1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. 4 */ 5 6 #define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME 7 8 #include <linux/atomic.h> 9 #include <linux/cpu_pm.h> 10 #include <linux/delay.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/iopoll.h> 14 #include <linux/kernel.h> 15 #include <linux/list.h> 16 #include <linux/module.h> 17 #include <linux/of.h> 18 #include <linux/of_irq.h> 19 #include <linux/of_platform.h> 20 #include <linux/platform_device.h> 21 #include <linux/slab.h> 22 #include <linux/spinlock.h> 23 #include <linux/wait.h> 24 25 #include <soc/qcom/cmd-db.h> 26 #include <soc/qcom/tcs.h> 27 #include <dt-bindings/soc/qcom,rpmh-rsc.h> 28 29 #include "rpmh-internal.h" 30 31 #define CREATE_TRACE_POINTS 32 #include "trace-rpmh.h" 33 34 #define RSC_DRV_TCS_OFFSET 672 35 #define RSC_DRV_CMD_OFFSET 20 36 37 /* DRV HW Solver Configuration Information Register */ 38 #define DRV_SOLVER_CONFIG 0x04 39 #define DRV_HW_SOLVER_MASK 1 40 #define DRV_HW_SOLVER_SHIFT 24 41 42 /* DRV TCS Configuration Information Register */ 43 #define DRV_PRNT_CHLD_CONFIG 0x0C 44 #define DRV_NUM_TCS_MASK 0x3F 45 #define DRV_NUM_TCS_SHIFT 6 46 #define DRV_NCPT_MASK 0x1F 47 #define DRV_NCPT_SHIFT 27 48 49 /* Offsets for common TCS Registers, one bit per TCS */ 50 #define RSC_DRV_IRQ_ENABLE 0x00 51 #define RSC_DRV_IRQ_STATUS 0x04 52 #define RSC_DRV_IRQ_CLEAR 0x08 /* w/o; write 1 to clear */ 53 54 /* 55 * Offsets for per TCS Registers. 56 * 57 * TCSes start at 0x10 from tcs_base and are stored one after another. 58 * Multiply tcs_id by RSC_DRV_TCS_OFFSET to find a given TCS and add one 59 * of the below to find a register. 60 */ 61 #define RSC_DRV_CMD_WAIT_FOR_CMPL 0x10 /* 1 bit per command */ 62 #define RSC_DRV_CONTROL 0x14 63 #define RSC_DRV_STATUS 0x18 /* zero if tcs is busy */ 64 #define RSC_DRV_CMD_ENABLE 0x1C /* 1 bit per command */ 65 66 /* 67 * Offsets for per command in a TCS. 68 * 69 * Commands (up to 16) start at 0x30 in a TCS; multiply command index 70 * by RSC_DRV_CMD_OFFSET and add one of the below to find a register. 71 */ 72 #define RSC_DRV_CMD_MSGID 0x30 73 #define RSC_DRV_CMD_ADDR 0x34 74 #define RSC_DRV_CMD_DATA 0x38 75 #define RSC_DRV_CMD_STATUS 0x3C 76 #define RSC_DRV_CMD_RESP_DATA 0x40 77 78 #define TCS_AMC_MODE_ENABLE BIT(16) 79 #define TCS_AMC_MODE_TRIGGER BIT(24) 80 81 /* TCS CMD register bit mask */ 82 #define CMD_MSGID_LEN 8 83 #define CMD_MSGID_RESP_REQ BIT(8) 84 #define CMD_MSGID_WRITE BIT(16) 85 #define CMD_STATUS_ISSUED BIT(8) 86 #define CMD_STATUS_COMPL BIT(16) 87 88 /* 89 * Here's a high level overview of how all the registers in RPMH work 90 * together: 91 * 92 * - The main rpmh-rsc address is the base of a register space that can 93 * be used to find overall configuration of the hardware 94 * (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register 95 * space are all the TCS blocks. The offset of the TCS blocks is 96 * specified in the device tree by "qcom,tcs-offset" and used to 97 * compute tcs_base. 98 * - TCS blocks come one after another. Type, count, and order are 99 * specified by the device tree as "qcom,tcs-config". 100 * - Each TCS block has some registers, then space for up to 16 commands. 101 * Note that though address space is reserved for 16 commands, fewer 102 * might be present. See ncpt (num cmds per TCS). 103 * 104 * Here's a picture: 105 * 106 * +---------------------------------------------------+ 107 * |RSC | 108 * | ctrl | 109 * | | 110 * | Drvs: | 111 * | +-----------------------------------------------+ | 112 * | |DRV0 | | 113 * | | ctrl/config | | 114 * | | IRQ | | 115 * | | | | 116 * | | TCSes: | | 117 * | | +------------------------------------------+ | | 118 * | | |TCS0 | | | | | | | | | | | | | | | 119 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | | 120 * | | | | | | | | | | | | | | | | | | 121 * | | +------------------------------------------+ | | 122 * | | +------------------------------------------+ | | 123 * | | |TCS1 | | | | | | | | | | | | | | | 124 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | | 125 * | | | | | | | | | | | | | | | | | | 126 * | | +------------------------------------------+ | | 127 * | | +------------------------------------------+ | | 128 * | | |TCS2 | | | | | | | | | | | | | | | 129 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | | 130 * | | | | | | | | | | | | | | | | | | 131 * | | +------------------------------------------+ | | 132 * | | ...... | | 133 * | +-----------------------------------------------+ | 134 * | +-----------------------------------------------+ | 135 * | |DRV1 | | 136 * | | (same as DRV0) | | 137 * | +-----------------------------------------------+ | 138 * | ...... | 139 * +---------------------------------------------------+ 140 */ 141 142 static inline void __iomem * 143 tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id) 144 { 145 return drv->tcs_base + RSC_DRV_TCS_OFFSET * tcs_id + reg; 146 } 147 148 static inline void __iomem * 149 tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id) 150 { 151 return tcs_reg_addr(drv, reg, tcs_id) + RSC_DRV_CMD_OFFSET * cmd_id; 152 } 153 154 static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id, 155 int cmd_id) 156 { 157 return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id)); 158 } 159 160 static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id) 161 { 162 return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id)); 163 } 164 165 static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id, 166 int cmd_id, u32 data) 167 { 168 writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id)); 169 } 170 171 static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id, 172 u32 data) 173 { 174 writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id)); 175 } 176 177 static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id, 178 u32 data) 179 { 180 int i; 181 182 writel(data, tcs_reg_addr(drv, reg, tcs_id)); 183 184 /* 185 * Wait until we read back the same value. Use a counter rather than 186 * ktime for timeout since this may be called after timekeeping stops. 187 */ 188 for (i = 0; i < USEC_PER_SEC; i++) { 189 if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data) 190 return; 191 udelay(1); 192 } 193 pr_err("%s: error writing %#x to %d:%#x\n", drv->name, 194 data, tcs_id, reg); 195 } 196 197 /** 198 * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake). 199 * @drv: The RSC controller. 200 * @type: SLEEP_TCS or WAKE_TCS 201 * 202 * This will clear the "slots" variable of the given tcs_group and also 203 * tell the hardware to forget about all entries. 204 * 205 * The caller must ensure that no other RPMH actions are happening when this 206 * function is called, since otherwise the device may immediately become 207 * used again even before this function exits. 208 */ 209 static void tcs_invalidate(struct rsc_drv *drv, int type) 210 { 211 int m; 212 struct tcs_group *tcs = &drv->tcs[type]; 213 214 /* Caller ensures nobody else is running so no lock */ 215 if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS)) 216 return; 217 218 for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) 219 write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, m, 0); 220 221 bitmap_zero(tcs->slots, MAX_TCS_SLOTS); 222 } 223 224 /** 225 * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes. 226 * @drv: The RSC controller. 227 * 228 * The caller must ensure that no other RPMH actions are happening when this 229 * function is called, since otherwise the device may immediately become 230 * used again even before this function exits. 231 */ 232 void rpmh_rsc_invalidate(struct rsc_drv *drv) 233 { 234 tcs_invalidate(drv, SLEEP_TCS); 235 tcs_invalidate(drv, WAKE_TCS); 236 } 237 238 /** 239 * get_tcs_for_msg() - Get the tcs_group used to send the given message. 240 * @drv: The RSC controller. 241 * @msg: The message we want to send. 242 * 243 * This is normally pretty straightforward except if we are trying to send 244 * an ACTIVE_ONLY message but don't have any active_only TCSes. 