1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. 4 */ 5 6 #define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME 7 8 #include <linux/atomic.h> 9 #include <linux/cpu_pm.h> 10 #include <linux/delay.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/iopoll.h> 14 #include <linux/kernel.h> 15 #include <linux/list.h> 16 #include <linux/of.h> 17 #include <linux/of_irq.h> 18 #include <linux/of_platform.h> 19 #include <linux/platform_device.h> 20 #include <linux/slab.h> 21 #include <linux/spinlock.h> 22 23 #include <soc/qcom/cmd-db.h> 24 #include <soc/qcom/tcs.h> 25 #include <dt-bindings/soc/qcom,rpmh-rsc.h> 26 27 #include "rpmh-internal.h" 28 29 #define CREATE_TRACE_POINTS 30 #include "trace-rpmh.h" 31 32 #define RSC_DRV_TCS_OFFSET 672 33 #define RSC_DRV_CMD_OFFSET 20 34 35 /* DRV HW Solver Configuration Information Register */ 36 #define DRV_SOLVER_CONFIG 0x04 37 #define DRV_HW_SOLVER_MASK 1 38 #define DRV_HW_SOLVER_SHIFT 24 39 40 /* DRV TCS Configuration Information Register */ 41 #define DRV_PRNT_CHLD_CONFIG 0x0C 42 #define DRV_NUM_TCS_MASK 0x3F 43 #define DRV_NUM_TCS_SHIFT 6 44 #define DRV_NCPT_MASK 0x1F 45 #define DRV_NCPT_SHIFT 27 46 47 /* Offsets for common TCS Registers, one bit per TCS */ 48 #define RSC_DRV_IRQ_ENABLE 0x00 49 #define RSC_DRV_IRQ_STATUS 0x04 50 #define RSC_DRV_IRQ_CLEAR 0x08 /* w/o; write 1 to clear */ 51 52 /* 53 * Offsets for per TCS Registers. 54 * 55 * TCSes start at 0x10 from tcs_base and are stored one after another. 56 * Multiply tcs_id by RSC_DRV_TCS_OFFSET to find a given TCS and add one 57 * of the below to find a register. 58 */ 59 #define RSC_DRV_CMD_WAIT_FOR_CMPL 0x10 /* 1 bit per command */ 60 #define RSC_DRV_CONTROL 0x14 61 #define RSC_DRV_STATUS 0x18 /* zero if tcs is busy */ 62 #define RSC_DRV_CMD_ENABLE 0x1C /* 1 bit per command */ 63 64 /* 65 * Offsets for per command in a TCS. 66 * 67 * Commands (up to 16) start at 0x30 in a TCS; multiply command index 68 * by RSC_DRV_CMD_OFFSET and add one of the below to find a register. 69 */ 70 #define RSC_DRV_CMD_MSGID 0x30 71 #define RSC_DRV_CMD_ADDR 0x34 72 #define RSC_DRV_CMD_DATA 0x38 73 #define RSC_DRV_CMD_STATUS 0x3C 74 #define RSC_DRV_CMD_RESP_DATA 0x40 75 76 #define TCS_AMC_MODE_ENABLE BIT(16) 77 #define TCS_AMC_MODE_TRIGGER BIT(24) 78 79 /* TCS CMD register bit mask */ 80 #define CMD_MSGID_LEN 8 81 #define CMD_MSGID_RESP_REQ BIT(8) 82 #define CMD_MSGID_WRITE BIT(16) 83 #define CMD_STATUS_ISSUED BIT(8) 84 #define CMD_STATUS_COMPL BIT(16) 85 86 /* 87 * Here's a high level overview of how all the registers in RPMH work 88 * together: 89 * 90 * - The main rpmh-rsc address is the base of a register space that can 91 * be used to find overall configuration of the hardware 92 * (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register 93 * space are all the TCS blocks. The offset of the TCS blocks is 94 * specified in the device tree by "qcom,tcs-offset" and used to 95 * compute tcs_base. 96 * - TCS blocks come one after another. Type, count, and order are 97 * specified by the device tree as "qcom,tcs-config". 98 * - Each TCS block has some registers, then space for up to 16 commands. 99 * Note that though address space is reserved for 16 commands, fewer 100 * might be present. See ncpt (num cmds per TCS). 101 * 102 * Here's a picture: 103 * 104 * +---------------------------------------------------+ 105 * |RSC | 106 * | ctrl | 107 * | | 108 * | Drvs: | 109 * | +-----------------------------------------------+ | 110 * | |DRV0 | | 111 * | | ctrl/config | | 112 * | | IRQ | | 113 * | | | | 114 * | | TCSes: | | 115 * | | +------------------------------------------+ | | 116 * | | |TCS0 | | | | | | | | | | | | | | | 117 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | | 118 * | | | | | | | | | | | | | | | | | | 119 * | | +------------------------------------------+ | | 120 * | | +------------------------------------------+ | | 121 * | | |TCS1 | | | | | | | | | | | | | | | 122 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | | 123 * | | | | | | | | | | | | | | | | | | 124 * | | +------------------------------------------+ | | 125 * | | +------------------------------------------+ | | 126 * | | |TCS2 | | | | | | | | | | | | | | | 127 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | | 128 * | | | | | | | | | | | | | | | | | | 129 * | | +------------------------------------------+ | | 130 * | | ...... | | 131 * | +-----------------------------------------------+ | 132 * | +-----------------------------------------------+ | 133 * | |DRV1 | | 134 * | | (same as DRV0) | | 135 * | +-----------------------------------------------+ | 136 * | ...... | 137 * +---------------------------------------------------+ 138 */ 139 140 static inline void __iomem * 141 tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id) 142 { 143 return drv->tcs_base + RSC_DRV_TCS_OFFSET * tcs_id + reg; 144 } 145 146 static inline void __iomem * 147 tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id) 148 { 149 return tcs_reg_addr(drv, reg, tcs_id) + RSC_DRV_CMD_OFFSET * cmd_id; 150 } 151 152 static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id, 153 int cmd_id) 154 { 155 return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id)); 156 } 157 158 static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id) 159 { 160 return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id)); 161 } 162 163 static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id, 164 int cmd_id, u32 data) 165 { 166 writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id)); 167 } 168 169 static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id, 170 u32 data) 171 { 172 writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id)); 173 } 174 175 static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id, 176 u32 data) 177 { 178 int i; 179 180 writel(data, tcs_reg_addr(drv, reg, tcs_id)); 181 182 /* 183 * Wait until we read back the same value. Use a counter rather than 184 * ktime for timeout since this may be called after timekeeping stops. 185 */ 186 for (i = 0; i < USEC_PER_SEC; i++) { 187 if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data) 188 return; 189 udelay(1); 190 } 191 pr_err("%s: error writing %#x to %d:%#x\n", drv->name, 192 data, tcs_id, reg); 193 } 194 195 /** 196 * tcs_is_free() - Return if a TCS is totally free. 197 * @drv: The RSC controller. 198 * @tcs_id: The global ID of this TCS. 199 * 200 * Returns true if nobody has claimed this TCS (by setting tcs_in_use). 201 * 202 * Context: Must be called with the drv->lock held. 203 * 204 * Return: true if the given TCS is free. 205 */ 206 static bool tcs_is_free(struct rsc_drv *drv, int tcs_id) 207 { 208 return !test_bit(tcs_id, drv->tcs_in_use); 209 } 210 211 /** 212 * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake). 213 * @drv: The RSC controller. 214 * @type: SLEEP_TCS or WAKE_TCS 215 * 216 * This will clear the "slots" variable of the given tcs_group and also 217 * tell the hardware to forget about all entries. 218 * 219 * The caller must ensure that no other RPMH actions are happening when this 220 * function is called, since otherwise the device may immediately become 221 * used again even before this function exits. 222 */ 223 static void tcs_invalidate(struct rsc_drv *drv, int type) 224 { 225 int m; 226 struct tcs_group *tcs = &drv->tcs[type]; 227 228 /* Caller ensures nobody else is running so no lock */ 229 if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS)) 230 return; 231 232 for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) { 233 write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, m, 0); 234 write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, m, 0); 235 } 236 bitmap_zero(tcs->slots, MAX_TCS_SLOTS); 237 } 238 239 /** 240 * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes. 241 * @drv: The RSC controller. 242 * 243 * The caller must ensure that no other RPMH actions are happening when this 244 * function is called, since otherwise the device may immediately become 245 * used again even before this function exits. 246 */ 247 void rpmh_rsc_invalidate(struct rsc_drv *drv) 248 { 249 tcs_invalidate(drv, SLEEP_TCS); 250 tcs_invalidate(drv, WAKE_TCS); 251 } 252 253 /** 254 * get_tcs_for_msg() - Get the tcs_group used to send the given message. 255 * @drv: The RSC controller. 