xref: /openbmc/linux/drivers/soc/fsl/qbman/qman.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *	 notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *	 notice, this list of conditions and the following disclaimer in the
9  *	 documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *	 names of its contributors may be used to endorse or promote products
12  *	 derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include "qman_priv.h"
32 
33 #define DQRR_MAXFILL	15
34 #define EQCR_ITHRESH	4	/* if EQCR congests, interrupt threshold */
35 #define IRQNAME		"QMan portal %d"
36 #define MAX_IRQNAME	16	/* big enough for "QMan portal %d" */
37 #define QMAN_POLL_LIMIT 32
38 #define QMAN_PIRQ_DQRR_ITHRESH 12
39 #define QMAN_PIRQ_MR_ITHRESH 4
40 #define QMAN_PIRQ_IPERIOD 100
41 
42 /* Portal register assists */
43 
44 /* Cache-inhibited register offsets */
45 #define QM_REG_EQCR_PI_CINH	0x0000
46 #define QM_REG_EQCR_CI_CINH	0x0004
47 #define QM_REG_EQCR_ITR		0x0008
48 #define QM_REG_DQRR_PI_CINH	0x0040
49 #define QM_REG_DQRR_CI_CINH	0x0044
50 #define QM_REG_DQRR_ITR		0x0048
51 #define QM_REG_DQRR_DCAP	0x0050
52 #define QM_REG_DQRR_SDQCR	0x0054
53 #define QM_REG_DQRR_VDQCR	0x0058
54 #define QM_REG_DQRR_PDQCR	0x005c
55 #define QM_REG_MR_PI_CINH	0x0080
56 #define QM_REG_MR_CI_CINH	0x0084
57 #define QM_REG_MR_ITR		0x0088
58 #define QM_REG_CFG		0x0100
59 #define QM_REG_ISR		0x0e00
60 #define QM_REG_IER		0x0e04
61 #define QM_REG_ISDR		0x0e08
62 #define QM_REG_IIR		0x0e0c
63 #define QM_REG_ITPR		0x0e14
64 
65 /* Cache-enabled register offsets */
66 #define QM_CL_EQCR		0x0000
67 #define QM_CL_DQRR		0x1000
68 #define QM_CL_MR		0x2000
69 #define QM_CL_EQCR_PI_CENA	0x3000
70 #define QM_CL_EQCR_CI_CENA	0x3100
71 #define QM_CL_DQRR_PI_CENA	0x3200
72 #define QM_CL_DQRR_CI_CENA	0x3300
73 #define QM_CL_MR_PI_CENA	0x3400
74 #define QM_CL_MR_CI_CENA	0x3500
75 #define QM_CL_CR		0x3800
76 #define QM_CL_RR0		0x3900
77 #define QM_CL_RR1		0x3940
78 
79 /*
80  * BTW, the drivers (and h/w programming model) already obtain the required
81  * synchronisation for portal accesses and data-dependencies. Use of barrier()s
82  * or other order-preserving primitives simply degrade performance. Hence the
83  * use of the __raw_*() interfaces, which simply ensure that the compiler treats
84  * the portal registers as volatile
85  */
86 
87 /* Cache-enabled ring access */
88 #define qm_cl(base, idx)	((void *)base + ((idx) << 6))
89 
90 /*
91  * Portal modes.
92  *   Enum types;
93  *     pmode == production mode
94  *     cmode == consumption mode,
95  *     dmode == h/w dequeue mode.
96  *   Enum values use 3 letter codes. First letter matches the portal mode,
97  *   remaining two letters indicate;
98  *     ci == cache-inhibited portal register
99  *     ce == cache-enabled portal register
100  *     vb == in-band valid-bit (cache-enabled)
101  *     dc == DCA (Discrete Consumption Acknowledgment), DQRR-only
102  *   As for "enum qm_dqrr_dmode", it should be self-explanatory.
103  */
104 enum qm_eqcr_pmode {		/* matches QCSP_CFG::EPM */
105 	qm_eqcr_pci = 0,	/* PI index, cache-inhibited */
106 	qm_eqcr_pce = 1,	/* PI index, cache-enabled */
107 	qm_eqcr_pvb = 2		/* valid-bit */
108 };
109 enum qm_dqrr_dmode {		/* matches QCSP_CFG::DP */
110 	qm_dqrr_dpush = 0,	/* SDQCR  + VDQCR */
111 	qm_dqrr_dpull = 1	/* PDQCR */
112 };
113 enum qm_dqrr_pmode {		/* s/w-only */
114 	qm_dqrr_pci,		/* reads DQRR_PI_CINH */
115 	qm_dqrr_pce,		/* reads DQRR_PI_CENA */
116 	qm_dqrr_pvb		/* reads valid-bit */
117 };
118 enum qm_dqrr_cmode {		/* matches QCSP_CFG::DCM */
119 	qm_dqrr_cci = 0,	/* CI index, cache-inhibited */
120 	qm_dqrr_cce = 1,	/* CI index, cache-enabled */
121 	qm_dqrr_cdc = 2		/* Discrete Consumption Acknowledgment */
122 };
123 enum qm_mr_pmode {		/* s/w-only */
124 	qm_mr_pci,		/* reads MR_PI_CINH */
125 	qm_mr_pce,		/* reads MR_PI_CENA */
126 	qm_mr_pvb		/* reads valid-bit */
127 };
128 enum qm_mr_cmode {		/* matches QCSP_CFG::MM */
129 	qm_mr_cci = 0,		/* CI index, cache-inhibited */
130 	qm_mr_cce = 1		/* CI index, cache-enabled */
131 };
132 
133 /* --- Portal structures --- */
134 
135 #define QM_EQCR_SIZE		8
136 #define QM_DQRR_SIZE		16
137 #define QM_MR_SIZE		8
138 
139 /* "Enqueue Command" */
140 struct qm_eqcr_entry {
141 	u8 _ncw_verb; /* writes to this are non-coherent */
142 	u8 dca;
143 	u16 seqnum;
144 	u32 orp;	/* 24-bit */
145 	u32 fqid;	/* 24-bit */
146 	u32 tag;
147 	struct qm_fd fd;
148 	u8 __reserved3[32];
149 } __packed;
150 #define QM_EQCR_VERB_VBIT		0x80
151 #define QM_EQCR_VERB_CMD_MASK		0x61	/* but only one value; */
152 #define QM_EQCR_VERB_CMD_ENQUEUE	0x01
153 #define QM_EQCR_SEQNUM_NESN		0x8000	/* Advance NESN */
154 #define QM_EQCR_SEQNUM_NLIS		0x4000	/* More fragments to come */
155 #define QM_EQCR_SEQNUM_SEQMASK		0x3fff	/* sequence number goes here */
156 
157 struct qm_eqcr {
158 	struct qm_eqcr_entry *ring, *cursor;
159 	u8 ci, available, ithresh, vbit;
160 #ifdef CONFIG_FSL_DPAA_CHECKING
161 	u32 busy;
162 	enum qm_eqcr_pmode pmode;
163 #endif
164 };
165 
166 struct qm_dqrr {
167 	const struct qm_dqrr_entry *ring, *cursor;
168 	u8 pi, ci, fill, ithresh, vbit;
169 #ifdef CONFIG_FSL_DPAA_CHECKING
170 	enum qm_dqrr_dmode dmode;
171 	enum qm_dqrr_pmode pmode;
172 	enum qm_dqrr_cmode cmode;
173 #endif
174 };
175 
176 struct qm_mr {
177 	union qm_mr_entry *ring, *cursor;
178 	u8 pi, ci, fill, ithresh, vbit;
179 #ifdef CONFIG_FSL_DPAA_CHECKING
180 	enum qm_mr_pmode pmode;
181 	enum qm_mr_cmode cmode;
182 #endif
183 };
184 
185 /* MC (Management Command) command */
186 /* "Query FQ" */
187 struct qm_mcc_queryfq {
188 	u8 _ncw_verb;
189 	u8 __reserved1[3];
190 	u32 fqid;	/* 24-bit */
191 	u8 __reserved2[56];
192 } __packed;
193 /* "Alter FQ State Commands " */
194 struct qm_mcc_alterfq {
195 	u8 _ncw_verb;
196 	u8 __reserved1[3];
197 	u32 fqid;	/* 24-bit */
198 	u8 __reserved2;
199 	u8 count;	/* number of consecutive FQID */
200 	u8 __reserved3[10];
201 	u32 context_b;	/* frame queue context b */
202 	u8 __reserved4[40];
203 } __packed;
204 
205 /* "Query CGR" */
206 struct qm_mcc_querycgr {
207 	u8 _ncw_verb;
208 	u8 __reserved1[30];
209 	u8 cgid;
210 	u8 __reserved2[32];
211 };
212 
213 struct qm_mcc_querywq {
214 	u8 _ncw_verb;
215 	u8 __reserved;
216 	/* select channel if verb != QUERYWQ_DEDICATED */
217 	u16 channel_wq; /* ignores wq (3 lsbits): _res[0-2] */
218 	u8 __reserved2[60];
219 } __packed;
220 
221 #define QM_MCC_VERB_VBIT		0x80
222 #define QM_MCC_VERB_MASK		0x7f	/* where the verb contains; */
223 #define QM_MCC_VERB_INITFQ_PARKED	0x40
224 #define QM_MCC_VERB_INITFQ_SCHED	0x41
225 #define QM_MCC_VERB_QUERYFQ		0x44
226 #define QM_MCC_VERB_QUERYFQ_NP		0x45	/* "non-programmable" fields */
227 #define QM_MCC_VERB_QUERYWQ		0x46
228 #define QM_MCC_VERB_QUERYWQ_DEDICATED	0x47
229 #define QM_MCC_VERB_ALTER_SCHED		0x48	/* Schedule FQ */
230 #define QM_MCC_VERB_ALTER_FE		0x49	/* Force Eligible FQ */
231 #define QM_MCC_VERB_ALTER_RETIRE	0x4a	/* Retire FQ */
232 #define QM_MCC_VERB_ALTER_OOS		0x4b	/* Take FQ out of service */
233 #define QM_MCC_VERB_ALTER_FQXON		0x4d	/* FQ XON */
234 #define QM_MCC_VERB_ALTER_FQXOFF	0x4e	/* FQ XOFF */
235 #define QM_MCC_VERB_INITCGR		0x50
236 #define QM_MCC_VERB_MODIFYCGR		0x51
237 #define QM_MCC_VERB_CGRTESTWRITE	0x52
238 #define QM_MCC_VERB_QUERYCGR		0x58
239 #define QM_MCC_VERB_QUERYCONGESTION	0x59
240 union qm_mc_command {
241 	struct {
242 		u8 _ncw_verb; /* writes to this are non-coherent */
243 		u8 __reserved[63];
244 	};
245 	struct qm_mcc_initfq initfq;
246 	struct qm_mcc_queryfq queryfq;
247 	struct qm_mcc_alterfq alterfq;
248 	struct qm_mcc_initcgr initcgr;
249 	struct qm_mcc_querycgr querycgr;
250 	struct qm_mcc_querywq querywq;
251 	struct qm_mcc_queryfq_np queryfq_np;
252 };
253 
254 /* MC (Management Command) result */
255 /* "Query FQ" */
256 struct qm_mcr_queryfq {
257 	u8 verb;
258 	u8 result;
259 	u8 __reserved1[8];
260 	struct qm_fqd fqd;	/* the FQD fields are here */
261 	u8 __reserved2[30];
262 } __packed;
263 
264 /* "Alter FQ State Commands" */
265 struct qm_mcr_alterfq {
266 	u8 verb;
267 	u8 result;
268 	u8 fqs;		/* Frame Queue Status */
269 	u8 __reserved1[61];
270 };
271 #define QM_MCR_VERB_RRID		0x80
272 #define QM_MCR_VERB_MASK		QM_MCC_VERB_MASK
273 #define QM_MCR_VERB_INITFQ_PARKED	QM_MCC_VERB_INITFQ_PARKED
274 #define QM_MCR_VERB_INITFQ_SCHED	QM_MCC_VERB_INITFQ_SCHED
275 #define QM_MCR_VERB_QUERYFQ		QM_MCC_VERB_QUERYFQ
276 #define QM_MCR_VERB_QUERYFQ_NP		QM_MCC_VERB_QUERYFQ_NP
277 #define QM_MCR_VERB_QUERYWQ		QM_MCC_VERB_QUERYWQ
278 #define QM_MCR_VERB_QUERYWQ_DEDICATED	QM_MCC_VERB_QUERYWQ_DEDICATED
279 #define QM_MCR_VERB_ALTER_SCHED		QM_MCC_VERB_ALTER_SCHED
280 #define QM_MCR_VERB_ALTER_FE		QM_MCC_VERB_ALTER_FE
281 #define QM_MCR_VERB_ALTER_RETIRE	QM_MCC_VERB_ALTER_RETIRE
282 #define QM_MCR_VERB_ALTER_OOS		QM_MCC_VERB_ALTER_OOS
283 #define QM_MCR_RESULT_NULL		0x00
284 #define QM_MCR_RESULT_OK		0xf0
285 #define QM_MCR_RESULT_ERR_FQID		0xf1
286 #define QM_MCR_RESULT_ERR_FQSTATE	0xf2
287 #define QM_MCR_RESULT_ERR_NOTEMPTY	0xf3	/* OOS fails if FQ is !empty */
288 #define QM_MCR_RESULT_ERR_BADCHANNEL	0xf4
289 #define QM_MCR_RESULT_PENDING		0xf8
290 #define QM_MCR_RESULT_ERR_BADCOMMAND	0xff
291 #define QM_MCR_FQS_ORLPRESENT		0x02	/* ORL fragments to come */
292 #define QM_MCR_FQS_NOTEMPTY		0x01	/* FQ has enqueued frames */
293 #define QM_MCR_TIMEOUT			10000	/* us */
294 union qm_mc_result {
295 	struct {
296 		u8 verb;
297 		u8 result;
298 		u8 __reserved1[62];
299 	};
300 	struct qm_mcr_queryfq queryfq;
301 	struct qm_mcr_alterfq alterfq;
302 	struct qm_mcr_querycgr querycgr;
303 	struct qm_mcr_querycongestion querycongestion;
304 	struct qm_mcr_querywq querywq;
305 	struct qm_mcr_queryfq_np queryfq_np;
306 };
307 
308 struct qm_mc {
309 	union qm_mc_command *cr;
310 	union qm_mc_result *rr;
311 	u8 rridx, vbit;
312 #ifdef CONFIG_FSL_DPAA_CHECKING
313 	enum {
314 		/* Can be _mc_start()ed */
315 		qman_mc_idle,
316 		/* Can be _mc_commit()ed or _mc_abort()ed */
317 		qman_mc_user,
318 		/* Can only be _mc_retry()ed */
319 		qman_mc_hw
320 	} state;
321 #endif
322 };
323 
324 struct qm_addr {
325 	void __iomem *ce;	/* cache-enabled */
326 	void __iomem *ci;	/* cache-inhibited */
327 };
328 
329 struct qm_portal {
330 	/*
331 	 * In the non-CONFIG_FSL_DPAA_CHECKING case, the following stuff up to
332 	 * and including 'mc' fits within a cacheline (yay!). The 'config' part
333 	 * is setup-only, so isn't a cause for a concern. In other words, don't
334 	 * rearrange this structure on a whim, there be dragons ...
