xref: /openbmc/linux/drivers/soc/qcom/rpmh-rsc.c (revision 7e24a55b2122746c2eef192296fc84624354f895)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
4   * Copyright (c) 2023-2024, Qualcomm Innovation Center, Inc. All rights reserved.
5   */
6  
7  #define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME
8  
9  #include <linux/atomic.h>
10  #include <linux/cpu_pm.h>
11  #include <linux/delay.h>
12  #include <linux/interrupt.h>
13  #include <linux/io.h>
14  #include <linux/iopoll.h>
15  #include <linux/kernel.h>
16  #include <linux/ktime.h>
17  #include <linux/list.h>
18  #include <linux/module.h>
19  #include <linux/notifier.h>
20  #include <linux/of.h>
21  #include <linux/of_irq.h>
22  #include <linux/of_platform.h>
23  #include <linux/platform_device.h>
24  #include <linux/pm_domain.h>
25  #include <linux/pm_runtime.h>
26  #include <linux/slab.h>
27  #include <linux/spinlock.h>
28  #include <linux/wait.h>
29  
30  #include <clocksource/arm_arch_timer.h>
31  #include <soc/qcom/cmd-db.h>
32  #include <soc/qcom/tcs.h>
33  #include <dt-bindings/soc/qcom,rpmh-rsc.h>
34  
35  #include "rpmh-internal.h"
36  
37  #define CREATE_TRACE_POINTS
38  #include "trace-rpmh.h"
39  
40  
41  #define RSC_DRV_ID			0
42  
43  #define MAJOR_VER_MASK			0xFF
44  #define MAJOR_VER_SHIFT			16
45  #define MINOR_VER_MASK			0xFF
46  #define MINOR_VER_SHIFT			8
47  
48  enum {
49  	RSC_DRV_TCS_OFFSET,
50  	RSC_DRV_CMD_OFFSET,
51  	DRV_SOLVER_CONFIG,
52  	DRV_PRNT_CHLD_CONFIG,
53  	RSC_DRV_IRQ_ENABLE,
54  	RSC_DRV_IRQ_STATUS,
55  	RSC_DRV_IRQ_CLEAR,
56  	RSC_DRV_CMD_WAIT_FOR_CMPL,
57  	RSC_DRV_CONTROL,
58  	RSC_DRV_STATUS,
59  	RSC_DRV_CMD_ENABLE,
60  	RSC_DRV_CMD_MSGID,
61  	RSC_DRV_CMD_ADDR,
62  	RSC_DRV_CMD_DATA,
63  	RSC_DRV_CMD_STATUS,
64  	RSC_DRV_CMD_RESP_DATA,
65  };
66  
67  /* DRV HW Solver Configuration Information Register */
68  #define DRV_HW_SOLVER_MASK		1
69  #define DRV_HW_SOLVER_SHIFT		24
70  
71  /* DRV TCS Configuration Information Register */
72  #define DRV_NUM_TCS_MASK		0x3F
73  #define DRV_NUM_TCS_SHIFT		6
74  #define DRV_NCPT_MASK			0x1F
75  #define DRV_NCPT_SHIFT			27
76  
77  /* Offsets for CONTROL TCS Registers */
78  #define RSC_DRV_CTL_TCS_DATA_HI		0x38
79  #define RSC_DRV_CTL_TCS_DATA_HI_MASK	0xFFFFFF
80  #define RSC_DRV_CTL_TCS_DATA_HI_VALID	BIT(31)
81  #define RSC_DRV_CTL_TCS_DATA_LO		0x40
82  #define RSC_DRV_CTL_TCS_DATA_LO_MASK	0xFFFFFFFF
83  #define RSC_DRV_CTL_TCS_DATA_SIZE	32
84  
85  #define TCS_AMC_MODE_ENABLE		BIT(16)
86  #define TCS_AMC_MODE_TRIGGER		BIT(24)
87  
88  /* TCS CMD register bit mask */
89  #define CMD_MSGID_LEN			8
90  #define CMD_MSGID_RESP_REQ		BIT(8)
91  #define CMD_MSGID_WRITE			BIT(16)
92  #define CMD_STATUS_ISSUED		BIT(8)
93  #define CMD_STATUS_COMPL		BIT(16)
94  
95  /*
96   * Here's a high level overview of how all the registers in RPMH work
97   * together:
98   *
99   * - The main rpmh-rsc address is the base of a register space that can
100   *   be used to find overall configuration of the hardware
101   *   (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register
102   *   space are all the TCS blocks. The offset of the TCS blocks is
103   *   specified in the device tree by "qcom,tcs-offset" and used to
104   *   compute tcs_base.
105   * - TCS blocks come one after another. Type, count, and order are
106   *   specified by the device tree as "qcom,tcs-config".
107   * - Each TCS block has some registers, then space for up to 16 commands.
108   *   Note that though address space is reserved for 16 commands, fewer
109   *   might be present. See ncpt (num cmds per TCS).
