1 /* Copyright 2008 - 2016 Freescale Semiconductor, Inc. 2 * 3 * Redistribution and use in source and binary forms, with or without 4 * modification, are permitted provided that the following conditions are met: 5 * * Redistributions of source code must retain the above copyright 6 * notice, this list of conditions and the following disclaimer. 7 * * Redistributions in binary form must reproduce the above copyright 8 * notice, this list of conditions and the following disclaimer in the 9 * documentation and/or other materials provided with the distribution. 10 * * Neither the name of Freescale Semiconductor nor the 11 * names of its contributors may be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * ALTERNATIVELY, this software may be distributed under the terms of the 15 * GNU General Public License ("GPL") as published by the Free Software 16 * Foundation, either version 2 of that License or (at your option) any 17 * later version. 18 * 19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY 20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY 23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include "qman_priv.h" 32 33 #define DQRR_MAXFILL 15 34 #define EQCR_ITHRESH 4 /* if EQCR congests, interrupt threshold */ 35 #define IRQNAME "QMan portal %d" 36 #define MAX_IRQNAME 16 /* big enough for "QMan portal %d" */ 37 #define QMAN_POLL_LIMIT 32 38 #define QMAN_PIRQ_DQRR_ITHRESH 12 39 #define QMAN_DQRR_IT_MAX 15 40 #define QMAN_ITP_MAX 0xFFF 41 #define QMAN_PIRQ_MR_ITHRESH 4 42 #define QMAN_PIRQ_IPERIOD 100 43 44 /* Portal register assists */ 45 46 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 47 /* Cache-inhibited register offsets */ 48 #define QM_REG_EQCR_PI_CINH 0x3000 49 #define QM_REG_EQCR_CI_CINH 0x3040 50 #define QM_REG_EQCR_ITR 0x3080 51 #define QM_REG_DQRR_PI_CINH 0x3100 52 #define QM_REG_DQRR_CI_CINH 0x3140 53 #define QM_REG_DQRR_ITR 0x3180 54 #define QM_REG_DQRR_DCAP 0x31C0 55 #define QM_REG_DQRR_SDQCR 0x3200 56 #define QM_REG_DQRR_VDQCR 0x3240 57 #define QM_REG_DQRR_PDQCR 0x3280 58 #define QM_REG_MR_PI_CINH 0x3300 59 #define QM_REG_MR_CI_CINH 0x3340 60 #define QM_REG_MR_ITR 0x3380 61 #define QM_REG_CFG 0x3500 62 #define QM_REG_ISR 0x3600 63 #define QM_REG_IER 0x3640 64 #define QM_REG_ISDR 0x3680 65 #define QM_REG_IIR 0x36C0 66 #define QM_REG_ITPR 0x3740 67 68 /* Cache-enabled register offsets */ 69 #define QM_CL_EQCR 0x0000 70 #define QM_CL_DQRR 0x1000 71 #define QM_CL_MR 0x2000 72 #define QM_CL_EQCR_PI_CENA 0x3000 73 #define QM_CL_EQCR_CI_CENA 0x3040 74 #define QM_CL_DQRR_PI_CENA 0x3100 75 #define QM_CL_DQRR_CI_CENA 0x3140 76 #define QM_CL_MR_PI_CENA 0x3300 77 #define QM_CL_MR_CI_CENA 0x3340 78 #define QM_CL_CR 0x3800 79 #define QM_CL_RR0 0x3900 80 #define QM_CL_RR1 0x3940 81 82 #else 83 /* Cache-inhibited register offsets */ 84 #define QM_REG_EQCR_PI_CINH 0x0000 85 #define QM_REG_EQCR_CI_CINH 0x0004 86 #define QM_REG_EQCR_ITR 0x0008 87 #define QM_REG_DQRR_PI_CINH 0x0040 88 #define QM_REG_DQRR_CI_CINH 0x0044 89 #define QM_REG_DQRR_ITR 0x0048 90 #define QM_REG_DQRR_DCAP 0x0050 91 #define QM_REG_DQRR_SDQCR 0x0054 92 #define QM_REG_DQRR_VDQCR 0x0058 93 #define QM_REG_DQRR_PDQCR 0x005c 94 #define QM_REG_MR_PI_CINH 0x0080 95 #define QM_REG_MR_CI_CINH 0x0084 96 #define QM_REG_MR_ITR 0x0088 97 #define QM_REG_CFG 0x0100 98 #define QM_REG_ISR 0x0e00 99 #define QM_REG_IER 0x0e04 100 #define QM_REG_ISDR 0x0e08 101 #define QM_REG_IIR 0x0e0c 102 #define QM_REG_ITPR 0x0e14 103 104 /* Cache-enabled register offsets */ 105 #define QM_CL_EQCR 0x0000 106 #define QM_CL_DQRR 0x1000 107 #define QM_CL_MR 0x2000 108 #define QM_CL_EQCR_PI_CENA 0x3000 109 #define QM_CL_EQCR_CI_CENA 0x3100 110 #define QM_CL_DQRR_PI_CENA 0x3200 111 #define QM_CL_DQRR_CI_CENA 0x3300 112 #define QM_CL_MR_PI_CENA 0x3400 113 #define QM_CL_MR_CI_CENA 0x3500 114 #define QM_CL_CR 0x3800 115 #define QM_CL_RR0 0x3900 116 #define QM_CL_RR1 0x3940 117 #endif 118 119 /* 120 * BTW, the drivers (and h/w programming model) already obtain the required 121 * synchronisation for portal accesses and data-dependencies. Use of barrier()s 122 * or other order-preserving primitives simply degrade performance. Hence the 123 * use of the __raw_*() interfaces, which simply ensure that the compiler treats 124 * the portal registers as volatile 125 */ 126 127 /* Cache-enabled ring access */ 128 #define qm_cl(base, idx) ((void *)base + ((idx) << 6)) 129 130 /* 131 * Portal modes. 132 * Enum types; 133 * pmode == production mode 134 * cmode == consumption mode, 135 * dmode == h/w dequeue mode. 136 * Enum values use 3 letter codes. First letter matches the portal mode, 137 * remaining two letters indicate; 138 * ci == cache-inhibited portal register 139 * ce == cache-enabled portal register 140 * vb == in-band valid-bit (cache-enabled) 141 * dc == DCA (Discrete Consumption Acknowledgment), DQRR-only 142 * As for "enum qm_dqrr_dmode", it should be self-explanatory. 143 */ 144 enum qm_eqcr_pmode { /* matches QCSP_CFG::EPM */ 145 qm_eqcr_pci = 0, /* PI index, cache-inhibited */ 146 qm_eqcr_pce = 1, /* PI index, cache-enabled */ 147 qm_eqcr_pvb = 2 /* valid-bit */ 148 }; 149 enum qm_dqrr_dmode { /* matches QCSP_CFG::DP */ 150 qm_dqrr_dpush = 0, /* SDQCR + VDQCR */ 151 qm_dqrr_dpull = 1 /* PDQCR */ 152 }; 153 enum qm_dqrr_pmode { /* s/w-only */ 154 qm_dqrr_pci, /* reads DQRR_PI_CINH */ 155 qm_dqrr_pce, /* reads DQRR_PI_CENA */ 156 qm_dqrr_pvb /* reads valid-bit */ 157 }; 158 enum qm_dqrr_cmode { /* matches QCSP_CFG::DCM */ 159 qm_dqrr_cci = 0, /* CI index, cache-inhibited */ 160 qm_dqrr_cce = 1, /* CI index, cache-enabled */ 161 qm_dqrr_cdc = 2 /* Discrete Consumption Acknowledgment */ 162 }; 163 enum qm_mr_pmode { /* s/w-only */ 164 qm_mr_pci, /* reads MR_PI_CINH */ 165 qm_mr_pce, /* reads MR_PI_CENA */ 166 qm_mr_pvb /* reads valid-bit */ 167 }; 168 enum qm_mr_cmode { /* matches QCSP_CFG::MM */ 169 qm_mr_cci = 0, /* CI index, cache-inhibited */ 170 qm_mr_cce = 1 /* CI index, cache-enabled */ 171 }; 172 173 /* --- Portal structures --- */ 174 175 #define QM_EQCR_SIZE 8 176 #define QM_DQRR_SIZE 16 177 #define QM_MR_SIZE 8 178 179 /* "Enqueue Command" */ 180 struct qm_eqcr_entry { 181 u8 _ncw_verb; /* writes to this are non-coherent */ 182 u8 dca; 183 __be16 seqnum; 184 u8 __reserved[4]; 185 __be32 fqid; /* 24-bit */ 186 __be32 tag; 187 struct qm_fd fd; 188 u8 __reserved3[32]; 189 } __packed; 190 #define QM_EQCR_VERB_VBIT 0x80 191 #define QM_EQCR_VERB_CMD_MASK 0x61 /* but only one value; */ 192 #define QM_EQCR_VERB_CMD_ENQUEUE 0x01 193 #define QM_EQCR_SEQNUM_NESN 0x8000 /* Advance NESN */ 194 #define QM_EQCR_SEQNUM_NLIS 0x4000 /* More fragments to come */ 195 #define QM_EQCR_SEQNUM_SEQMASK 0x3fff /* sequence number goes here */ 196 197 struct qm_eqcr { 198 struct qm_eqcr_entry *ring, *cursor; 199 u8 ci, available, ithresh, vbit; 