enable interrupts for and the only
346  * ones we call back to the client for).
347  *
348  * Return: The stashed request.
349  */
350 static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv,
351 						  int tcs_id)
352 {
353 	struct tcs_group *tcs;
354 	int i;
355 
356 	for (i = 0; i < TCS_TYPE_NR; i++) {
357 		tcs = &drv->tcs[i];
358 		if (tcs->mask & BIT(tcs_id))
359 			return tcs->req[tcs_id - tcs->offset];
360 	}
361 
362 	return NULL;
363 }
364 
365 /**
366  * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS
367  * @drv:     The controller.
368  * @tcs_id:  The global ID of this TCS.
369  * @trigger: If true then untrigger/retrigger. If false then just untrigger.
370  *
371  * In the normal case we only ever call with "trigger=true" to start a
372  * transfer. That will un-trigger/disable the TCS from the last transfer
373  * then trigger/enable for this transfer.
374  *
375  * If we borrowed a wake TCS for an active-only transfer we'll also call
376  * this function with "trigger=false" to just do the un-trigger/disable
377  * before using the TCS for wake purposes again.
378  *
379  * Note that the AP is only in charge of triggering active-only transfers.
380  * The AP never triggers sleep/wake values using this function.
381  */
382 static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger)
383 {
384 	u32 enable;
385 	u32 reg = drv->regs[RSC_DRV_CONTROL];
386 
387 	/*
388 	 * HW req: Clear the DRV_CONTROL and enable TCS again
389 	 * While clearing ensure that the AMC mode trigger is cleared
390 	 * and then the mode enable is cleared.
391 	 */
392 	enable = read_tcs_reg(drv, reg, tcs_id);
393 	enable &= ~TCS_AMC_MODE_TRIGGER;
394 	write_tcs_reg_sync(drv, reg, tcs_id, enable);
395 	enable &= ~TCS_AMC_MODE_ENABLE;
396 	write_tcs_reg_sync(drv, reg, tcs_id, enable);
397 
398 	if (trigger) {
399 		/* Enable the AMC mode on the TCS and then trigger the TCS */
400 		enable = TCS_AMC_MODE_ENABLE;
401 		write_tcs_reg_sync(drv, reg, tcs_id, enable);
402 		enable |= TCS_AMC_MODE_TRIGGER;
403 		write_tcs_reg(drv, reg, tcs_id, enable);
404 	}
405 }
406 
407 /**
408  * enable_tcs_irq() - Enable or disable interrupts on the given TCS.
409  * @drv:     The controller.
410  * @tcs_id:  The global ID of this TCS.
411  * @enable:  If true then enable; if false then disable
412  *
413  * We only ever call this when we borrow a wake TCS for an active-only
414  * transfer. For active-only TCSes interrupts are always left enabled.
415  */
416 static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable)
417 {
418 	u32 data;
419 	u32 reg = drv->regs[RSC_DRV_IRQ_ENABLE];
420 
421 	data = readl_relaxed(drv->tcs_base + reg);
422 	if (enable)
423 		data |= BIT(tcs_id);
424 	else
425 		data &= ~BIT(tcs_id);
426 	writel_relaxed(data, drv->tcs_base + reg);
427 }
428 
429 /**
430  * tcs_tx_done() - TX Done interrupt handler.
431  * @irq: The IRQ number (ignored).
432  * @p:   Pointer to "struct rsc_drv".
433  *
434  * Called for ACTIVE_ONLY transfers (those are the only ones we enable the
435  * IRQ for) when a transfer is done.