335 	 */
336 	struct qm_addr addr;
337 	struct qm_eqcr eqcr;
338 	struct qm_dqrr dqrr;
339 	struct qm_mr mr;
340 	struct qm_mc mc;
341 } ____cacheline_aligned;
342 
343 /* Cache-inhibited register access. */
344 static inline u32 qm_in(struct qm_portal *p, u32 offset)
345 {
346 	return __raw_readl(p->addr.ci + offset);
347 }
348 
349 static inline void qm_out(struct qm_portal *p, u32 offset, u32 val)
350 {
351 	__raw_writel(val, p->addr.ci + offset);
352 }
353 
354 /* Cache Enabled Portal Access */
355 static inline void qm_cl_invalidate(struct qm_portal *p, u32 offset)
356 {
357 	dpaa_invalidate(p->addr.ce + offset);
358 }
359 
360 static inline void qm_cl_touch_ro(struct qm_portal *p, u32 offset)
361 {
362 	dpaa_touch_ro(p->addr.ce + offset);
363 }
364 
365 static inline u32 qm_ce_in(struct qm_portal *p, u32 offset)
366 {
367 	return __raw_readl(p->addr.ce + offset);
368 }
369 
370 /* --- EQCR API --- */
371 
372 #define EQCR_SHIFT	ilog2(sizeof(struct qm_eqcr_entry))
373 #define EQCR_CARRY	(uintptr_t)(QM_EQCR_SIZE << EQCR_SHIFT)
374 
375 /* Bit-wise logic to wrap a ring pointer by clearing the "carry bit" */
376 static struct qm_eqcr_entry *eqcr_carryclear(struct qm_eqcr_entry *p)
377 {
378 	uintptr_t addr = (uintptr_t)p;
379 
380 	addr &= ~EQCR_CARRY;
381 
382 	return (struct qm_eqcr_entry *)addr;
383 }
384 
385 /* Bit-wise logic to convert a ring pointer to a ring index */
386 static int eqcr_ptr2idx(struct qm_eqcr_entry *e)
387 {
388 	return ((uintptr_t)e >> EQCR_SHIFT) & (QM_EQCR_SIZE - 1);
389 }
390 
391 /* Increment the 'cursor' ring pointer, taking 'vbit' into account */
392 static inline void eqcr_inc(struct qm_eqcr *eqcr)
393 {
394 	/* increment to the next EQCR pointer and handle overflow and 'vbit' */
395 	struct qm_eqcr_entry *partial = eqcr->cursor + 1;
396 
397 	eqcr->cursor = eqcr_carryclear(partial);
398 	if (partial != eqcr->cursor)
399 		eqcr->vbit ^= QM_EQCR_VERB_VBIT;
400 }
401 
402 static inline int qm_eqcr_init(struct qm_portal *portal,
403 				enum qm_eqcr_pmode pmode,
404 				unsigned int eq_stash_thresh,
405 				int eq_stash_prio)
406 {
407 	struct qm_eqcr *eqcr = &portal->eqcr;
408 	u32 cfg;
409 	u8 pi;
410 
411 	eqcr->ring = portal->addr.ce + QM_CL_EQCR;
412 	eqcr->ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1);
413 	qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA);
414 	pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1);
415 	eqcr->cursor = eqcr->ring + pi;
416 	eqcr->vbit = (qm_in(portal, QM_REG_EQCR_PI_CINH) & QM_EQCR_SIZE) ?
417 		     QM_EQCR_VERB_VBIT : 0;
418 	eqcr->available = QM_EQCR_SIZE - 1 -
419 			  dpaa_cyc_diff(QM_EQCR_SIZE, eqcr->ci, pi);
420 	eqcr->ithresh = qm_in(portal, QM_REG_EQCR_ITR);
421 #ifdef CONFIG_FSL_DPAA_CHECKING
422 	eqcr->busy = 0;
423 	eqcr->pmode = pmode;
424 #endif
425 	cfg = (qm_in(portal, QM_REG_CFG) & 0x00ffffff) |
426 	      (eq_stash_thresh << 28) | /* QCSP_CFG: EST */
427 	      (eq_stash_prio << 26) | /* QCSP_CFG: EP */
428 	      ((pmode & 0x3) << 24); /* QCSP_CFG::EPM */
429 	qm_out(portal, QM_REG_CFG, cfg);
430 	return 0;
431 }
432 
433 static inline unsigned int qm_eqcr_get_ci_stashing(struct qm_portal *portal)
434 {
435 	return (qm_in(portal, QM_REG_CFG) >> 28) & 0x7;
436 }
437 
438 static inline void qm_eqcr_finish(struct qm_portal *portal)
439 {
440 	struct qm_eqcr *eqcr = &portal->eqcr;
441 	u8 pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1);
442 	u8 ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1);
443 
444 	DPAA_ASSERT(!eqcr->busy);
445 	if (pi != eqcr_ptr2idx(eqcr->cursor))
446 		pr_crit("losing uncommited EQCR entries\n");
447 	if (ci != eqcr->ci)
448 		pr_crit("missing existing EQCR completions\n");
449 	if (eqcr->ci != eqcr_ptr2idx(eqcr->cursor))
450 		pr_crit("EQCR destroyed unquiesced\n");
451 }
452 
453 static inline struct qm_eqcr_entry *qm_eqcr_start_no_stash(struct qm_portal
454 								 *portal)
455 {
456 	struct qm_eqcr *eqcr = &portal->eqcr;
457 
458 	DPAA_ASSERT(!eqcr->busy);
459 	if (!eqcr->available)
460 		return NULL;
461 
462 #ifdef CONFIG_FSL_DPAA_CHECKING
463 	eqcr->busy = 1;
464 #endif
465 	dpaa_zero(eqcr->cursor);
466 	return eqcr->cursor;
467 }
468 
469 static inline struct qm_eqcr_entry *qm_eqcr_start_stash(struct qm_portal
470 								*portal)
471 {
472 	struct qm_eqcr *eqcr = &portal->eqcr;
473 	u8 diff, old_ci;
474 
475 	DPAA_ASSERT(!eqcr->busy);
476 	if (!eqcr->available) {
477 		old_ci = eqcr->ci;
478 		eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) &
479 			   (QM_EQCR_SIZE - 1);
480 		diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
481 		eqcr->available += diff;
482 		if (!diff)
483 			return NULL;
484 	}
485 #ifdef CONFIG_FSL_DPAA_CHECKING
486 	eqcr->busy = 1;
487 #endif
488 	dpaa_zero(eqcr->cursor);
489 	return eqcr->cursor;
490 }
491 
492 static inline void eqcr_commit_checks(struct qm_eqcr *eqcr)
493 {
494 	DPAA_ASSERT(eqcr->busy);
495 	DPAA_ASSERT(eqcr->cursor->orp == (eqcr->cursor->orp & 0x00ffffff));
496 	DPAA_ASSERT(eqcr->cursor->fqid == (eqcr->cursor->fqid & 0x00ffffff));
497 	DPAA_ASSERT(eqcr->available >= 1);
498 }
499 
500 static inline void qm_eqcr_pvb_commit(struct qm_portal *portal, u8 myverb)
501 {
502 	struct qm_eqcr *eqcr = &portal->eqcr;
503 	struct qm_eqcr_entry *eqcursor;
504 
505 	eqcr_commit_checks(eqcr);
506 	DPAA_ASSERT(eqcr->pmode == qm_eqcr_pvb);
507 	dma_wmb();
508 	eqcursor = eqcr->cursor;
509 	eqcursor->_ncw_verb = myverb | eqcr->vbit;
510 	dpaa_flush(eqcursor);
511 	eqcr_inc(eqcr);
512 	eqcr->available--;
513 #ifdef CONFIG_FSL_DPAA_CHECKING
514 	eqcr->busy = 0;
515 #endif
516 }
517 
518 static inline void qm_eqcr_cce_prefetch(struct qm_portal *portal)
519 {
520 	qm_cl_touch_ro(portal, QM_CL_EQCR_CI_CENA);
521 }
522 
523 static inline u8 qm_eqcr_cce_update(struct qm_portal *portal)
524 {
525 	struct qm_eqcr *eqcr = &portal->eqcr;
526 	u8 diff, old_ci = eqcr->ci;
527 
528 	eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) & (QM_EQCR_SIZE - 1);
529 	qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA);
530 	diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
531 	eqcr->available += diff;
532 	return diff;
533 }
534 
535 static inline void qm_eqcr_set_ithresh(struct qm_portal *portal, u8 ithresh)
536 {
537 	struct qm_eqcr *eqcr = &portal->eqcr;
538 
539 	eqcr->ithresh = ithresh;
540 	qm_out(portal, QM_REG_EQCR_ITR, ithresh);
541 }
542 
543 static inline u8 qm_eqcr_get_avail(struct qm_portal *portal)
544 {
545 	struct qm_eqcr *eqcr = &portal->eqcr;
546 
547 	return eqcr->available;
548 }
549 
550 static inline u8 qm_eqcr_get_fill(struct qm_portal *portal)
551 {
552 	struct qm_eqcr *eqcr = &portal->eqcr;
553 
554 	return QM_EQCR_SIZE - 1 - eqcr->available;
555 }
556 
557 /* --- DQRR API --- */
558 
559 #define DQRR_SHIFT	ilog2(sizeof(struct qm_dqrr_entry))
560 #define DQRR_CARRY	(uintptr_t)(QM_DQRR_SIZE << DQRR_SHIFT)
561 
562 static const struct qm_dqrr_entry *dqrr_carryclear(
563 					const struct qm_dqrr_entry *p)
564 {
565 	uintptr_t addr = (uintptr_t)p;
566 
567 	addr &= ~DQRR_CARRY;
568 
569 	return (const struct qm_dqrr_entry *)addr;
570 }
571 
572 static inline int dqrr_ptr2idx(const struct qm_dqrr_entry *e)
573 {
574 	return ((uintptr_t)e >> DQRR_SHIFT) & (QM_DQRR_SIZE - 1);
575 }
576 
577 static const struct qm_dqrr_entry *dqrr_inc(const struct qm_dqrr_entry *e)
578 {
579 	return dqrr_carryclear(e + 1);
580 }
581 
582 static inline void qm_dqrr_set_maxfill(struct qm_portal *portal, u8 mf)
583 {
584 	qm_out(portal, QM_REG_CFG, (qm_in(portal, QM_REG_CFG) & 0xff0fffff) |
585 				   ((mf & (QM_DQRR_SIZE - 1)) << 20));
586 }
587 
588 static inline int qm_dqrr_init(struct qm_portal *portal,
589 			       const struct qm_portal_config *config,
590 			       enum qm_dqrr_dmode dmode,
591 			       enum qm_dqrr_pmode pmode,
592 			       enum qm_dqrr_cmode cmode, u8 max_fill)
593 {
594 	struct qm_dqrr *dqrr = &portal->dqrr;
595 	u32 cfg;
596 
597 	/* Make sure the DQRR will be idle when we enable */
598 	qm_out(portal, QM_REG_DQRR_SDQCR, 0);
599 	qm_out(portal, QM_REG_DQRR_VDQCR, 0);
600 	qm_out(portal, QM_REG_DQRR_PDQCR, 0);
601 	dqrr->ring = portal->addr.ce + QM_CL_DQRR;
602 	dqrr->pi = qm_in(portal, QM_REG_DQRR_PI_CINH) & (QM_DQRR_SIZE - 1);
603 	dqrr->ci = qm_in(portal, QM_REG_DQRR_CI_CINH) & (QM_DQRR_SIZE - 1);
604 	dqrr->cursor = dqrr->ring + dqrr->ci;
605 	dqrr->fill = dpaa_cyc_diff(QM_DQRR_SIZE, dqrr->ci, dqrr->pi);
606 	dqrr->vbit = (qm_in(portal, QM_REG_DQRR_PI_CINH) & QM_DQRR_SIZE) ?
607 			QM_DQRR_VERB_VBIT : 0;
608 	dqrr->ithresh = qm_in(portal, QM_REG_DQRR_ITR);
609 #ifdef CONFIG_FSL_DPAA_CHECKING
610 	dqrr->dmode = dmode;
611 	dqrr->pmode = pmode;
612 	dqrr->cmode = cmode;
613 #endif
614 	/* Invalidate every ring entry before beginning */
615 	for (cfg = 0; cfg < QM_DQRR_SIZE; cfg++)
616 		dpaa_invalidate(qm_cl(dqrr->ring, cfg));
617 	cfg = (qm_in(portal, QM_REG_CFG) & 0xff000f00) |
618 		((max_fill & (QM_DQRR_SIZE - 1)) << 20) | /* DQRR_MF */
619 		((dmode & 1) << 18) |			/* DP */
620 		((cmode & 3) << 16) |			/* DCM */
621 		0xa0 |					/* RE+SE */
622 		(0 ? 0x40 : 0) |			/* Ignore RP */
623 		(0 ? 0x10 : 0);				/* Ignore SP */
624 	qm_out(portal, QM_REG_CFG, cfg);
625 	qm_dqrr_set_maxfill(portal, max_fill);
626 	return 0;
627 }
628 
629 static inline void qm_dqrr_finish(struct qm_portal *portal)
630 {
631 #ifdef CONFIG_FSL_DPAA_CHECKING
632 	struct qm_dqrr *dqrr = &portal->dqrr;
633 
634 	if (dqrr->cmode != qm_dqrr_cdc &&
635 	    dqrr->ci != dqrr_ptr2idx(dqrr->cursor))
636 		pr_crit("Ignoring completed DQRR entries\n");
637 #endif
638 }
639 
640 static inline const struct qm_dqrr_entry *qm_dqrr_current(
641 						struct qm_portal *portal)
642 {
643 	struct qm_dqrr *dqrr = &portal->dqrr;
644 
645 	if (!dqrr->fill)
646 		return NULL;
647 	return dqrr->cursor;
648 }
649 
650 static inline u8 qm_dqrr_next(struct qm_portal *portal)
651 {
652 	struct qm_dqrr *dqrr = &portal->dqrr;
653 
654 	DPAA_ASSERT(dqrr->fill);
655 	dqrr->cursor = dqrr_inc(dqrr->cursor);
656 	return --dqrr->fill;
657 }
658 
659 static inline void qm_dqrr_pvb_update(struct qm_portal *portal)
660 {
661 	struct qm_dqrr *dqrr = &portal->dqrr;
662 	struct qm_dqrr_entry *res = qm_cl(dqrr->ring, dqrr->pi);
663 
664 	DPAA_ASSERT(dqrr->pmode == qm_dqrr_pvb);
665 #ifndef CONFIG_FSL_PAMU
666 	/*
667 	 * If PAMU is not available we need to invalidate the cache.