200 #ifdef CONFIG_FSL_DPAA_CHECKING 201 u32 busy; 202 enum qm_eqcr_pmode pmode; 203 #endif 204 }; 205 206 struct qm_dqrr { 207 const struct qm_dqrr_entry *ring, *cursor; 208 u8 pi, ci, fill, ithresh, vbit; 209 #ifdef CONFIG_FSL_DPAA_CHECKING 210 enum qm_dqrr_dmode dmode; 211 enum qm_dqrr_pmode pmode; 212 enum qm_dqrr_cmode cmode; 213 #endif 214 }; 215 216 struct qm_mr { 217 union qm_mr_entry *ring, *cursor; 218 u8 pi, ci, fill, ithresh, vbit; 219 #ifdef CONFIG_FSL_DPAA_CHECKING 220 enum qm_mr_pmode pmode; 221 enum qm_mr_cmode cmode; 222 #endif 223 }; 224 225 /* MC (Management Command) command */ 226 /* "FQ" command layout */ 227 struct qm_mcc_fq { 228 u8 _ncw_verb; 229 u8 __reserved1[3]; 230 __be32 fqid; /* 24-bit */ 231 u8 __reserved2[56]; 232 } __packed; 233 234 /* "CGR" command layout */ 235 struct qm_mcc_cgr { 236 u8 _ncw_verb; 237 u8 __reserved1[30]; 238 u8 cgid; 239 u8 __reserved2[32]; 240 }; 241 242 #define QM_MCC_VERB_VBIT 0x80 243 #define QM_MCC_VERB_MASK 0x7f /* where the verb contains; */ 244 #define QM_MCC_VERB_INITFQ_PARKED 0x40 245 #define QM_MCC_VERB_INITFQ_SCHED 0x41 246 #define QM_MCC_VERB_QUERYFQ 0x44 247 #define QM_MCC_VERB_QUERYFQ_NP 0x45 /* "non-programmable" fields */ 248 #define QM_MCC_VERB_QUERYWQ 0x46 249 #define QM_MCC_VERB_QUERYWQ_DEDICATED 0x47 250 #define QM_MCC_VERB_ALTER_SCHED 0x48 /* Schedule FQ */ 251 #define QM_MCC_VERB_ALTER_FE 0x49 /* Force Eligible FQ */ 252 #define QM_MCC_VERB_ALTER_RETIRE 0x4a /* Retire FQ */ 253 #define QM_MCC_VERB_ALTER_OOS 0x4b /* Take FQ out of service */ 254 #define QM_MCC_VERB_ALTER_FQXON 0x4d /* FQ XON */ 255 #define QM_MCC_VERB_ALTER_FQXOFF 0x4e /* FQ XOFF */ 256 #define QM_MCC_VERB_INITCGR 0x50 257 #define QM_MCC_VERB_MODIFYCGR 0x51 258 #define QM_MCC_VERB_CGRTESTWRITE 0x52 259 #define QM_MCC_VERB_QUERYCGR 0x58 260 #define QM_MCC_VERB_QUERYCONGESTION 0x59 261 union qm_mc_command { 262 struct { 263 u8 _ncw_verb; /* writes to this are non-coherent */ 264 u8 __reserved[63]; 265 }; 266 struct qm_mcc_initfq initfq; 267 struct qm_mcc_initcgr initcgr; 268 struct qm_mcc_fq fq; 269 struct qm_mcc_cgr cgr; 270 }; 271 272 /* MC (Management Command) result */ 273 /* "Query FQ" */ 274 struct qm_mcr_queryfq { 275 u8 verb; 276 u8 result; 277 u8 __reserved1[8]; 278 struct qm_fqd fqd; /* the FQD fields are here */ 279 u8 __reserved2[30]; 280 } __packed; 281 282 /* "Alter FQ State Commands" */ 283 struct qm_mcr_alterfq { 284 u8 verb; 285 u8 result; 286 u8 fqs; /* Frame Queue Status */ 287 u8 __reserved1[61]; 288 }; 289 #define QM_MCR_VERB_RRID 0x80 290 #define QM_MCR_VERB_MASK QM_MCC_VERB_MASK 291 #define QM_MCR_VERB_INITFQ_PARKED QM_MCC_VERB_INITFQ_PARKED 292 #define QM_MCR_VERB_INITFQ_SCHED QM_MCC_VERB_INITFQ_SCHED 293 #define QM_MCR_VERB_QUERYFQ QM_MCC_VERB_QUERYFQ 294 #define QM_MCR_VERB_QUERYFQ_NP QM_MCC_VERB_QUERYFQ_NP 295 #define QM_MCR_VERB_QUERYWQ QM_MCC_VERB_QUERYWQ 296 #define QM_MCR_VERB_QUERYWQ_DEDICATED QM_MCC_VERB_QUERYWQ_DEDICATED 297 #define QM_MCR_VERB_ALTER_SCHED QM_MCC_VERB_ALTER_SCHED 298 #define QM_MCR_VERB_ALTER_FE QM_MCC_VERB_ALTER_FE 299 #define QM_MCR_VERB_ALTER_RETIRE QM_MCC_VERB_ALTER_RETIRE 300 #define QM_MCR_VERB_ALTER_OOS QM_MCC_VERB_ALTER_OOS 301 #define QM_MCR_RESULT_NULL 0x00 302 #define QM_MCR_RESULT_OK 0xf0 303 #define QM_MCR_RESULT_ERR_FQID 0xf1 304 #define QM_MCR_RESULT_ERR_FQSTATE 0xf2 305 #define QM_MCR_RESULT_ERR_NOTEMPTY 0xf3 /* OOS fails if FQ is !empty */ 306 #define QM_MCR_RESULT_ERR_BADCHANNEL 0xf4 307 #define QM_MCR_RESULT_PENDING 0xf8 308 #define QM_MCR_RESULT_ERR_BADCOMMAND 0xff 309 #define QM_MCR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */ 310 #define QM_MCR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */ 311 #define QM_MCR_TIMEOUT 10000 /* us */ 312 union qm_mc_result { 313 struct { 314 u8 verb; 315 u8 result; 316 u8 __reserved1[62]; 317 }; 318 struct qm_mcr_queryfq queryfq; 319 struct qm_mcr_alterfq alterfq; 320 struct qm_mcr_querycgr querycgr; 321 struct qm_mcr_querycongestion querycongestion; 322 struct qm_mcr_querywq querywq; 323 struct qm_mcr_queryfq_np queryfq_np; 324 }; 325 326 struct qm_mc { 327 union qm_mc_command *cr; 328 union qm_mc_result *rr; 329 u8 rridx, vbit; 330 #ifdef CONFIG_FSL_DPAA_CHECKING 331 enum { 332 /* Can be _mc_start()ed */ 333 qman_mc_idle, 334 /* Can be _mc_commit()ed or _mc_abort()ed */ 335 qman_mc_user, 336 /* Can only be _mc_retry()ed */ 337 qman_mc_hw 338 } state; 339 #endif 340 }; 341 342 struct qm_addr { 343 void *ce; /* cache-enabled */ 344 __be32 *ce_be; /* same value as above but for direct access */ 345 void __iomem *ci; /* cache-inhibited */ 346 }; 347 348 struct qm_portal { 349 /* 350 * In the non-CONFIG_FSL_DPAA_CHECKING case, the following stuff up to 351 * and including 'mc' fits within a cacheline (yay!). The 'config' part 352 * is setup-only, so isn't a cause for a concern. In other words, don't 353 * rearrange this structure on a whim, there be dragons ... 354 */ 355 struct qm_addr addr; 356 struct qm_eqcr eqcr; 357 struct qm_dqrr dqrr; 358 struct qm_mr mr; 359 struct qm_mc mc; 360 } ____cacheline_aligned; 361 362 /* Cache-inhibited register access. */ 363 static inline u32 qm_in(struct qm_portal *p, u32 offset) 364 { 365 return ioread32be(p->addr.ci + offset); 366 } 367 368 static inline void qm_out(struct qm_portal *p, u32 offset, u32 val) 369 { 370 iowrite32be(val, p->addr.ci + offset); 371 } 372 373 /* Cache Enabled Portal Access */ 374 static inline void qm_cl_invalidate(struct qm_portal *p, u32 offset) 375 { 376 dpaa_invalidate(p->addr.ce + offset); 377 } 378 379 static inline void qm_cl_touch_ro(struct qm_portal *p, u32 offset) 380 { 381 dpaa_touch_ro(p->addr.ce + offset); 382 } 383 384 static inline u32 qm_ce_in(struct qm_portal *p, u32 offset) 385 { 386 return be32_to_cpu(*(p->addr.ce_be + (offset/4))); 387 } 388 389 /* --- EQCR API --- */ 390 391 #define EQCR_SHIFT ilog2(sizeof(struct qm_eqcr_entry)) 392 #define EQCR_CARRY (uintptr_t)(QM_EQCR_SIZE << EQCR_SHIFT) 393 394 /* Bit-wise logic to wrap a ring pointer by clearing the "carry bit" */ 395 static struct qm_eqcr_entry *eqcr_carryclear(struct qm_eqcr_entry *p) 396 { 397 uintptr_t addr = (uintptr_t)p; 398 399 addr &= ~EQCR_CARRY; 400 401 return (struct qm_eqcr_entry *)addr; 402 } 403 404 /* Bit-wise logic to convert a ring pointer to a ring index */ 405 static int eqcr_ptr2idx(struct qm_eqcr_entry *e) 406 { 407 return ((uintptr_t)e >> EQCR_SHIFT) & (QM_EQCR_SIZE - 1); 408 } 409 410 /* Increment the 'cursor' ring pointer, taking 'vbit' into account */ 411 static inline void eqcr_inc(struct qm_eqcr *eqcr) 412 { 413 /* increment to the next EQCR pointer and handle overflow and 'vbit' */ 414 struct qm_eqcr_entry *partial = eqcr->cursor + 1; 415 416 eqcr->cursor = eqcr_carryclear(partial); 417 if (partial != eqcr->cursor) 418 eqcr->vbit ^= QM_EQCR_VERB_VBIT; 419 } 420 421 static inline int qm_eqcr_init(struct qm_portal *portal, 422 enum qm_eqcr_pmode pmode, 423 unsigned int eq_stash_thresh, 424 int eq_stash_prio) 425 { 426 struct qm_eqcr *eqcr = &portal->eqcr; 427 u32 cfg; 428 u8 pi; 429 430 eqcr->ring = portal->addr.ce + QM_CL_EQCR; 431 eqcr->ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1); 432 qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA); 433 pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1); 434 eqcr->cursor = eqcr->ring + pi; 435 eqcr->vbit = (qm_in(portal, QM_REG_EQCR_PI_CINH) & QM_EQCR_SIZE) ? 