110   *
111   * Here's a picture:
112   *
113   *  +---------------------------------------------------+
114   *  |RSC                                                |
115   *  | ctrl                                              |
116   *  |                                                   |
117   *  | Drvs:                                             |
118   *  | +-----------------------------------------------+ |
119   *  | |DRV0                                           | |
120   *  | | ctrl/config                                   | |
121   *  | | IRQ                                           | |
122   *  | |                                               | |
123   *  | | TCSes:                                        | |
124   *  | | +------------------------------------------+  | |
125   *  | | |TCS0  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
126   *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
127   *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
128   *  | | +------------------------------------------+  | |
129   *  | | +------------------------------------------+  | |
130   *  | | |TCS1  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
131   *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
132   *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
133   *  | | +------------------------------------------+  | |
134   *  | | +------------------------------------------+  | |
135   *  | | |TCS2  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
136   *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
137   *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
138   *  | | +------------------------------------------+  | |
139   *  | |                    ......                     | |
140   *  | +-----------------------------------------------+ |
141   *  | +-----------------------------------------------+ |
142   *  | |DRV1                                           | |
143   *  | | (same as DRV0)                                | |
144   *  | +-----------------------------------------------+ |
145   *  |                      ......                       |
146   *  +---------------------------------------------------+
147   */
148  
149  #define USECS_TO_CYCLES(time_usecs)			\
150  	xloops_to_cycles((time_usecs) * 0x10C7UL)
151  
xloops_to_cycles(u64 xloops)152  static inline unsigned long xloops_to_cycles(u64 xloops)
153  {
154  	return (xloops * loops_per_jiffy * HZ) >> 32;
155  }
156  
157  static u32 rpmh_rsc_reg_offset_ver_2_7[] = {
158  	[RSC_DRV_TCS_OFFSET]		= 672,
159  	[RSC_DRV_CMD_OFFSET]		= 20,
160  	[DRV_SOLVER_CONFIG]		= 0x04,
161  	[DRV_PRNT_CHLD_CONFIG]		= 0x0C,
162  	[RSC_DRV_IRQ_ENABLE]		= 0x00,
163  	[RSC_DRV_IRQ_STATUS]		= 0x04,
164  	[RSC_DRV_IRQ_CLEAR]		= 0x08,
165  	[RSC_DRV_CMD_WAIT_FOR_CMPL]	= 0x10,
166  	[RSC_DRV_CONTROL]		= 0x14,
167  	[RSC_DRV_STATUS]		= 0x18,
168  	[RSC_DRV_CMD_ENABLE]		= 0x1C,
169  	[RSC_DRV_CMD_MSGID]		= 0x30,
170  	[RSC_DRV_CMD_ADDR]		= 0x34,
171  	[RSC_DRV_CMD_DATA]		= 0x38,
172  	[RSC_DRV_CMD_STATUS]		= 0x3C,
173  	[RSC_DRV_CMD_RESP_DATA]		= 0x40,
174  };
175  
176  static u32 rpmh_rsc_reg_offset_ver_3_0[] = {
177  	[RSC_DRV_TCS_OFFSET]		= 672,
178  	[RSC_DRV_CMD_OFFSET]		= 24,
179  	[DRV_SOLVER_CONFIG]		= 0x04,
180  	[DRV_PRNT_CHLD_CONFIG]		= 0x0C,
181  	[RSC_DRV_IRQ_ENABLE]		= 0x00,
182  	[RSC_DRV_IRQ_STATUS]		= 0x04,
183  	[RSC_DRV_IRQ_CLEAR]		= 0x08,
184  	[RSC_DRV_CMD_WAIT_FOR_CMPL]	= 0x20,
185  	[RSC_DRV_CONTROL]		= 0x24,
186  	[RSC_DRV_STATUS]		= 0x28,
187  	[RSC_DRV_CMD_ENABLE]		= 0x2C,
188  	[RSC_DRV_CMD_MSGID]		= 0x34,
189  	[RSC_DRV_CMD_ADDR]		= 0x38,
190  	[RSC_DRV_CMD_DATA]		= 0x3C,
191  	[RSC_DRV_CMD_STATUS]		= 0x40,
192  	[RSC_DRV_CMD_RESP_DATA]		= 0x44,
193  };
194  
195  static inline void __iomem *
tcs_reg_addr(const struct rsc_drv * drv,int reg,int tcs_id)196  tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id)
197  {
198  	return drv->tcs_base + drv->regs[RSC_DRV_TCS_OFFSET] * tcs_id + reg;
199  }
200  
201  static inline void __iomem *
tcs_cmd_addr(const struct rsc_drv * drv,int reg,int tcs_id,int cmd_id)202  tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id)
203  {
204  	return tcs_reg_addr(drv, reg, tcs_id) + drv->regs[RSC_DRV_CMD_OFFSET] * cmd_id;
205  }
206  
read_tcs_cmd(const struct rsc_drv * drv,int reg,int tcs_id,int cmd_id)207  static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
208  			int cmd_id)
209  {
210  	return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
211  }
212  
read_tcs_reg(const struct rsc_drv * drv,int reg,int tcs_id)213  static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id)
214  {
215  	return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id));
216  }
217  
write_tcs_cmd(const struct rsc_drv * drv,int reg,int tcs_id,int cmd_id,u32 data)218  static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
219  			  int cmd_id, u32 data)
220  {
221  	writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
222  }
223  
write_tcs_reg(const struct rsc_drv * drv,int reg,int tcs_id,u32 data)224  static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id,
225  			  u32 data)
226  {
227  	writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id));
228  }
229  
write_tcs_reg_sync(const struct rsc_drv * drv,int reg,int tcs_id,u32 data)230  static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id,
231  			       u32 data)
232  {
233  	int i;
234  
235  	writel(data, tcs_reg_addr(drv, reg, tcs_id));
236  
237  	/*
238  	 * Wait until we read back the same value.  Use a counter rather than
239  	 * ktime for timeout since this may be called after timekeeping stops.
240  	 */
241  	for (i = 0; i < USEC_PER_SEC; i++) {
242  		if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data)
243  			return;
244  		udelay(1);
245  	}
246  	pr_err("%s: error writing %#x to %d:%#x\n", drv->name,
247  	       data, tcs_id, reg);
248  }
249  
250  /**
251   * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake).
252   * @drv:  The RSC controller.
253   * @type: SLEEP_TCS or WAKE_TCS
254   *
255   * This will clear the "slots" variable of the given tcs_group and also
256   * tell the hardware to forget about all entries.
257   *
258   * The caller must ensure that no other RPMH actions are happening when this
259   * function is called, since otherwise the device may immediately become
260   * used again even before this function exits.
261   */
tcs_invalidate(struct rsc_drv * drv,int type)262  static void tcs_invalidate(struct rsc_drv *drv, int type)
263  {
264  	int m;
265  	struct tcs_group *tcs = &drv->tcs[type];
266  
267  	/* Caller ensures nobody else is running so no lock */
268  	if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS))
269  		return;
270  
271  	for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++)
272  		write_tcs_reg_sync(drv, drv->regs[RSC_DRV_CMD_ENABLE], m, 0);
273  
274  	bitmap_zero(tcs->slots, MAX_TCS_SLOTS);
275  }
276  
277  /**
278   * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes.