668 	 * When PAMU is available the cache is updated by stash
669 	 */
670 	dpaa_invalidate_touch_ro(res);
671 #endif
672 	/*
673 	 *  when accessing 'verb', use __raw_readb() to ensure that compiler
674 	 * inlining doesn't try to optimise out "excess reads".
675 	 */
676 	if ((__raw_readb(&res->verb) & QM_DQRR_VERB_VBIT) == dqrr->vbit) {
677 		dqrr->pi = (dqrr->pi + 1) & (QM_DQRR_SIZE - 1);
678 		if (!dqrr->pi)
679 			dqrr->vbit ^= QM_DQRR_VERB_VBIT;
680 		dqrr->fill++;
681 	}
682 }
683 
684 static inline void qm_dqrr_cdc_consume_1ptr(struct qm_portal *portal,
685 					const struct qm_dqrr_entry *dq,
686 					int park)
687 {
688 	__maybe_unused struct qm_dqrr *dqrr = &portal->dqrr;
689 	int idx = dqrr_ptr2idx(dq);
690 
691 	DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
692 	DPAA_ASSERT((dqrr->ring + idx) == dq);
693 	DPAA_ASSERT(idx < QM_DQRR_SIZE);
694 	qm_out(portal, QM_REG_DQRR_DCAP, (0 << 8) | /* DQRR_DCAP::S */
695 	       ((park ? 1 : 0) << 6) |		    /* DQRR_DCAP::PK */
696 	       idx);				    /* DQRR_DCAP::DCAP_CI */
697 }
698 
699 static inline void qm_dqrr_cdc_consume_n(struct qm_portal *portal, u32 bitmask)
700 {
701 	__maybe_unused struct qm_dqrr *dqrr = &portal->dqrr;
702 
703 	DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
704 	qm_out(portal, QM_REG_DQRR_DCAP, (1 << 8) | /* DQRR_DCAP::S */
705 	       (bitmask << 16));		    /* DQRR_DCAP::DCAP_CI */
706 }
707 
708 static inline void qm_dqrr_sdqcr_set(struct qm_portal *portal, u32 sdqcr)
709 {
710 	qm_out(portal, QM_REG_DQRR_SDQCR, sdqcr);
711 }
712 
713 static inline void qm_dqrr_vdqcr_set(struct qm_portal *portal, u32 vdqcr)
714 {
715 	qm_out(portal, QM_REG_DQRR_VDQCR, vdqcr);
716 }
717 
718 static inline void qm_dqrr_set_ithresh(struct qm_portal *portal, u8 ithresh)
719 {
720 	qm_out(portal, QM_REG_DQRR_ITR, ithresh);
721 }
722 
723 /* --- MR API --- */
724 
725 #define MR_SHIFT	ilog2(sizeof(union qm_mr_entry))
726 #define MR_CARRY	(uintptr_t)(QM_MR_SIZE << MR_SHIFT)
727 
728 static union qm_mr_entry *mr_carryclear(union qm_mr_entry *p)
729 {
730 	uintptr_t addr = (uintptr_t)p;
731 
732 	addr &= ~MR_CARRY;
733 
734 	return (union qm_mr_entry *)addr;
735 }
736 
737 static inline int mr_ptr2idx(const union qm_mr_entry *e)
738 {
739 	return ((uintptr_t)e >> MR_SHIFT) & (QM_MR_SIZE - 1);
740 }
741 
742 static inline union qm_mr_entry *mr_inc(union qm_mr_entry *e)
743 {
744 	return mr_carryclear(e + 1);
745 }
746 
747 static inline int qm_mr_init(struct qm_portal *portal, enum qm_mr_pmode pmode,
748 			     enum qm_mr_cmode cmode)
749 {
750 	struct qm_mr *mr = &portal->mr;
751 	u32 cfg;
752 
753 	mr->ring = portal->addr.ce + QM_CL_MR;
754 	mr->pi = qm_in(portal, QM_REG_MR_PI_CINH) & (QM_MR_SIZE - 1);
755 	mr->ci = qm_in(portal, QM_REG_MR_CI_CINH) & (QM_MR_SIZE - 1);
756 	mr->cursor = mr->ring + mr->ci;
757 	mr->fill = dpaa_cyc_diff(QM_MR_SIZE, mr->ci, mr->pi);
758 	mr->vbit = (qm_in(portal, QM_REG_MR_PI_CINH) & QM_MR_SIZE)
759 		? QM_MR_VERB_VBIT : 0;
760 	mr->ithresh = qm_in(portal, QM_REG_MR_ITR);
761 #ifdef CONFIG_FSL_DPAA_CHECKING
762 	mr->pmode = pmode;
763 	mr->cmode = cmode;
764 #endif
765 	cfg = (qm_in(portal, QM_REG_CFG) & 0xfffff0ff) |
766 	      ((cmode & 1) << 8);	/* QCSP_CFG:MM */
767 	qm_out(portal, QM_REG_CFG, cfg);
768 	return 0;
769 }
770 
771 static inline void qm_mr_finish(struct qm_portal *portal)
772 {
773 	struct qm_mr *mr = &portal->mr;
774 
775 	if (mr->ci != mr_ptr2idx(mr->cursor))
776 		pr_crit("Ignoring completed MR entries\n");
777 }
778 
779 static inline const union qm_mr_entry *qm_mr_current(struct qm_portal *portal)
780 {
781 	struct qm_mr *mr = &portal->mr;
782 
783 	if (!mr->fill)
784 		return NULL;
785 	return mr->cursor;
786 }
787 
788 static inline int qm_mr_next(struct qm_portal *portal)
789 {
790 	struct qm_mr *mr = &portal->mr;
791 
792 	DPAA_ASSERT(mr->fill);
793 	mr->cursor = mr_inc(mr->cursor);
794 	return --mr->fill;
795 }
796 
797 static inline void qm_mr_pvb_update(struct qm_portal *portal)
798 {
799 	struct qm_mr *mr = &portal->mr;
800 	union qm_mr_entry *res = qm_cl(mr->ring, mr->pi);
801 
802 	DPAA_ASSERT(mr->pmode == qm_mr_pvb);
803 	/*
804 	 *  when accessing 'verb', use __raw_readb() to ensure that compiler
805 	 * inlining doesn't try to optimise out "excess reads".
806 	 */
807 	if ((__raw_readb(&res->verb) & QM_MR_VERB_VBIT) == mr->vbit) {
808 		mr->pi = (mr->pi + 1) & (QM_MR_SIZE - 1);
809 		if (!mr->pi)
810 			mr->vbit ^= QM_MR_VERB_VBIT;
811 		mr->fill++;
812 		res = mr_inc(res);
813 	}
814 	dpaa_invalidate_touch_ro(res);
815 }
816 
817 static inline void qm_mr_cci_consume(struct qm_portal *portal, u8 num)
818 {
819 	struct qm_mr *mr = &portal->mr;
820 
821 	DPAA_ASSERT(mr->cmode == qm_mr_cci);
822 	mr->ci = (mr->ci + num) & (QM_MR_SIZE - 1);
823 	qm_out(portal, QM_REG_MR_CI_CINH, mr->ci);
824 }
825 
826 static inline void qm_mr_cci_consume_to_current(struct qm_portal *portal)
827 {
828 	struct qm_mr *mr = &portal->mr;
829 
830 	DPAA_ASSERT(mr->cmode == qm_mr_cci);
831 	mr->ci = mr_ptr2idx(mr->cursor);
832 	qm_out(portal, QM_REG_MR_CI_CINH, mr->ci);
833 }
834 
835 static inline void qm_mr_set_ithresh(struct qm_portal *portal, u8 ithresh)
836 {
837 	qm_out(portal, QM_REG_MR_ITR, ithresh);
838 }
839 
840 /* --- Management command API --- */
841 
842 static inline int qm_mc_init(struct qm_portal *portal)
843 {
844 	struct qm_mc *mc = &portal->mc;
845 
846 	mc->cr = portal->addr.ce + QM_CL_CR;
847 	mc->rr = portal->addr.ce + QM_CL_RR0;
848 	mc->rridx = (__raw_readb(&mc->cr->_ncw_verb) & QM_MCC_VERB_VBIT)
849 		    ? 0 : 1;
850 	mc->vbit = mc->rridx ? QM_MCC_VERB_VBIT : 0;
851 #ifdef CONFIG_FSL_DPAA_CHECKING
852 	mc->state = qman_mc_idle;
853 #endif
854 	return 0;
855 }
856 
857 static inline void qm_mc_finish(struct qm_portal *portal)
858 {
859 #ifdef CONFIG_FSL_DPAA_CHECKING
860 	struct qm_mc *mc = &portal->mc;
861 
862 	DPAA_ASSERT(mc->state == qman_mc_idle);
863 	if (mc->state != qman_mc_idle)
864 		pr_crit("Losing incomplete MC command\n");
865 #endif
866 }
867 
868 static inline union qm_mc_command *qm_mc_start(struct qm_portal *portal)
869 {
870 	struct qm_mc *mc = &portal->mc;
871 
872 	DPAA_ASSERT(mc->state == qman_mc_idle);
873 #ifdef CONFIG_FSL_DPAA_CHECKING
874 	mc->state = qman_mc_user;
875 #endif
876 	dpaa_zero(mc->cr);
877 	return mc->cr;
878 }
879 
880 static inline void qm_mc_commit(struct qm_portal *portal, u8 myverb)
881 {
882 	struct qm_mc *mc = &portal->mc;
883 	union qm_mc_result *rr = mc->rr + mc->rridx;
884 
885 	DPAA_ASSERT(mc->state == qman_mc_user);
886 	dma_wmb();
887 	mc->cr->_ncw_verb = myverb | mc->vbit;
888 	dpaa_flush(mc->cr);
889 	dpaa_invalidate_touch_ro(rr);
890 #ifdef CONFIG_FSL_DPAA_CHECKING
891 	mc->state = qman_mc_hw;
892 #endif
893 }
894 
895 static inline union qm_mc_result *qm_mc_result(struct qm_portal *portal)
896 {
897 	struct qm_mc *mc = &portal->mc;
898 	union qm_mc_result *rr = mc->rr + mc->rridx;
899 
900 	DPAA_ASSERT(mc->state == qman_mc_hw);
901 	/*
902 	 *  The inactive response register's verb byte always returns zero until
903 	 * its command is submitted and completed. This includes the valid-bit,
904 	 * in case you were wondering...
905 	 */
906 	if (!__raw_readb(&rr->verb)) {
907 		dpaa_invalidate_touch_ro(rr);
908 		return NULL;
909 	}
910 	mc->rridx ^= 1;
911 	mc->vbit ^= QM_MCC_VERB_VBIT;
912 #ifdef CONFIG_FSL_DPAA_CHECKING
913 	mc->state = qman_mc_idle;
914 #endif
915 	return rr;
916 }
917 
918 static inline int qm_mc_result_timeout(struct qm_portal *portal,
919 				       union qm_mc_result **mcr)
920 {
921 	int timeout = QM_MCR_TIMEOUT;
922 
923 	do {
924 		*mcr = qm_mc_result(portal);
925 		if (*mcr)
926 			break;
927 		udelay(1);
928 	} while (--timeout);
929 
930 	return timeout;
931 }
932 
933 static inline void fq_set(struct qman_fq *fq, u32 mask)
934 {
935 	set_bits(mask, &fq->flags);
936 }
937 
938 static inline void fq_clear(struct qman_fq *fq, u32 mask)
939 {
940 	clear_bits(mask, &fq->flags);
941 }
942 
943 static inline int fq_isset(struct qman_fq *fq, u32 mask)
944 {
945 	return fq->flags & mask;
946 }
947 
948 static inline int fq_isclear(struct qman_fq *fq, u32 mask)
949 {
950 	return !(fq->flags & mask);
951 }
952 
953 struct qman_portal {
954 	struct qm_portal p;
955 	/* PORTAL_BITS_*** - dynamic, strictly internal */
956 	unsigned long bits;
957 	/* interrupt sources processed by portal_isr(), configurable */
958 	unsigned long irq_sources;
959 	u32 use_eqcr_ci_stashing;
960 	/* only 1 volatile dequeue at a time */
961 	struct qman_fq *vdqcr_owned;
962 	u32 sdqcr;
963 	/* probing time config params for cpu-affine portals */
964 	const struct qm_portal_config *config;
965 	/* needed for providing a non-NULL device to dma_map_***() */
966 	struct platform_device *pdev;
967 	/* 2-element array. cgrs[0] is mask, cgrs[1] is snapshot. */
968 	struct qman_cgrs *cgrs;
969 	/* linked-list of CSCN handlers. */
970 	struct list_head cgr_cbs;
971 	/* list lock */
972 	spinlock_t cgr_lock;
973 	struct work_struct congestion_work;
974 	struct work_struct mr_work;
975 	char irqname[MAX_IRQNAME];
976 };
977 
978 static cpumask_t affine_mask;
979 static DEFINE_SPINLOCK(affine_mask_lock);
980 static u16 affine_channels[NR_CPUS];
981 static DEFINE_PER_CPU(struct qman_portal, qman_affine_portal);
982 struct qman_portal *affine_portals[NR_CPUS];
983 
984 static inline struct qman_portal *get_affine_portal(void)
985 {
986 	return &get_cpu_var(qman_affine_portal);
987 }
988 
989 static inline void put_affine_portal(void)
990 {
991 	put_cpu_var(qman_affine_portal);
992 }
993 
994 static struct workqueue_struct *qm_portal_wq;
995 
996 int qman_wq_alloc(void)
997 {
998 	qm_portal_wq = alloc_workqueue("qman_portal_wq", 0, 1);
999 	if (!qm_portal_wq)
1000 		return -ENOMEM;
1001 	return 0;
1002 }
1003 
1004 /*
1005  * This is what everything can wait on, even if it migrates to a different cpu
1006  * to the one whose affine portal it is waiting on.
1007  */
1008 static DECLARE_WAIT_QUEUE_HEAD(affine_queue);
1009 
1010 static struct qman_fq **fq_table;
1011 static u32 num_fqids;
1012 
1013 int qman_alloc_fq_table(u32 _num_fqids)
1014 {
1015 	num_fqids = _num_fqids;
1016 
1017 	fq_table = vzalloc(num_fqids * 2 * sizeof(struct qman_fq *));
1018 	if (!fq_table)
1019 		return -ENOMEM;
1020 
1021 	pr_debug("Allocated fq lookup table at %p, entry count %u\n",
1022 		 fq_table, num_fqids * 2);
1023 	return 0;
1024 }
1025 
1026 static struct qman_fq *idx_to_fq(u32 idx)
1027 {
1028 	struct qman_fq *fq;
1029 
1030 #ifdef CONFIG_FSL_DPAA_CHECKING
1031 	if (WARN_ON(idx >= num_fqids * 2))
1032 		return NULL;
1033 #endif
1034 	fq = fq_table[idx];
1035 	DPAA_ASSERT(!fq || idx == fq->idx);
1036 
1037 	return fq;
1038 }
1039 
1040 /*
1041  * Only returns full-service fq objects, not enqueue-only
1042  * references (QMAN_FQ_FLAG_NO_MODIFY).