245 * 246 * Return: A pointer to a tcs_group or an ERR_PTR. 247 */ 248 static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv, 249 const struct tcs_request *msg) 250 { 251 int type; 252 struct tcs_group *tcs; 253 254 switch (msg->state) { 255 case RPMH_ACTIVE_ONLY_STATE: 256 type = ACTIVE_TCS; 257 break; 258 case RPMH_WAKE_ONLY_STATE: 259 type = WAKE_TCS; 260 break; 261 case RPMH_SLEEP_STATE: 262 type = SLEEP_TCS; 263 break; 264 default: 265 return ERR_PTR(-EINVAL); 266 } 267 268 /* 269 * If we are making an active request on a RSC that does not have a 270 * dedicated TCS for active state use, then re-purpose a wake TCS to 271 * send active votes. This is safe because we ensure any active-only 272 * transfers have finished before we use it (maybe by running from 273 * the last CPU in PM code). 274 */ 275 tcs = &drv->tcs[type]; 276 if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs) 277 tcs = &drv->tcs[WAKE_TCS]; 278 279 return tcs; 280 } 281 282 /** 283 * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS. 284 * @drv: The RSC controller. 285 * @tcs_id: The global ID of this TCS. 286 * 287 * For ACTIVE_ONLY transfers we want to call back into the client when the 288 * transfer finishes. To do this we need the "request" that the client 289 * originally provided us. This function grabs the request that we stashed 290 * when we started the transfer. 291 * 292 * This only makes sense for ACTIVE_ONLY transfers since those are the only 293 * ones we track sending (the only ones we enable interrupts for and the only 294 * ones we call back to the client for). 295 * 296 * Return: The stashed request. 297 */ 298 static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv, 299 int tcs_id) 300 { 301 struct tcs_group *tcs; 302 int i; 303 304 for (i = 0; i < TCS_TYPE_NR; i++) { 305 tcs = &drv->tcs[i]; 306 if (tcs->mask & BIT(tcs_id)) 307 return tcs->req[tcs_id - tcs->offset]; 308 } 309 310 return NULL; 311 } 312 313 /** 314 * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS 315 * @drv: The controller. 316 * @tcs_id: The global ID of this TCS. 317 * @trigger: If true then untrigger/retrigger. If false then just untrigger. 318 * 319 * In the normal case we only ever call with "trigger=true" to start a 320 * transfer. That will un-trigger/disable the TCS from the last transfer 321 * then trigger/enable for this transfer. 322 * 323 * If we borrowed a wake TCS for an active-only transfer we'll also call 324 * this function with "trigger=false" to just do the un-trigger/disable 325 * before using the TCS for wake purposes again. 326 * 327 * Note that the AP is only in charge of triggering active-only transfers. 328 * The AP never triggers sleep/wake values using this function. 329 */ 330 static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger) 331 { 332 u32 enable; 333 334 /* 335 * HW req: Clear the DRV_CONTROL and enable TCS again 336 * While clearing ensure that the AMC mode trigger is cleared 337 * and then the mode enable is cleared. 338 */ 339 enable = read_tcs_reg(drv, RSC_DRV_CONTROL, tcs_id); 340 enable &= ~TCS_AMC_MODE_TRIGGER; 341 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable); 342 enable &= ~TCS_AMC_MODE_ENABLE; 343 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable); 344 345 if (trigger) { 346 /* Enable the AMC mode on the TCS and then trigger the TCS */ 347 enable = TCS_AMC_MODE_ENABLE; 348 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable); 349 enable |= TCS_AMC_MODE_TRIGGER; 350 write_tcs_reg(drv, RSC_DRV_CONTROL, tcs_id, enable); 351 } 352 } 353 354 /** 355 * enable_tcs_irq() - Enable or disable interrupts on the given TCS. 356 * @drv: The controller. 357 * @tcs_id: The global ID of this TCS. 358 * @enable: If true then enable; if false then disable 359 * 360 * We only ever call this when we borrow a wake TCS for an active-only 361 * transfer. For active-only TCSes interrupts are always left enabled. 362 */ 363 static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable) 364 { 365 u32 data; 366 367 data = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_ENABLE); 368 if (enable) 369 data |= BIT(tcs_id); 370 else 371 data &= ~BIT(tcs_id); 372 writel_relaxed(data, drv->tcs_base + RSC_DRV_IRQ_ENABLE); 373 } 374 375 /** 376 * tcs_tx_done() - TX Done interrupt handler. 