256 * @msg: The message we want to send. 257 * 258 * This is normally pretty straightforward except if we are trying to send 259 * an ACTIVE_ONLY message but don't have any active_only TCSes. 260 * 261 * Return: A pointer to a tcs_group or an ERR_PTR. 262 */ 263 static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv, 264 const struct tcs_request *msg) 265 { 266 int type; 267 struct tcs_group *tcs; 268 269 switch (msg->state) { 270 case RPMH_ACTIVE_ONLY_STATE: 271 type = ACTIVE_TCS; 272 break; 273 case RPMH_WAKE_ONLY_STATE: 274 type = WAKE_TCS; 275 break; 276 case RPMH_SLEEP_STATE: 277 type = SLEEP_TCS; 278 break; 279 default: 280 return ERR_PTR(-EINVAL); 281 } 282 283 /* 284 * If we are making an active request on a RSC that does not have a 285 * dedicated TCS for active state use, then re-purpose a wake TCS to 286 * send active votes. This is safe because we ensure any active-only 287 * transfers have finished before we use it (maybe by running from 288 * the last CPU in PM code). 289 */ 290 tcs = &drv->tcs[type]; 291 if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs) 292 tcs = &drv->tcs[WAKE_TCS]; 293 294 return tcs; 295 } 296 297 /** 298 * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS. 299 * @drv: The RSC controller. 300 * @tcs_id: The global ID of this TCS. 301 * 302 * For ACTIVE_ONLY transfers we want to call back into the client when the 303 * transfer finishes. To do this we need the "request" that the client 304 * originally provided us. This function grabs the request that we stashed 305 * when we started the transfer. 306 * 307 * This only makes sense for ACTIVE_ONLY transfers since those are the only 308 * ones we track sending (the only ones we enable interrupts for and the only 309 * ones we call back to the client for). 310 * 311 * Return: The stashed request. 312 */ 313 static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv, 314 int tcs_id) 315 { 316 struct tcs_group *tcs; 317 int i; 318 319 for (i = 0; i < TCS_TYPE_NR; i++) { 320 tcs = &drv->tcs[i]; 321 if (tcs->mask & BIT(tcs_id)) 322 return tcs->req[tcs_id - tcs->offset]; 323 } 324 325 return NULL; 326 } 327 328 /** 329 * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS 330 * @drv: The controller. 331 * @tcs_id: The global ID of this TCS. 332 * @trigger: If true then untrigger/retrigger. If false then just untrigger. 333 * 334 * In the normal case we only ever call with "trigger=true" to start a 335 * transfer. That will un-trigger/disable the TCS from the last transfer 336 * then trigger/enable for this transfer. 337 * 338 * If we borrowed a wake TCS for an active-only transfer we'll also call 339 * this function with "trigger=false" to just do the un-trigger/disable 340 * before using the TCS for wake purposes again. 341 * 342 * Note that the AP is only in charge of triggering active-only transfers. 343 * The AP never triggers sleep/wake values using this function. 344 */ 345 static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger) 346 { 347 u32 enable; 348 349 /* 350 * HW req: Clear the DRV_CONTROL and enable TCS again 351 * While clearing ensure that the AMC mode trigger is cleared 352 * and then the mode enable is cleared. 353 */ 354 enable = read_tcs_reg(drv, RSC_DRV_CONTROL, tcs_id); 355 enable &= ~TCS_AMC_MODE_TRIGGER; 356 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable); 357 enable &= ~TCS_AMC_MODE_ENABLE; 358 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable); 359 360 if (trigger) { 361 /* Enable the AMC mode on the TCS and then trigger the TCS */ 362 enable = TCS_AMC_MODE_ENABLE; 363 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable); 364 enable |= TCS_AMC_MODE_TRIGGER; 365 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable); 366 } 367 } 368 369 /** 370 * enable_tcs_irq() - Enable or disable interrupts on the given TCS. 371 * @drv: The controller. 372 * @tcs_id: The global ID of this TCS. 373 * @enable: If true then enable; if false then disable 374 * 375 * We only ever call this when we borrow a wake TCS for an active-only 376 * transfer. For active-only TCSes interrupts are always left enabled. 