1043  */
1044 static struct qman_fq *fqid_to_fq(u32 fqid)
1045 {
1046 	return idx_to_fq(fqid * 2);
1047 }
1048 
1049 static struct qman_fq *tag_to_fq(u32 tag)
1050 {
1051 #if BITS_PER_LONG == 64
1052 	return idx_to_fq(tag);
1053 #else
1054 	return (struct qman_fq *)tag;
1055 #endif
1056 }
1057 
1058 static u32 fq_to_tag(struct qman_fq *fq)
1059 {
1060 #if BITS_PER_LONG == 64
1061 	return fq->idx;
1062 #else
1063 	return (u32)fq;
1064 #endif
1065 }
1066 
1067 static u32 __poll_portal_slow(struct qman_portal *p, u32 is);
1068 static inline unsigned int __poll_portal_fast(struct qman_portal *p,
1069 					unsigned int poll_limit);
1070 static void qm_congestion_task(struct work_struct *work);
1071 static void qm_mr_process_task(struct work_struct *work);
1072 
1073 static irqreturn_t portal_isr(int irq, void *ptr)
1074 {
1075 	struct qman_portal *p = ptr;
1076 
1077 	u32 clear = QM_DQAVAIL_MASK | p->irq_sources;
1078 	u32 is = qm_in(&p->p, QM_REG_ISR) & p->irq_sources;
1079 
1080 	if (unlikely(!is))
1081 		return IRQ_NONE;
1082 
1083 	/* DQRR-handling if it's interrupt-driven */
1084 	if (is & QM_PIRQ_DQRI)
1085 		__poll_portal_fast(p, QMAN_POLL_LIMIT);
1086 	/* Handling of anything else that's interrupt-driven */
1087 	clear |= __poll_portal_slow(p, is);
1088 	qm_out(&p->p, QM_REG_ISR, clear);
1089 	return IRQ_HANDLED;
1090 }
1091 
1092 static int drain_mr_fqrni(struct qm_portal *p)
1093 {
1094 	const union qm_mr_entry *msg;
1095 loop:
1096 	msg = qm_mr_current(p);
1097 	if (!msg) {
1098 		/*
1099 		 * if MR was full and h/w had other FQRNI entries to produce, we
1100 		 * need to allow it time to produce those entries once the
1101 		 * existing entries are consumed. A worst-case situation
1102 		 * (fully-loaded system) means h/w sequencers may have to do 3-4
1103 		 * other things before servicing the portal's MR pump, each of
1104 		 * which (if slow) may take ~50 qman cycles (which is ~200
1105 		 * processor cycles). So rounding up and then multiplying this
1106 		 * worst-case estimate by a factor of 10, just to be
1107 		 * ultra-paranoid, goes as high as 10,000 cycles. NB, we consume
1108 		 * one entry at a time, so h/w has an opportunity to produce new
1109 		 * entries well before the ring has been fully consumed, so
1110 		 * we're being *really* paranoid here.
1111 		 */
1112 		u64 now, then = jiffies;
1113 
1114 		do {
1115 			now = jiffies;
1116 		} while ((then + 10000) > now);
1117 		msg = qm_mr_current(p);
1118 		if (!msg)
1119 			return 0;
1120 	}
1121 	if ((msg->verb & QM_MR_VERB_TYPE_MASK) != QM_MR_VERB_FQRNI) {
1122 		/* We aren't draining anything but FQRNIs */
1123 		pr_err("Found verb 0x%x in MR\n", msg->verb);
1124 		return -1;
1125 	}
1126 	qm_mr_next(p);
1127 	qm_mr_cci_consume(p, 1);
1128 	goto loop;
1129 }
1130 
1131 static int qman_create_portal(struct qman_portal *portal,
1132 			      const struct qm_portal_config *c,
1133 			      const struct qman_cgrs *cgrs)
1134 {
1135 	struct qm_portal *p;
1136 	char buf[16];
1137 	int ret;
1138 	u32 isdr;
1139 
1140 	p = &portal->p;
1141 
1142 #ifdef CONFIG_FSL_PAMU
1143 	/* PAMU is required for stashing */
1144 	portal->use_eqcr_ci_stashing = ((qman_ip_rev >= QMAN_REV30) ? 1 : 0);
1145 #else
1146 	portal->use_eqcr_ci_stashing = 0;
1147 #endif
1148 	/*
1149 	 * prep the low-level portal struct with the mapped addresses from the
1150 	 * config, everything that follows depends on it and "config" is more
1151 	 * for (de)reference
1152 	 */
1153 	p->addr.ce = c->addr_virt[DPAA_PORTAL_CE];
1154 	p->addr.ci = c->addr_virt[DPAA_PORTAL_CI];
1155 	/*
1156 	 * If CI-stashing is used, the current defaults use a threshold of 3,
1157 	 * and stash with high-than-DQRR priority.
1158 	 */
1159 	if (qm_eqcr_init(p, qm_eqcr_pvb,
1160 			portal->use_eqcr_ci_stashing ? 3 : 0, 1)) {
1161 		dev_err(c->dev, "EQCR initialisation failed\n");
1162 		goto fail_eqcr;
1163 	}
1164 	if (qm_dqrr_init(p, c, qm_dqrr_dpush, qm_dqrr_pvb,
1165 			qm_dqrr_cdc, DQRR_MAXFILL)) {
1166 		dev_err(c->dev, "DQRR initialisation failed\n");
1167 		goto fail_dqrr;
1168 	}
1169 	if (qm_mr_init(p, qm_mr_pvb, qm_mr_cci)) {
1170 		dev_err(c->dev, "MR initialisation failed\n");
1171 		goto fail_mr;
1172 	}
1173 	if (qm_mc_init(p)) {
1174 		dev_err(c->dev, "MC initialisation failed\n");
1175 		goto fail_mc;
1176 	}
1177 	/* static interrupt-gating controls */
1178 	qm_dqrr_set_ithresh(p, QMAN_PIRQ_DQRR_ITHRESH);
1179 	qm_mr_set_ithresh(p, QMAN_PIRQ_MR_ITHRESH);
1180 	qm_out(p, QM_REG_ITPR, QMAN_PIRQ_IPERIOD);
1181 	portal->cgrs = kmalloc(2 * sizeof(*cgrs), GFP_KERNEL);
1182 	if (!portal->cgrs)
1183 		goto fail_cgrs;
1184 	/* initial snapshot is no-depletion */
1185 	qman_cgrs_init(&portal->cgrs[1]);
1186 	if (cgrs)
1187 		portal->cgrs[0] = *cgrs;
1188 	else
1189 		/* if the given mask is NULL, assume all CGRs can be seen */
1190 		qman_cgrs_fill(&portal->cgrs[0]);
1191 	INIT_LIST_HEAD(&portal->cgr_cbs);
1192 	spin_lock_init(&portal->cgr_lock);
1193 	INIT_WORK(&portal->congestion_work, qm_congestion_task);
1194 	INIT_WORK(&portal->mr_work, qm_mr_process_task);
1195 	portal->bits = 0;
1196 	portal->sdqcr = QM_SDQCR_SOURCE_CHANNELS | QM_SDQCR_COUNT_UPTO3 |
1197 			QM_SDQCR_DEDICATED_PRECEDENCE | QM_SDQCR_TYPE_PRIO_QOS |
1198 			QM_SDQCR_TOKEN_SET(0xab) | QM_SDQCR_CHANNELS_DEDICATED;
1199 	sprintf(buf, "qportal-%d", c->channel);
1200 	portal->pdev = platform_device_alloc(buf, -1);
1201 	if (!portal->pdev)
1202 		goto fail_devalloc;
1203 	if (dma_set_mask(&portal->pdev->dev, DMA_BIT_MASK(40)))
1204 		goto fail_devadd;
1205 	ret = platform_device_add(portal->pdev);
1206 	if (ret)
1207 		goto fail_devadd;
1208 	isdr = 0xffffffff;
1209 	qm_out(p, QM_REG_ISDR, isdr);
1210 	portal->irq_sources = 0;
1211 	qm_out(p, QM_REG_IER, 0);
1212 	qm_out(p, QM_REG_ISR, 0xffffffff);
1213 	snprintf(portal->irqname, MAX_IRQNAME, IRQNAME, c->cpu);
1214 	if (request_irq(c->irq, portal_isr, 0, portal->irqname,	portal)) {
1215 		dev_err(c->dev, "request_irq() failed\n");
1216 		goto fail_irq;
1217 	}
1218 	if (c->cpu != -1 && irq_can_set_affinity(c->irq) &&
1219 	    irq_set_affinity(c->irq, cpumask_of(c->cpu))) {
1220 		dev_err(c->dev, "irq_set_affinity() failed\n");
1221 		goto fail_affinity;
1222 	}
1223 
1224 	/* Need EQCR to be empty before continuing */
1225 	isdr &= ~QM_PIRQ_EQCI;
1226 	qm_out(p, QM_REG_ISDR, isdr);
1227 	ret = qm_eqcr_get_fill(p);
1228 	if (ret) {
1229 		dev_err(c->dev, "EQCR unclean\n");
1230 		goto fail_eqcr_empty;
1231 	}
1232 	isdr &= ~(QM_PIRQ_DQRI | QM_PIRQ_MRI);
1233 	qm_out(p, QM_REG_ISDR, isdr);
1234 	if (qm_dqrr_current(p)) {
1235 		dev_err(c->dev, "DQRR unclean\n");
1236 		qm_dqrr_cdc_consume_n(p, 0xffff);
1237 	}
1238 	if (qm_mr_current(p) && drain_mr_fqrni(p)) {
1239 		/* special handling, drain just in case it's a few FQRNIs */
1240 		const union qm_mr_entry *e = qm_mr_current(p);
1241 
1242 		dev_err(c->dev, "MR dirty, VB 0x%x, rc 0x%x\n, addr 0x%x",
1243 			e->verb, e->ern.rc, e->ern.fd.addr_lo);
1244 		goto fail_dqrr_mr_empty;
1245 	}
1246 	/* Success */
1247 	portal->config = c;
1248 	qm_out(p, QM_REG_ISDR, 0);
1249 	qm_out(p, QM_REG_IIR, 0);
1250 	/* Write a sane SDQCR */
1251 	qm_dqrr_sdqcr_set(p, portal->sdqcr);
1252 	return 0;
1253 
1254 fail_dqrr_mr_empty:
1255 fail_eqcr_empty:
1256 fail_affinity:
1257 	free_irq(c->irq, portal);
1258 fail_irq:
1259 	platform_device_del(portal->pdev);
1260 fail_devadd:
1261 	platform_device_put(portal->pdev);
1262 fail_devalloc:
1263 	kfree(portal->cgrs);
1264 fail_cgrs:
1265 	qm_mc_finish(p);
1266 fail_mc:
1267 	qm_mr_finish(p);
1268 fail_mr:
1269 	qm_dqrr_finish(p);
1270 fail_dqrr:
1271 	qm_eqcr_finish(p);
1272 fail_eqcr:
1273 	return -EIO;
1274 }
1275 
1276 struct qman_portal *qman_create_affine_portal(const struct qm_portal_config *c,
1277 					      const struct qman_cgrs *cgrs)
1278 {
1279 	struct qman_portal *portal;
1280 	int err;
1281 
1282 	portal = &per_cpu(qman_affine_portal, c->cpu);
1283 	err = qman_create_portal(portal, c, cgrs);
1284 	if (err)
1285 		return NULL;
1286 
1287 	spin_lock(&affine_mask_lock);
1288 	cpumask_set_cpu(c->cpu, &affine_mask);
1289 	affine_channels[c->cpu] = c->channel;
1290 	affine_portals[c->cpu] = portal;
1291 	spin_unlock(&affine_mask_lock);
1292 
1293 	return portal;
1294 }
1295 
1296 static void qman_destroy_portal(struct qman_portal *qm)
1297 {
1298 	const struct qm_portal_config *pcfg;
1299 
1300 	/* Stop dequeues on the portal */
1301 	qm_dqrr_sdqcr_set(&qm->p, 0);
1302 
1303 	/*
1304 	 * NB we do this to "quiesce" EQCR. If we add enqueue-completions or
1305 	 * something related to QM_PIRQ_EQCI, this may need fixing.
1306 	 * Also, due to the prefetching model used for CI updates in the enqueue
1307 	 * path, this update will only invalidate the CI cacheline *after*
1308 	 * working on it, so we need to call this twice to ensure a full update
1309 	 * irrespective of where the enqueue processing was at when the teardown
1310 	 * began.