279   * @drv: The RSC controller.
280   *
281   * The caller must ensure that no other RPMH actions are happening when this
282   * function is called, since otherwise the device may immediately become
283   * used again even before this function exits.
284   */
rpmh_rsc_invalidate(struct rsc_drv * drv)285  void rpmh_rsc_invalidate(struct rsc_drv *drv)
286  {
287  	tcs_invalidate(drv, SLEEP_TCS);
288  	tcs_invalidate(drv, WAKE_TCS);
289  }
290  
291  /**
292   * get_tcs_for_msg() - Get the tcs_group used to send the given message.
293   * @drv: The RSC controller.
294   * @msg: The message we want to send.
295   *
296   * This is normally pretty straightforward except if we are trying to send
297   * an ACTIVE_ONLY message but don't have any active_only TCSes.
298   *
299   * Return: A pointer to a tcs_group or an ERR_PTR.
300   */
get_tcs_for_msg(struct rsc_drv * drv,const struct tcs_request * msg)301  static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv,
302  					 const struct tcs_request *msg)
303  {
304  	int type;
305  	struct tcs_group *tcs;
306  
307  	switch (msg->state) {
308  	case RPMH_ACTIVE_ONLY_STATE:
309  		type = ACTIVE_TCS;
310  		break;
311  	case RPMH_WAKE_ONLY_STATE:
312  		type = WAKE_TCS;
313  		break;
314  	case RPMH_SLEEP_STATE:
315  		type = SLEEP_TCS;
316  		break;
317  	default:
318  		return ERR_PTR(-EINVAL);
319  	}
320  
321  	/*
322  	 * If we are making an active request on a RSC that does not have a
323  	 * dedicated TCS for active state use, then re-purpose a wake TCS to
324  	 * send active votes. This is safe because we ensure any active-only
325  	 * transfers have finished before we use it (maybe by running from
326  	 * the last CPU in PM code).
327  	 */
328  	tcs = &drv->tcs[type];
329  	if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs)
330  		tcs = &drv->tcs[WAKE_TCS];
331  
332  	return tcs;
333  }
334  
335  /**
336   * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS.
337   * @drv:    The RSC controller.
338   * @tcs_id: The global ID of this TCS.
339   *
340   * For ACTIVE_ONLY transfers we want to call back into the client when the
341   * transfer finishes. To do this we need the "request" that the client
342   * originally provided us. This function grabs the request that we stashed
343   * when we started the transfer.
344   *
345   * This only makes sense for ACTIVE_ONLY transfers since those are the only
346   * ones we track sending (the only ones we enable interrupts for and the only
347   * ones we call back to the client for).
348   *
349   * Return: The stashed request.
350   */
get_req_from_tcs(struct rsc_drv * drv,int tcs_id)351  static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv,
352  						  int tcs_id)
353  {
354  	struct tcs_group *tcs;
355  	int i;
356  
357  	for (i = 0; i < TCS_TYPE_NR; i++) {
358  		tcs = &drv->tcs[i];
359  		if (tcs->mask & BIT(tcs_id))
360  			return tcs->req[tcs_id - tcs->offset];
361  	}
362  
363  	return NULL;
364  }
365  
366  /**
367   * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS
368   * @drv:     The controller.
369   * @tcs_id:  The global ID of this TCS.
370   * @trigger: If true then untrigger/retrigger. If false then just untrigger.
371   *
372   * In the normal case we only ever call with "trigger=true" to start a
373   * transfer. That will un-trigger/disable the TCS from the last transfer
374   * then trigger/enable for this transfer.
375   *
376   * If we borrowed a wake TCS for an active-only transfer we'll also call
377   * this function with "trigger=false" to just do the un-trigger/disable
378   * before using the TCS for wake purposes again.
379   *
380   * Note that the AP is only in charge of triggering active-only transfers.
381   * The AP never triggers sleep/wake values using this function.
382   */
__tcs_set_trigger(struct rsc_drv * drv,int tcs_id,bool trigger)383  static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger)
384  {
385  	u32 enable;
386  	u32 reg = drv->regs[RSC_DRV_CONTROL];
387  
388  	/*
389  	 * HW req: Clear the DRV_CONTROL and enable TCS again
390  	 * While clearing ensure that the AMC mode trigger is cleared
391  	 * and then the mode enable is cleared.
392  	 */
393  	enable = read_tcs_reg(drv, reg, tcs_id);
394  	enable &= ~TCS_AMC_MODE_TRIGGER;
395  	write_tcs_reg_sync(drv, reg, tcs_id, enable);
396  	enable &= ~TCS_AMC_MODE_ENABLE;
397  	write_tcs_reg_sync(drv, reg, tcs_id, enable);
398  
399  	if (trigger) {
400  		/* Enable the AMC mode on the TCS and then trigger the TCS */
401  		enable = TCS_AMC_MODE_ENABLE;
402  		write_tcs_reg_sync(drv, reg, tcs_id, enable);
403  		enable |= TCS_AMC_MODE_TRIGGER;
404  		write_tcs_reg(drv, reg, tcs_id, enable);
405  	}
406  }
407  
408  /**
409   * enable_tcs_irq() - Enable or disable interrupts on the given TCS.
410   * @drv:     The controller.
411   * @tcs_id:  The global ID of this TCS.
412   * @enable:  If true then enable; if false then disable
413   *
414   * We only ever call this when we borrow a wake TCS for an active-only
415   * transfer. For active-only TCSes interrupts are always left enabled.
416   */
enable_tcs_irq(struct rsc_drv * drv,int tcs_id,bool enable)417  static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable)
418  {
419  	u32 data;
420  	u32 reg = drv->regs[RSC_DRV_IRQ_ENABLE];
421  
422  	data = readl_relaxed(drv->tcs_base + reg);
423  	if (enable)
424  		data |= BIT(tcs_id);
425  	else
426  		data &= ~BIT(tcs_id);
427  	writel_relaxed(data, drv->tcs_base + reg);
428  }
429  
430  /**
431   * tcs_tx_done() - TX Done interrupt handler.