377 */ 378 static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable) 379 { 380 u32 data; 381 382 data = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_ENABLE); 383 if (enable) 384 data |= BIT(tcs_id); 385 else 386 data &= ~BIT(tcs_id); 387 writel_relaxed(data, drv->tcs_base + RSC_DRV_IRQ_ENABLE); 388 } 389 390 /** 391 * tcs_tx_done() - TX Done interrupt handler. 392 * @irq: The IRQ number (ignored). 393 * @p: Pointer to "struct rsc_drv". 394 * 395 * Called for ACTIVE_ONLY transfers (those are the only ones we enable the 396 * IRQ for) when a transfer is done. 397 * 398 * Return: IRQ_HANDLED 399 */ 400 static irqreturn_t tcs_tx_done(int irq, void *p) 401 { 402 struct rsc_drv *drv = p; 403 int i, j, err = 0; 404 unsigned long irq_status; 405 const struct tcs_request *req; 406 struct tcs_cmd *cmd; 407 408 irq_status = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_STATUS); 409 410 for_each_set_bit(i, &irq_status, BITS_PER_LONG) { 411 req = get_req_from_tcs(drv, i); 412 if (!req) { 413 WARN_ON(1); 414 goto skip; 415 } 416 417 err = 0; 418 for (j = 0; j < req->num_cmds; j++) { 419 u32 sts; 420 421 cmd = &req->cmds[j]; 422 sts = read_tcs_cmd(drv, RSC_DRV_CMD_STATUS, i, j); 423 if (!(sts & CMD_STATUS_ISSUED) || 424 ((req->wait_for_compl || cmd->wait) && 425 !(sts & CMD_STATUS_COMPL))) { 426 pr_err("Incomplete request: %s: addr=%#x data=%#x", 427 drv->name, cmd->addr, cmd->data); 428 err = -EIO; 429 } 430 } 431 432 trace_rpmh_tx_done(drv, i, req, err); 433 434 /* 435 * If wake tcs was re-purposed for sending active 436 * votes, clear AMC trigger & enable modes and 437 * disable interrupt for this TCS 438 */ 439 if (!drv->tcs[ACTIVE_TCS].num_tcs) 440 __tcs_set_trigger(drv, i, false); 441 skip: 442 /* Reclaim the TCS */ 443 write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, i, 0); 444 write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, i, 0); 445 writel_relaxed(BIT(i), drv->tcs_base + RSC_DRV_IRQ_CLEAR); 446 spin_lock(&drv->lock); 447 clear_bit(i, drv->tcs_in_use); 448 /* 449 * Disable interrupt for WAKE TCS to avoid being 450 * spammed with interrupts coming when the solver 451 * sends its wake votes. 452 */ 453 if (!drv->tcs[ACTIVE_TCS].num_tcs) 454 enable_tcs_irq(drv, i, false); 455 spin_unlock(&drv->lock); 456 if (req) 457 rpmh_tx_done(req, err); 458 } 459 460 return IRQ_HANDLED; 461 } 462 463 /** 464 * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger. 465 * @drv: The controller. 466 * @tcs_id: The global ID of this TCS. 467 * @cmd_id: The index within the TCS to start writing. 468 * @msg: The message we want to send, which will contain several addr/data 469 * pairs to program (but few enough that they all fit in one TCS). 470 * 471 * This is used for all types of transfers (active, sleep, and wake). 472 */ 473 static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id, 474 const struct tcs_request *msg) 475 { 476 u32 msgid, cmd_msgid; 477 u32 cmd_enable = 0; 478 u32 cmd_complete; 479 struct tcs_cmd *cmd; 480 int i, j; 481 482 cmd_msgid = CMD_MSGID_LEN; 483 cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0; 484 cmd_msgid |= CMD_MSGID_WRITE; 485 486 cmd_complete = read_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id); 487 488 for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) { 489 cmd = &msg->cmds[i]; 490 cmd_enable |= BIT(j); 491 cmd_complete |= cmd->wait << j; 492 msgid = cmd_msgid; 493 msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0; 494 495 write_tcs_cmd(drv, RSC_DRV_CMD_MSGID, tcs_id, j, msgid); 496 write_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j, cmd->addr); 497 write_tcs_cmd(drv, RSC_DRV_CMD_DATA, tcs_id, j, cmd->data); 498 trace_rpmh_send_msg_rcuidle(drv, tcs_id, j, msgid, cmd); 499 } 500 501 write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, cmd_complete); 502 cmd_enable |= read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id); 503 write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id, cmd_enable); 504 } 505 506 /** 507 * check_for_req_inflight() - Look to see if conflicting cmds are in flight. 508 * @drv: The controller. 509 * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers. 510 * @msg: The message we want to send, which will contain several addr/data 511 * pairs to program (but few enough that they all fit in one TCS). 