436  *
437  * Return: IRQ_HANDLED
438  */
439 static irqreturn_t tcs_tx_done(int irq, void *p)
440 {
441 	struct rsc_drv *drv = p;
442 	int i;
443 	unsigned long irq_status;
444 	const struct tcs_request *req;
445 
446 	irq_status = readl_relaxed(drv->tcs_base + drv->regs[RSC_DRV_IRQ_STATUS]);
447 
448 	for_each_set_bit(i, &irq_status, BITS_PER_TYPE(u32)) {
449 		req = get_req_from_tcs(drv, i);
450 		if (WARN_ON(!req))
451 			goto skip;
452 
453 		trace_rpmh_tx_done(drv, i, req);
454 
455 		/*
456 		 * If wake tcs was re-purposed for sending active
457 		 * votes, clear AMC trigger & enable modes and
458 		 * disable interrupt for this TCS
459 		 */
460 		if (!drv->tcs[ACTIVE_TCS].num_tcs)
461 			__tcs_set_trigger(drv, i, false);
462 skip:
463 		/* Reclaim the TCS */
464 		write_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], i, 0);
465 		writel_relaxed(BIT(i), drv->tcs_base + drv->regs[RSC_DRV_IRQ_CLEAR]);
466 		spin_lock(&drv->lock);
467 		clear_bit(i, drv->tcs_in_use);
468 		/*
469 		 * Disable interrupt for WAKE TCS to avoid being
470 		 * spammed with interrupts coming when the solver
471 		 * sends its wake votes.
472 		 */
473 		if (!drv->tcs[ACTIVE_TCS].num_tcs)
474 			enable_tcs_irq(drv, i, false);
475 		spin_unlock(&drv->lock);
476 		wake_up(&drv->tcs_wait);
477 		if (req)
478 			rpmh_tx_done(req);
479 	}
480 
481 	return IRQ_HANDLED;
482 }
483 
484 /**
485  * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger.
486  * @drv:    The controller.
487  * @tcs_id: The global ID of this TCS.
488  * @cmd_id: The index within the TCS to start writing.
489  * @msg:    The message we want to send, which will contain several addr/data
490  *          pairs to program (but few enough that they all fit in one TCS).
491  *
492  * This is used for all types of transfers (active, sleep, and wake).
493  */
494 static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id,
495 			       const struct tcs_request *msg)
496 {
497 	u32 msgid;
498 	u32 cmd_msgid = CMD_MSGID_LEN | CMD_MSGID_WRITE;
499 	u32 cmd_enable = 0;
500 	struct tcs_cmd *cmd;
501 	int i, j;
502 
503 	/* Convert all commands to RR when the request has wait_for_compl set */
504 	cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0;
505 
506 	for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) {
507 		cmd = &msg->cmds[i];
508 		cmd_enable |= BIT(j);
509 		msgid = cmd_msgid;
510 		/*
511 		 * Additionally, if the cmd->wait is set, make the command
512 		 * response reqd even if the overall request was fire-n-forget.
513 		 */
514 		msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0;
515 
516 		write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_MSGID], tcs_id, j, msgid);
517 		write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_ADDR], tcs_id, j, cmd->addr);
518 		write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_DATA], tcs_id, j, cmd->data);
519 		trace_rpmh_send_msg(drv, tcs_id, j, msgid, cmd);
520 	}
521 
522 	cmd_enable |= read_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id);
523 	write_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id, cmd_enable);
524 }
525 
526 /**
527  * check_for_req_inflight() - Look to see if conflicting cmds are in flight.
528  * @drv: The controller.
529  * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers.
530  * @msg: The message we want to send, which will contain several addr/data
531  *       pairs to program (but few enough that they all fit in one TCS).
532  *
533  * This will walk through the TCSes in the group and check if any of them
534  * appear to be sending to addresses referenced in the message. If it finds
535  * one it'll return -EBUSY.
536  *
537  * Only for use for active-only transfers.
538  *
539  * Must be called with the drv->lock held since that protects tcs_in_use.
540  *
541  * Return: 0 if nothing in flight or -EBUSY if we should try again later.
542  *         The caller must re-enable interrupts between tries since that's
543  *         the only way tcs_in_use will ever be updated and the only way
544  *         RSC_DRV_CMD_ENABLE will ever be cleared.