436 QM_EQCR_VERB_VBIT : 0; 437 eqcr->available = QM_EQCR_SIZE - 1 - 438 dpaa_cyc_diff(QM_EQCR_SIZE, eqcr->ci, pi); 439 eqcr->ithresh = qm_in(portal, QM_REG_EQCR_ITR); 440 #ifdef CONFIG_FSL_DPAA_CHECKING 441 eqcr->busy = 0; 442 eqcr->pmode = pmode; 443 #endif 444 cfg = (qm_in(portal, QM_REG_CFG) & 0x00ffffff) | 445 (eq_stash_thresh << 28) | /* QCSP_CFG: EST */ 446 (eq_stash_prio << 26) | /* QCSP_CFG: EP */ 447 ((pmode & 0x3) << 24); /* QCSP_CFG::EPM */ 448 qm_out(portal, QM_REG_CFG, cfg); 449 return 0; 450 } 451 452 static inline unsigned int qm_eqcr_get_ci_stashing(struct qm_portal *portal) 453 { 454 return (qm_in(portal, QM_REG_CFG) >> 28) & 0x7; 455 } 456 457 static inline void qm_eqcr_finish(struct qm_portal *portal) 458 { 459 struct qm_eqcr *eqcr = &portal->eqcr; 460 u8 pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1); 461 u8 ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1); 462 463 DPAA_ASSERT(!eqcr->busy); 464 if (pi != eqcr_ptr2idx(eqcr->cursor)) 465 pr_crit("losing uncommitted EQCR entries\n"); 466 if (ci != eqcr->ci) 467 pr_crit("missing existing EQCR completions\n"); 468 if (eqcr->ci != eqcr_ptr2idx(eqcr->cursor)) 469 pr_crit("EQCR destroyed unquiesced\n"); 470 } 471 472 static inline struct qm_eqcr_entry *qm_eqcr_start_no_stash(struct qm_portal 473 *portal) 474 { 475 struct qm_eqcr *eqcr = &portal->eqcr; 476 477 DPAA_ASSERT(!eqcr->busy); 478 if (!eqcr->available) 479 return NULL; 480 481 #ifdef CONFIG_FSL_DPAA_CHECKING 482 eqcr->busy = 1; 483 #endif 484 dpaa_zero(eqcr->cursor); 485 return eqcr->cursor; 486 } 487 488 static inline struct qm_eqcr_entry *qm_eqcr_start_stash(struct qm_portal 489 *portal) 490 { 491 struct qm_eqcr *eqcr = &portal->eqcr; 492 u8 diff, old_ci; 493 494 DPAA_ASSERT(!eqcr->busy); 495 if (!eqcr->available) { 496 old_ci = eqcr->ci; 497 eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) & 498 (QM_EQCR_SIZE - 1); 499 diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci); 500 eqcr->available += diff; 501 if (!diff) 502 return NULL; 503 } 504 #ifdef CONFIG_FSL_DPAA_CHECKING 505 eqcr->busy = 1; 506 #endif 507 dpaa_zero(eqcr->cursor); 508 return eqcr->cursor; 509 } 510 511 static inline void eqcr_commit_checks(struct qm_eqcr *eqcr) 512 { 513 DPAA_ASSERT(eqcr->busy); 514 DPAA_ASSERT(!(be32_to_cpu(eqcr->cursor->fqid) & ~QM_FQID_MASK)); 515 DPAA_ASSERT(eqcr->available >= 1); 516 } 517 518 static inline void qm_eqcr_pvb_commit(struct qm_portal *portal, u8 myverb) 519 { 520 struct qm_eqcr *eqcr = &portal->eqcr; 521 struct qm_eqcr_entry *eqcursor; 522 523 eqcr_commit_checks(eqcr); 524 DPAA_ASSERT(eqcr->pmode == qm_eqcr_pvb); 525 dma_wmb(); 526 eqcursor = eqcr->cursor; 527 eqcursor->_ncw_verb = myverb | eqcr->vbit; 528 dpaa_flush(eqcursor); 529 eqcr_inc(eqcr); 530 eqcr->available--; 531 #ifdef CONFIG_FSL_DPAA_CHECKING 532 eqcr->busy = 0; 533 #endif 534 } 535 536 static inline void qm_eqcr_cce_prefetch(struct qm_portal *portal) 537 { 538 qm_cl_touch_ro(portal, QM_CL_EQCR_CI_CENA); 539 } 540 541 static inline u8 qm_eqcr_cce_update(struct qm_portal *portal) 542 { 543 struct qm_eqcr *eqcr = &portal->eqcr; 544 u8 diff, old_ci = eqcr->ci; 545 546 eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) & (QM_EQCR_SIZE - 1); 547 qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA); 548 diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci); 549 eqcr->available += diff; 550 return diff; 551 } 552 553 static inline void qm_eqcr_set_ithresh(struct qm_portal *portal, u8 ithresh) 554 { 555 struct qm_eqcr *eqcr = &portal->eqcr; 556 557 eqcr->ithresh = ithresh; 558 qm_out(portal, QM_REG_EQCR_ITR, ithresh); 559 } 560 561 static inline u8 qm_eqcr_get_avail(struct qm_portal *portal) 562 { 563 struct qm_eqcr *eqcr = &portal->eqcr; 564 565 return eqcr->available; 566 } 567 568 static inline u8 qm_eqcr_get_fill(struct qm_portal *portal) 569 { 570 struct qm_eqcr *eqcr = &portal->eqcr; 571 572 return QM_EQCR_SIZE - 1 - eqcr->available; 573 } 574 575 /* --- DQRR API --- */ 576 577 #define DQRR_SHIFT ilog2(sizeof(struct qm_dqrr_entry)) 578 #define DQRR_CARRY (uintptr_t)(QM_DQRR_SIZE << DQRR_SHIFT) 579 580 static const struct qm_dqrr_entry *dqrr_carryclear( 581 const struct qm_dqrr_entry *p) 582 { 583 uintptr_t addr = (uintptr_t)p; 584 585 addr &= ~DQRR_CARRY; 586 587 return (const struct qm_dqrr_entry *)addr; 588 } 589 590 static inline int dqrr_ptr2idx(const struct qm_dqrr_entry *e) 591 { 592 return ((uintptr_t)e >> DQRR_SHIFT) & (QM_DQRR_SIZE - 1); 593 } 594 595 static const struct qm_dqrr_entry *dqrr_inc(const struct qm_dqrr_entry *e) 596 { 597 return dqrr_carryclear(e + 1); 598 } 599 600 static inline void qm_dqrr_set_maxfill(struct qm_portal *portal, u8 mf) 601 { 602 qm_out(portal, QM_REG_CFG, (qm_in(portal, QM_REG_CFG) & 0xff0fffff) | 603 ((mf & (QM_DQRR_SIZE - 1)) << 20)); 604 } 605 606 static inline int qm_dqrr_init(struct qm_portal *portal, 607 const struct qm_portal_config *config, 608 enum qm_dqrr_dmode dmode, 609 enum qm_dqrr_pmode pmode, 610 enum qm_dqrr_cmode cmode, u8 max_fill) 611 { 612 struct qm_dqrr *dqrr = &portal->dqrr; 613 u32 cfg; 614 615 /* Make sure the DQRR will be idle when we enable */ 616 qm_out(portal, QM_REG_DQRR_SDQCR, 0); 617 qm_out(portal, QM_REG_DQRR_VDQCR, 0); 618 qm_out(portal, QM_REG_DQRR_PDQCR, 0); 619 dqrr->ring = portal->addr.ce + QM_CL_DQRR; 620 dqrr->pi = qm_in(portal, QM_REG_DQRR_PI_CINH) & (QM_DQRR_SIZE - 1); 621 dqrr->ci = qm_in(portal, QM_REG_DQRR_CI_CINH) & (QM_DQRR_SIZE - 1); 622 dqrr->cursor = dqrr->ring + dqrr->ci; 623 dqrr->fill = dpaa_cyc_diff(QM_DQRR_SIZE, dqrr->ci, dqrr->pi); 624 dqrr->vbit = (qm_in(portal, QM_REG_DQRR_PI_CINH) & QM_DQRR_SIZE) ? 625 QM_DQRR_VERB_VBIT : 0; 626 dqrr->ithresh = qm_in(portal, QM_REG_DQRR_ITR); 627 #ifdef CONFIG_FSL_DPAA_CHECKING 628 dqrr->dmode = dmode; 629 dqrr->pmode = pmode; 630 dqrr->cmode = cmode; 631 #endif 632 /* Invalidate every ring entry before beginning */ 633 for (cfg = 0; cfg < QM_DQRR_SIZE; cfg++) 634 dpaa_invalidate(qm_cl(dqrr->ring, cfg)); 635 cfg = (qm_in(portal, QM_REG_CFG) & 0xff000f00) | 636 ((max_fill & (QM_DQRR_SIZE - 1)) << 20) | /* DQRR_MF */ 637 ((dmode & 1) << 18) | /* DP */ 638 ((cmode & 3) << 16) | /* DCM */ 639 0xa0 | /* RE+SE */ 640 (0 ? 0x40 : 0) | /* Ignore RP */ 641 (0 ? 