512 * 513 * This will walk through the TCSes in the group and check if any of them 514 * appear to be sending to addresses referenced in the message. If it finds 515 * one it'll return -EBUSY. 516 * 517 * Only for use for active-only transfers. 518 * 519 * Must be called with the drv->lock held since that protects tcs_in_use. 520 * 521 * Return: 0 if nothing in flight or -EBUSY if we should try again later. 522 * The caller must re-enable interrupts between tries since that's 523 * the only way tcs_is_free() will ever return true and the only way 524 * RSC_DRV_CMD_ENABLE will ever be cleared. 525 */ 526 static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs, 527 const struct tcs_request *msg) 528 { 529 unsigned long curr_enabled; 530 u32 addr; 531 int i, j, k; 532 int tcs_id = tcs->offset; 533 534 for (i = 0; i < tcs->num_tcs; i++, tcs_id++) { 535 if (tcs_is_free(drv, tcs_id)) 536 continue; 537 538 curr_enabled = read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id); 539 540 for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) { 541 addr = read_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j); 542 for (k = 0; k < msg->num_cmds; k++) { 543 if (addr == msg->cmds[k].addr) 544 return -EBUSY; 545 } 546 } 547 } 548 549 return 0; 550 } 551 552 /** 553 * find_free_tcs() - Find free tcs in the given tcs_group; only for active. 554 * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if 555 * we borrowed it because there are zero active-only ones). 556 * 557 * Must be called with the drv->lock held since that protects tcs_in_use. 558 * 559 * Return: The first tcs that's free. 560 */ 561 static int find_free_tcs(struct tcs_group *tcs) 562 { 563 int i; 564 565 for (i = 0; i < tcs->num_tcs; i++) { 566 if (tcs_is_free(tcs->drv, tcs->offset + i)) 567 return tcs->offset + i; 568 } 569 570 return -EBUSY; 571 } 572 573 /** 574 * tcs_write() - Store messages into a TCS right now, or return -EBUSY. 575 * @drv: The controller. 576 * @msg: The data to be sent. 577 * 578 * Grabs a TCS for ACTIVE_ONLY transfers and writes the messages to it. 579 * 580 * If there are no free TCSes for ACTIVE_ONLY transfers or if a command for 581 * the same address is already transferring returns -EBUSY which means the 582 * client should retry shortly. 583 * 584 * Return: 0 on success, -EBUSY if client should retry, or an error. 585 * Client should have interrupts enabled for a bit before retrying. 586 */ 587 static int tcs_write(struct rsc_drv *drv, const struct tcs_request *msg) 588 { 589 struct tcs_group *tcs; 590 int tcs_id; 591 unsigned long flags; 592 int ret; 593 594 tcs = get_tcs_for_msg(drv, msg); 595 if (IS_ERR(tcs)) 596 return PTR_ERR(tcs); 597 598 spin_lock_irqsave(&drv->lock, flags); 599 /* 600 * The h/w does not like if we send a request to the same address, 601 * when one is already in-flight or being processed. 602 */ 603 ret = check_for_req_inflight(drv, tcs, msg); 604 if (ret) 605 goto unlock; 606 607 ret = find_free_tcs(tcs); 608 if (ret < 0) 609 goto unlock; 610 tcs_id = ret; 611 612 tcs->req[tcs_id - tcs->offset] = msg; 613 set_bit(tcs_id, drv->tcs_in_use); 614 if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) { 615 /* 616 * Clear previously programmed WAKE commands in selected 617 * repurposed TCS to avoid triggering them. tcs->slots will be 618 * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate() 619 */ 620 write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, tcs_id, 0); 621 write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, 0); 622 enable_tcs_irq(drv, tcs_id, true); 623 } 624 spin_unlock_irqrestore(&drv->lock, flags); 625 626 /* 627 * These two can be done after the lock is released because: 628 * - We marked "tcs_in_use" under lock. 629 * - Once "tcs_in_use" has been marked nobody else could be writing 630 * to these registers until the interrupt goes off. 631 * - The interrupt can't go off until we trigger w/ the last line 632 * of __tcs_set_trigger() below. 633 */ 634 __tcs_buffer_write(drv, tcs_id, 0, msg); 635 __tcs_set_trigger(drv, tcs_id, true); 636 637 return 0; 638 unlock: 639 spin_unlock_irqrestore(&drv->lock, flags); 640 return ret; 641 } 642 643 /** 644 * rpmh_rsc_send_data() - Write / trigger active-only message. 