545  */
546 static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs,
547 				  const struct tcs_request *msg)
548 {
549 	unsigned long curr_enabled;
550 	u32 addr;
551 	int j, k;
552 	int i = tcs->offset;
553 
554 	for_each_set_bit_from(i, drv->tcs_in_use, tcs->offset + tcs->num_tcs) {
555 		curr_enabled = read_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], i);
556 
557 		for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) {
558 			addr = read_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_ADDR], i, j);
559 			for (k = 0; k < msg->num_cmds; k++) {
560 				if (addr == msg->cmds[k].addr)
561 					return -EBUSY;
562 			}
563 		}
564 	}
565 
566 	return 0;
567 }
568 
569 /**
570  * find_free_tcs() - Find free tcs in the given tcs_group; only for active.
571  * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if
572  *       we borrowed it because there are zero active-only ones).
573  *
574  * Must be called with the drv->lock held since that protects tcs_in_use.
575  *
576  * Return: The first tcs that's free or -EBUSY if all in use.
577  */
578 static int find_free_tcs(struct tcs_group *tcs)
579 {
580 	const struct rsc_drv *drv = tcs->drv;
581 	unsigned long i;
582 	unsigned long max = tcs->offset + tcs->num_tcs;
583 
584 	i = find_next_zero_bit(drv->tcs_in_use, max, tcs->offset);
585 	if (i >= max)
586 		return -EBUSY;
587 
588 	return i;
589 }
590 
591 /**
592  * claim_tcs_for_req() - Claim a tcs in the given tcs_group; only for active.
593  * @drv: The controller.
594  * @tcs: The tcs_group used for ACTIVE_ONLY transfers.
595  * @msg: The data to be sent.
596  *
597  * Claims a tcs in the given tcs_group while making sure that no existing cmd
598  * is in flight that would conflict with the one in @msg.
599  *
600  * Context: Must be called with the drv->lock held since that protects
601  * tcs_in_use.
602  *
603  * Return: The id of the claimed tcs or -EBUSY if a matching msg is in flight
604  * or the tcs_group is full.
605  */
606 static int claim_tcs_for_req(struct rsc_drv *drv, struct tcs_group *tcs,
607 			     const struct tcs_request *msg)
608 {
609 	int ret;
610 
611 	/*
612 	 * The h/w does not like if we send a request to the same address,
613 	 * when one is already in-flight or being processed.
614 	 */
615 	ret = check_for_req_inflight(drv, tcs, msg);
616 	if (ret)
617 		return ret;
618 
619 	return find_free_tcs(tcs);
620 }
621 
622 /**
623  * rpmh_rsc_send_data() - Write / trigger active-only message.
624  * @drv: The controller.
625  * @msg: The data to be sent.
626  *
627  * NOTES:
628  * - This is only used for "ACTIVE_ONLY" since the limitations of this
629  *   function don't make sense for sleep/wake cases.
630  * - To do the transfer, we will grab a whole TCS for ourselves--we don't
631  *   try to share. If there are none available we'll wait indefinitely
632  *   for a free one.
633  * - This function will not wait for the commands to be finished, only for
634  *   data to be programmed into the RPMh. See rpmh_tx_done() which will
635  *   be called when the transfer is fully complete.
636  * - This function must be called with interrupts enabled. If the hardware
637  *   is busy doing someone else's transfer we need that transfer to fully
638  *   finish so that we can have the hardware, and to fully finish it needs
639  *   the interrupt handler to run. If the interrupts is set to run on the
640  *   active CPU this can never happen if interrupts are disabled.
641  *
642  * Return: 0 on success, -EINVAL on error.