0x10 : 0); /* Ignore SP */ 642 qm_out(portal, QM_REG_CFG, cfg); 643 qm_dqrr_set_maxfill(portal, max_fill); 644 return 0; 645 } 646 647 static inline void qm_dqrr_finish(struct qm_portal *portal) 648 { 649 #ifdef CONFIG_FSL_DPAA_CHECKING 650 struct qm_dqrr *dqrr = &portal->dqrr; 651 652 if (dqrr->cmode != qm_dqrr_cdc && 653 dqrr->ci != dqrr_ptr2idx(dqrr->cursor)) 654 pr_crit("Ignoring completed DQRR entries\n"); 655 #endif 656 } 657 658 static inline const struct qm_dqrr_entry *qm_dqrr_current( 659 struct qm_portal *portal) 660 { 661 struct qm_dqrr *dqrr = &portal->dqrr; 662 663 if (!dqrr->fill) 664 return NULL; 665 return dqrr->cursor; 666 } 667 668 static inline u8 qm_dqrr_next(struct qm_portal *portal) 669 { 670 struct qm_dqrr *dqrr = &portal->dqrr; 671 672 DPAA_ASSERT(dqrr->fill); 673 dqrr->cursor = dqrr_inc(dqrr->cursor); 674 return --dqrr->fill; 675 } 676 677 static inline void qm_dqrr_pvb_update(struct qm_portal *portal) 678 { 679 struct qm_dqrr *dqrr = &portal->dqrr; 680 struct qm_dqrr_entry *res = qm_cl(dqrr->ring, dqrr->pi); 681 682 DPAA_ASSERT(dqrr->pmode == qm_dqrr_pvb); 683 #ifndef CONFIG_FSL_PAMU 684 /* 685 * If PAMU is not available we need to invalidate the cache. 686 * When PAMU is available the cache is updated by stash 687 */ 688 dpaa_invalidate_touch_ro(res); 689 #endif 690 if ((res->verb & QM_DQRR_VERB_VBIT) == dqrr->vbit) { 691 dqrr->pi = (dqrr->pi + 1) & (QM_DQRR_SIZE - 1); 692 if (!dqrr->pi) 693 dqrr->vbit ^= QM_DQRR_VERB_VBIT; 694 dqrr->fill++; 695 } 696 } 697 698 static inline void qm_dqrr_cdc_consume_1ptr(struct qm_portal *portal, 699 const struct qm_dqrr_entry *dq, 700 int park) 701 { 702 __maybe_unused struct qm_dqrr *dqrr = &portal->dqrr; 703 int idx = dqrr_ptr2idx(dq); 704 705 DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc); 706 DPAA_ASSERT((dqrr->ring + idx) == dq); 707 DPAA_ASSERT(idx < QM_DQRR_SIZE); 708 qm_out(portal, QM_REG_DQRR_DCAP, (0 << 8) | /* DQRR_DCAP::S */ 709 ((park ? 1 : 0) << 6) | /* DQRR_DCAP::PK */ 710 idx); /* DQRR_DCAP::DCAP_CI */ 711 } 712 713 static inline void qm_dqrr_cdc_consume_n(struct qm_portal *portal, u32 bitmask) 714 { 715 __maybe_unused struct qm_dqrr *dqrr = &portal->dqrr; 716 717 DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc); 718 qm_out(portal, QM_REG_DQRR_DCAP, (1 << 8) | /* DQRR_DCAP::S */ 719 (bitmask << 16)); /* DQRR_DCAP::DCAP_CI */ 720 } 721 722 static inline void qm_dqrr_sdqcr_set(struct qm_portal *portal, u32 sdqcr) 723 { 724 qm_out(portal, QM_REG_DQRR_SDQCR, sdqcr); 725 } 726 727 static inline void qm_dqrr_vdqcr_set(struct qm_portal *portal, u32 vdqcr) 728 { 729 qm_out(portal, QM_REG_DQRR_VDQCR, vdqcr); 730 } 731 732 static inline int qm_dqrr_set_ithresh(struct qm_portal *portal, u8 ithresh) 733 { 734 735 if (ithresh > QMAN_DQRR_IT_MAX) 736 return -EINVAL; 737 738 qm_out(portal, QM_REG_DQRR_ITR, ithresh); 739 740 return 0; 741 } 742 743 /* --- MR API --- */ 744 745 #define MR_SHIFT ilog2(sizeof(union qm_mr_entry)) 746 #define MR_CARRY (uintptr_t)(QM_MR_SIZE << MR_SHIFT) 747 748 static union qm_mr_entry *mr_carryclear(union qm_mr_entry *p) 749 { 750 uintptr_t addr = (uintptr_t)p; 751 752 addr &= ~MR_CARRY; 753 754 return (union qm_mr_entry *)addr; 755 } 756 757 static inline int mr_ptr2idx(const union qm_mr_entry *e) 758 { 759 return ((uintptr_t)e >> MR_SHIFT) & (QM_MR_SIZE - 1); 760 } 761 762 static inline union qm_mr_entry *mr_inc(union qm_mr_entry *e) 763 { 764 return mr_carryclear(e + 1); 765 } 766 767 static inline int qm_mr_init(struct qm_portal *portal, enum qm_mr_pmode pmode, 768 enum qm_mr_cmode cmode) 769 { 770 struct qm_mr *mr = &portal->mr; 771 u32 cfg; 772 773 mr->ring = portal->addr.ce + QM_CL_MR; 774 mr->pi = qm_in(portal, QM_REG_MR_PI_CINH) & (QM_MR_SIZE - 1); 775 mr->ci = qm_in(portal, QM_REG_MR_CI_CINH) & (QM_MR_SIZE - 1); 776 mr->cursor = mr->ring + mr->ci; 777 mr->fill = dpaa_cyc_diff(QM_MR_SIZE, mr->ci, mr->pi); 778 mr->vbit = (qm_in(portal, QM_REG_MR_PI_CINH) & QM_MR_SIZE) 779 ? QM_MR_VERB_VBIT : 0; 780 mr->ithresh = qm_in(portal, QM_REG_MR_ITR); 781 #ifdef CONFIG_FSL_DPAA_CHECKING 782 mr->pmode = pmode; 783 mr->cmode = cmode; 784 #endif 785 cfg = (qm_in(portal, QM_REG_CFG) & 0xfffff0ff) | 786 ((cmode & 1) << 8); /* QCSP_CFG:MM */ 787 qm_out(portal, QM_REG_CFG, cfg); 788 return 0; 789 } 790 791 static inline void qm_mr_finish(struct qm_portal *portal) 792 { 793 struct qm_mr *mr = &portal->mr; 794 795 if (mr->ci != mr_ptr2idx(mr->cursor)) 796 pr_crit("Ignoring completed MR entries\n"); 797 } 798 799 static inline const union qm_mr_entry *qm_mr_current(struct qm_portal *portal) 800 { 801 struct qm_mr *mr = &portal->mr; 802 803 if (!mr->fill) 804 return NULL; 805 return mr->cursor; 806 } 807 808 static inline int qm_mr_next(struct qm_portal *portal) 809 { 810 struct qm_mr *mr = &portal->mr; 811 812 DPAA_ASSERT(mr->fill); 813 mr->cursor = mr_inc(mr->cursor); 814 return --mr->fill; 815 } 816 817 static inline void qm_mr_pvb_update(struct qm_portal *portal) 818 { 819 struct qm_mr *mr = &portal->mr; 820 union qm_mr_entry *res = qm_cl(mr->ring, mr->pi); 821 822 DPAA_ASSERT(mr->pmode == qm_mr_pvb); 823 824 if ((res->verb & QM_MR_VERB_VBIT) == mr->vbit) { 825 mr->pi = (mr->pi + 1) & (QM_MR_SIZE - 1); 826 if (!mr->pi) 827 mr->vbit ^= QM_MR_VERB_VBIT; 828 mr->fill++; 829 res = mr_inc(res); 830 } 831 dpaa_invalidate_touch_ro(res); 832 } 833 834 static inline void qm_mr_cci_consume(struct qm_portal *portal, u8 num) 835 { 836 struct qm_mr *mr = &portal->mr; 837 838 DPAA_ASSERT(mr->cmode == qm_mr_cci); 839 mr->ci = (mr->ci + num) & (QM_MR_SIZE - 1); 840 qm_out(portal, QM_REG_MR_CI_CINH, mr->ci); 841 } 842 843 static inline void qm_mr_cci_consume_to_current(struct qm_portal *portal) 844 { 845 struct qm_mr *mr = &portal->mr; 846 847 DPAA_ASSERT(mr->cmode == qm_mr_cci); 848 mr->ci = mr_ptr2idx(mr->cursor); 849 qm_out(portal, QM_REG_MR_CI_CINH, mr->ci); 850 } 851 852 static inline void qm_mr_set_ithresh(struct qm_portal *portal, u8 ithresh) 853 { 854 qm_out(portal, QM_REG_MR_ITR, ithresh); 855 } 856 857 /* --- Management command API --- */ 858 859 static inline int qm_mc_init(struct qm_portal *portal) 860 { 861 u8 rr0, rr1; 862 struct qm_mc *mc = &portal->mc; 863 864 mc->cr = portal->addr.ce + QM_CL_CR; 865 mc->rr = portal->addr.ce + QM_CL_RR0; 866 /* 867 * The expected valid bit polarity for the next CR command is 0 868 * if RR1 contains a valid response, and is 1 if RR0 contains a 869 * valid response. If both RR contain all 0, this indicates either 870 * that no command has been executed since reset (in which case the 871 * expected valid bit polarity is 1) 872 */ 873 rr0 = mc->rr->verb; 874 rr1 = (mc->rr+1)->verb; 875 if ((rr0 == 0 && rr1 == 0) || rr0 != 0) 876 mc->rridx = 1; 877 else 878 mc->rridx = 0; 879 mc->vbit = mc->rridx ? QM_MCC_VERB_VBIT : 0; 880 #ifdef