432   * @irq: The IRQ number (ignored).
433   * @p:   Pointer to "struct rsc_drv".
434   *
435   * Called for ACTIVE_ONLY transfers (those are the only ones we enable the
436   * IRQ for) when a transfer is done.
437   *
438   * Return: IRQ_HANDLED
439   */
tcs_tx_done(int irq,void * p)440  static irqreturn_t tcs_tx_done(int irq, void *p)
441  {
442  	struct rsc_drv *drv = p;
443  	int i;
444  	unsigned long irq_status;
445  	const struct tcs_request *req;
446  
447  	irq_status = readl_relaxed(drv->tcs_base + drv->regs[RSC_DRV_IRQ_STATUS]);
448  
449  	for_each_set_bit(i, &irq_status, BITS_PER_TYPE(u32)) {
450  		req = get_req_from_tcs(drv, i);
451  		if (WARN_ON(!req))
452  			goto skip;
453  
454  		trace_rpmh_tx_done(drv, i, req);
455  
456  		/*
457  		 * If wake tcs was re-purposed for sending active
458  		 * votes, clear AMC trigger & enable modes and
459  		 * disable interrupt for this TCS
460  		 */
461  		if (!drv->tcs[ACTIVE_TCS].num_tcs)
462  			__tcs_set_trigger(drv, i, false);
463  skip:
464  		/* Reclaim the TCS */
465  		write_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], i, 0);
466  		writel_relaxed(BIT(i), drv->tcs_base + drv->regs[RSC_DRV_IRQ_CLEAR]);
467  		spin_lock(&drv->lock);
468  		clear_bit(i, drv->tcs_in_use);
469  		/*
470  		 * Disable interrupt for WAKE TCS to avoid being
471  		 * spammed with interrupts coming when the solver
472  		 * sends its wake votes.
473  		 */
474  		if (!drv->tcs[ACTIVE_TCS].num_tcs)
475  			enable_tcs_irq(drv, i, false);
476  		spin_unlock(&drv->lock);
477  		wake_up(&drv->tcs_wait);
478  		if (req)
479  			rpmh_tx_done(req);
480  	}
481  
482  	return IRQ_HANDLED;
483  }
484  
485  /**
486   * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger.
487   * @drv:    The controller.
488   * @tcs_id: The global ID of this TCS.
489   * @cmd_id: The index within the TCS to start writing.
490   * @msg:    The message we want to send, which will contain several addr/data
491   *          pairs to program (but few enough that they all fit in one TCS).
492   *
493   * This is used for all types of transfers (active, sleep, and wake).
494   */
__tcs_buffer_write(struct rsc_drv * drv,int tcs_id,int cmd_id,const struct tcs_request * msg)495  static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id,
496  			       const struct tcs_request *msg)
497  {
498  	u32 msgid;
499  	u32 cmd_msgid = CMD_MSGID_LEN | CMD_MSGID_WRITE;
500  	u32 cmd_enable = 0;
501  	struct tcs_cmd *cmd;
502  	int i, j;
503  
504  	/* Convert all commands to RR when the request has wait_for_compl set */
505  	cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0;
506  
507  	for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) {
508  		cmd = &msg->cmds[i];
509  		cmd_enable |= BIT(j);
510  		msgid = cmd_msgid;
511  		/*
512  		 * Additionally, if the cmd->wait is set, make the command
513  		 * response reqd even if the overall request was fire-n-forget.
514  		 */
515  		msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0;
516  
517  		write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_MSGID], tcs_id, j, msgid);
518  		write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_ADDR], tcs_id, j, cmd->addr);
519  		write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_DATA], tcs_id, j, cmd->data);
520  		trace_rpmh_send_msg(drv, tcs_id, msg->state, j, msgid, cmd);
521  	}
522  
523  	cmd_enable |= read_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id);
524  	write_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id, cmd_enable);
525  }
526  
527  /**
528   * check_for_req_inflight() - Look to see if conflicting cmds are in flight.
529   * @drv: The controller.
530   * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers.
531   * @msg: The message we want to send, which will contain several addr/data
532   *       pairs to program (but few enough that they all fit in one TCS).
533   *
534   * This will walk through the TCSes in the group and check if any of them
535   * appear to be sending to addresses referenced in the message. If it finds
536   * one it'll return -EBUSY.
537   *
538   * Only for use for active-only transfers.
539   *
540   * Must be called with the drv->lock held since that protects tcs_in_use.
541   *
542   * Return: 0 if nothing in flight or -EBUSY if we should try again later.
543   *         The caller must re-enable interrupts between tries since that's
544   *         the only way tcs_in_use will ever be updated and the only way
545   *         RSC_DRV_CMD_ENABLE will ever be cleared.
546   */
check_for_req_inflight(struct rsc_drv * drv,struct tcs_group * tcs,const struct tcs_request * msg)547  static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs,
548  				  const struct tcs_request *msg)
549  {
550  	unsigned long curr_enabled;
551  	u32 addr;
552  	int j, k;
553  	int i = tcs->offset;
554  
555  	for_each_set_bit_from(i, drv->tcs_in_use, tcs->offset + tcs->num_tcs) {
556  		curr_enabled = read_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], i);
557  
558  		for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) {
559  			addr = read_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_ADDR], i, j);
560  			for (k = 0; k < msg->num_cmds; k++) {
561  				if (cmd_db_match_resource_addr(msg->cmds[k].addr, addr))
562  					return -EBUSY;
563  			}
564  		}
565  	}
566  
567  	return 0;
568  }
569  
570  /**
571   * find_free_tcs() - Find free tcs in the given tcs_group; only for active.
572   * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if
573   *       we borrowed it because there are zero active-only ones).
574   *
575   * Must be called with the drv->lock held since that protects tcs_in_use.
576   *
577   * Return: The first tcs that's free or -EBUSY if all in use.