643  */
644 int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg)
645 {
646 	struct tcs_group *tcs;
647 	int tcs_id;
648 	unsigned long flags;
649 
650 	tcs = get_tcs_for_msg(drv, msg);
651 	if (IS_ERR(tcs))
652 		return PTR_ERR(tcs);
653 
654 	spin_lock_irqsave(&drv->lock, flags);
655 
656 	/* Wait forever for a free tcs. It better be there eventually! */
657 	wait_event_lock_irq(drv->tcs_wait,
658 			    (tcs_id = claim_tcs_for_req(drv, tcs, msg)) >= 0,
659 			    drv->lock);
660 
661 	tcs->req[tcs_id - tcs->offset] = msg;
662 	set_bit(tcs_id, drv->tcs_in_use);
663 	if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) {
664 		/*
665 		 * Clear previously programmed WAKE commands in selected
666 		 * repurposed TCS to avoid triggering them. tcs->slots will be
667 		 * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate()
668 		 */
669 		write_tcs_reg_sync(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id, 0);
670 		enable_tcs_irq(drv, tcs_id, true);
671 	}
672 	spin_unlock_irqrestore(&drv->lock, flags);
673 
674 	/*
675 	 * These two can be done after the lock is released because:
676 	 * - We marked "tcs_in_use" under lock.
677 	 * - Once "tcs_in_use" has been marked nobody else could be writing
678 	 *   to these registers until the interrupt goes off.
679 	 * - The interrupt can't go off until we trigger w/ the last line
680 	 *   of __tcs_set_trigger() below.
681 	 */
682 	__tcs_buffer_write(drv, tcs_id, 0, msg);
683 	__tcs_set_trigger(drv, tcs_id, true);
684 
685 	return 0;
686 }
687 
688 /**
689  * find_slots() - Find a place to write the given message.
690  * @tcs:    The tcs group to search.
691  * @msg:    The message we want to find room for.
692  * @tcs_id: If we return 0 from the function, we return the global ID of the
693  *          TCS to write to here.
694  * @cmd_id: If we return 0 from the function, we return the index of
695  *          the command array of the returned TCS where the client should
696  *          start writing the message.
697  *
698  * Only for use on sleep/wake TCSes since those are the only ones we maintain
699  * tcs->slots for.
700  *
701  * Return: -ENOMEM if there was no room, else 0.
702  */
703 static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg,
704 		      int *tcs_id, int *cmd_id)
705 {
706 	int slot, offset;
707 	int i = 0;
708 
709 	/* Do over, until we can fit the full payload in a single TCS */
710 	do {
711 		slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS,
712 						  i, msg->num_cmds, 0);
713 		if (slot >= tcs->num_tcs * tcs->ncpt)
714 			return -ENOMEM;
715 		i += tcs->ncpt;
716 	} while (slot + msg->num_cmds - 1 >= i);
717 
718 	bitmap_set(tcs->slots, slot, msg->num_cmds);
719 
720 	offset = slot / tcs->ncpt;
721 	*tcs_id = offset + tcs->offset;
722 	*cmd_id = slot % tcs->ncpt;
723 
724 	return 0;
725 }
726 
727 /**
728  * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger.
729  * @drv: The controller.
730  * @msg: The data to be written to the controller.
731  *
732  * This should only be called for sleep/wake state, never active-only
733  * state.
734  *
735  * The caller must ensure that no other RPMH actions are happening and the
736  * controller is idle when this function is called since it runs lockless.
737  *
738  * Return: 0 if no error; else -error.
739  */
740 int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg)
741 {
742 	struct tcs_group *tcs;
743 	int tcs_id = 0, cmd_id = 0;
744 	int ret;
745 
746 	tcs = get_tcs_for_msg(drv, msg);
747 	if (IS_ERR(tcs))
748 		return PTR_ERR(tcs);
749 
750 	/* find the TCS id and the command in the TCS to write to */
751 	ret = find_slots(tcs, msg, &tcs_id, &cmd_id);
752 	if (!ret)
753 		__tcs_buffer_write(drv, tcs_id, cmd_id, msg);
754 
755 	return ret;
756 }
757 
758 /**
759  * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy.
760  * @drv: The controller
761  *
762  * Checks if any of the AMCs are busy in handling ACTIVE sets.
763  * This is called from the last cpu powering down before flushing
764  * SLEEP and WAKE sets. If AMCs are busy, controller can not enter
765  * power collapse, so deny from the last cpu's pm notification.
766  *
767  * Context: Must be called with the drv->lock held.