645 * @drv: The controller. 646 * @msg: The data to be sent. 647 * 648 * NOTES: 649 * - This is only used for "ACTIVE_ONLY" since the limitations of this 650 * function don't make sense for sleep/wake cases. 651 * - To do the transfer, we will grab a whole TCS for ourselves--we don't 652 * try to share. If there are none available we'll wait indefinitely 653 * for a free one. 654 * - This function will not wait for the commands to be finished, only for 655 * data to be programmed into the RPMh. See rpmh_tx_done() which will 656 * be called when the transfer is fully complete. 657 * - This function must be called with interrupts enabled. If the hardware 658 * is busy doing someone else's transfer we need that transfer to fully 659 * finish so that we can have the hardware, and to fully finish it needs 660 * the interrupt handler to run. If the interrupts is set to run on the 661 * active CPU this can never happen if interrupts are disabled. 662 * 663 * Return: 0 on success, -EINVAL on error. 664 */ 665 int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg) 666 { 667 int ret; 668 669 do { 670 ret = tcs_write(drv, msg); 671 if (ret == -EBUSY) { 672 pr_info_ratelimited("TCS Busy, retrying RPMH message send: addr=%#x\n", 673 msg->cmds[0].addr); 674 udelay(10); 675 } 676 } while (ret == -EBUSY); 677 678 return ret; 679 } 680 681 /** 682 * find_slots() - Find a place to write the given message. 683 * @tcs: The tcs group to search. 684 * @msg: The message we want to find room for. 685 * @tcs_id: If we return 0 from the function, we return the global ID of the 686 * TCS to write to here. 687 * @cmd_id: If we return 0 from the function, we return the index of 688 * the command array of the returned TCS where the client should 689 * start writing the message. 690 * 691 * Only for use on sleep/wake TCSes since those are the only ones we maintain 692 * tcs->slots for. 693 * 694 * Return: -ENOMEM if there was no room, else 0. 695 */ 696 static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg, 697 int *tcs_id, int *cmd_id) 698 { 699 int slot, offset; 700 int i = 0; 701 702 /* Do over, until we can fit the full payload in a single TCS */ 703 do { 704 slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS, 705 i, msg->num_cmds, 0); 706 if (slot >= tcs->num_tcs * tcs->ncpt) 707 return -ENOMEM; 708 i += tcs->ncpt; 709 } while (slot + msg->num_cmds - 1 >= i); 710 711 bitmap_set(tcs->slots, slot, msg->num_cmds); 712 713 offset = slot / tcs->ncpt; 714 *tcs_id = offset + tcs->offset; 715 *cmd_id = slot % tcs->ncpt; 716 717 return 0; 718 } 719 720 /** 721 * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger. 722 * @drv: The controller. 723 * @msg: The data to be written to the controller. 724 * 725 * This should only be called for for sleep/wake state, never active-only 726 * state. 727 * 728 * The caller must ensure that no other RPMH actions are happening and the 729 * controller is idle when this function is called since it runs lockless. 730 * 731 * Return: 0 if no error; else -error. 732 */ 733 int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg) 734 { 735 struct tcs_group *tcs; 736 int tcs_id = 0, cmd_id = 0; 737 int ret; 738 739 tcs = get_tcs_for_msg(drv, msg); 740 if (IS_ERR(tcs)) 741 return PTR_ERR(tcs); 742 743 /* find the TCS id and the command in the TCS to write to */ 744 ret = find_slots(tcs, msg, &tcs_id, &cmd_id); 745 if (!ret) 746 __tcs_buffer_write(drv, tcs_id, cmd_id, msg); 747 748 return ret; 749 } 750 751 /** 752 * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy. 753 * @drv: The controller 754 * 755 * Checks if any of the AMCs are busy in handling ACTIVE sets. 756 * This is called from the last cpu powering down before flushing 757 * SLEEP and WAKE sets. If AMCs are busy, controller can not enter 758 * power collapse, so deny from the last cpu's pm notification. 