377 * @irq: The IRQ number (ignored). 378 * @p: Pointer to "struct rsc_drv". 379 * 380 * Called for ACTIVE_ONLY transfers (those are the only ones we enable the 381 * IRQ for) when a transfer is done. 382 * 383 * Return: IRQ_HANDLED 384 */ 385 static irqreturn_t tcs_tx_done(int irq, void *p) 386 { 387 struct rsc_drv *drv = p; 388 int i, j, err = 0; 389 unsigned long irq_status; 390 const struct tcs_request *req; 391 struct tcs_cmd *cmd; 392 393 irq_status = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_STATUS); 394 395 for_each_set_bit(i, &irq_status, BITS_PER_TYPE(u32)) { 396 req = get_req_from_tcs(drv, i); 397 if (WARN_ON(!req)) 398 goto skip; 399 400 err = 0; 401 for (j = 0; j < req->num_cmds; j++) { 402 u32 sts; 403 404 cmd = &req->cmds[j]; 405 sts = read_tcs_cmd(drv, RSC_DRV_CMD_STATUS, i, j); 406 if (!(sts & CMD_STATUS_ISSUED) || 407 ((req->wait_for_compl || cmd->wait) && 408 !(sts & CMD_STATUS_COMPL))) { 409 pr_err("Incomplete request: %s: addr=%#x data=%#x", 410 drv->name, cmd->addr, cmd->data); 411 err = -EIO; 412 } 413 } 414 415 trace_rpmh_tx_done(drv, i, req, err); 416 417 /* 418 * If wake tcs was re-purposed for sending active 419 * votes, clear AMC trigger & enable modes and 420 * disable interrupt for this TCS 421 */ 422 if (!drv->tcs[ACTIVE_TCS].num_tcs) 423 __tcs_set_trigger(drv, i, false); 424 skip: 425 /* Reclaim the TCS */ 426 write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, i, 0); 427 writel_relaxed(BIT(i), drv->tcs_base + RSC_DRV_IRQ_CLEAR); 428 spin_lock(&drv->lock); 429 clear_bit(i, drv->tcs_in_use); 430 /* 431 * Disable interrupt for WAKE TCS to avoid being 432 * spammed with interrupts coming when the solver 433 * sends its wake votes. 434 */ 435 if (!drv->tcs[ACTIVE_TCS].num_tcs) 436 enable_tcs_irq(drv, i, false); 437 spin_unlock(&drv->lock); 438 wake_up(&drv->tcs_wait); 439 if (req) 440 rpmh_tx_done(req, err); 441 } 442 443 return IRQ_HANDLED; 444 } 445 446 /** 447 * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger. 448 * @drv: The controller. 449 * @tcs_id: The global ID of this TCS. 450 * @cmd_id: The index within the TCS to start writing. 451 * @msg: The message we want to send, which will contain several addr/data 452 * pairs to program (but few enough that they all fit in one TCS). 453 * 454 * This is used for all types of transfers (active, sleep, and wake). 455 */ 456 static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id, 457 const struct tcs_request *msg) 458 { 459 u32 msgid; 460 u32 cmd_msgid = CMD_MSGID_LEN | CMD_MSGID_WRITE; 461 u32 cmd_enable = 0; 462 struct tcs_cmd *cmd; 463 int i, j; 464 465 /* Convert all commands to RR when the request has wait_for_compl set */ 466 cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0; 467 468 for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) { 469 cmd = &msg->cmds[i]; 470 cmd_enable |= BIT(j); 471 msgid = cmd_msgid; 472 /* 473 * Additionally, if the cmd->wait is set, make the command 474 * response reqd even if the overall request was fire-n-forget. 475 */ 476 msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0; 477 478 write_tcs_cmd(drv, RSC_DRV_CMD_MSGID, tcs_id, j, msgid); 479 write_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j, cmd->addr); 480 write_tcs_cmd(drv, RSC_DRV_CMD_DATA, tcs_id, j, cmd->data); 481 trace_rpmh_send_msg(drv, tcs_id, j, msgid, cmd); 482 } 483 484 cmd_enable |= read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id); 485 write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id, cmd_enable); 486 } 487 488 /** 489 * check_for_req_inflight() - Look to see if conflicting cmds are in flight. 490 * @drv: The controller. 491 * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers. 492 * @msg: The message we want to send, which will contain several addr/data 493 * pairs to program (but few enough that they all fit in one TCS). 494 * 495 * This will walk through the TCSes in the group and check if any of them 496 * appear to be sending to addresses referenced in the message. If it finds 497 * one it'll return -EBUSY. 498 * 499 * Only for use for active-only transfers. 