768  *
769  * Return:
770  * * False		- AMCs are idle
771  * * True		- AMCs are busy
772  */
773 static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv)
774 {
775 	unsigned long set;
776 	const struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS];
777 	unsigned long max;
778 
779 	/*
780 	 * If we made an active request on a RSC that does not have a
781 	 * dedicated TCS for active state use, then re-purposed wake TCSes
782 	 * should be checked for not busy, because we used wake TCSes for
783 	 * active requests in this case.
784 	 */
785 	if (!tcs->num_tcs)
786 		tcs = &drv->tcs[WAKE_TCS];
787 
788 	max = tcs->offset + tcs->num_tcs;
789 	set = find_next_bit(drv->tcs_in_use, max, tcs->offset);
790 
791 	return set < max;
792 }
793 
794 /**
795  * rpmh_rsc_write_next_wakeup() - Write next wakeup in CONTROL_TCS.
796  * @drv: The controller
797  *
798  * Writes maximum wakeup cycles when called from suspend.
799  * Writes earliest hrtimer wakeup when called from idle.
800  */
801 void rpmh_rsc_write_next_wakeup(struct rsc_drv *drv)
802 {
803 	ktime_t now, wakeup;
804 	u64 wakeup_us, wakeup_cycles = ~0;
805 	u32 lo, hi;
806 
807 	if (!drv->tcs[CONTROL_TCS].num_tcs || !drv->genpd_nb.notifier_call)
808 		return;
809 
810 	/* Set highest time when system (timekeeping) is suspended */
811 	if (system_state == SYSTEM_SUSPEND)
812 		goto exit;
813 
814 	/* Find the earliest hrtimer wakeup from online cpus */
815 	wakeup = dev_pm_genpd_get_next_hrtimer(drv->dev);
816 
817 	/* Find the relative wakeup in kernel time scale */
818 	now = ktime_get();
819 	wakeup = ktime_sub(wakeup, now);
820 	wakeup_us = ktime_to_us(wakeup);
821 
822 	/* Convert the wakeup to arch timer scale */
823 	wakeup_cycles = USECS_TO_CYCLES(wakeup_us);
824 	wakeup_cycles += arch_timer_read_counter();
825 
826 exit:
827 	lo = wakeup_cycles & RSC_DRV_CTL_TCS_DATA_LO_MASK;
828 	hi = wakeup_cycles >> RSC_DRV_CTL_TCS_DATA_SIZE;
829 	hi &= RSC_DRV_CTL_TCS_DATA_HI_MASK;
830 	hi |= RSC_DRV_CTL_TCS_DATA_HI_VALID;
831 
832 	writel_relaxed(lo, drv->base + RSC_DRV_CTL_TCS_DATA_LO);
833 	writel_relaxed(hi, drv->base + RSC_DRV_CTL_TCS_DATA_HI);
834 }
835 
836 /**
837  * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy.
838  * @nfb:    Pointer to the notifier block in struct rsc_drv.
839  * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT.
840  * @v:      Unused
841  *
842  * This function is given to cpu_pm_register_notifier so we can be informed
843  * about when CPUs go down. When all CPUs go down we know no more active
844  * transfers will be started so we write sleep/wake sets. This function gets
845  * called from cpuidle code paths and also at system suspend time.
846  *
847  * If its last CPU going down and AMCs are not busy then writes cached sleep
848  * and wake messages to TCSes. The firmware then takes care of triggering
849  * them when entering deepest low power modes.
850  *
851  * Return: See cpu_pm_register_notifier()
852  */
853 static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb,
854 				    unsigned long action, void *v)
855 {
856 	struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm);
857 	int ret = NOTIFY_OK;
858 	int cpus_in_pm;
859 
860 	switch (action) {
861 	case CPU_PM_ENTER:
862 		cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm);
863 		/*
864 		 * NOTE: comments for num_online_cpus() point out that it's
865 		 * only a snapshot so we need to be careful. It should be OK
866 		 * for us to use, though.  It's important for us not to miss
867 		 * if we're the last CPU going down so it would only be a
868 		 * problem if a CPU went offline right after we did the check
869 		 * AND that CPU was not idle AND that CPU was the last non-idle
870 		 * CPU. That can't happen. CPUs would have to come out of idle
871 		 * before the CPU could go offline.