1311 	 */
1312 	qm_eqcr_cce_update(&qm->p);
1313 	qm_eqcr_cce_update(&qm->p);
1314 	pcfg = qm->config;
1315 
1316 	free_irq(pcfg->irq, qm);
1317 
1318 	kfree(qm->cgrs);
1319 	qm_mc_finish(&qm->p);
1320 	qm_mr_finish(&qm->p);
1321 	qm_dqrr_finish(&qm->p);
1322 	qm_eqcr_finish(&qm->p);
1323 
1324 	platform_device_del(qm->pdev);
1325 	platform_device_put(qm->pdev);
1326 
1327 	qm->config = NULL;
1328 }
1329 
1330 const struct qm_portal_config *qman_destroy_affine_portal(void)
1331 {
1332 	struct qman_portal *qm = get_affine_portal();
1333 	const struct qm_portal_config *pcfg;
1334 	int cpu;
1335 
1336 	pcfg = qm->config;
1337 	cpu = pcfg->cpu;
1338 
1339 	qman_destroy_portal(qm);
1340 
1341 	spin_lock(&affine_mask_lock);
1342 	cpumask_clear_cpu(cpu, &affine_mask);
1343 	spin_unlock(&affine_mask_lock);
1344 	put_affine_portal();
1345 	return pcfg;
1346 }
1347 
1348 /* Inline helper to reduce nesting in __poll_portal_slow() */
1349 static inline void fq_state_change(struct qman_portal *p, struct qman_fq *fq,
1350 				   const union qm_mr_entry *msg, u8 verb)
1351 {
1352 	switch (verb) {
1353 	case QM_MR_VERB_FQRL:
1354 		DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_ORL));
1355 		fq_clear(fq, QMAN_FQ_STATE_ORL);
1356 		break;
1357 	case QM_MR_VERB_FQRN:
1358 		DPAA_ASSERT(fq->state == qman_fq_state_parked ||
1359 			    fq->state == qman_fq_state_sched);
1360 		DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_CHANGING));
1361 		fq_clear(fq, QMAN_FQ_STATE_CHANGING);
1362 		if (msg->fq.fqs & QM_MR_FQS_NOTEMPTY)
1363 			fq_set(fq, QMAN_FQ_STATE_NE);
1364 		if (msg->fq.fqs & QM_MR_FQS_ORLPRESENT)
1365 			fq_set(fq, QMAN_FQ_STATE_ORL);
1366 		fq->state = qman_fq_state_retired;
1367 		break;
1368 	case QM_MR_VERB_FQPN:
1369 		DPAA_ASSERT(fq->state == qman_fq_state_sched);
1370 		DPAA_ASSERT(fq_isclear(fq, QMAN_FQ_STATE_CHANGING));
1371 		fq->state = qman_fq_state_parked;
1372 	}
1373 }
1374 
1375 static void qm_congestion_task(struct work_struct *work)
1376 {
1377 	struct qman_portal *p = container_of(work, struct qman_portal,
1378 					     congestion_work);
1379 	struct qman_cgrs rr, c;
1380 	union qm_mc_result *mcr;
1381 	struct qman_cgr *cgr;
1382 
1383 	spin_lock(&p->cgr_lock);
1384 	qm_mc_start(&p->p);
1385 	qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCONGESTION);
1386 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
1387 		spin_unlock(&p->cgr_lock);
1388 		dev_crit(p->config->dev, "QUERYCONGESTION timeout\n");
1389 		return;
1390 	}
1391 	/* mask out the ones I'm not interested in */
1392 	qman_cgrs_and(&rr, (struct qman_cgrs *)&mcr->querycongestion.state,
1393 		      &p->cgrs[0]);
1394 	/* check previous snapshot for delta, enter/exit congestion */
1395 	qman_cgrs_xor(&c, &rr, &p->cgrs[1]);
1396 	/* update snapshot */
1397 	qman_cgrs_cp(&p->cgrs[1], &rr);
1398 	/* Invoke callback */
1399 	list_for_each_entry(cgr, &p->cgr_cbs, node)
1400 		if (cgr->cb && qman_cgrs_get(&c, cgr->cgrid))
1401 			cgr->cb(p, cgr, qman_cgrs_get(&rr, cgr->cgrid));
1402 	spin_unlock(&p->cgr_lock);
1403 }
1404 
1405 static void qm_mr_process_task(struct work_struct *work)
1406 {
1407 	struct qman_portal *p = container_of(work, struct qman_portal,
1408 					     mr_work);
1409 	const union qm_mr_entry *msg;
1410 	struct qman_fq *fq;
1411 	u8 verb, num = 0;
1412 
1413 	preempt_disable();
1414 
1415 	while (1) {
1416 		qm_mr_pvb_update(&p->p);
1417 		msg = qm_mr_current(&p->p);
1418 		if (!msg)
1419 			break;
1420 
1421 		verb = msg->verb & QM_MR_VERB_TYPE_MASK;
1422 		/* The message is a software ERN iff the 0x20 bit is clear */
1423 		if (verb & 0x20) {
1424 			switch (verb) {
1425 			case QM_MR_VERB_FQRNI:
1426 				/* nada, we drop FQRNIs on the floor */
1427 				break;
1428 			case QM_MR_VERB_FQRN:
1429 			case QM_MR_VERB_FQRL:
1430 				/* Lookup in the retirement table */
1431 				fq = fqid_to_fq(msg->fq.fqid);
1432 				if (WARN_ON(!fq))
1433 					break;
1434 				fq_state_change(p, fq, msg, verb);
1435 				if (fq->cb.fqs)
1436 					fq->cb.fqs(p, fq, msg);
1437 				break;
1438 			case QM_MR_VERB_FQPN:
1439 				/* Parked */
1440 				fq = tag_to_fq(msg->fq.contextB);
1441 				fq_state_change(p, fq, msg, verb);
1442 				if (fq->cb.fqs)
1443 					fq->cb.fqs(p, fq, msg);
1444 				break;
1445 			case QM_MR_VERB_DC_ERN:
1446 				/* DCP ERN */
1447 				pr_crit_once("Leaking DCP ERNs!\n");
1448 				break;
1449 			default:
1450 				pr_crit("Invalid MR verb 0x%02x\n", verb);
1451 			}
1452 		} else {
1453 			/* Its a software ERN */
1454 			fq = tag_to_fq(msg->ern.tag);
1455 			fq->cb.ern(p, fq, msg);
1456 		}
1457 		num++;
1458 		qm_mr_next(&p->p);
1459 	}
1460 
1461 	qm_mr_cci_consume(&p->p, num);
1462 	preempt_enable();
1463 }
1464 
1465 static u32 __poll_portal_slow(struct qman_portal *p, u32 is)
1466 {
1467 	if (is & QM_PIRQ_CSCI) {
1468 		queue_work_on(smp_processor_id(), qm_portal_wq,
1469 			      &p->congestion_work);
1470 	}
1471 
1472 	if (is & QM_PIRQ_EQRI) {
1473 		qm_eqcr_cce_update(&p->p);
1474 		qm_eqcr_set_ithresh(&p->p, 0);
1475 		wake_up(&affine_queue);
1476 	}
1477 
1478 	if (is & QM_PIRQ_MRI) {
1479 		queue_work_on(smp_processor_id(), qm_portal_wq,
1480 			      &p->mr_work);
1481 	}
1482 
1483 	return is;
1484 }
1485 
1486 /*
1487  * remove some slowish-path stuff from the "fast path" and make sure it isn't
1488  * inlined.
1489  */
1490 static noinline void clear_vdqcr(struct qman_portal *p, struct qman_fq *fq)
1491 {
1492 	p->vdqcr_owned = NULL;
1493 	fq_clear(fq, QMAN_FQ_STATE_VDQCR);
1494 	wake_up(&affine_queue);
1495 }
1496 
1497 /*
1498  * The only states that would conflict with other things if they ran at the
1499  * same time on the same cpu are:
1500  *
1501  *   (i) setting/clearing vdqcr_owned, and
1502  *  (ii) clearing the NE (Not Empty) flag.
1503  *
1504  * Both are safe. Because;
1505  *
1506  *   (i) this clearing can only occur after qman_volatile_dequeue() has set the
1507  *	 vdqcr_owned field (which it does before setting VDQCR), and
1508  *	 qman_volatile_dequeue() blocks interrupts and preemption while this is
1509  *	 done so that we can't interfere.
1510  *  (ii) the NE flag is only cleared after qman_retire_fq() has set it, and as
1511  *	 with (i) that API prevents us from interfering until it's safe.
1512  *
1513  * The good thing is that qman_volatile_dequeue() and qman_retire_fq() run far
1514  * less frequently (ie. per-FQ) than __poll_portal_fast() does, so the nett
1515  * advantage comes from this function not having to "lock" anything at all.
1516  *
1517  * Note also that the callbacks are invoked at points which are safe against the
1518  * above potential conflicts, but that this function itself is not re-entrant
1519  * (this is because the function tracks one end of each FIFO in the portal and
1520  * we do *not* want to lock that). So the consequence is that it is safe for
1521  * user callbacks to call into any QMan API.
1522  */
1523 static inline unsigned int __poll_portal_fast(struct qman_portal *p,
1524 					unsigned int poll_limit)
1525 {
1526 	const struct qm_dqrr_entry *dq;
1527 	struct qman_fq *fq;
1528 	enum qman_cb_dqrr_result res;
1529 	unsigned int limit = 0;
1530 
1531 	do {
1532 		qm_dqrr_pvb_update(&p->p);
1533 		dq = qm_dqrr_current(&p->p);
1534 		if (!dq)
1535 			break;
1536 
1537 		if (dq->stat & QM_DQRR_STAT_UNSCHEDULED) {
1538 			/*
1539 			 * VDQCR: don't trust contextB as the FQ may have
1540 			 * been configured for h/w consumption and we're
1541 			 * draining it post-retirement.
1542 			 */
1543 			fq = p->vdqcr_owned;
1544 			/*
1545 			 * We only set QMAN_FQ_STATE_NE when retiring, so we
1546 			 * only need to check for clearing it when doing
1547 			 * volatile dequeues.  It's one less thing to check
1548 			 * in the critical path (SDQCR).
1549 			 */
1550 			if (dq->stat & QM_DQRR_STAT_FQ_EMPTY)
1551 				fq_clear(fq, QMAN_FQ_STATE_NE);
1552 			/*
1553 			 * This is duplicated from the SDQCR code, but we
1554 			 * have stuff to do before *and* after this callback,
1555 			 * and we don't want multiple if()s in the critical
1556 			 * path (SDQCR).
1557 			 */
1558 			res = fq->cb.dqrr(p, fq, dq);
1559 			if (res == qman_cb_dqrr_stop)
1560 				break;
1561 			/* Check for VDQCR completion */
1562 			if (dq->stat & QM_DQRR_STAT_DQCR_EXPIRED)
1563 				clear_vdqcr(p, fq);
1564 		} else {
1565 			/* SDQCR: contextB points to the FQ */
1566 			fq = tag_to_fq(dq->contextB);
1567 			/* Now let the callback do its stuff */
1568 			res = fq->cb.dqrr(p, fq, dq);
1569 			/*
1570 			 * The callback can request that we exit without
1571 			 * consuming this entry nor advancing;
1572 			 */
1573 			if (res == qman_cb_dqrr_stop)
1574 				break;
1575 		}
1576 		/* Interpret 'dq' from a driver perspective. */
1577 		/*
1578 		 * Parking isn't possible unless HELDACTIVE was set. NB,
1579 		 * FORCEELIGIBLE implies HELDACTIVE, so we only need to
1580 		 * check for HELDACTIVE to cover both.
1581 		 */
1582 		DPAA_ASSERT((dq->stat & QM_DQRR_STAT_FQ_HELDACTIVE) ||
1583 			    (res != qman_cb_dqrr_park));
1584 		/* just means "skip it, I'll consume it myself later on" */
1585 		if (res != qman_cb_dqrr_defer)
1586 			qm_dqrr_cdc_consume_1ptr(&p->p, dq,
1587 						 res == qman_cb_dqrr_park);
1588 		/* Move forward */
1589 		qm_dqrr_next(&p->p);
1590 		/*
1591 		 * Entry processed and consumed, increment our counter.  The
1592 		 * callback can request that we exit after consuming the
1593 		 * entry, and we also exit if we reach our processing limit,
1594 		 * so loop back only if neither of these conditions is met.
1595 		 */
1596 	} while (++limit < poll_limit && res != qman_cb_dqrr_consume_stop);
1597 
1598 	return limit;
1599 }
1600 
1601 void qman_p_irqsource_add(struct qman_portal *p, u32 bits)
1602 {
1603 	unsigned long irqflags;
1604 
1605 	local_irq_save(irqflags);
1606 	set_bits(bits & QM_PIRQ_VISIBLE, &p->irq_sources);
1607 	qm_out(&p->p, QM_REG_IER, p->irq_sources);
1608 	local_irq_restore(irqflags);
1609 }
1610 EXPORT_SYMBOL(qman_p_irqsource_add);
1611 
1612 void qman_p_irqsource_remove(struct qman_portal *p, u32 bits)
1613 {
1614 	unsigned long irqflags;
1615 	u32 ier;
1616 
1617 	/*
1618 	 * Our interrupt handler only processes+clears status register bits that
1619 	 * are in p->irq_sources. As we're trimming that mask, if one of them
1620 	 * were to assert in the status register just before we remove it from
1621 	 * the enable register, there would be an interrupt-storm when we
1622 	 * release the IRQ lock. So we wait for the enable register update to
1623 	 * take effect in h/w (by reading it back) and then clear all other bits
1624 	 * in the status register. Ie. we clear them from ISR once it's certain
1625 	 * IER won't allow them to reassert.
1626 	 */
1627 	local_irq_save(irqflags);
1628 	bits &= QM_PIRQ_VISIBLE;
1629 	clear_bits(bits, &p->irq_sources);
1630 	qm_out(&p->p, QM_REG_IER, p->irq_sources);
1631 	ier = qm_in(&p->p, QM_REG_IER);
1632 	/*
1633 	 * Using "~ier" (rather than "bits" or "~p->irq_sources") creates a
1634 	 * data-dependency, ie. to protect against re-ordering.
1635 	 */
1636 	qm_out(&p->p, QM_REG_ISR, ~ier);
1637 	local_irq_restore(irqflags);
1638 }
1639 EXPORT_SYMBOL(qman_p_irqsource_remove);
1640 
1641 const cpumask_t *qman_affine_cpus(void)
1642 {
1643 	return &affine_mask;
1644 }
1645 EXPORT_SYMBOL(qman_affine_cpus);
1646 
1647 u16 qman_affine_channel(int cpu)
1648 {
1649 	if (cpu < 0) {
1650 		struct qman_portal *portal = get_affine_portal();
1651 
1652 		cpu = portal->config->cpu;
1653 		put_affine_portal();
1654 	}
1655 	WARN_ON(!cpumask_test_cpu(cpu, &affine_mask));
1656 	return affine_channels[cpu];
1657 }
1658 EXPORT_SYMBOL(qman_affine_channel);
1659 
1660 struct qman_portal *qman_get_affine_portal(int cpu)
1661 {
1662 	return affine_portals[cpu];
1663 }
1664 EXPORT_SYMBOL(qman_get_affine_portal);
1665 
1666 int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit)
1667 {
1668 	return __poll_portal_fast(p, limit);
1669 }
1670 EXPORT_SYMBOL(qman_p_poll_dqrr);
1671 
1672 void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools)
1673 {
1674 	unsigned long irqflags;
1675 
1676 	local_irq_save(irqflags);
1677 	pools &= p->config->pools;
1678 	p->sdqcr |= pools;
1679 	qm_dqrr_sdqcr_set(&p->p, p->sdqcr);
1680 	local_irq_restore(irqflags);
1681 }
1682 EXPORT_SYMBOL(qman_p_static_dequeue_add);
1683 
1684 /* Frame queue API */
1685 
1686 static const char *mcr_result_str(u8 result)
1687 {
1688 	switch (result) {
1689 	case QM_MCR_RESULT_NULL:
1690 		return "QM_MCR_RESULT_NULL";
1691 	case QM_MCR_RESULT_OK:
1692 		return "QM_MCR_RESULT_OK";
1693 	case QM_MCR_RESULT_ERR_FQID:
1694 		return "QM_MCR_RESULT_ERR_FQID";
1695 	case QM_MCR_RESULT_ERR_FQSTATE:
1696 		return "QM_MCR_RESULT_ERR_FQSTATE";
1697 	case QM_MCR_RESULT_ERR_NOTEMPTY:
1698 		return "QM_MCR_RESULT_ERR_NOTEMPTY";
1699 	case QM_MCR_RESULT_PENDING:
1700 		return "QM_MCR_RESULT_PENDING";
1701 	case QM_MCR_RESULT_ERR_BADCOMMAND:
1702 		return "QM_MCR_RESULT_ERR_BADCOMMAND";
1703 	}
1704 	return "<unknown MCR result>";
1705 }
1706 
1707 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq)
1708 {
1709 	if (flags & QMAN_FQ_FLAG_DYNAMIC_FQID) {
1710 		int ret = qman_alloc_fqid(&fqid);
1711 
1712 		if (ret)
1713 			return ret;
1714 	}
1715 	fq->fqid = fqid;
1716 	fq->flags = flags;
1717 	fq->state = qman_fq_state_oos;
1718 	fq->cgr_groupid = 0;
1719 
1720 	/* A context_b of 0 is allegedly special, so don't use that fqid */
1721 	if (fqid == 0 || fqid >= num_fqids) {
1722 		WARN(1, "bad fqid %d\n", fqid);
1723 		return -EINVAL;
1724 	}
1725 
1726 	fq->idx = fqid * 2;
1727 	if (flags & QMAN_FQ_FLAG_NO_MODIFY)
1728 		fq->idx++;
1729 
1730 	WARN_ON(fq_table[fq->idx]);
1731 	fq_table[fq->idx] = fq;
1732 
1733 	return 0;
1734 }
1735 EXPORT_SYMBOL(qman_create_fq);
1736 
1737 void qman_destroy_fq(struct qman_fq *fq)
1738 {
1739 	/*
1740 	 * We don't need to lock the FQ as it is a pre-condition that the FQ be
1741 	 * quiesced. Instead, run some checks.