759 * 760 * Context: Must be called with the drv->lock held. 761 * 762 * Return: 763 * * False - AMCs are idle 764 * * True - AMCs are busy 765 */ 766 static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv) 767 { 768 int m; 769 struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS]; 770 771 /* 772 * If we made an active request on a RSC that does not have a 773 * dedicated TCS for active state use, then re-purposed wake TCSes 774 * should be checked for not busy, because we used wake TCSes for 775 * active requests in this case. 776 */ 777 if (!tcs->num_tcs) 778 tcs = &drv->tcs[WAKE_TCS]; 779 780 for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) { 781 if (!tcs_is_free(drv, m)) 782 return true; 783 } 784 785 return false; 786 } 787 788 /** 789 * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy. 790 * @nfb: Pointer to the notifier block in struct rsc_drv. 791 * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT. 792 * @v: Unused 793 * 794 * This function is given to cpu_pm_register_notifier so we can be informed 795 * about when CPUs go down. When all CPUs go down we know no more active 796 * transfers will be started so we write sleep/wake sets. This function gets 797 * called from cpuidle code paths and also at system suspend time. 798 * 799 * If its last CPU going down and AMCs are not busy then writes cached sleep 800 * and wake messages to TCSes. The firmware then takes care of triggering 801 * them when entering deepest low power modes. 802 * 803 * Return: See cpu_pm_register_notifier() 804 */ 805 static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb, 806 unsigned long action, void *v) 807 { 808 struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm); 809 int ret = NOTIFY_OK; 810 int cpus_in_pm; 811 812 switch (action) { 813 case CPU_PM_ENTER: 814 cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm); 815 /* 816 * NOTE: comments for num_online_cpus() point out that it's 817 * only a snapshot so we need to be careful. It should be OK 818 * for us to use, though. It's important for us not to miss 819 * if we're the last CPU going down so it would only be a 820 * problem if a CPU went offline right after we did the check 821 * AND that CPU was not idle AND that CPU was the last non-idle 822 * CPU. That can't happen. CPUs would have to come out of idle 823 * before the CPU could go offline. 824 */ 825 if (cpus_in_pm < num_online_cpus()) 826 return NOTIFY_OK; 827 break; 828 case CPU_PM_ENTER_FAILED: 829 case CPU_PM_EXIT: 830 atomic_dec(&drv->cpus_in_pm); 831 return NOTIFY_OK; 832 default: 833 return NOTIFY_DONE; 834 } 835 836 /* 837 * It's likely we're on the last CPU. Grab the drv->lock and write 838 * out the sleep/wake commands to RPMH hardware. Grabbing the lock 839 * means that if we race with another CPU coming up we are still 840 * guaranteed to be safe. If another CPU came up just after we checked 841 * and has grabbed the lock or started an active transfer then we'll 842 * notice we're busy and abort. If another CPU comes up after we start 843 * flushing it will be blocked from starting an active transfer until 844 * we're done flushing. If another CPU starts an active transfer after 845 * we release the lock we're still OK because we're no longer the last 846 * CPU. 847 */ 848 if (spin_trylock(&drv->lock)) { 849 if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client)) 850 ret = NOTIFY_BAD; 851 spin_unlock(&drv->lock); 852 } else { 853 /* Another CPU must be up */ 854 return NOTIFY_OK; 855 } 856 857 if (ret == NOTIFY_BAD) { 858 /* Double-check if we're here because someone else is up */ 859 if (cpus_in_pm < num_online_cpus()) 860 ret = NOTIFY_OK; 861 else 862 /* We won't be called w/ CPU_PM_ENTER_FAILED */ 863 atomic_dec(&drv->cpus_in_pm); 864 } 865 866 return ret; 867 } 868 869 static int rpmh_probe_tcs_config(struct platform_device *pdev, 870 struct rsc_drv *drv, void __iomem *base) 871 { 872 struct tcs_type_config { 873 u32 type; 874 u32 n; 875 } tcs_cfg[TCS_TYPE_NR] = { { 0 } }; 876 struct device_node *dn = pdev->dev.of_node; 877 u32 config, max_tcs, ncpt, offset; 878 int i, ret, n, st = 0; 879 struct tcs_group *tcs; 880 881 ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset); 882 if (ret) 883 return ret; 884 drv->tcs_base = base + offset; 885 886 config = readl_relaxed(base + DRV_PRNT_CHLD_CONFIG); 887 888 max_tcs = config; 889 max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id); 890 max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id); 