872 		 */
873 		if (cpus_in_pm < num_online_cpus())
874 			return NOTIFY_OK;
875 		break;
876 	case CPU_PM_ENTER_FAILED:
877 	case CPU_PM_EXIT:
878 		atomic_dec(&drv->cpus_in_pm);
879 		return NOTIFY_OK;
880 	default:
881 		return NOTIFY_DONE;
882 	}
883 
884 	/*
885 	 * It's likely we're on the last CPU. Grab the drv->lock and write
886 	 * out the sleep/wake commands to RPMH hardware. Grabbing the lock
887 	 * means that if we race with another CPU coming up we are still
888 	 * guaranteed to be safe. If another CPU came up just after we checked
889 	 * and has grabbed the lock or started an active transfer then we'll
890 	 * notice we're busy and abort. If another CPU comes up after we start
891 	 * flushing it will be blocked from starting an active transfer until
892 	 * we're done flushing. If another CPU starts an active transfer after
893 	 * we release the lock we're still OK because we're no longer the last
894 	 * CPU.
895 	 */
896 	if (spin_trylock(&drv->lock)) {
897 		if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))
898 			ret = NOTIFY_BAD;
899 		spin_unlock(&drv->lock);
900 	} else {
901 		/* Another CPU must be up */
902 		return NOTIFY_OK;
903 	}
904 
905 	if (ret == NOTIFY_BAD) {
906 		/* Double-check if we're here because someone else is up */
907 		if (cpus_in_pm < num_online_cpus())
908 			ret = NOTIFY_OK;
909 		else
910 			/* We won't be called w/ CPU_PM_ENTER_FAILED */
911 			atomic_dec(&drv->cpus_in_pm);
912 	}
913 
914 	return ret;
915 }
916 
917 /**
918  * rpmh_rsc_pd_callback() - Check if any of the AMCs are busy.
919  * @nfb:    Pointer to the genpd notifier block in struct rsc_drv.
920  * @action: GENPD_NOTIFY_PRE_OFF, GENPD_NOTIFY_OFF, GENPD_NOTIFY_PRE_ON or GENPD_NOTIFY_ON.
921  * @v:      Unused
922  *
923  * This function is given to dev_pm_genpd_add_notifier() so we can be informed
924  * about when cluster-pd is going down. When cluster go down we know no more active
925  * transfers will be started so we write sleep/wake sets. This function gets
926  * called from cpuidle code paths and also at system suspend time.
927  *
928  * If AMCs are not busy then writes cached sleep and wake messages to TCSes.
929  * The firmware then takes care of triggering them when entering deepest low power modes.
930  *
931  * Return:
932  * * NOTIFY_OK          - success
933  * * NOTIFY_BAD         - failure
934  */
935 static int rpmh_rsc_pd_callback(struct notifier_block *nfb,
936 				unsigned long action, void *v)
937 {
938 	struct rsc_drv *drv = container_of(nfb, struct rsc_drv, genpd_nb);
939 
940 	/* We don't need to lock as genpd on/off are serialized */
941 	if ((action == GENPD_NOTIFY_PRE_OFF) &&
942 	    (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client)))
943 		return NOTIFY_BAD;
944 
945 	return NOTIFY_OK;