CONFIG_FSL_DPAA_CHECKING 881 mc->state = qman_mc_idle; 882 #endif 883 return 0; 884 } 885 886 static inline void qm_mc_finish(struct qm_portal *portal) 887 { 888 #ifdef CONFIG_FSL_DPAA_CHECKING 889 struct qm_mc *mc = &portal->mc; 890 891 DPAA_ASSERT(mc->state == qman_mc_idle); 892 if (mc->state != qman_mc_idle) 893 pr_crit("Losing incomplete MC command\n"); 894 #endif 895 } 896 897 static inline union qm_mc_command *qm_mc_start(struct qm_portal *portal) 898 { 899 struct qm_mc *mc = &portal->mc; 900 901 DPAA_ASSERT(mc->state == qman_mc_idle); 902 #ifdef CONFIG_FSL_DPAA_CHECKING 903 mc->state = qman_mc_user; 904 #endif 905 dpaa_zero(mc->cr); 906 return mc->cr; 907 } 908 909 static inline void qm_mc_commit(struct qm_portal *portal, u8 myverb) 910 { 911 struct qm_mc *mc = &portal->mc; 912 union qm_mc_result *rr = mc->rr + mc->rridx; 913 914 DPAA_ASSERT(mc->state == qman_mc_user); 915 dma_wmb(); 916 mc->cr->_ncw_verb = myverb | mc->vbit; 917 dpaa_flush(mc->cr); 918 dpaa_invalidate_touch_ro(rr); 919 #ifdef CONFIG_FSL_DPAA_CHECKING 920 mc->state = qman_mc_hw; 921 #endif 922 } 923 924 static inline union qm_mc_result *qm_mc_result(struct qm_portal *portal) 925 { 926 struct qm_mc *mc = &portal->mc; 927 union qm_mc_result *rr = mc->rr + mc->rridx; 928 929 DPAA_ASSERT(mc->state == qman_mc_hw); 930 /* 931 * The inactive response register's verb byte always returns zero until 932 * its command is submitted and completed. This includes the valid-bit, 933 * in case you were wondering... 934 */ 935 if (!rr->verb) { 936 dpaa_invalidate_touch_ro(rr); 937 return NULL; 938 } 939 mc->rridx ^= 1; 940 mc->vbit ^= QM_MCC_VERB_VBIT; 941 #ifdef CONFIG_FSL_DPAA_CHECKING 942 mc->state = qman_mc_idle; 943 #endif 944 return rr; 945 } 946 947 static inline int qm_mc_result_timeout(struct qm_portal *portal, 948 union qm_mc_result **mcr) 949 { 950 int timeout = QM_MCR_TIMEOUT; 951 952 do { 953 *mcr = qm_mc_result(portal); 954 if (*mcr) 955 break; 956 udelay(1); 957 } while (--timeout); 958 959 return timeout; 960 } 961 962 static inline void fq_set(struct qman_fq *fq, u32 mask) 963 { 964 fq->flags |= mask; 965 } 966 967 static inline void fq_clear(struct qman_fq *fq, u32 mask) 968 { 969 fq->flags &= ~mask; 970 } 971 972 static inline int fq_isset(struct qman_fq *fq, u32 mask) 973 { 974 return fq->flags & mask; 975 } 976 977 static inline int fq_isclear(struct qman_fq *fq, u32 mask) 978 { 979 return !(fq->flags & mask); 980 } 981 982 struct qman_portal { 983 struct qm_portal p; 984 /* PORTAL_BITS_*** - dynamic, strictly internal */ 985 unsigned long bits; 986 /* interrupt sources processed by portal_isr(), configurable */ 987 unsigned long irq_sources; 988 u32 use_eqcr_ci_stashing; 989 /* only 1 volatile dequeue at a time */ 990 struct qman_fq *vdqcr_owned; 991 u32 sdqcr; 992 /* probing time config params for cpu-affine portals */ 993 const struct qm_portal_config *config; 994 /* 2-element array. cgrs[0] is mask, cgrs[1] is snapshot. */ 995 struct qman_cgrs *cgrs; 996 /* linked-list of CSCN handlers. */ 997 struct list_head cgr_cbs; 998 /* list lock */ 999 spinlock_t cgr_lock; 1000 struct work_struct congestion_work; 1001 struct work_struct mr_work; 1002 char irqname[MAX_IRQNAME]; 1003 }; 1004 1005 static cpumask_t affine_mask; 1006 static DEFINE_SPINLOCK(affine_mask_lock); 1007 static u16 affine_channels[NR_CPUS]; 1008 static DEFINE_PER_CPU(struct qman_portal, qman_affine_portal); 1009 struct qman_portal *affine_portals[NR_CPUS]; 1010 1011 static inline struct qman_portal *get_affine_portal(void) 1012 { 1013 return &get_cpu_var(qman_affine_portal); 1014 } 1015 1016 static inline void put_affine_portal(void) 1017 { 1018 put_cpu_var(qman_affine_portal); 1019 } 1020 1021 static struct workqueue_struct *qm_portal_wq; 1022 1023 int qman_dqrr_set_ithresh(struct qman_portal *portal, u8 ithresh) 1024 { 1025 int res; 1026 1027 if (!portal) 1028 return -EINVAL; 1029 1030 res = qm_dqrr_set_ithresh(&portal->p, ithresh); 1031 if (res) 1032 return res; 1033 1034 portal->p.dqrr.ithresh = ithresh; 1035 1036 return 0; 1037 } 1038 EXPORT_SYMBOL(qman_dqrr_set_ithresh); 1039 1040 void qman_dqrr_get_ithresh(struct qman_portal *portal, u8 *ithresh) 1041 { 1042 if (portal && ithresh) 1043 *ithresh = qm_in(&portal->p, QM_REG_DQRR_ITR); 1044 } 1045 EXPORT_SYMBOL(qman_dqrr_get_ithresh); 1046 1047 void qman_portal_get_iperiod(struct qman_portal *portal, u32 *iperiod) 1048 { 1049 if (portal && iperiod) 1050 *iperiod = qm_in(&portal->p, QM_REG_ITPR); 1051 } 1052 EXPORT_SYMBOL(qman_portal_get_iperiod); 1053 1054 int qman_portal_set_iperiod(struct qman_portal *portal, u32 iperiod) 1055 { 1056 if (!portal || iperiod > QMAN_ITP_MAX) 1057 return -EINVAL; 1058 1059 qm_out(&portal->p, QM_REG_ITPR, iperiod); 1060 1061 return 0; 1062 } 1063 EXPORT_SYMBOL(qman_portal_set_iperiod); 1064 1065 int qman_wq_alloc(void) 1066 { 1067 qm_portal_wq = alloc_workqueue("qman_portal_wq", 0, 1); 1068 if (!qm_portal_wq) 1069 return -ENOMEM; 1070 return 0; 1071 } 1072 1073 /* 1074 * This is what everything can wait on, even if it migrates to a different cpu 1075 * to the one whose affine portal it is waiting on. 1076 */ 1077 static DECLARE_WAIT_QUEUE_HEAD(affine_queue); 1078 1079 static struct qman_fq **fq_table; 1080 static u32 num_fqids; 1081 1082 int qman_alloc_fq_table(u32 _num_fqids) 1083 { 1084 num_fqids = _num_fqids; 1085 1086 fq_table = vzalloc(array3_size(sizeof(struct qman_fq *), 1087 num_fqids, 2)); 1088 if (!fq_table) 1089 return -ENOMEM; 1090 1091 pr_debug("Allocated fq lookup table at %p, entry count %u\n", 1092 fq_table, num_fqids * 2); 1093 return 0; 1094 } 1095 1096 static struct qman_fq *idx_to_fq(u32 idx) 1097 { 1098 struct qman_fq *fq; 1099 1100 #ifdef CONFIG_FSL_DPAA_CHECKING 1101 if (WARN_ON(idx >= num_fqids * 2)) 1102 return NULL; 1103 #endif 1104 fq = fq_table[idx]; 1105 DPAA_ASSERT(!fq || idx == fq->idx); 1106 1107 return fq; 1108 } 1109 1110 /* 1111 * Only returns full-service fq objects, not enqueue-only 1112 * references (QMAN_FQ_FLAG_NO_MODIFY). 