891 892 ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT); 893 ncpt = ncpt >> DRV_NCPT_SHIFT; 894 895 n = of_property_count_u32_elems(dn, "qcom,tcs-config"); 896 if (n != 2 * TCS_TYPE_NR) 897 return -EINVAL; 898 899 for (i = 0; i < TCS_TYPE_NR; i++) { 900 ret = of_property_read_u32_index(dn, "qcom,tcs-config", 901 i * 2, &tcs_cfg[i].type); 902 if (ret) 903 return ret; 904 if (tcs_cfg[i].type >= TCS_TYPE_NR) 905 return -EINVAL; 906 907 ret = of_property_read_u32_index(dn, "qcom,tcs-config", 908 i * 2 + 1, &tcs_cfg[i].n); 909 if (ret) 910 return ret; 911 if (tcs_cfg[i].n > MAX_TCS_PER_TYPE) 912 return -EINVAL; 913 } 914 915 for (i = 0; i < TCS_TYPE_NR; i++) { 916 tcs = &drv->tcs[tcs_cfg[i].type]; 917 if (tcs->drv) 918 return -EINVAL; 919 tcs->drv = drv; 920 tcs->type = tcs_cfg[i].type; 921 tcs->num_tcs = tcs_cfg[i].n; 922 tcs->ncpt = ncpt; 923 924 if (!tcs->num_tcs || tcs->type == CONTROL_TCS) 925 continue; 926 927 if (st + tcs->num_tcs > max_tcs || 928 st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask)) 929 return -EINVAL; 930 931 tcs->mask = ((1 << tcs->num_tcs) - 1) << st; 932 tcs->offset = st; 933 st += tcs->num_tcs; 934 } 935 936 drv->num_tcs = st; 937 938 return 0; 939 } 940 941 static int rpmh_rsc_probe(struct platform_device *pdev) 942 { 943 struct device_node *dn = pdev->dev.of_node; 944 struct rsc_drv *drv; 945 struct resource *res; 946 char drv_id[10] = {0}; 947 int ret, irq; 948 u32 solver_config; 949 void __iomem *base; 950 951 /* 952 * Even though RPMh doesn't directly use cmd-db, all of its children 953 * do. To avoid adding this check to our children we'll do it now. 954 */ 955 ret = cmd_db_ready(); 956 if (ret) { 957 if (ret != -EPROBE_DEFER) 958 dev_err(&pdev->dev, "Command DB not available (%d)\n", 959 ret); 960 return ret; 961 } 962 963 drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL); 964 if (!drv) 965 return -ENOMEM; 966 967 ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id); 968 if (ret) 969 return ret; 970 971 drv->name = of_get_property(dn, "label", NULL); 972 if (!drv->name) 973 drv->name = dev_name(&pdev->dev); 974 975 snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id); 976 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, drv_id); 977 base = devm_ioremap_resource(&pdev->dev, res); 978 if (IS_ERR(base)) 979 return PTR_ERR(base); 980 981 ret = rpmh_probe_tcs_config(pdev, drv, base); 982 if (ret) 983 return ret; 984 985 spin_lock_init(&drv->lock); 986 bitmap_zero(drv->tcs_in_use, MAX_TCS_NR); 987 988 irq = platform_get_irq(pdev, drv->id); 989 if (irq < 0) 990 return irq; 991 992 ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done, 993 IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND, 994 drv->name, drv); 995 if (ret) 996 return ret; 997 998 /* 999 * CPU PM notification are not required for controllers that support 1000 * 'HW solver' mode where they can be in autonomous mode executing low 1001 * power mode to power down. 1002 */ 1003 solver_config = readl_relaxed(base + DRV_SOLVER_CONFIG); 1004 solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT; 1005 solver_config = solver_config >> DRV_HW_SOLVER_SHIFT; 1006 if (!solver_config) { 1007 drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback; 1008 cpu_pm_register_notifier(&drv->rsc_pm); 1009 } 1010 1011 /* Enable the active TCS to send requests immediately */ 1012 writel_relaxed(drv->tcs[ACTIVE_TCS].mask, 1013 drv->tcs_base + RSC_DRV_IRQ_ENABLE); 1014 1015 spin_lock_init(&drv->client.cache_lock); 1016 INIT_LIST_HEAD(&drv->client.cache); 1017 INIT_LIST_HEAD(&drv->client.batch_cache); 1018 1019 dev_set_drvdata(&pdev->dev, drv); 1020 1021 return devm_of_platform_populate(&pdev->dev); 1022 } 1023 1024 static const struct of_device_id rpmh_drv_match[] = { 1025 { .compatible = "qcom,rpmh-rsc", }, 1026 { } 1027 }; 1028 1029 static struct platform_driver rpmh_driver = { 1030 .probe = rpmh_rsc_probe, 1031 .driver = { 1032 .name = "rpmh", 1033 .of_match_table = rpmh_drv_match, 1034 .suppress_bind_attrs = true, 1035 }, 1036 }; 1037 1038 static int __init rpmh_driver_init(void) 1039 { 1040 return platform_driver_register(&rpmh_driver); 1041 } 1042 arch_initcall(rpmh_driver_init); 1043