500 * 501 * Must be called with the drv->lock held since that protects tcs_in_use. 502 * 503 * Return: 0 if nothing in flight or -EBUSY if we should try again later. 504 * The caller must re-enable interrupts between tries since that's 505 * the only way tcs_in_use will ever be updated and the only way 506 * RSC_DRV_CMD_ENABLE will ever be cleared. 507 */ 508 static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs, 509 const struct tcs_request *msg) 510 { 511 unsigned long curr_enabled; 512 u32 addr; 513 int j, k; 514 int i = tcs->offset; 515 516 for_each_set_bit_from(i, drv->tcs_in_use, tcs->offset + tcs->num_tcs) { 517 curr_enabled = read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, i); 518 519 for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) { 520 addr = read_tcs_cmd(drv, RSC_DRV_CMD_ADDR, i, j); 521 for (k = 0; k < msg->num_cmds; k++) { 522 if (addr == msg->cmds[k].addr) 523 return -EBUSY; 524 } 525 } 526 } 527 528 return 0; 529 } 530 531 /** 532 * find_free_tcs() - Find free tcs in the given tcs_group; only for active. 533 * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if 534 * we borrowed it because there are zero active-only ones). 535 * 536 * Must be called with the drv->lock held since that protects tcs_in_use. 537 * 538 * Return: The first tcs that's free or -EBUSY if all in use. 539 */ 540 static int find_free_tcs(struct tcs_group *tcs) 541 { 542 const struct rsc_drv *drv = tcs->drv; 543 unsigned long i; 544 unsigned long max = tcs->offset + tcs->num_tcs; 545 546 i = find_next_zero_bit(drv->tcs_in_use, max, tcs->offset); 547 if (i >= max) 548 return -EBUSY; 549 550 return i; 551 } 552 553 /** 554 * claim_tcs_for_req() - Claim a tcs in the given tcs_group; only for active. 555 * @drv: The controller. 556 * @tcs: The tcs_group used for ACTIVE_ONLY transfers. 557 * @msg: The data to be sent. 558 * 559 * Claims a tcs in the given tcs_group while making sure that no existing cmd 560 * is in flight that would conflict with the one in @msg. 561 * 562 * Context: Must be called with the drv->lock held since that protects 563 * tcs_in_use. 564 * 565 * Return: The id of the claimed tcs or -EBUSY if a matching msg is in flight 566 * or the tcs_group is full. 567 */ 568 static int claim_tcs_for_req(struct rsc_drv *drv, struct tcs_group *tcs, 569 const struct tcs_request *msg) 570 { 571 int ret; 572 573 /* 574 * The h/w does not like if we send a request to the same address, 575 * when one is already in-flight or being processed. 576 */ 577 ret = check_for_req_inflight(drv, tcs, msg); 578 if (ret) 579 return ret; 580 581 return find_free_tcs(tcs); 582 } 583 584 /** 585 * rpmh_rsc_send_data() - Write / trigger active-only message. 586 * @drv: The controller. 587 * @msg: The data to be sent. 588 * 589 * NOTES: 590 * - This is only used for "ACTIVE_ONLY" since the limitations of this 591 * function don't make sense for sleep/wake cases. 592 * - To do the transfer, we will grab a whole TCS for ourselves--we don't 593 * try to share. If there are none available we'll wait indefinitely 594 * for a free one. 595 * - This function will not wait for the commands to be finished, only for 596 * data to be programmed into the RPMh. See rpmh_tx_done() which will 597 * be called when the transfer is fully complete. 598 * - This function must be called with interrupts enabled. If the hardware 599 * is busy doing someone else's transfer we need that transfer to fully 600 * finish so that we can have the hardware, and to fully finish it needs 601 * the interrupt handler to run. If the interrupts is set to run on the 602 * active CPU this can never happen if interrupts are disabled. 603 * 604 * Return: 0 on success, -EINVAL on error. 