1113 */ 1114 static struct qman_fq *fqid_to_fq(u32 fqid) 1115 { 1116 return idx_to_fq(fqid * 2); 1117 } 1118 1119 static struct qman_fq *tag_to_fq(u32 tag) 1120 { 1121 #if BITS_PER_LONG == 64 1122 return idx_to_fq(tag); 1123 #else 1124 return (struct qman_fq *)tag; 1125 #endif 1126 } 1127 1128 static u32 fq_to_tag(struct qman_fq *fq) 1129 { 1130 #if BITS_PER_LONG == 64 1131 return fq->idx; 1132 #else 1133 return (u32)fq; 1134 #endif 1135 } 1136 1137 static u32 __poll_portal_slow(struct qman_portal *p, u32 is); 1138 static inline unsigned int __poll_portal_fast(struct qman_portal *p, 1139 unsigned int poll_limit); 1140 static void qm_congestion_task(struct work_struct *work); 1141 static void qm_mr_process_task(struct work_struct *work); 1142 1143 static irqreturn_t portal_isr(int irq, void *ptr) 1144 { 1145 struct qman_portal *p = ptr; 1146 1147 u32 clear = QM_DQAVAIL_MASK | p->irq_sources; 1148 u32 is = qm_in(&p->p, QM_REG_ISR) & p->irq_sources; 1149 1150 if (unlikely(!is)) 1151 return IRQ_NONE; 1152 1153 /* DQRR-handling if it's interrupt-driven */ 1154 if (is & QM_PIRQ_DQRI) 1155 __poll_portal_fast(p, QMAN_POLL_LIMIT); 1156 /* Handling of anything else that's interrupt-driven */ 1157 clear |= __poll_portal_slow(p, is); 1158 qm_out(&p->p, QM_REG_ISR, clear); 1159 return IRQ_HANDLED; 1160 } 1161 1162 static int drain_mr_fqrni(struct qm_portal *p) 1163 { 1164 const union qm_mr_entry *msg; 1165 loop: 1166 msg = qm_mr_current(p); 1167 if (!msg) { 1168 /* 1169 * if MR was full and h/w had other FQRNI entries to produce, we 1170 * need to allow it time to produce those entries once the 1171 * existing entries are consumed. A worst-case situation 1172 * (fully-loaded system) means h/w sequencers may have to do 3-4 1173 * other things before servicing the portal's MR pump, each of 1174 * which (if slow) may take ~50 qman cycles (which is ~200 1175 * processor cycles). So rounding up and then multiplying this 1176 * worst-case estimate by a factor of 10, just to be 1177 * ultra-paranoid, goes as high as 10,000 cycles. NB, we consume 1178 * one entry at a time, so h/w has an opportunity to produce new 1179 * entries well before the ring has been fully consumed, so 1180 * we're being *really* paranoid here. 1181 */ 1182 msleep(1); 1183 msg = qm_mr_current(p); 1184 if (!msg) 1185 return 0; 1186 } 1187 if ((msg->verb & QM_MR_VERB_TYPE_MASK) != QM_MR_VERB_FQRNI) { 1188 /* We aren't draining anything but FQRNIs */ 1189 pr_err("Found verb 0x%x in MR\n", msg->verb); 1190 return -1; 1191 } 1192 qm_mr_next(p); 1193 qm_mr_cci_consume(p, 1); 1194 goto loop; 1195 } 1196 1197 static int qman_create_portal(struct qman_portal *portal, 1198 const struct qm_portal_config *c, 1199 const struct qman_cgrs *cgrs) 1200 { 1201 struct qm_portal *p; 1202 int ret; 1203 u32 isdr; 1204 1205 p = &portal->p; 1206 1207 #ifdef CONFIG_FSL_PAMU 1208 /* PAMU is required for stashing */ 1209 portal->use_eqcr_ci_stashing = ((qman_ip_rev >= QMAN_REV30) ? 1 : 0); 1210 #else 1211 portal->use_eqcr_ci_stashing = 0; 1212 #endif 1213 /* 1214 * prep the low-level portal struct with the mapped addresses from the 1215 * config, everything that follows depends on it and "config" is more 1216 * for (de)reference 1217 */ 1218 p->addr.ce = c->addr_virt_ce; 1219 p->addr.ce_be = c->addr_virt_ce; 1220 p->addr.ci = c->addr_virt_ci; 1221 /* 1222 * If CI-stashing is used, the current defaults use a threshold of 3, 1223 * and stash with high-than-DQRR priority. 1224 */ 1225 if (qm_eqcr_init(p, qm_eqcr_pvb, 1226 portal->use_eqcr_ci_stashing ? 3 : 0, 1)) { 1227 dev_err(c->dev, "EQCR initialisation failed\n"); 1228 goto fail_eqcr; 1229 } 1230 if (qm_dqrr_init(p, c, qm_dqrr_dpush, qm_dqrr_pvb, 1231 qm_dqrr_cdc, DQRR_MAXFILL)) { 1232 dev_err(c->dev, "DQRR initialisation failed\n"); 1233 goto fail_dqrr; 1234 } 1235 if (qm_mr_init(p, qm_mr_pvb, qm_mr_cci)) { 1236 dev_err(c->dev, "MR initialisation failed\n"); 1237 goto fail_mr; 1238 } 1239 if (qm_mc_init(p)) { 1240 dev_err(c->dev, "MC initialisation failed\n"); 1241 goto fail_mc; 1242 } 1243 /* static interrupt-gating controls */ 1244 qm_dqrr_set_ithresh(p, QMAN_PIRQ_DQRR_ITHRESH); 1245 qm_mr_set_ithresh(p, QMAN_PIRQ_MR_ITHRESH); 1246 qm_out(p, QM_REG_ITPR, QMAN_PIRQ_IPERIOD); 1247 portal->cgrs = kmalloc_array(2, sizeof(*cgrs), GFP_KERNEL); 1248 if (!portal->cgrs) 1249 goto fail_cgrs; 1250 /* initial snapshot is no-depletion */ 1251 qman_cgrs_init(&portal->cgrs[1]); 1252 if (cgrs) 1253 portal->cgrs[0] = *cgrs; 1254 else 1255 /* if the given mask is NULL, assume all CGRs can be seen */ 1256 qman_cgrs_fill(&portal->cgrs[0]); 1257 INIT_LIST_HEAD(&portal->cgr_cbs); 1258 spin_lock_init(&portal->cgr_lock); 1259 INIT_WORK(&portal->congestion_work, qm_congestion_task); 1260 INIT_WORK(&portal->mr_work, qm_mr_process_task); 1261 portal->bits = 0; 1262 portal->sdqcr = QM_SDQCR_SOURCE_CHANNELS | QM_SDQCR_COUNT_UPTO3 | 1263 QM_SDQCR_DEDICATED_PRECEDENCE | QM_SDQCR_TYPE_PRIO_QOS | 1264 QM_SDQCR_TOKEN_SET(0xab) | QM_SDQCR_CHANNELS_DEDICATED; 1265 isdr = 0xffffffff; 1266 qm_out(p, QM_REG_ISDR, isdr); 1267 portal->irq_sources = 0; 1268 qm_out(p, QM_REG_IER, 0); 1269 qm_out(p, QM_REG_ISR, 0xffffffff); 1270 snprintf(portal->irqname, MAX_IRQNAME, IRQNAME, c->cpu); 1271 if (request_irq(c->irq, portal_isr, 0, portal->irqname, portal)) { 1272 dev_err(c->dev, "request_irq() failed\n"); 1273 goto fail_irq; 1274 } 1275 1276 if (dpaa_set_portal_irq_affinity(c->dev, c->irq, c->cpu)) 1277 goto fail_affinity; 1278 1279 /* Need EQCR to be empty before continuing */ 1280 isdr &= ~QM_PIRQ_EQCI; 1281 qm_out(p, QM_REG_ISDR, isdr); 1282 ret = qm_eqcr_get_fill(p); 1283 if (ret) { 1284 dev_err(c->dev, "EQCR unclean\n"); 1285 goto fail_eqcr_empty; 1286 } 1287 isdr &= ~(QM_PIRQ_DQRI | QM_PIRQ_MRI); 1288 qm_out(p, QM_REG_ISDR, isdr); 1289 if (qm_dqrr_current(p)) { 1290 dev_err(c->dev, "DQRR unclean\n"); 1291 qm_dqrr_cdc_consume_n(p, 0xffff); 1292 } 1293 if (qm_mr_current(p) && drain_mr_fqrni(p)) { 1294 /* special handling, drain just in case it's a few FQRNIs */ 1295 const union qm_mr_entry *e = qm_mr_current(p); 1296 1297 dev_err(c->dev, "MR dirty, VB 0x%x, rc 0x%x, addr 0x%llx\n", 1298 e->verb, e->ern.rc, qm_fd_addr_get64(&e->ern.fd)); 1299 goto fail_dqrr_mr_empty; 1300 } 1301 /* Success */ 1302 portal->config = c; 1303 qm_out(p, QM_REG_ISDR, 0); 1304 qm_out(p, QM_REG_IIR, 0); 1305 /* Write a sane SDQCR */ 1306 qm_dqrr_sdqcr_set(p, portal->sdqcr); 1307 return 0; 1308 1309 fail_dqrr_mr_empty: 1310 fail_eqcr_empty: 1311 fail_affinity: 1312 free_irq(c->irq, portal); 1313 fail_irq: 1314 kfree(portal->cgrs); 1315 fail_cgrs: 1316 qm_mc_finish(p); 1317 fail_mc: 1318 qm_mr_finish(p); 1319 fail_mr: 1320 qm_dqrr_finish(p); 1321 fail_dqrr: 1322 qm_eqcr_finish(p); 1323 fail_eqcr: 1324 return -EIO; 1325 } 1326 1327 struct qman_portal *qman_create_affine_portal(const struct qm_portal_config *c, 1328 const struct qman_cgrs *cgrs) 1329 { 1330 struct qman_portal *portal; 1331 int err; 1332 1333 portal = &per_cpu(qman_affine_portal, c->cpu); 1334 err = qman_create_portal(portal, c, cgrs); 1335 if (err) 1336 return NULL; 1337 1338 spin_lock(&affine_mask_lock); 1339 cpumask_set_cpu(c->cpu, &affine_mask); 1340 affine_channels[c->cpu] = c->channel; 1341 affine_portals[c->cpu] = portal; 1342 spin_unlock(&affine_mask_lock); 1343 1344 return portal; 1345 } 1346 1347 static void qman_destroy_portal(struct qman_portal *qm) 1348 { 1349 const struct qm_portal_config *pcfg; 1350 1351 /* Stop dequeues on the portal */ 1352 qm_dqrr_sdqcr_set(&qm->p, 0); 1353 1354 /* 1355 * NB we do this to "quiesce" EQCR. If we add enqueue-completions or 1356 * something related to QM_PIRQ_EQCI, this may need fixing. 