578   */
find_free_tcs(struct tcs_group * tcs)579  static int find_free_tcs(struct tcs_group *tcs)
580  {
581  	const struct rsc_drv *drv = tcs->drv;
582  	unsigned long i;
583  	unsigned long max = tcs->offset + tcs->num_tcs;
584  
585  	i = find_next_zero_bit(drv->tcs_in_use, max, tcs->offset);
586  	if (i >= max)
587  		return -EBUSY;
588  
589  	return i;
590  }
591  
592  /**
593   * claim_tcs_for_req() - Claim a tcs in the given tcs_group; only for active.
594   * @drv: The controller.
595   * @tcs: The tcs_group used for ACTIVE_ONLY transfers.
596   * @msg: The data to be sent.
597   *
598   * Claims a tcs in the given tcs_group while making sure that no existing cmd
599   * is in flight that would conflict with the one in @msg.
600   *
601   * Context: Must be called with the drv->lock held since that protects
602   * tcs_in_use.
603   *
604   * Return: The id of the claimed tcs or -EBUSY if a matching msg is in flight
605   * or the tcs_group is full.
606   */
claim_tcs_for_req(struct rsc_drv * drv,struct tcs_group * tcs,const struct tcs_request * msg)607  static int claim_tcs_for_req(struct rsc_drv *drv, struct tcs_group *tcs,
608  			     const struct tcs_request *msg)
609  {
610  	int ret;
611  
612  	/*
613  	 * The h/w does not like if we send a request to the same address,
614  	 * when one is already in-flight or being processed.
615  	 */
616  	ret = check_for_req_inflight(drv, tcs, msg);
617  	if (ret)
618  		return ret;
619  
620  	return find_free_tcs(tcs);
621  }
622  
623  /**
624   * rpmh_rsc_send_data() - Write / trigger active-only message.
625   * @drv: The controller.
626   * @msg: The data to be sent.
627   *
628   * NOTES:
629   * - This is only used for "ACTIVE_ONLY" since the limitations of this
630   *   function don't make sense for sleep/wake cases.
631   * - To do the transfer, we will grab a whole TCS for ourselves--we don't
632   *   try to share. If there are none available we'll wait indefinitely
633   *   for a free one.
634   * - This function will not wait for the commands to be finished, only for
635   *   data to be programmed into the RPMh. See rpmh_tx_done() which will
636   *   be called when the transfer is fully complete.
637   * - This function must be called with interrupts enabled. If the hardware
638   *   is busy doing someone else's transfer we need that transfer to fully
639   *   finish so that we can have the hardware, and to fully finish it needs
640   *   the interrupt handler to run. If the interrupts is set to run on the
641   *   active CPU this can never happen if interrupts are disabled.
642   *
643   * Return: 0 on success, -EINVAL on error.
644   */
rpmh_rsc_send_data(struct rsc_drv * drv,const struct tcs_request * msg)645  int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg)
646  {
647  	struct tcs_group *tcs;
648  	int tcs_id;
649  
650  	might_sleep();
651  
652  	tcs = get_tcs_for_msg(drv, msg);
653  	if (IS_ERR(tcs))
654  		return PTR_ERR(tcs);
655  
656  	spin_lock_irq(&drv->lock);
657  
658  	/* Wait forever for a free tcs. It better be there eventually! */
659  	wait_event_lock_irq(drv->tcs_wait,
660  			    (tcs_id = claim_tcs_for_req(drv, tcs, msg)) >= 0,
661  			    drv->lock);
662  
663  	tcs->req[tcs_id - tcs->offset] = msg;
664  	set_bit(tcs_id, drv->tcs_in_use);
665  	if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) {
666  		/*
667  		 * Clear previously programmed WAKE commands in selected
668  		 * repurposed TCS to avoid triggering them. tcs->slots will be
669  		 * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate()
670  		 */
671  		write_tcs_reg_sync(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id, 0);
672  		enable_tcs_irq(drv, tcs_id, true);
673  	}
674  	spin_unlock_irq(&drv->lock);
675  
676  	/*
677  	 * These two can be done after the lock is released because:
678  	 * - We marked "tcs_in_use" under lock.
679  	 * - Once "tcs_in_use" has been marked nobody else could be writing
680  	 *   to these registers until the interrupt goes off.
681  	 * - The interrupt can't go off until we trigger w/ the last line
682  	 *   of __tcs_set_trigger() below.
683  	 */
684  	__tcs_buffer_write(drv, tcs_id, 0, msg);
685  	__tcs_set_trigger(drv, tcs_id, true);
686  
687  	return 0;
688  }
689  
690  /**
691   * find_slots() - Find a place to write the given message.
692   * @tcs:    The tcs group to search.
693   * @msg:    The message we want to find room for.
694   * @tcs_id: If we return 0 from the function, we return the global ID of the
695   *          TCS to write to here.
696   * @cmd_id: If we return 0 from the function, we return the index of
697   *          the command array of the returned TCS where the client should
698   *          start writing the message.
699   *
700   * Only for use on sleep/wake TCSes since those are the only ones we maintain
701   * tcs->slots for.
702   *
703   * Return: -ENOMEM if there was no room, else 0.
704   */
find_slots(struct tcs_group * tcs,const struct tcs_request * msg,int * tcs_id,int * cmd_id)705  static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg,
706  		      int *tcs_id, int *cmd_id)
707  {
708  	int slot, offset;
709  	int i = 0;
710  
711  	/* Do over, until we can fit the full payload in a single TCS */
712  	do {
713  		slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS,
714  						  i, msg->num_cmds, 0);
715  		if (slot >= tcs->num_tcs * tcs->ncpt)
716  			return -ENOMEM;
717  		i += tcs->ncpt;
718  	} while (slot + msg->num_cmds - 1 >= i);
719  
720  	bitmap_set(tcs->slots, slot, msg->num_cmds);
721  
722  	offset = slot / tcs->ncpt;
723  	*tcs_id = offset + tcs->offset;
724  	*cmd_id = slot % tcs->ncpt;
725  
726  	return 0;
727  }
728  
729  /**
730   * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger.