605 */ 606 int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg) 607 { 608 struct tcs_group *tcs; 609 int tcs_id; 610 unsigned long flags; 611 612 tcs = get_tcs_for_msg(drv, msg); 613 if (IS_ERR(tcs)) 614 return PTR_ERR(tcs); 615 616 spin_lock_irqsave(&drv->lock, flags); 617 618 /* Wait forever for a free tcs. It better be there eventually! */ 619 wait_event_lock_irq(drv->tcs_wait, 620 (tcs_id = claim_tcs_for_req(drv, tcs, msg)) >= 0, 621 drv->lock); 622 623 tcs->req[tcs_id - tcs->offset] = msg; 624 set_bit(tcs_id, drv->tcs_in_use); 625 if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) { 626 /* 627 * Clear previously programmed WAKE commands in selected 628 * repurposed TCS to avoid triggering them. tcs->slots will be 629 * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate() 630 */ 631 write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, tcs_id, 0); 632 enable_tcs_irq(drv, tcs_id, true); 633 } 634 spin_unlock_irqrestore(&drv->lock, flags); 635 636 /* 637 * These two can be done after the lock is released because: 638 * - We marked "tcs_in_use" under lock. 639 * - Once "tcs_in_use" has been marked nobody else could be writing 640 * to these registers until the interrupt goes off. 641 * - The interrupt can't go off until we trigger w/ the last line 642 * of __tcs_set_trigger() below. 643 */ 644 __tcs_buffer_write(drv, tcs_id, 0, msg); 645 __tcs_set_trigger(drv, tcs_id, true); 646 647 return 0; 648 } 649 650 /** 651 * find_slots() - Find a place to write the given message. 652 * @tcs: The tcs group to search. 653 * @msg: The message we want to find room for. 654 * @tcs_id: If we return 0 from the function, we return the global ID of the 655 * TCS to write to here. 656 * @cmd_id: If we return 0 from the function, we return the index of 657 * the command array of the returned TCS where the client should 658 * start writing the message. 659 * 660 * Only for use on sleep/wake TCSes since those are the only ones we maintain 661 * tcs->slots for. 662 * 663 * Return: -ENOMEM if there was no room, else 0. 664 */ 665 static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg, 666 int *tcs_id, int *cmd_id) 667 { 668 int slot, offset; 669 int i = 0; 670 671 /* Do over, until we can fit the full payload in a single TCS */ 672 do { 673 slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS, 674 i, msg->num_cmds, 0); 675 if (slot >= tcs->num_tcs * tcs->ncpt) 676 return -ENOMEM; 677 i += tcs->ncpt; 678 } while (slot + msg->num_cmds - 1 >= i); 679 680 bitmap_set(tcs->slots, slot, msg->num_cmds); 681 682 offset = slot / tcs->ncpt; 683 *tcs_id = offset + tcs->offset; 684 *cmd_id = slot % tcs->ncpt; 685 686 return 0; 687 } 688 689 /** 690 * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger. 691 * @drv: The controller. 692 * @msg: The data to be written to the controller. 693 * 694 * This should only be called for for sleep/wake state, never active-only 695 * state. 696 * 697 * The caller must ensure that no other RPMH actions are happening and the 698 * controller is idle when this function is called since it runs lockless. 699 * 700 * Return: 0 if no error; else -error. 701 */ 702 int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg) 703 { 704 struct tcs_group *tcs; 705 int tcs_id = 0, cmd_id = 0; 706 int ret; 707 708 tcs = get_tcs_for_msg(drv, msg); 709 if (IS_ERR(tcs)) 710 return PTR_ERR(tcs); 711 712 /* find the TCS id and the command in the TCS to write to */ 713 ret = find_slots(tcs, msg, &tcs_id, &cmd_id); 714 if (!ret) 715 __tcs_buffer_write(drv, tcs_id, cmd_id, msg); 716 717 return ret; 718 } 719 720 /** 721 * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy. 722 * @drv: The controller 723 * 724 * Checks if any of the AMCs are busy in handling ACTIVE sets. 725 * This is called from the last cpu powering down before flushing 726 * SLEEP and WAKE sets. If AMCs are busy, controller can not enter 727 * power collapse, so deny from the last cpu's pm notification. 