946 }
947 
948 static int rpmh_rsc_pd_attach(struct rsc_drv *drv, struct device *dev)
949 {
950 	int ret;
951 
952 	pm_runtime_enable(dev);
953 	drv->genpd_nb.notifier_call = rpmh_rsc_pd_callback;
954 	ret = dev_pm_genpd_add_notifier(dev, &drv->genpd_nb);
955 	if (ret)
956 		pm_runtime_disable(dev);
957 
958 	return ret;
959 }
960 
961 static int rpmh_probe_tcs_config(struct platform_device *pdev, struct rsc_drv *drv)
962 {
963 	struct tcs_type_config {
964 		u32 type;
965 		u32 n;
966 	} tcs_cfg[TCS_TYPE_NR] = { { 0 } };
967 	struct device_node *dn = pdev->dev.of_node;
968 	u32 config, max_tcs, ncpt, offset;
969 	int i, ret, n, st = 0;
970 	struct tcs_group *tcs;
971 
972 	ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset);
973 	if (ret)
974 		return ret;
975 	drv->tcs_base = drv->base + offset;
976 
977 	config = readl_relaxed(drv->base + drv->regs[DRV_PRNT_CHLD_CONFIG]);
978 
979 	max_tcs = config;
980 	max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id);
981 	max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id);
982 
983 	ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT);
984 	ncpt = ncpt >> DRV_NCPT_SHIFT;
985 
986 	n = of_property_count_u32_elems(dn, "qcom,tcs-config");
987 	if (n != 2 * TCS_TYPE_NR)
988 		return -EINVAL;
989 
990 	for (i = 0; i < TCS_TYPE_NR; i++) {
991 		ret = of_property_read_u32_index(dn, "qcom,tcs-config",
992 						 i * 2, &tcs_cfg[i].type);
993 		if (ret)
994 			return ret;
995 		if (tcs_cfg[i].type >= TCS_TYPE_NR)
996 			return -EINVAL;
997 
998 		ret = of_property_read_u32_index(dn, "qcom,tcs-config",
999 						 i * 2 + 1, &tcs_cfg[i].n);
1000 		if (ret)
1001 			return ret;
1002 		if (tcs_cfg[i].n > MAX_TCS_PER_TYPE)
1003 			return -EINVAL;
1004 	}
1005 
1006 	for (i = 0; i < TCS_TYPE_NR; i++) {
1007 		tcs = &drv->tcs[tcs_cfg[i].type];
1008 		if (tcs->drv)
1009 			return -EINVAL;
1010 		tcs->drv = drv;
1011 		tcs->type = tcs_cfg[i].type;
1012 		tcs->num_tcs = tcs_cfg[i].n;
1013 		tcs->ncpt = ncpt;
1014 
1015 		if (!tcs->num_tcs || tcs->type == CONTROL_TCS)
1016 			continue;
1017 
1018 		if (st + tcs->num_tcs > max_tcs ||
1019 		    st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask))
1020 			return -EINVAL;
1021 
1022 		tcs->mask = ((1 << tcs->num_tcs) - 1) << st;
1023 		tcs->offset = st;
1024 		st += tcs->num_tcs;
1025 	}
1026 
1027 	drv->num_tcs = st;
1028 
1029 	return 0;
1030 }
1031 
1032 static int rpmh_rsc_probe(struct platform_device *pdev)
1033 {
1034 	struct device_node *dn = pdev->dev.of_node;
1035 	struct rsc_drv *drv;
1036 	char drv_id[10] = {0};
1037 	int ret, irq;
1038 	u32 solver_config;
1039 	u32 rsc_id;
1040 
1041 	/*
1042 	 * Even though RPMh doesn't directly use cmd-db, all of its children
1043 	 * do. To avoid adding this check to our children we'll do it now.