1742 	 */
1743 	switch (fq->state) {
1744 	case qman_fq_state_parked:
1745 	case qman_fq_state_oos:
1746 		if (fq_isset(fq, QMAN_FQ_FLAG_DYNAMIC_FQID))
1747 			qman_release_fqid(fq->fqid);
1748 
1749 		DPAA_ASSERT(fq_table[fq->idx]);
1750 		fq_table[fq->idx] = NULL;
1751 		return;
1752 	default:
1753 		break;
1754 	}
1755 	DPAA_ASSERT(NULL == "qman_free_fq() on unquiesced FQ!");
1756 }
1757 EXPORT_SYMBOL(qman_destroy_fq);
1758 
1759 u32 qman_fq_fqid(struct qman_fq *fq)
1760 {
1761 	return fq->fqid;
1762 }
1763 EXPORT_SYMBOL(qman_fq_fqid);
1764 
1765 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts)
1766 {
1767 	union qm_mc_command *mcc;
1768 	union qm_mc_result *mcr;
1769 	struct qman_portal *p;
1770 	u8 res, myverb;
1771 	int ret = 0;
1772 
1773 	myverb = (flags & QMAN_INITFQ_FLAG_SCHED)
1774 		? QM_MCC_VERB_INITFQ_SCHED : QM_MCC_VERB_INITFQ_PARKED;
1775 
1776 	if (fq->state != qman_fq_state_oos &&
1777 	    fq->state != qman_fq_state_parked)
1778 		return -EINVAL;
1779 #ifdef CONFIG_FSL_DPAA_CHECKING
1780 	if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
1781 		return -EINVAL;
1782 #endif
1783 	if (opts && (opts->we_mask & QM_INITFQ_WE_OAC)) {
1784 		/* And can't be set at the same time as TDTHRESH */
1785 		if (opts->we_mask & QM_INITFQ_WE_TDTHRESH)
1786 			return -EINVAL;
1787 	}
1788 	/* Issue an INITFQ_[PARKED|SCHED] management command */
1789 	p = get_affine_portal();
1790 	if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) ||
1791 	    (fq->state != qman_fq_state_oos &&
1792 	     fq->state != qman_fq_state_parked)) {
1793 		ret = -EBUSY;
1794 		goto out;
1795 	}
1796 	mcc = qm_mc_start(&p->p);
1797 	if (opts)
1798 		mcc->initfq = *opts;
1799 	mcc->initfq.fqid = fq->fqid;
1800 	mcc->initfq.count = 0;
1801 	/*
1802 	 * If the FQ does *not* have the TO_DCPORTAL flag, contextB is set as a
1803 	 * demux pointer. Otherwise, the caller-provided value is allowed to
1804 	 * stand, don't overwrite it.
1805 	 */
1806 	if (fq_isclear(fq, QMAN_FQ_FLAG_TO_DCPORTAL)) {
1807 		dma_addr_t phys_fq;
1808 
1809 		mcc->initfq.we_mask |= QM_INITFQ_WE_CONTEXTB;
1810 		mcc->initfq.fqd.context_b = fq_to_tag(fq);
1811 		/*
1812 		 *  and the physical address - NB, if the user wasn't trying to
1813 		 * set CONTEXTA, clear the stashing settings.
1814 		 */
1815 		if (!(mcc->initfq.we_mask & QM_INITFQ_WE_CONTEXTA)) {
1816 			mcc->initfq.we_mask |= QM_INITFQ_WE_CONTEXTA;
1817 			memset(&mcc->initfq.fqd.context_a, 0,
1818 				sizeof(mcc->initfq.fqd.context_a));
1819 		} else {
1820 			phys_fq = dma_map_single(&p->pdev->dev, fq, sizeof(*fq),
1821 						 DMA_TO_DEVICE);
1822 			qm_fqd_stashing_set64(&mcc->initfq.fqd, phys_fq);
1823 		}
1824 	}
1825 	if (flags & QMAN_INITFQ_FLAG_LOCAL) {
1826 		int wq = 0;
1827 
1828 		if (!(mcc->initfq.we_mask & QM_INITFQ_WE_DESTWQ)) {
1829 			mcc->initfq.we_mask |= QM_INITFQ_WE_DESTWQ;
1830 			wq = 4;
1831 		}
1832 		qm_fqd_set_destwq(&mcc->initfq.fqd, p->config->channel, wq);
1833 	}
1834 	qm_mc_commit(&p->p, myverb);
1835 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
1836 		dev_err(p->config->dev, "MCR timeout\n");
1837 		ret = -ETIMEDOUT;
1838 		goto out;
1839 	}
1840 
1841 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == myverb);
1842 	res = mcr->result;
1843 	if (res != QM_MCR_RESULT_OK) {
1844 		ret = -EIO;
1845 		goto out;
1846 	}
1847 	if (opts) {
1848 		if (opts->we_mask & QM_INITFQ_WE_FQCTRL) {
1849 			if (opts->fqd.fq_ctrl & QM_FQCTRL_CGE)
1850 				fq_set(fq, QMAN_FQ_STATE_CGR_EN);
1851 			else
1852 				fq_clear(fq, QMAN_FQ_STATE_CGR_EN);
1853 		}
1854 		if (opts->we_mask & QM_INITFQ_WE_CGID)
1855 			fq->cgr_groupid = opts->fqd.cgid;
1856 	}
1857 	fq->state = (flags & QMAN_INITFQ_FLAG_SCHED) ?
1858 		qman_fq_state_sched : qman_fq_state_parked;
1859 
1860 out:
1861 	put_affine_portal();
1862 	return ret;
1863 }
1864 EXPORT_SYMBOL(qman_init_fq);
1865 
1866 int qman_schedule_fq(struct qman_fq *fq)
1867 {
1868 	union qm_mc_command *mcc;
1869 	union qm_mc_result *mcr;
1870 	struct qman_portal *p;
1871 	int ret = 0;
1872 
1873 	if (fq->state != qman_fq_state_parked)
1874 		return -EINVAL;
1875 #ifdef CONFIG_FSL_DPAA_CHECKING
1876 	if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
1877 		return -EINVAL;
1878 #endif
1879 	/* Issue a ALTERFQ_SCHED management command */
1880 	p = get_affine_portal();
1881 	if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) ||
1882 	    fq->state != qman_fq_state_parked) {
1883 		ret = -EBUSY;
1884 		goto out;
1885 	}
1886 	mcc = qm_mc_start(&p->p);
1887 	mcc->alterfq.fqid = fq->fqid;
1888 	qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_SCHED);
1889 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
1890 		dev_err(p->config->dev, "ALTER_SCHED timeout\n");
1891 		ret = -ETIMEDOUT;
1892 		goto out;
1893 	}
1894 
1895 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_SCHED);
1896 	if (mcr->result != QM_MCR_RESULT_OK) {
1897 		ret = -EIO;
1898 		goto out;
1899 	}
1900 	fq->state = qman_fq_state_sched;
1901 out:
1902 	put_affine_portal();
1903 	return ret;
1904 }
1905 EXPORT_SYMBOL(qman_schedule_fq);
1906 
1907 int qman_retire_fq(struct qman_fq *fq, u32 *flags)
1908 {
1909 	union qm_mc_command *mcc;
1910 	union qm_mc_result *mcr;
1911 	struct qman_portal *p;
1912 	int ret;
1913 	u8 res;
1914 
1915 	if (fq->state != qman_fq_state_parked &&
1916 	    fq->state != qman_fq_state_sched)
1917 		return -EINVAL;
1918 #ifdef CONFIG_FSL_DPAA_CHECKING
1919 	if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
1920 		return -EINVAL;
1921 #endif
1922 	p = get_affine_portal();
1923 	if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) ||
1924 	    fq->state == qman_fq_state_retired ||
1925 	    fq->state == qman_fq_state_oos) {
1926 		ret = -EBUSY;
1927 		goto out;
1928 	}
1929 	mcc = qm_mc_start(&p->p);
1930 	mcc->alterfq.fqid = fq->fqid;
1931 	qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE);
1932 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
1933 		dev_crit(p->config->dev, "ALTER_RETIRE timeout\n");
1934 		ret = -ETIMEDOUT;
1935 		goto out;
1936 	}
1937 
1938 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_RETIRE);
1939 	res = mcr->result;
1940 	/*
1941 	 * "Elegant" would be to treat OK/PENDING the same way; set CHANGING,
1942 	 * and defer the flags until FQRNI or FQRN (respectively) show up. But
1943 	 * "Friendly" is to process OK immediately, and not set CHANGING. We do
1944 	 * friendly, otherwise the caller doesn't necessarily have a fully
1945 	 * "retired" FQ on return even if the retirement was immediate. However
1946 	 * this does mean some code duplication between here and
1947 	 * fq_state_change().
1948 	 */
1949 	if (res == QM_MCR_RESULT_OK) {
1950 		ret = 0;
1951 		/* Process 'fq' right away, we'll ignore FQRNI */
1952 		if (mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY)
1953 			fq_set(fq, QMAN_FQ_STATE_NE);
1954 		if (mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)
1955 			fq_set(fq, QMAN_FQ_STATE_ORL);
1956 		if (flags)
1957 			*flags = fq->flags;
1958 		fq->state = qman_fq_state_retired;
1959 		if (fq->cb.fqs) {
1960 			/*
1961 			 * Another issue with supporting "immediate" retirement
1962 			 * is that we're forced to drop FQRNIs, because by the
1963 			 * time they're seen it may already be "too late" (the
1964 			 * fq may have been OOS'd and free()'d already). But if
1965 			 * the upper layer wants a callback whether it's
1966 			 * immediate or not, we have to fake a "MR" entry to
1967 			 * look like an FQRNI...
1968 			 */
1969 			union qm_mr_entry msg;
1970 
1971 			msg.verb = QM_MR_VERB_FQRNI;
1972 			msg.fq.fqs = mcr->alterfq.fqs;
1973 			msg.fq.fqid = fq->fqid;
1974 			msg.fq.contextB = fq_to_tag(fq);
1975 			fq->cb.fqs(p, fq, &msg);
1976 		}
1977 	} else if (res == QM_MCR_RESULT_PENDING) {
1978 		ret = 1;
1979 		fq_set(fq, QMAN_FQ_STATE_CHANGING);
1980 	} else {
1981 		ret = -EIO;
1982 	}
1983 out:
1984 	put_affine_portal();
1985 	return ret;
1986 }
1987 EXPORT_SYMBOL(qman_retire_fq);
1988 
1989 int qman_oos_fq(struct qman_fq *fq)
1990 {
1991 	union qm_mc_command *mcc;
1992 	union qm_mc_result *mcr;
1993 	struct qman_portal *p;
1994 	int ret = 0;
1995 
1996 	if (fq->state != qman_fq_state_retired)
1997 		return -EINVAL;
1998 #ifdef CONFIG_FSL_DPAA_CHECKING
1999 	if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
2000 		return -EINVAL;
2001 #endif
2002 	p = get_affine_portal();
2003 	if (fq_isset(fq, QMAN_FQ_STATE_BLOCKOOS) ||
2004 	    fq->state != qman_fq_state_retired) {
2005 		ret = -EBUSY;
2006 		goto out;
2007 	}
2008 	mcc = qm_mc_start(&p->p);
2009 	mcc->alterfq.fqid = fq->fqid;
2010 	qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
2011 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
2012 		ret = -ETIMEDOUT;
2013 		goto out;
2014 	}
2015 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_OOS);
2016 	if (mcr->result != QM_MCR_RESULT_OK) {
2017 		ret = -EIO;
2018 		goto out;
2019 	}
2020 	fq->state = qman_fq_state_oos;
2021 out:
2022 	put_affine_portal();
2023 	return ret;
2024 }
2025 EXPORT_SYMBOL(qman_oos_fq);
2026 
2027 int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd)
2028 {
2029 	union qm_mc_command *mcc;
2030 	union qm_mc_result *mcr;
2031 	struct qman_portal *p = get_affine_portal();
2032 	int ret = 0;
2033 
2034 	mcc = qm_mc_start(&p->p);
2035 	mcc->queryfq.fqid = fq->fqid;
2036 	qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ);
2037 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
2038 		ret = -ETIMEDOUT;
2039 		goto out;
2040 	}
2041 
2042 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ);
2043 	if (mcr->result == QM_MCR_RESULT_OK)
2044 		*fqd = mcr->queryfq.fqd;
2045 	else
2046 		ret = -EIO;
2047 out:
2048 	put_affine_portal();
2049 	return ret;
2050 }
2051 
2052 static int qman_query_fq_np(struct qman_fq *fq,
2053 			    struct qm_mcr_queryfq_np *np)
2054 {
2055 	union qm_mc_command *mcc;
2056 	union qm_mc_result *mcr;
2057 	struct qman_portal *p = get_affine_portal();
2058 	int ret = 0;
2059 
2060 	mcc = qm_mc_start(&p->p);
2061 	mcc->queryfq.fqid = fq->fqid;
2062 	qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
2063 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
2064 		ret = -ETIMEDOUT;
2065 		goto out;
2066 	}
2067 
2068 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
2069 	if (mcr->result == QM_MCR_RESULT_OK)
2070 		*np = mcr->queryfq_np;
2071 	else if (mcr->result == QM_MCR_RESULT_ERR_FQID)
2072 		ret = -ERANGE;
2073 	else
2074 		ret = -EIO;
2075 out:
2076 	put_affine_portal();
2077 	return ret;
2078 }
2079 
2080 static int qman_query_cgr(struct qman_cgr *cgr,
2081 			  struct qm_mcr_querycgr *cgrd)
2082 {
2083 	union qm_mc_command *mcc;
2084 	union qm_mc_result *mcr;
2085 	struct qman_portal *p = get_affine_portal();
2086 	int ret = 0;
2087 
2088 	mcc = qm_mc_start(&p->p);
2089 	mcc->querycgr.cgid = cgr->cgrid;
2090 	qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCGR);
2091 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
2092 		ret = -ETIMEDOUT;
2093 		goto out;
2094 	}
2095 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_QUERYCGR);
2096 	if (mcr->result == QM_MCR_RESULT_OK)
2097 		*cgrd = mcr->querycgr;
2098 	else {
2099 		dev_err(p->config->dev, "QUERY_CGR failed: %s\n",
2100 			mcr_result_str(mcr->result));
2101 		ret = -EIO;
2102 	}
2103 out:
2104 	put_affine_portal();
2105 	return ret;
2106 }
2107 
2108 int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result)
2109 {
2110 	struct qm_mcr_querycgr query_cgr;
2111 	int err;
2112 
2113 	err = qman_query_cgr(cgr, &query_cgr);
2114 	if (err)
2115 		return err;
2116 
2117 	*result = !!query_cgr.cgr.cs;
2118 	return 0;
2119 }
2120 EXPORT_SYMBOL(qman_query_cgr_congested);
2121 
2122 /* internal function used as a wait_event() expression */
2123 static int set_p_vdqcr(struct qman_portal *p, struct qman_fq *fq, u32 vdqcr)
2124 {
2125 	unsigned long irqflags;
2126 	int ret = -EBUSY;
2127 
2128 	local_irq_save(irqflags);
2129 	if (p->vdqcr_owned)
2130 		goto out;
2131 	if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2132 		goto out;
2133 
2134 	fq_set(fq, QMAN_FQ_STATE_VDQCR);
2135 	p->vdqcr_owned = fq;
2136 	qm_dqrr_vdqcr_set(&p->p, vdqcr);
2137 	ret = 0;
2138 out:
2139 	local_irq_restore(irqflags);
2140 	return ret;
2141 }
2142 
2143 static int set_vdqcr(struct qman_portal **p, struct qman_fq *fq, u32 vdqcr)
2144 {
2145 	int ret;
2146 
2147 	*p = get_affine_portal();
2148 	ret = set_p_vdqcr(*p, fq, vdqcr);
2149 	put_affine_portal();
2150 	return ret;
2151 }
2152 
2153 static int wait_vdqcr_start(struct qman_portal **p, struct qman_fq *fq,
2154 				u32 vdqcr, u32 flags)
2155 {
2156 	int ret = 0;
2157 
2158 	if (flags & QMAN_VOLATILE_FLAG_WAIT_INT)
2159 		ret = wait_event_interruptible(affine_queue,
2160 				!set_vdqcr(p, fq, vdqcr));
2161 	else
2162 		wait_event(affine_queue, !set_vdqcr(p, fq, vdqcr));
2163 	return ret;
2164 }
2165 
2166 int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr)
2167 {
2168 	struct qman_portal *p;
2169 	int ret;
2170 
2171 	if (fq->state != qman_fq_state_parked &&
2172 	    fq->state != qman_fq_state_retired)
2173 		return -EINVAL;
2174 	if (vdqcr & QM_VDQCR_FQID_MASK)
2175 		return -EINVAL;
2176 	if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2177 		return -EBUSY;
2178 	vdqcr = (vdqcr & ~QM_VDQCR_FQID_MASK) | fq->fqid;
2179 	if (flags & QMAN_VOLATILE_FLAG_WAIT)
2180 		ret = wait_vdqcr_start(&p, fq, vdqcr, flags);
2181 	else
2182 		ret = set_vdqcr(&p, fq, vdqcr);
2183 	if (ret)
2184 		return ret;
2185 	/* VDQCR is set */
2186 	if (flags & QMAN_VOLATILE_FLAG_FINISH) {
2187 		if (flags & QMAN_VOLATILE_FLAG_WAIT_INT)
2188 			/*
2189 			 * NB: don't propagate any error - the caller wouldn't
2190 			 * know whether the VDQCR was issued or not. A signal
2191 			 * could arrive after returning anyway, so the caller
2192 			 * can check signal_pending() if that's an issue.