728 * 729 * Context: Must be called with the drv->lock held. 730 * 731 * Return: 732 * * False - AMCs are idle 733 * * True - AMCs are busy 734 */ 735 static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv) 736 { 737 unsigned long set; 738 const struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS]; 739 unsigned long max; 740 741 /* 742 * If we made an active request on a RSC that does not have a 743 * dedicated TCS for active state use, then re-purposed wake TCSes 744 * should be checked for not busy, because we used wake TCSes for 745 * active requests in this case. 746 */ 747 if (!tcs->num_tcs) 748 tcs = &drv->tcs[WAKE_TCS]; 749 750 max = tcs->offset + tcs->num_tcs; 751 set = find_next_bit(drv->tcs_in_use, max, tcs->offset); 752 753 return set < max; 754 } 755 756 /** 757 * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy. 758 * @nfb: Pointer to the notifier block in struct rsc_drv. 759 * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT. 760 * @v: Unused 761 * 762 * This function is given to cpu_pm_register_notifier so we can be informed 763 * about when CPUs go down. When all CPUs go down we know no more active 764 * transfers will be started so we write sleep/wake sets. This function gets 765 * called from cpuidle code paths and also at system suspend time. 766 * 767 * If its last CPU going down and AMCs are not busy then writes cached sleep 768 * and wake messages to TCSes. The firmware then takes care of triggering 769 * them when entering deepest low power modes. 770 * 771 * Return: See cpu_pm_register_notifier() 772 */ 773 static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb, 774 unsigned long action, void *v) 775 { 776 struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm); 777 int ret = NOTIFY_OK; 778 int cpus_in_pm; 779 780 switch (action) { 781 case CPU_PM_ENTER: 782 cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm); 783 /* 784 * NOTE: comments for num_online_cpus() point out that it's 785 * only a snapshot so we need to be careful. It should be OK 786 * for us to use, though. It's important for us not to miss 787 * if we're the last CPU going down so it would only be a 788 * problem if a CPU went offline right after we did the check 789 * AND that CPU was not idle AND that CPU was the last non-idle 790 * CPU. That can't happen. CPUs would have to come out of idle 791 * before the CPU could go offline. 792 */ 793 if (cpus_in_pm < num_online_cpus()) 794 return NOTIFY_OK; 795 break; 796 case CPU_PM_ENTER_FAILED: 797 case CPU_PM_EXIT: 798 atomic_dec(&drv->cpus_in_pm); 799 return NOTIFY_OK; 800 default: 801 return NOTIFY_DONE; 802 } 803 804 /* 805 * It's likely we're on the last CPU. Grab the drv->lock and write 806 * out the sleep/wake commands to RPMH hardware. Grabbing the lock 807 * means that if we race with another CPU coming up we are still 808 * guaranteed to be safe. If another CPU came up just after we checked 809 * and has grabbed the lock or started an active transfer then we'll 810 * notice we're busy and abort. If another CPU comes up after we start 811 * flushing it will be blocked from starting an active transfer until 812 * we're done flushing. If another CPU starts an active transfer after 813 * we release the lock we're still OK because we're no longer the last 814 * CPU. 815 */ 816 if (spin_trylock(&drv->lock)) { 817 if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client)) 818 ret = NOTIFY_BAD; 819 spin_unlock(&drv->lock); 820 } else { 821 /* Another CPU must be up */ 822 return NOTIFY_OK; 823 } 824 825 if (ret == NOTIFY_BAD) { 826 /* Double-check if we're here because someone else is up */ 827 if (cpus_in_pm < num_online_cpus()) 828 ret = NOTIFY_OK; 829 else 830 /* We won't be called w/ CPU_PM_ENTER_FAILED */ 831 atomic_dec(&drv->cpus_in_pm); 832 } 833 834 return ret; 835 } 836 837 static int rpmh_probe_tcs_config(struct platform_device *pdev, 838 struct rsc_drv *drv, void __iomem *base) 839 { 840 struct tcs_type_config { 841 u32 type; 842 u32 n; 843 } tcs_cfg[TCS_TYPE_NR] = { { 0 } }; 844 struct device_node *dn = pdev->dev.of_node; 845 u32 config, max_tcs, ncpt, offset; 846 int i, ret, n, st = 0; 847 struct tcs_group *tcs; 848 849 ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset); 850 if (ret) 851 return ret; 852 drv->tcs_base = base + offset; 853 854 config = readl_relaxed(base + DRV_PRNT_CHLD_CONFIG); 855 856 max_tcs = config; 857 max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id); 858 max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id); 859 860 ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT); 861 ncpt = ncpt >> DRV_NCPT_SHIFT; 862 863 n = of_property_count_u32_elems(dn, "qcom,tcs-config"); 