731   * @drv: The controller.
732   * @msg: The data to be written to the controller.
733   *
734   * This should only be called for sleep/wake state, never active-only
735   * state.
736   *
737   * The caller must ensure that no other RPMH actions are happening and the
738   * controller is idle when this function is called since it runs lockless.
739   *
740   * Return: 0 if no error; else -error.
741   */
rpmh_rsc_write_ctrl_data(struct rsc_drv * drv,const struct tcs_request * msg)742  int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg)
743  {
744  	struct tcs_group *tcs;
745  	int tcs_id = 0, cmd_id = 0;
746  	int ret;
747  
748  	tcs = get_tcs_for_msg(drv, msg);
749  	if (IS_ERR(tcs))
750  		return PTR_ERR(tcs);
751  
752  	/* find the TCS id and the command in the TCS to write to */
753  	ret = find_slots(tcs, msg, &tcs_id, &cmd_id);
754  	if (!ret)
755  		__tcs_buffer_write(drv, tcs_id, cmd_id, msg);
756  
757  	return ret;
758  }
759  
760  /**
761   * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy.
762   * @drv: The controller
763   *
764   * Checks if any of the AMCs are busy in handling ACTIVE sets.
765   * This is called from the last cpu powering down before flushing
766   * SLEEP and WAKE sets. If AMCs are busy, controller can not enter
767   * power collapse, so deny from the last cpu's pm notification.
768   *
769   * Context: Must be called with the drv->lock held.
770   *
771   * Return:
772   * * False		- AMCs are idle
773   * * True		- AMCs are busy
774   */
rpmh_rsc_ctrlr_is_busy(struct rsc_drv * drv)775  static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv)
776  {
777  	unsigned long set;
778  	const struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS];
779  	unsigned long max;
780  
781  	/*
782  	 * If we made an active request on a RSC that does not have a
783  	 * dedicated TCS for active state use, then re-purposed wake TCSes
784  	 * should be checked for not busy, because we used wake TCSes for
785  	 * active requests in this case.
786  	 */
787  	if (!tcs->num_tcs)
788  		tcs = &drv->tcs[WAKE_TCS];
789  
790  	max = tcs->offset + tcs->num_tcs;
791  	set = find_next_bit(drv->tcs_in_use, max, tcs->offset);
792  
793  	return set < max;
794  }
795  
796  /**
797   * rpmh_rsc_write_next_wakeup() - Write next wakeup in CONTROL_TCS.
798   * @drv: The controller
799   *
800   * Writes maximum wakeup cycles when called from suspend.
801   * Writes earliest hrtimer wakeup when called from idle.
802   */
rpmh_rsc_write_next_wakeup(struct rsc_drv * drv)803  void rpmh_rsc_write_next_wakeup(struct rsc_drv *drv)
804  {
805  	ktime_t now, wakeup;
806  	u64 wakeup_us, wakeup_cycles = ~0;
807  	u32 lo, hi;
808  
809  	if (!drv->tcs[CONTROL_TCS].num_tcs || !drv->genpd_nb.notifier_call)
810  		return;
811  
812  	/* Set highest time when system (timekeeping) is suspended */
813  	if (system_state == SYSTEM_SUSPEND)
814  		goto exit;
815  
816  	/* Find the earliest hrtimer wakeup from online cpus */
817  	wakeup = dev_pm_genpd_get_next_hrtimer(drv->dev);
818  
819  	/* Find the relative wakeup in kernel time scale */
820  	now = ktime_get();
821  	wakeup = ktime_sub(wakeup, now);
822  	wakeup_us = ktime_to_us(wakeup);
823  
824  	/* Convert the wakeup to arch timer scale */
825  	wakeup_cycles = USECS_TO_CYCLES(wakeup_us);
826  	wakeup_cycles += arch_timer_read_counter();
827  
828  exit:
829  	lo = wakeup_cycles & RSC_DRV_CTL_TCS_DATA_LO_MASK;
830  	hi = wakeup_cycles >> RSC_DRV_CTL_TCS_DATA_SIZE;
831  	hi &= RSC_DRV_CTL_TCS_DATA_HI_MASK;
832  	hi |= RSC_DRV_CTL_TCS_DATA_HI_VALID;
833  
834  	writel_relaxed(lo, drv->base + RSC_DRV_CTL_TCS_DATA_LO);
835  	writel_relaxed(hi, drv->base + RSC_DRV_CTL_TCS_DATA_HI);
836  }
837  
838  /**
839   * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy.
840   * @nfb:    Pointer to the notifier block in struct rsc_drv.
841   * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT.
842   * @v:      Unused
843   *
844   * This function is given to cpu_pm_register_notifier so we can be informed
845   * about when CPUs go down. When all CPUs go down we know no more active
846   * transfers will be started so we write sleep/wake sets. This function gets
847   * called from cpuidle code paths and also at system suspend time.
848   *
849   * If its last CPU going down and AMCs are not busy then writes cached sleep
850   * and wake messages to TCSes. The firmware then takes care of triggering
851   * them when entering deepest low power modes.
852   *
853   * Return: See cpu_pm_register_notifier()
854   */
rpmh_rsc_cpu_pm_callback(struct notifier_block * nfb,unsigned long action,void * v)855  static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb,
856  				    unsigned long action, void *v)
857  {
858  	struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm);
859  	int ret = NOTIFY_OK;
860  	int cpus_in_pm;
861  
862  	switch (action) {
863  	case CPU_PM_ENTER:
864  		cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm);
865  		/*
866  		 * NOTE: comments for num_online_cpus() point out that it's
867  		 * only a snapshot so we need to be careful. It should be OK
868  		 * for us to use, though.  It's important for us not to miss
869  		 * if we're the last CPU going down so it would only be a
870  		 * problem if a CPU went offline right after we did the check
871  		 * AND that CPU was not idle AND that CPU was the last non-idle
872  		 * CPU. That can't happen. CPUs would have to come out of idle
873  		 * before the CPU could go offline.