2193 			 */
2194 			wait_event_interruptible(affine_queue,
2195 				!fq_isset(fq, QMAN_FQ_STATE_VDQCR));
2196 		else
2197 			wait_event(affine_queue,
2198 				!fq_isset(fq, QMAN_FQ_STATE_VDQCR));
2199 	}
2200 	return 0;
2201 }
2202 EXPORT_SYMBOL(qman_volatile_dequeue);
2203 
2204 static void update_eqcr_ci(struct qman_portal *p, u8 avail)
2205 {
2206 	if (avail)
2207 		qm_eqcr_cce_prefetch(&p->p);
2208 	else
2209 		qm_eqcr_cce_update(&p->p);
2210 }
2211 
2212 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd)
2213 {
2214 	struct qman_portal *p;
2215 	struct qm_eqcr_entry *eq;
2216 	unsigned long irqflags;
2217 	u8 avail;
2218 
2219 	p = get_affine_portal();
2220 	local_irq_save(irqflags);
2221 
2222 	if (p->use_eqcr_ci_stashing) {
2223 		/*
2224 		 * The stashing case is easy, only update if we need to in
2225 		 * order to try and liberate ring entries.
2226 		 */
2227 		eq = qm_eqcr_start_stash(&p->p);
2228 	} else {
2229 		/*
2230 		 * The non-stashing case is harder, need to prefetch ahead of
2231 		 * time.
2232 		 */
2233 		avail = qm_eqcr_get_avail(&p->p);
2234 		if (avail < 2)
2235 			update_eqcr_ci(p, avail);
2236 		eq = qm_eqcr_start_no_stash(&p->p);
2237 	}
2238 
2239 	if (unlikely(!eq))
2240 		goto out;
2241 
2242 	eq->fqid = fq->fqid;
2243 	eq->tag = fq_to_tag(fq);
2244 	eq->fd = *fd;
2245 
2246 	qm_eqcr_pvb_commit(&p->p, QM_EQCR_VERB_CMD_ENQUEUE);
2247 out:
2248 	local_irq_restore(irqflags);
2249 	put_affine_portal();
2250 	return 0;
2251 }
2252 EXPORT_SYMBOL(qman_enqueue);
2253 
2254 static int qm_modify_cgr(struct qman_cgr *cgr, u32 flags,
2255 			 struct qm_mcc_initcgr *opts)
2256 {
2257 	union qm_mc_command *mcc;
2258 	union qm_mc_result *mcr;
2259 	struct qman_portal *p = get_affine_portal();
2260 	u8 verb = QM_MCC_VERB_MODIFYCGR;
2261 	int ret = 0;
2262 
2263 	mcc = qm_mc_start(&p->p);
2264 	if (opts)
2265 		mcc->initcgr = *opts;
2266 	mcc->initcgr.cgid = cgr->cgrid;
2267 	if (flags & QMAN_CGR_FLAG_USE_INIT)
2268 		verb = QM_MCC_VERB_INITCGR;
2269 	qm_mc_commit(&p->p, verb);
2270 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
2271 		ret = -ETIMEDOUT;
2272 		goto out;
2273 	}
2274 
2275 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == verb);
2276 	if (mcr->result != QM_MCR_RESULT_OK)
2277 		ret = -EIO;
2278 
2279 out:
2280 	put_affine_portal();
2281 	return ret;
2282 }
2283 
2284 #define PORTAL_IDX(n)	(n->config->channel - QM_CHANNEL_SWPORTAL0)
2285 #define TARG_MASK(n)	(BIT(31) >> PORTAL_IDX(n))
2286 
2287 static u8 qman_cgr_cpus[CGR_NUM];
2288 
2289 void qman_init_cgr_all(void)
2290 {
2291 	struct qman_cgr cgr;
2292 	int err_cnt = 0;
2293 
2294 	for (cgr.cgrid = 0; cgr.cgrid < CGR_NUM; cgr.cgrid++) {
2295 		if (qm_modify_cgr(&cgr, QMAN_CGR_FLAG_USE_INIT, NULL))
2296 			err_cnt++;
2297 	}
2298 
2299 	if (err_cnt)
2300 		pr_err("Warning: %d error%s while initialising CGR h/w\n",
2301 		       err_cnt, (err_cnt > 1) ? "s" : "");
2302 }
2303 
2304 int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
2305 		    struct qm_mcc_initcgr *opts)
2306 {
2307 	struct qm_mcr_querycgr cgr_state;
2308 	struct qm_mcc_initcgr local_opts = {};
2309 	int ret;
2310 	struct qman_portal *p;
2311 
2312 	/*
2313 	 * We have to check that the provided CGRID is within the limits of the
2314 	 * data-structures, for obvious reasons. However we'll let h/w take
2315 	 * care of determining whether it's within the limits of what exists on
2316 	 * the SoC.
2317 	 */
2318 	if (cgr->cgrid >= CGR_NUM)
2319 		return -EINVAL;
2320 
2321 	preempt_disable();
2322 	p = get_affine_portal();
2323 	qman_cgr_cpus[cgr->cgrid] = smp_processor_id();
2324 	preempt_enable();
2325 
2326 	cgr->chan = p->config->channel;
2327 	spin_lock(&p->cgr_lock);
2328 
2329 	if (opts) {
2330 		ret = qman_query_cgr(cgr, &cgr_state);
2331 		if (ret)
2332 			goto out;
2333 		if (opts)
2334 			local_opts = *opts;
2335 		if ((qman_ip_rev & 0xFF00) >= QMAN_REV30)
2336 			local_opts.cgr.cscn_targ_upd_ctrl =
2337 				QM_CGR_TARG_UDP_CTRL_WRITE_BIT | PORTAL_IDX(p);
2338 		else
2339 			/* Overwrite TARG */
2340 			local_opts.cgr.cscn_targ = cgr_state.cgr.cscn_targ |
2341 						   TARG_MASK(p);
2342 		local_opts.we_mask |= QM_CGR_WE_CSCN_TARG;
2343 
2344 		/* send init if flags indicate so */
2345 		if (opts && (flags & QMAN_CGR_FLAG_USE_INIT))
2346 			ret = qm_modify_cgr(cgr, QMAN_CGR_FLAG_USE_INIT,
2347 					    &local_opts);
2348 		else
2349 			ret = qm_modify_cgr(cgr, 0, &local_opts);
2350 		if (ret)
2351 			goto out;
2352 	}
2353 
2354 	list_add(&cgr->node, &p->cgr_cbs);
2355 
2356 	/* Determine if newly added object requires its callback to be called */
2357 	ret = qman_query_cgr(cgr, &cgr_state);
2358 	if (ret) {
2359 		/* we can't go back, so proceed and return success */
2360 		dev_err(p->config->dev, "CGR HW state partially modified\n");
2361 		ret = 0;
2362 		goto out;
2363 	}
2364 	if (cgr->cb && cgr_state.cgr.cscn_en &&
2365 	    qman_cgrs_get(&p->cgrs[1], cgr->cgrid))
2366 		cgr->cb(p, cgr, 1);
2367 out:
2368 	spin_unlock(&p->cgr_lock);
2369 	put_affine_portal();
2370 	return ret;
2371 }
2372 EXPORT_SYMBOL(qman_create_cgr);
2373 
2374 int qman_delete_cgr(struct qman_cgr *cgr)
2375 {
2376 	unsigned long irqflags;
2377 	struct qm_mcr_querycgr cgr_state;
2378 	struct qm_mcc_initcgr local_opts;
2379 	int ret = 0;
2380 	struct qman_cgr *i;
2381 	struct qman_portal *p = get_affine_portal();
2382 
2383 	if (cgr->chan != p->config->channel) {
2384 		/* attempt to delete from other portal than creator */
2385 		dev_err(p->config->dev, "CGR not owned by current portal");
2386 		dev_dbg(p->config->dev, " create 0x%x, delete 0x%x\n",
2387 			cgr->chan, p->config->channel);
2388 
2389 		ret = -EINVAL;
2390 		goto put_portal;
2391 	}
2392 	memset(&local_opts, 0, sizeof(struct qm_mcc_initcgr));
2393 	spin_lock_irqsave(&p->cgr_lock, irqflags);
2394 	list_del(&cgr->node);
2395 	/*
2396 	 * If there are no other CGR objects for this CGRID in the list,
2397 	 * update CSCN_TARG accordingly
2398 	 */
2399 	list_for_each_entry(i, &p->cgr_cbs, node)
2400 		if (i->cgrid == cgr->cgrid && i->cb)
2401 			goto release_lock;
2402 	ret = qman_query_cgr(cgr, &cgr_state);
2403 	if (ret)  {
2404 		/* add back to the list */
2405 		list_add(&cgr->node, &p->cgr_cbs);
2406 		goto release_lock;
2407 	}
2408 	/* Overwrite TARG */
2409 	local_opts.we_mask = QM_CGR_WE_CSCN_TARG;
2410 	if ((qman_ip_rev & 0xFF00) >= QMAN_REV30)
2411 		local_opts.cgr.cscn_targ_upd_ctrl = PORTAL_IDX(p);
2412 	else
2413 		local_opts.cgr.cscn_targ = cgr_state.cgr.cscn_targ &
2414 							 ~(TARG_MASK(p));
2415 	ret = qm_modify_cgr(cgr, 0, &local_opts);
2416 	if (ret)
2417 		/* add back to the list */
2418 		list_add(&cgr->node, &p->cgr_cbs);
2419 release_lock:
2420 	spin_unlock_irqrestore(&p->cgr_lock, irqflags);
2421 put_portal:
2422 	put_affine_portal();
2423 	return ret;
2424 }
2425 EXPORT_SYMBOL(qman_delete_cgr);
2426 
2427 struct cgr_comp {
2428 	struct qman_cgr *cgr;
2429 	struct completion completion;
2430 };
2431 
2432 static int qman_delete_cgr_thread(void *p)
2433 {
2434 	struct cgr_comp *cgr_comp = (struct cgr_comp *)p;
2435 	int ret;
2436 
2437 	ret = qman_delete_cgr(cgr_comp->cgr);
2438 	complete(&cgr_comp->completion);
2439 
2440 	return ret;
2441 }
2442 
2443 void qman_delete_cgr_safe(struct qman_cgr *cgr)
2444 {
2445 	struct task_struct *thread;
2446 	struct cgr_comp cgr_comp;
2447 
2448 	preempt_disable();
2449 	if (qman_cgr_cpus[cgr->cgrid] != smp_processor_id()) {
2450 		init_completion(&cgr_comp.completion);
2451 		cgr_comp.cgr = cgr;
2452 		thread = kthread_create(qman_delete_cgr_thread, &cgr_comp,
2453 					"cgr_del");
2454 
2455 		if (IS_ERR(thread))
2456 			goto out;
2457 
2458 		kthread_bind(thread, qman_cgr_cpus[cgr->cgrid]);
2459 		wake_up_process(thread);
2460 		wait_for_completion(&cgr_comp.completion);
2461 		preempt_enable();
2462 		return;
2463 	}
2464 out:
2465 	qman_delete_cgr(cgr);
2466 	preempt_enable();
2467 }
2468 EXPORT_SYMBOL(qman_delete_cgr_safe);
2469 
2470 /* Cleanup FQs */
2471 
2472 static int _qm_mr_consume_and_match_verb(struct qm_portal *p, int v)
2473 {
2474 	const union qm_mr_entry *msg;
2475 	int found = 0;
2476 
2477 	qm_mr_pvb_update(p);
2478 	msg = qm_mr_current(p);
2479 	while (msg) {
2480 		if ((msg->verb & QM_MR_VERB_TYPE_MASK) == v)
2481 			found = 1;
2482 		qm_mr_next(p);
2483 		qm_mr_cci_consume_to_current(p);
2484 		qm_mr_pvb_update(p);
2485 		msg = qm_mr_current(p);
2486 	}
2487 	return found;
2488 }
2489 
2490 static int _qm_dqrr_consume_and_match(struct qm_portal *p, u32 fqid, int s,
2491 				      bool wait)
2492 {
2493 	const struct qm_dqrr_entry *dqrr;
2494 	int found = 0;
2495 
2496 	do {
2497 		qm_dqrr_pvb_update(p);
2498 		dqrr = qm_dqrr_current(p);
2499 		if (!dqrr)
2500 			cpu_relax();
2501 	} while (wait && !dqrr);
2502 
2503 	while (dqrr) {
2504 		if (dqrr->fqid == fqid && (dqrr->stat & s))
2505 			found = 1;
2506 		qm_dqrr_cdc_consume_1ptr(p, dqrr, 0);
2507 		qm_dqrr_pvb_update(p);
2508 		qm_dqrr_next(p);
2509 		dqrr = qm_dqrr_current(p);
2510 	}
2511 	return found;
2512 }
2513 
2514 #define qm_mr_drain(p, V) \
2515 	_qm_mr_consume_and_match_verb(p, QM_MR_VERB_##V)
2516 
2517 #define qm_dqrr_drain(p, f, S) \
2518 	_qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, false)
2519 
2520 #define qm_dqrr_drain_wait(p, f, S) \
2521 	_qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, true)
2522 
2523 #define qm_dqrr_drain_nomatch(p) \
2524 	_qm_dqrr_consume_and_match(p, 0, 0, false)
2525 
2526 static int qman_shutdown_fq(u32 fqid)
2527 {
2528 	struct qman_portal *p;
2529 	struct device *dev;
2530 	union qm_mc_command *mcc;
2531 	union qm_mc_result *mcr;
2532 	int orl_empty, drain = 0, ret = 0;
2533 	u32 channel, wq, res;
2534 	u8 state;
2535 
2536 	p = get_affine_portal();
2537 	dev = p->config->dev;
2538 	/* Determine the state of the FQID */
2539 	mcc = qm_mc_start(&p->p);
2540 	mcc->queryfq_np.fqid = fqid;