1044 	 */
1045 	ret = cmd_db_ready();
1046 	if (ret) {
1047 		if (ret != -EPROBE_DEFER)
1048 			dev_err(&pdev->dev, "Command DB not available (%d)\n",
1049 									ret);
1050 		return ret;
1051 	}
1052 
1053 	drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
1054 	if (!drv)
1055 		return -ENOMEM;
1056 
1057 	ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id);
1058 	if (ret)
1059 		return ret;
1060 
1061 	drv->name = of_get_property(dn, "label", NULL);
1062 	if (!drv->name)
1063 		drv->name = dev_name(&pdev->dev);
1064 
1065 	snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id);
1066 	drv->base = devm_platform_ioremap_resource_byname(pdev, drv_id);
1067 	if (IS_ERR(drv->base))
1068 		return PTR_ERR(drv->base);
1069 
1070 	rsc_id = readl_relaxed(drv->base + RSC_DRV_ID);
1071 	drv->ver.major = rsc_id & (MAJOR_VER_MASK << MAJOR_VER_SHIFT);
1072 	drv->ver.major >>= MAJOR_VER_SHIFT;
1073 	drv->ver.minor = rsc_id & (MINOR_VER_MASK << MINOR_VER_SHIFT);
1074 	drv->ver.minor >>= MINOR_VER_SHIFT;
1075 
1076 	if (drv->ver.major == 3 && drv->ver.minor >= 0)
1077 		drv->regs = rpmh_rsc_reg_offset_ver_3_0;
1078 	else
1079 		drv->regs = rpmh_rsc_reg_offset_ver_2_7;
1080 
1081 	ret = rpmh_probe_tcs_config(pdev, drv);
1082 	if (ret)
1083 		return ret;
1084 
1085 	spin_lock_init(&drv->lock);
1086 	init_waitqueue_head(&drv->tcs_wait);
1087 	bitmap_zero(drv->tcs_in_use, MAX_TCS_NR);
1088 
1089 	irq = platform_get_irq(pdev, drv->id);
1090 	if (irq < 0)
1091 		return irq;
1092 
1093 	ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done,
1094 			       IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND,
1095 			       drv->name, drv);
1096 	if (ret)
1097 		return ret;
1098 
1099 	/*
1100 	 * CPU PM/genpd notification are not required for controllers that support
1101 	 * 'HW solver' mode where they can be in autonomous mode executing low
1102 	 * power mode to power down.
1103 	 */
1104 	solver_config = readl_relaxed(drv->base + drv->regs[DRV_SOLVER_CONFIG]);
1105 	solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT;
1106 	solver_config = solver_config >> DRV_HW_SOLVER_SHIFT;
1107 	if (!solver_config) {
1108 		if (pdev->dev.pm_domain) {
1109 			ret = rpmh_rsc_pd_attach(drv, &pdev->dev);
1110 			if (ret)
1111 				return ret;
1112 		} else {
1113 			drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback;
1114 			cpu_pm_register_notifier(&drv->rsc_pm);
1115 		}
1116 	}
1117 
1118 	/* Enable the active TCS to send requests immediately */
1119 	writel_relaxed(drv->tcs[ACTIVE_TCS].mask,
1120 		       drv->tcs_base + drv->regs[RSC_DRV_IRQ_ENABLE]);
1121 
1122 	spin_lock_init(&drv->client.cache_lock);
1123 	INIT_LIST_HEAD(&drv->client.cache);
1124 	INIT_LIST_HEAD(&drv->client.batch_cache);
1125 
1126 	dev_set_drvdata(&pdev->dev, drv);
1127 	drv->dev = &pdev->dev;
1128 
1129 	ret = devm_of_platform_populate(&pdev->dev);
1130 	if (ret && pdev->dev.pm_domain) {
1131 		dev_pm_genpd_remove_notifier(&pdev->dev);
1132 		pm_runtime_disable(&pdev->dev);
1133 	}
1134 
1135 	return ret;
1136 }
1137 
1138 static const struct of_device_id rpmh_drv_match[] = {
1139 	{ .compatible = "qcom,rpmh-rsc", },
1140 	{ }
1141 };
1142 MODULE_DEVICE_TABLE(of, rpmh_drv_match);
1143 
1144 static struct platform_driver rpmh_driver = {
1145 	.probe = rpmh_rsc_probe,
1146 	.driver = {
1147 		  .name = "rpmh",
1148 		  .of_match_table = rpmh_drv_match,
1149 		  .suppress_bind_attrs = true,
1150 	},
1151 };
1152 
1153 static int __init rpmh_driver_init(void)
1154 {
1155 	return platform_driver_register(&rpmh_driver);
1156 }
1157 arch_initcall(rpmh_driver_init);
1158 
1159 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. RPMh Driver");
1160 MODULE_LICENSE("GPL v2");
1161