874  		 */
875  		if (cpus_in_pm < num_online_cpus())
876  			return NOTIFY_OK;
877  		break;
878  	case CPU_PM_ENTER_FAILED:
879  	case CPU_PM_EXIT:
880  		atomic_dec(&drv->cpus_in_pm);
881  		return NOTIFY_OK;
882  	default:
883  		return NOTIFY_DONE;
884  	}
885  
886  	/*
887  	 * It's likely we're on the last CPU. Grab the drv->lock and write
888  	 * out the sleep/wake commands to RPMH hardware. Grabbing the lock
889  	 * means that if we race with another CPU coming up we are still
890  	 * guaranteed to be safe. If another CPU came up just after we checked
891  	 * and has grabbed the lock or started an active transfer then we'll
892  	 * notice we're busy and abort. If another CPU comes up after we start
893  	 * flushing it will be blocked from starting an active transfer until
894  	 * we're done flushing. If another CPU starts an active transfer after
895  	 * we release the lock we're still OK because we're no longer the last
896  	 * CPU.
897  	 */
898  	if (spin_trylock(&drv->lock)) {
899  		if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))
900  			ret = NOTIFY_BAD;
901  		spin_unlock(&drv->lock);
902  	} else {
903  		/* Another CPU must be up */
904  		return NOTIFY_OK;
905  	}
906  
907  	if (ret == NOTIFY_BAD) {
908  		/* Double-check if we're here because someone else is up */
909  		if (cpus_in_pm < num_online_cpus())
910  			ret = NOTIFY_OK;
911  		else
912  			/* We won't be called w/ CPU_PM_ENTER_FAILED */
913  			atomic_dec(&drv->cpus_in_pm);
914  	}
915  
916  	return ret;
917  }
918  
919  /**
920   * rpmh_rsc_pd_callback() - Check if any of the AMCs are busy.
921   * @nfb:    Pointer to the genpd notifier block in struct rsc_drv.
922   * @action: GENPD_NOTIFY_PRE_OFF, GENPD_NOTIFY_OFF, GENPD_NOTIFY_PRE_ON or GENPD_NOTIFY_ON.
923   * @v:      Unused
924   *
925   * This function is given to dev_pm_genpd_add_notifier() so we can be informed
926   * about when cluster-pd is going down. When cluster go down we know no more active
927   * transfers will be started so we write sleep/wake sets. This function gets
928   * called from cpuidle code paths and also at system suspend time.
929   *
930   * If AMCs are not busy then writes cached sleep and wake messages to TCSes.
931   * The firmware then takes care of triggering them when entering deepest low power modes.
932   *
933   * Return:
934   * * NOTIFY_OK          - success
935   * * NOTIFY_BAD         - failure
936   */
rpmh_rsc_pd_callback(struct notifier_block * nfb,unsigned long action,void * v)937  static int rpmh_rsc_pd_callback(struct notifier_block *nfb,
938  				unsigned long action, void *v)
939  {
940  	struct rsc_drv *drv = container_of(nfb, struct rsc_drv, genpd_nb);
941  
942  	/* We don't need to lock as genpd on/off are serialized */
943  	if ((action == GENPD_NOTIFY_PRE_OFF) &&
944  	    (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client)))
945  		return NOTIFY_BAD;
946  
947  	return NOTIFY_OK;
948  }
949  
rpmh_rsc_pd_attach(struct rsc_drv * drv,struct device * dev)950  static int rpmh_rsc_pd_attach(struct rsc_drv *drv, struct device *dev)
951  {
952  	int ret;
953  
954  	pm_runtime_enable(dev);
955  	drv->genpd_nb.notifier_call = rpmh_rsc_pd_callback;
956  	ret = dev_pm_genpd_add_notifier(dev, &drv->genpd_nb);
957  	if (ret)
958  		pm_runtime_disable(dev);
959  
960  	return ret;
961  }
962  
rpmh_probe_tcs_config(struct platform_device * pdev,struct rsc_drv * drv)963  static int rpmh_probe_tcs_config(struct platform_device *pdev, struct rsc_drv *drv)
964  {
965  	struct tcs_type_config {
966  		u32 type;
967  		u32 n;
968  	} tcs_cfg[TCS_TYPE_NR] = { { 0 } };
969  	struct device_node *dn = pdev->dev.of_node;
970  	u32 config, max_tcs, ncpt, offset;
971  	int i, ret, n, st = 0;
972  	struct tcs_group *tcs;
973  
974  	ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset);
975  	if (ret)
976  		return ret;
977  	drv->tcs_base = drv->base + offset;
978  
979  	config = readl_relaxed(drv->base + drv->regs[DRV_PRNT_CHLD_CONFIG]);
980  
981  	max_tcs = config;
982  	max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id);
983  	max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id);
984  
985  	ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT);
986  	ncpt = ncpt >> DRV_NCPT_SHIFT;
987  
988  	n = of_property_count_u32_elems(dn, "qcom,tcs-config");
989  	if (n != 2 * TCS_TYPE_NR)
990  		return -EINVAL;
991  
992  	for (i = 0; i < TCS_TYPE_NR; i++) {
993  		ret = of_property_read_u32_index(dn, "qcom,tcs-config",
994  						 i * 2, &tcs_cfg[i].type);
995  		if (ret)
996  			return ret;
997  		if (tcs_cfg[i].type >= TCS_TYPE_NR)
998  			return -EINVAL;
999  
1000  		ret = of_property_read_u32_index(dn, "qcom,tcs-config",
1001  						 i * 2 + 1, &tcs_cfg[i].n);
1002  		if (ret)
1003  			return ret;
1004  		if (tcs_cfg[i].n > MAX_TCS_PER_TYPE)
1005  			return -EINVAL;
1006  	}
1007  
1008  	for (i = 0; i < TCS_TYPE_NR; i++) {
1009  		tcs = &drv->tcs[tcs_cfg[i].type];
1010  		if (tcs->drv)
1011  			return -EINVAL;
1012  		tcs->drv = drv;
1013  		tcs->type = tcs_cfg[i].type;
1014  		tcs->num_tcs = tcs_cfg[i].n;
1015  		tcs->ncpt = ncpt;
1016  
1017  		if (!tcs->num_tcs || tcs->type == CONTROL_TCS)
1018  			continue;
1019  
1020  		if (st + tcs->num_tcs > max_tcs ||
1021  		    st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask))
1022  			return -EINVAL;
1023  
1024  		tcs->mask = ((1 << tcs->num_tcs) - 1) << st;
1025  		tcs->offset = st;
1026  		st += tcs->num_tcs;
1027  	}
1028  
1029  	drv->num_tcs = st;
1030  
1031  	return 0;
1032  }
1033  
rpmh_rsc_probe(struct platform_device * pdev)1034  static int rpmh_rsc_probe(struct platform_device *pdev)
1035  {
1036  	struct device_node *dn = pdev->dev.of_node;
1037  	struct rsc_drv *drv;
1038  	char drv_id[10] = {0};
1039  	int ret, irq;
1040  	u32 solver_config;
1041  	u32 rsc_id;
1042  
1043  	/*
1044  	 * Even though RPMh doesn't directly use cmd-db, all of its children
1045  	 * do. To avoid adding this check to our children we'll do it now.