864 if (n != 2 * TCS_TYPE_NR) 865 return -EINVAL; 866 867 for (i = 0; i < TCS_TYPE_NR; i++) { 868 ret = of_property_read_u32_index(dn, "qcom,tcs-config", 869 i * 2, &tcs_cfg[i].type); 870 if (ret) 871 return ret; 872 if (tcs_cfg[i].type >= TCS_TYPE_NR) 873 return -EINVAL; 874 875 ret = of_property_read_u32_index(dn, "qcom,tcs-config", 876 i * 2 + 1, &tcs_cfg[i].n); 877 if (ret) 878 return ret; 879 if (tcs_cfg[i].n > MAX_TCS_PER_TYPE) 880 return -EINVAL; 881 } 882 883 for (i = 0; i < TCS_TYPE_NR; i++) { 884 tcs = &drv->tcs[tcs_cfg[i].type]; 885 if (tcs->drv) 886 return -EINVAL; 887 tcs->drv = drv; 888 tcs->type = tcs_cfg[i].type; 889 tcs->num_tcs = tcs_cfg[i].n; 890 tcs->ncpt = ncpt; 891 892 if (!tcs->num_tcs || tcs->type == CONTROL_TCS) 893 continue; 894 895 if (st + tcs->num_tcs > max_tcs || 896 st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask)) 897 return -EINVAL; 898 899 tcs->mask = ((1 << tcs->num_tcs) - 1) << st; 900 tcs->offset = st; 901 st += tcs->num_tcs; 902 } 903 904 drv->num_tcs = st; 905 906 return 0; 907 } 908 909 static int rpmh_rsc_probe(struct platform_device *pdev) 910 { 911 struct device_node *dn = pdev->dev.of_node; 912 struct rsc_drv *drv; 913 char drv_id[10] = {0}; 914 int ret, irq; 915 u32 solver_config; 916 void __iomem *base; 917 918 /* 919 * Even though RPMh doesn't directly use cmd-db, all of its children 920 * do. To avoid adding this check to our children we'll do it now. 921 */ 922 ret = cmd_db_ready(); 923 if (ret) { 924 if (ret != -EPROBE_DEFER) 925 dev_err(&pdev->dev, "Command DB not available (%d)\n", 926 ret); 927 return ret; 928 } 929 930 drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL); 931 if (!drv) 932 return -ENOMEM; 933 934 ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id); 935 if (ret) 936 return ret; 937 938 drv->name = of_get_property(dn, "label", NULL); 939 if (!drv->name) 940 drv->name = dev_name(&pdev->dev); 941 942 snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id); 943 base = devm_platform_ioremap_resource_byname(pdev, drv_id); 944 if (IS_ERR(base)) 945 return PTR_ERR(base); 946 947 ret = rpmh_probe_tcs_config(pdev, drv, base); 948 if (ret) 949 return ret; 950 951 spin_lock_init(&drv->lock); 952 init_waitqueue_head(&drv->tcs_wait); 953 bitmap_zero(drv->tcs_in_use, MAX_TCS_NR); 954 955 irq = platform_get_irq(pdev, drv->id); 956 if (irq < 0) 957 return irq; 958 959 ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done, 960 IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND, 961 drv->name, drv); 962 if (ret) 963 return ret; 964 965 /* 966 * CPU PM notification are not required for controllers that support 967 * 'HW solver' mode where they can be in autonomous mode executing low 968 * power mode to power down. 969 */ 970 solver_config = readl_relaxed(base + DRV_SOLVER_CONFIG); 971 solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT; 972 solver_config = solver_config >> DRV_HW_SOLVER_SHIFT; 973 if (!solver_config) { 974 drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback; 975 cpu_pm_register_notifier(&drv->rsc_pm); 976 } 977 978 /* Enable the active TCS to send requests immediately */ 979 writel_relaxed(drv->tcs[ACTIVE_TCS].mask, 980 drv->tcs_base + RSC_DRV_IRQ_ENABLE); 981 982 spin_lock_init(&drv->client.cache_lock); 983 INIT_LIST_HEAD(&drv->client.cache); 984 INIT_LIST_HEAD(&drv->client.batch_cache); 985 986 dev_set_drvdata(&pdev->dev, drv); 987 988 return devm_of_platform_populate(&pdev->dev); 989 } 990 991 static const struct of_device_id rpmh_drv_match[] = { 992 { .compatible = "qcom,rpmh-rsc", }, 993 { } 994 }; 995 MODULE_DEVICE_TABLE(of, rpmh_drv_match); 996 997 static struct platform_driver rpmh_driver = { 998 .probe = rpmh_rsc_probe, 999 .driver = { 1000 .name = "rpmh", 1001 .of_match_table = rpmh_drv_match, 1002 .suppress_bind_attrs = true, 1003 }, 1004 }; 1005 1006 static int __init rpmh_driver_init(void) 1007 { 1008 return platform_driver_register(&rpmh_driver); 1009 } 1010 arch_initcall(rpmh_driver_init); 1011 1012 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. RPMh Driver"); 1013 MODULE_LICENSE("GPL v2"); 1014