1357 * Also, due to the prefetching model used for CI updates in the enqueue 1358 * path, this update will only invalidate the CI cacheline *after* 1359 * working on it, so we need to call this twice to ensure a full update 1360 * irrespective of where the enqueue processing was at when the teardown 1361 * began. 1362 */ 1363 qm_eqcr_cce_update(&qm->p); 1364 qm_eqcr_cce_update(&qm->p); 1365 pcfg = qm->config; 1366 1367 free_irq(pcfg->irq, qm); 1368 1369 kfree(qm->cgrs); 1370 qm_mc_finish(&qm->p); 1371 qm_mr_finish(&qm->p); 1372 qm_dqrr_finish(&qm->p); 1373 qm_eqcr_finish(&qm->p); 1374 1375 qm->config = NULL; 1376 } 1377 1378 const struct qm_portal_config *qman_destroy_affine_portal(void) 1379 { 1380 struct qman_portal *qm = get_affine_portal(); 1381 const struct qm_portal_config *pcfg; 1382 int cpu; 1383 1384 pcfg = qm->config; 1385 cpu = pcfg->cpu; 1386 1387 qman_destroy_portal(qm); 1388 1389 spin_lock(&affine_mask_lock); 1390 cpumask_clear_cpu(cpu, &affine_mask); 1391 spin_unlock(&affine_mask_lock); 1392 put_affine_portal(); 1393 return pcfg; 1394 } 1395 1396 /* Inline helper to reduce nesting in __poll_portal_slow() */ 1397 static inline void fq_state_change(struct qman_portal *p, struct qman_fq *fq, 1398 const union qm_mr_entry *msg, u8 verb) 1399 { 1400 switch (verb) { 1401 case QM_MR_VERB_FQRL: 1402 DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_ORL)); 1403 fq_clear(fq, QMAN_FQ_STATE_ORL); 1404 break; 1405 case QM_MR_VERB_FQRN: 1406 DPAA_ASSERT(fq->state == qman_fq_state_parked || 1407 fq->state == qman_fq_state_sched); 1408 DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_CHANGING)); 1409 fq_clear(fq, QMAN_FQ_STATE_CHANGING); 1410 if (msg->fq.fqs & QM_MR_FQS_NOTEMPTY) 1411 fq_set(fq, QMAN_FQ_STATE_NE); 1412 if (msg->fq.fqs & QM_MR_FQS_ORLPRESENT) 1413 fq_set(fq, QMAN_FQ_STATE_ORL); 1414 fq->state = qman_fq_state_retired; 1415 break; 1416 case QM_MR_VERB_FQPN: 1417 DPAA_ASSERT(fq->state == qman_fq_state_sched); 1418 DPAA_ASSERT(fq_isclear(fq, QMAN_FQ_STATE_CHANGING)); 1419 fq->state = qman_fq_state_parked; 1420 } 1421 } 1422 1423 static void qm_congestion_task(struct work_struct *work) 1424 { 1425 struct qman_portal *p = container_of(work, struct qman_portal, 1426 congestion_work); 1427 struct qman_cgrs rr, c; 1428 union qm_mc_result *mcr; 1429 struct qman_cgr *cgr; 1430 1431 spin_lock(&p->cgr_lock); 1432 qm_mc_start(&p->p); 1433 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCONGESTION); 1434 if (!qm_mc_result_timeout(&p->p, &mcr)) { 1435 spin_unlock(&p->cgr_lock); 1436 dev_crit(p->config->dev, "QUERYCONGESTION timeout\n"); 1437 qman_p_irqsource_add(p, QM_PIRQ_CSCI); 1438 return; 1439 } 1440 /* mask out the ones I'm not interested in */ 1441 qman_cgrs_and(&rr, (struct qman_cgrs *)&mcr->querycongestion.state, 1442 &p->cgrs[0]); 1443 /* check previous snapshot for delta, enter/exit congestion */ 1444 qman_cgrs_xor(&c, &rr, &p->cgrs[1]); 1445 /* update snapshot */ 1446 qman_cgrs_cp(&p->cgrs[1], &rr); 1447 /* Invoke callback */ 1448 list_for_each_entry(cgr, &p->cgr_cbs, node) 1449 if (cgr->cb && qman_cgrs_get(&c, cgr->cgrid)) 1450 cgr->cb(p, cgr, qman_cgrs_get(&rr, cgr->cgrid)); 1451 spin_unlock(&p->cgr_lock); 1452 qman_p_irqsource_add(p, QM_PIRQ_CSCI); 1453 } 1454 1455 static void qm_mr_process_task(struct work_struct *work) 1456 { 1457 struct qman_portal *p = container_of(work, struct qman_portal, 1458 mr_work); 1459 const union qm_mr_entry *msg; 1460 struct qman_fq *fq; 1461 u8 verb, num = 0; 1462 1463 preempt_disable(); 1464 1465 while (1) { 1466 qm_mr_pvb_update(&p->p); 1467 msg = qm_mr_current(&p->p); 1468 if (!msg) 1469 break; 1470 1471 verb = msg->verb & QM_MR_VERB_TYPE_MASK; 1472 /* The message is a software ERN iff the 0x20 bit is clear */ 1473 if (verb & 0x20) { 1474 switch (verb) { 1475 case QM_MR_VERB_FQRNI: 1476 /* nada, we drop FQRNIs on the floor */ 1477 break; 1478 case QM_MR_VERB_FQRN: 1479 case QM_MR_VERB_FQRL: 1480 /* Lookup in the retirement table */ 1481 fq = fqid_to_fq(qm_fqid_get(&msg->fq)); 1482 if (WARN_ON(!fq)) 1483 break; 1484 fq_state_change(p, fq, msg, verb); 1485 if (fq->cb.fqs) 1486 fq->cb.fqs(p, fq, msg); 1487 break; 1488 case QM_MR_VERB_FQPN: 1489 /* Parked */ 1490 fq = tag_to_fq(be32_to_cpu(msg->fq.context_b)); 1491 fq_state_change(p, fq, msg, verb); 1492 if (fq->cb.fqs) 1493 fq->cb.fqs(p, fq, msg); 1494 break; 1495 case QM_MR_VERB_DC_ERN: 1496 /* DCP ERN */ 1497 pr_crit_once("Leaking DCP ERNs!\n"); 1498 break; 1499 default: 1500 pr_crit("Invalid MR verb 0x%02x\n", verb); 1501 } 1502 } else { 1503 /* Its a software ERN */ 1504 fq = tag_to_fq(be32_to_cpu(msg->ern.tag)); 1505 fq->cb.ern(p, fq, msg); 1506 } 1507 num++; 1508 qm_mr_next(&p->p); 1509 } 1510 1511 qm_mr_cci_consume(&p->p, num); 1512 qman_p_irqsource_add(p, QM_PIRQ_MRI); 1513 preempt_enable(); 1514 } 1515 1516 static u32 __poll_portal_slow(struct qman_portal *p, u32 is) 1517 { 1518 if (is & QM_PIRQ_CSCI) { 1519 qman_p_irqsource_remove(p, QM_PIRQ_CSCI); 1520 queue_work_on(smp_processor_id(), qm_portal_wq, 1521 &p->congestion_work); 1522 } 1523 1524 if (is & QM_PIRQ_EQRI) { 1525 qm_eqcr_cce_update(&p->p); 1526 qm_eqcr_set_ithresh(&p->p, 0); 1527 wake_up(&affine_queue); 1528 } 1529 1530 if (is & QM_PIRQ_MRI) { 1531 qman_p_irqsource_remove(p, QM_PIRQ_MRI); 1532 queue_work_on(smp_processor_id(), qm_portal_wq, 1533 &p->mr_work); 1534 } 1535 1536 return is; 1537 } 1538 1539 /* 1540 * remove some slowish-path stuff from the "fast path" and make sure it isn't 1541 * inlined. 1542 */ 1543 static noinline void clear_vdqcr(struct qman_portal *p, struct qman_fq *fq) 1544 { 1545 p->vdqcr_owned = NULL; 1546 fq_clear(fq, QMAN_FQ_STATE_VDQCR); 1547 wake_up(&affine_queue); 1548 } 1549 1550 /* 1551 * The only states that would conflict with other things if they ran at the 1552 * same time on the same cpu are: 1553 * 1554 * (i) setting/clearing vdqcr_owned, and 1555 * (ii) clearing the NE (Not Empty) flag. 1556 * 1557 * Both are safe. Because; 1558 * 1559 * (i) this clearing can only occur after qman_volatile_dequeue() has set the 1560 * vdqcr_owned field (which it does before setting VDQCR), and 1561 * qman_volatile_dequeue() blocks interrupts and preemption while this is 1562 * done so that we can't interfere. 