1046  	 */
1047  	ret = cmd_db_ready();
1048  	if (ret) {
1049  		if (ret != -EPROBE_DEFER)
1050  			dev_err(&pdev->dev, "Command DB not available (%d)\n",
1051  									ret);
1052  		return ret;
1053  	}
1054  
1055  	drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
1056  	if (!drv)
1057  		return -ENOMEM;
1058  
1059  	ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id);
1060  	if (ret)
1061  		return ret;
1062  
1063  	drv->name = of_get_property(dn, "label", NULL);
1064  	if (!drv->name)
1065  		drv->name = dev_name(&pdev->dev);
1066  
1067  	snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id);
1068  	drv->base = devm_platform_ioremap_resource_byname(pdev, drv_id);
1069  	if (IS_ERR(drv->base))
1070  		return PTR_ERR(drv->base);
1071  
1072  	rsc_id = readl_relaxed(drv->base + RSC_DRV_ID);
1073  	drv->ver.major = rsc_id & (MAJOR_VER_MASK << MAJOR_VER_SHIFT);
1074  	drv->ver.major >>= MAJOR_VER_SHIFT;
1075  	drv->ver.minor = rsc_id & (MINOR_VER_MASK << MINOR_VER_SHIFT);
1076  	drv->ver.minor >>= MINOR_VER_SHIFT;
1077  
1078  	if (drv->ver.major == 3)
1079  		drv->regs = rpmh_rsc_reg_offset_ver_3_0;
1080  	else
1081  		drv->regs = rpmh_rsc_reg_offset_ver_2_7;
1082  
1083  	ret = rpmh_probe_tcs_config(pdev, drv);
1084  	if (ret)
1085  		return ret;
1086  
1087  	spin_lock_init(&drv->lock);
1088  	init_waitqueue_head(&drv->tcs_wait);
1089  	bitmap_zero(drv->tcs_in_use, MAX_TCS_NR);
1090  
1091  	irq = platform_get_irq(pdev, drv->id);
1092  	if (irq < 0)
1093  		return irq;
1094  
1095  	ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done,
1096  			       IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND,
1097  			       drv->name, drv);
1098  	if (ret)
1099  		return ret;
1100  
1101  	/*
1102  	 * CPU PM/genpd notification are not required for controllers that support
1103  	 * 'HW solver' mode where they can be in autonomous mode executing low
1104  	 * power mode to power down.
1105  	 */
1106  	solver_config = readl_relaxed(drv->base + drv->regs[DRV_SOLVER_CONFIG]);
1107  	solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT;
1108  	solver_config = solver_config >> DRV_HW_SOLVER_SHIFT;
1109  	if (!solver_config) {
1110  		if (pdev->dev.pm_domain) {
1111  			ret = rpmh_rsc_pd_attach(drv, &pdev->dev);
1112  			if (ret)
1113  				return ret;
1114  		} else {
1115  			drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback;
1116  			cpu_pm_register_notifier(&drv->rsc_pm);
1117  		}
1118  	}
1119  
1120  	/* Enable the active TCS to send requests immediately */
1121  	writel_relaxed(drv->tcs[ACTIVE_TCS].mask,
1122  		       drv->tcs_base + drv->regs[RSC_DRV_IRQ_ENABLE]);
1123  
1124  	spin_lock_init(&drv->client.cache_lock);
1125  	INIT_LIST_HEAD(&drv->client.cache);
1126  	INIT_LIST_HEAD(&drv->client.batch_cache);
1127  
1128  	dev_set_drvdata(&pdev->dev, drv);
1129  	drv->dev = &pdev->dev;
1130  
1131  	ret = devm_of_platform_populate(&pdev->dev);
1132  	if (ret && pdev->dev.pm_domain) {
1133  		dev_pm_genpd_remove_notifier(&pdev->dev);
1134  		pm_runtime_disable(&pdev->dev);
1135  	}
1136  
1137  	return ret;
1138  }
1139  
1140  static const struct of_device_id rpmh_drv_match[] = {
1141  	{ .compatible = "qcom,rpmh-rsc", },
1142  	{ }
1143  };
1144  MODULE_DEVICE_TABLE(of, rpmh_drv_match);
1145  
1146  static struct platform_driver rpmh_driver = {
1147  	.probe = rpmh_rsc_probe,
1148  	.driver = {
1149  		  .name = "rpmh",
1150  		  .of_match_table = rpmh_drv_match,
1151  		  .suppress_bind_attrs = true,
1152  	},
1153  };
1154  
rpmh_driver_init(void)1155  static int __init rpmh_driver_init(void)
1156  {
1157  	return platform_driver_register(&rpmh_driver);
1158  }
1159  arch_initcall(rpmh_driver_init);
1160  
1161  MODULE_DESCRIPTION("Qualcomm Technologies, Inc. RPMh Driver");
1162  MODULE_LICENSE("GPL v2");
1163