2541 	qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
2542 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
2543 		dev_err(dev, "QUERYFQ_NP timeout\n");
2544 		ret = -ETIMEDOUT;
2545 		goto out;
2546 	}
2547 
2548 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
2549 	state = mcr->queryfq_np.state & QM_MCR_NP_STATE_MASK;
2550 	if (state == QM_MCR_NP_STATE_OOS)
2551 		goto out; /* Already OOS, no need to do anymore checks */
2552 
2553 	/* Query which channel the FQ is using */
2554 	mcc = qm_mc_start(&p->p);
2555 	mcc->queryfq.fqid = fqid;
2556 	qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ);
2557 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
2558 		dev_err(dev, "QUERYFQ timeout\n");
2559 		ret = -ETIMEDOUT;
2560 		goto out;
2561 	}
2562 
2563 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ);
2564 	/* Need to store these since the MCR gets reused */
2565 	channel = qm_fqd_get_chan(&mcr->queryfq.fqd);
2566 	wq = qm_fqd_get_wq(&mcr->queryfq.fqd);
2567 
2568 	switch (state) {
2569 	case QM_MCR_NP_STATE_TEN_SCHED:
2570 	case QM_MCR_NP_STATE_TRU_SCHED:
2571 	case QM_MCR_NP_STATE_ACTIVE:
2572 	case QM_MCR_NP_STATE_PARKED:
2573 		orl_empty = 0;
2574 		mcc = qm_mc_start(&p->p);
2575 		mcc->alterfq.fqid = fqid;
2576 		qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE);
2577 		if (!qm_mc_result_timeout(&p->p, &mcr)) {
2578 			dev_err(dev, "QUERYFQ_NP timeout\n");
2579 			ret = -ETIMEDOUT;
2580 			goto out;
2581 		}
2582 		DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2583 			    QM_MCR_VERB_ALTER_RETIRE);
2584 		res = mcr->result; /* Make a copy as we reuse MCR below */
2585 
2586 		if (res == QM_MCR_RESULT_PENDING) {
2587 			/*
2588 			 * Need to wait for the FQRN in the message ring, which
2589 			 * will only occur once the FQ has been drained.  In
2590 			 * order for the FQ to drain the portal needs to be set
2591 			 * to dequeue from the channel the FQ is scheduled on
2592 			 */
2593 			int found_fqrn = 0;
2594 			u16 dequeue_wq = 0;
2595 
2596 			/* Flag that we need to drain FQ */
2597 			drain = 1;
2598 
2599 			if (channel >= qm_channel_pool1 &&
2600 			    channel < qm_channel_pool1 + 15) {
2601 				/* Pool channel, enable the bit in the portal */
2602 				dequeue_wq = (channel -
2603 					      qm_channel_pool1 + 1)<<4 | wq;
2604 			} else if (channel < qm_channel_pool1) {
2605 				/* Dedicated channel */
2606 				dequeue_wq = wq;
2607 			} else {
2608 				dev_err(dev, "Can't recover FQ 0x%x, ch: 0x%x",
2609 					fqid, channel);
2610 				ret = -EBUSY;
2611 				goto out;
2612 			}
2613 			/* Set the sdqcr to drain this channel */
2614 			if (channel < qm_channel_pool1)
2615 				qm_dqrr_sdqcr_set(&p->p,
2616 						  QM_SDQCR_TYPE_ACTIVE |
2617 						  QM_SDQCR_CHANNELS_DEDICATED);
2618 			else
2619 				qm_dqrr_sdqcr_set(&p->p,
2620 						  QM_SDQCR_TYPE_ACTIVE |
2621 						  QM_SDQCR_CHANNELS_POOL_CONV
2622 						  (channel));
2623 			do {
2624 				/* Keep draining DQRR while checking the MR*/
2625 				qm_dqrr_drain_nomatch(&p->p);
2626 				/* Process message ring too */
2627 				found_fqrn = qm_mr_drain(&p->p, FQRN);
2628 				cpu_relax();
2629 			} while (!found_fqrn);
2630 
2631 		}
2632 		if (res != QM_MCR_RESULT_OK &&
2633 		    res != QM_MCR_RESULT_PENDING) {
2634 			dev_err(dev, "retire_fq failed: FQ 0x%x, res=0x%x\n",
2635 				fqid, res);
2636 			ret = -EIO;
2637 			goto out;
2638 		}
2639 		if (!(mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)) {
2640 			/*
2641 			 * ORL had no entries, no need to wait until the
2642 			 * ERNs come in
2643 			 */
2644 			orl_empty = 1;
2645 		}
2646 		/*
2647 		 * Retirement succeeded, check to see if FQ needs
2648 		 * to be drained
2649 		 */
2650 		if (drain || mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY) {
2651 			/* FQ is Not Empty, drain using volatile DQ commands */
2652 			do {
2653 				u32 vdqcr = fqid | QM_VDQCR_NUMFRAMES_SET(3);
2654 
2655 				qm_dqrr_vdqcr_set(&p->p, vdqcr);
2656 				/*
2657 				 * Wait for a dequeue and process the dequeues,
2658 				 * making sure to empty the ring completely
2659 				 */
2660 			} while (qm_dqrr_drain_wait(&p->p, fqid, FQ_EMPTY));
2661 		}
2662 		qm_dqrr_sdqcr_set(&p->p, 0);
2663 
2664 		while (!orl_empty) {
2665 			/* Wait for the ORL to have been completely drained */
2666 			orl_empty = qm_mr_drain(&p->p, FQRL);
2667 			cpu_relax();
2668 		}
2669 		mcc = qm_mc_start(&p->p);
2670 		mcc->alterfq.fqid = fqid;
2671 		qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
2672 		if (!qm_mc_result_timeout(&p->p, &mcr)) {
2673 			ret = -ETIMEDOUT;
2674 			goto out;
2675 		}
2676 
2677 		DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2678 			    QM_MCR_VERB_ALTER_OOS);
2679 		if (mcr->result != QM_MCR_RESULT_OK) {
2680 			dev_err(dev, "OOS after drain fail: FQ 0x%x (0x%x)\n",
2681 				fqid, mcr->result);
2682 			ret = -EIO;
2683 			goto out;
2684 		}
2685 		break;
2686 
2687 	case QM_MCR_NP_STATE_RETIRED:
2688 		/* Send OOS Command */
2689 		mcc = qm_mc_start(&p->p);
2690 		mcc->alterfq.fqid = fqid;
2691 		qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
2692 		if (!qm_mc_result_timeout(&p->p, &mcr)) {
2693 			ret = -ETIMEDOUT;
2694 			goto out;
2695 		}
2696 
2697 		DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2698 			    QM_MCR_VERB_ALTER_OOS);
2699 		if (mcr->result) {
2700 			dev_err(dev, "OOS fail: FQ 0x%x (0x%x)\n",
2701 				fqid, mcr->result);
2702 			ret = -EIO;
2703 			goto out;
2704 		}
2705 		break;
2706 
2707 	case QM_MCR_NP_STATE_OOS:
2708 		/*  Done */
2709 		break;
2710 
2711 	default:
2712 		ret = -EIO;
2713 	}
2714 
2715 out:
2716 	put_affine_portal();
2717 	return ret;
2718 }
2719 
2720 const struct qm_portal_config *qman_get_qm_portal_config(
2721 						struct qman_portal *portal)
2722 {
2723 	return portal->config;
2724 }
2725 
2726 struct gen_pool *qm_fqalloc; /* FQID allocator */
2727 struct gen_pool *qm_qpalloc; /* pool-channel allocator */
2728 struct gen_pool *qm_cgralloc; /* CGR ID allocator */
2729 
2730 static int qman_alloc_range(struct gen_pool *p, u32 *result, u32 cnt)
2731 {
2732 	unsigned long addr;
2733 
2734 	addr = gen_pool_alloc(p, cnt);
2735 	if (!addr)
2736 		return -ENOMEM;
2737 
2738 	*result = addr & ~DPAA_GENALLOC_OFF;
2739 
2740 	return 0;
2741 }
2742 
2743 int qman_alloc_fqid_range(u32 *result, u32 count)
2744 {
2745 	return qman_alloc_range(qm_fqalloc, result, count);
2746 }
2747 EXPORT_SYMBOL(qman_alloc_fqid_range);
2748 
2749 int qman_alloc_pool_range(u32 *result, u32 count)
2750 {
2751 	return qman_alloc_range(qm_qpalloc, result, count);
2752 }
2753 EXPORT_SYMBOL(qman_alloc_pool_range);
2754 
2755 int qman_alloc_cgrid_range(u32 *result, u32 count)
2756 {
2757 	return qman_alloc_range(qm_cgralloc, result, count);
2758 }
2759 EXPORT_SYMBOL(qman_alloc_cgrid_range);
2760 
2761 int qman_release_fqid(u32 fqid)
2762 {
2763 	int ret = qman_shutdown_fq(fqid);
2764 
2765 	if (ret) {
2766 		pr_debug("FQID %d leaked\n", fqid);
2767 		return ret;
2768 	}
2769 
2770 	gen_pool_free(qm_fqalloc, fqid | DPAA_GENALLOC_OFF, 1);
2771 	return 0;
2772 }
2773 EXPORT_SYMBOL(qman_release_fqid);
2774 
2775 static int qpool_cleanup(u32 qp)
2776 {
2777 	/*
2778 	 * We query all FQDs starting from
2779 	 * FQID 1 until we get an "invalid FQID" error, looking for non-OOS FQDs
2780 	 * whose destination channel is the pool-channel being released.
2781 	 * When a non-OOS FQD is found we attempt to clean it up
2782 	 */
2783 	struct qman_fq fq = {
2784 		.fqid = QM_FQID_RANGE_START
2785 	};
2786 	int err;
2787 
2788 	do {
2789 		struct qm_mcr_queryfq_np np;
2790 
2791 		err = qman_query_fq_np(&fq, &np);
2792 		if (err)
2793 			/* FQID range exceeded, found no problems */
2794 			return 0;
2795 		if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) {
2796 			struct qm_fqd fqd;
2797 
2798 			err = qman_query_fq(&fq, &fqd);
2799 			if (WARN_ON(err))
2800 				return 0;
2801 			if (qm_fqd_get_chan(&fqd) == qp) {
2802 				/* The channel is the FQ's target, clean it */
2803 				err = qman_shutdown_fq(fq.fqid);
2804 				if (err)
2805 					/*
2806 					 * Couldn't shut down the FQ
2807 					 * so the pool must be leaked
2808 					 */
2809 					return err;
2810 			}
2811 		}
2812 		/* Move to the next FQID */
2813 		fq.fqid++;
2814 	} while (1);
2815 }
2816 
2817 int qman_release_pool(u32 qp)
2818 {
2819 	int ret;
2820 
2821 	ret = qpool_cleanup(qp);
2822 	if (ret) {
2823 		pr_debug("CHID %d leaked\n", qp);
2824 		return ret;
2825 	}
2826 
2827 	gen_pool_free(qm_qpalloc, qp | DPAA_GENALLOC_OFF, 1);
2828 	return 0;
2829 }
2830 EXPORT_SYMBOL(qman_release_pool);
2831 
2832 static int cgr_cleanup(u32 cgrid)
2833 {
2834 	/*
2835 	 * query all FQDs starting from FQID 1 until we get an "invalid FQID"
2836 	 * error, looking for non-OOS FQDs whose CGR is the CGR being released
2837 	 */
2838 	struct qman_fq fq = {
2839 		.fqid = 1
2840 	};
2841 	int err;
2842 
2843 	do {
2844 		struct qm_mcr_queryfq_np np;
2845 
2846 		err = qman_query_fq_np(&fq, &np);
2847 		if (err)
2848 			/* FQID range exceeded, found no problems */
2849 			return 0;
2850 		if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) {
2851 			struct qm_fqd fqd;
2852 
2853 			err = qman_query_fq(&fq, &fqd);
2854 			if (WARN_ON(err))
2855 				return 0;
2856 			if ((fqd.fq_ctrl & QM_FQCTRL_CGE) &&
2857 			    fqd.cgid == cgrid) {
2858 				pr_err("CRGID 0x%x is being used by FQID 0x%x, CGR will be leaked\n",
2859 				       cgrid, fq.fqid);
2860 				return -EIO;
2861 			}
2862 		}
2863 		/* Move to the next FQID */
2864 		fq.fqid++;
2865 	} while (1);
2866 }
2867 
2868 int qman_release_cgrid(u32 cgrid)
2869 {
2870 	int ret;
2871 
2872 	ret = cgr_cleanup(cgrid);
2873 	if (ret) {
2874 		pr_debug("CGRID %d leaked\n", cgrid);
2875 		return ret;
2876 	}
2877 
2878 	gen_pool_free(qm_cgralloc, cgrid | DPAA_GENALLOC_OFF, 1);
2879 	return 0;
2880 }
2881 EXPORT_SYMBOL(qman_release_cgrid);
2882