1563 * (ii) the NE flag is only cleared after qman_retire_fq() has set it, and as 1564 * with (i) that API prevents us from interfering until it's safe. 1565 * 1566 * The good thing is that qman_volatile_dequeue() and qman_retire_fq() run far 1567 * less frequently (ie. per-FQ) than __poll_portal_fast() does, so the nett 1568 * advantage comes from this function not having to "lock" anything at all. 1569 * 1570 * Note also that the callbacks are invoked at points which are safe against the 1571 * above potential conflicts, but that this function itself is not re-entrant 1572 * (this is because the function tracks one end of each FIFO in the portal and 1573 * we do *not* want to lock that). So the consequence is that it is safe for 1574 * user callbacks to call into any QMan API. 1575 */ 1576 static inline unsigned int __poll_portal_fast(struct qman_portal *p, 1577 unsigned int poll_limit) 1578 { 1579 const struct qm_dqrr_entry *dq; 1580 struct qman_fq *fq; 1581 enum qman_cb_dqrr_result res; 1582 unsigned int limit = 0; 1583 1584 do { 1585 qm_dqrr_pvb_update(&p->p); 1586 dq = qm_dqrr_current(&p->p); 1587 if (!dq) 1588 break; 1589 1590 if (dq->stat & QM_DQRR_STAT_UNSCHEDULED) { 1591 /* 1592 * VDQCR: don't trust context_b as the FQ may have 1593 * been configured for h/w consumption and we're 1594 * draining it post-retirement. 1595 */ 1596 fq = p->vdqcr_owned; 1597 /* 1598 * We only set QMAN_FQ_STATE_NE when retiring, so we 1599 * only need to check for clearing it when doing 1600 * volatile dequeues. It's one less thing to check 1601 * in the critical path (SDQCR). 1602 */ 1603 if (dq->stat & QM_DQRR_STAT_FQ_EMPTY) 1604 fq_clear(fq, QMAN_FQ_STATE_NE); 1605 /* 1606 * This is duplicated from the SDQCR code, but we 1607 * have stuff to do before *and* after this callback, 1608 * and we don't want multiple if()s in the critical 1609 * path (SDQCR). 1610 */ 1611 res = fq->cb.dqrr(p, fq, dq); 1612 if (res == qman_cb_dqrr_stop) 1613 break; 1614 /* Check for VDQCR completion */ 1615 if (dq->stat & QM_DQRR_STAT_DQCR_EXPIRED) 1616 clear_vdqcr(p, fq); 1617 } else { 1618 /* SDQCR: context_b points to the FQ */ 1619 fq = tag_to_fq(be32_to_cpu(dq->context_b)); 1620 /* Now let the callback do its stuff */ 1621 res = fq->cb.dqrr(p, fq, dq); 1622 /* 1623 * The callback can request that we exit without 1624 * consuming this entry nor advancing; 1625 */ 1626 if (res == qman_cb_dqrr_stop) 1627 break; 1628 } 1629 /* Interpret 'dq' from a driver perspective. */ 1630 /* 1631 * Parking isn't possible unless HELDACTIVE was set. NB, 1632 * FORCEELIGIBLE implies HELDACTIVE, so we only need to 1633 * check for HELDACTIVE to cover both. 1634 */ 1635 DPAA_ASSERT((dq->stat & QM_DQRR_STAT_FQ_HELDACTIVE) || 1636 (res != qman_cb_dqrr_park)); 1637 /* just means "skip it, I'll consume it myself later on" */ 1638 if (res != qman_cb_dqrr_defer) 1639 qm_dqrr_cdc_consume_1ptr(&p->p, dq, 1640 res == qman_cb_dqrr_park); 1641 /* Move forward */ 1642 qm_dqrr_next(&p->p); 1643 /* 1644 * Entry processed and consumed, increment our counter. The 1645 * callback can request that we exit after consuming the 1646 * entry, and we also exit if we reach our processing limit, 1647 * so loop back only if neither of these conditions is met. 1648 */ 1649 } while (++limit < poll_limit && res != qman_cb_dqrr_consume_stop); 1650 1651 return limit; 1652 } 1653 1654 void qman_p_irqsource_add(struct qman_portal *p, u32 bits) 1655 { 1656 unsigned long irqflags; 1657 1658 local_irq_save(irqflags); 1659 p->irq_sources |= bits & QM_PIRQ_VISIBLE; 1660 qm_out(&p->p, QM_REG_IER, p->irq_sources); 1661 local_irq_restore(irqflags); 1662 } 1663 EXPORT_SYMBOL(qman_p_irqsource_add); 1664 1665 void qman_p_irqsource_remove(struct qman_portal *p, u32 bits) 1666 { 1667 unsigned long irqflags; 1668 u32 ier; 1669 1670 /* 1671 * Our interrupt handler only processes+clears status register bits that 1672 * are in p->irq_sources. As we're trimming that mask, if one of them 1673 * were to assert in the status register just before we remove it from 1674 * the enable register, there would be an interrupt-storm when we 1675 * release the IRQ lock. So we wait for the enable register update to 1676 * take effect in h/w (by reading it back) and then clear all other bits 1677 * in the status register. Ie. we clear them from ISR once it's certain 1678 * IER won't allow them to reassert. 1679 */ 1680 local_irq_save(irqflags); 1681 bits &= QM_PIRQ_VISIBLE; 1682 p->irq_sources &= ~bits; 1683 qm_out(&p->p, QM_REG_IER, p->irq_sources); 1684 ier = qm_in(&p->p, QM_REG_IER); 1685 /* 1686 * Using "~ier" (rather than "bits" or "~p->irq_sources") creates a 1687 * data-dependency, ie. to protect against re-ordering. 1688 */ 1689 qm_out(&p->p, QM_REG_ISR, ~ier); 1690 local_irq_restore(irqflags); 1691 } 1692 EXPORT_SYMBOL(qman_p_irqsource_remove); 1693 1694 const cpumask_t *qman_affine_cpus(void) 1695 { 1696 return &affine_mask; 1697 } 1698 EXPORT_SYMBOL(qman_affine_cpus); 1699 1700 u16 qman_affine_channel(int cpu) 1701 { 1702 if (cpu < 0) { 1703 struct qman_portal *portal = get_affine_portal(); 1704 1705 cpu = portal->config->cpu; 1706 put_affine_portal(); 1707 } 1708 WARN_ON(!cpumask_test_cpu(cpu, &affine_mask)); 1709 return affine_channels[cpu]; 1710 } 1711 EXPORT_SYMBOL(qman_affine_channel); 1712 1713 struct qman_portal *qman_get_affine_portal(int cpu) 1714 { 1715 return affine_portals[cpu]; 1716 } 1717 EXPORT_SYMBOL(qman_get_affine_portal); 1718 1719 int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit) 1720 { 1721 return __poll_portal_fast(p, limit); 1722 } 1723 EXPORT_SYMBOL(qman_p_poll_dqrr); 1724 1725 void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools) 1726 { 1727 unsigned long irqflags; 1728 1729 local_irq_save(irqflags); 1730 pools &= p->config->pools; 1731 p->sdqcr |= pools; 1732 qm_dqrr_sdqcr_set(&p->p, p->sdqcr); 1733 local_irq_restore(irqflags); 1734 } 1735 EXPORT_SYMBOL(qman_p_static_dequeue_add); 1736 1737 /* Frame queue API */ 1738 1739 static const char *mcr_result_str(u8 result) 1740 { 1741 switch (result) { 1742 case QM_MCR_RESULT_NULL: 1743 return "QM_MCR_RESULT_NULL"; 1744 case QM_MCR_RESULT_OK: 1745 return "QM_MCR_RESULT_OK"; 1746 case QM_MCR_RESULT_ERR_FQID: 1747 return "QM_MCR_RESULT_ERR_FQID"; 1748 case QM_MCR_RESULT_ERR_FQSTATE: 1749 return "QM_MCR_RESULT_ERR_FQSTATE"; 1750 case QM_MCR_RESULT_ERR_NOTEMPTY: 1751 return "QM_MCR_RESULT_ERR_NOTEMPTY"; 1752 case QM_MCR_RESULT_PENDING: 1753 return "QM_MCR_RESULT_PENDING"; 1754 case QM_MCR_RESULT_ERR_BADCOMMAND: 1755 return "QM_MCR_RESULT_ERR_BADCOMMAND"; 1756 } 1757 return "<unknown MCR result>"; 1758 } 1759 1760 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq) 1761 { 1762 if (flags & QMAN_FQ_FLAG_DYNAMIC_FQID) { 1763 int ret = qman_alloc_fqid(&fqid); 1764 1765 if (ret) 1766 return ret; 1767 } 1768 fq->fqid = fqid; 1769 fq->flags = flags; 1770 fq->state = qman_fq_state_oos; 1771 fq->cgr_groupid = 0; 1772 1773 /* A context_b of 0 is allegedly special, so don't use that fqid */ 1774 if (fqid == 0 || fqid >= num_fqids) { 1775 WARN(1, "bad fqid %d\n", fqid); 1776 return -EINVAL; 1777 } 1778 1779 fq->idx = fqid * 2; 1780 if (flags & QMAN_FQ_FLAG_NO_MODIFY) 1781 fq->idx++; 1782 1783 WARN_ON(fq_table[fq->idx]); 1784 fq_table[fq->idx] = fq; 1785 1786 return 0; 1787 } 1788 EXPORT_SYMBOL(qman_create_fq); 1789 1790 void qman_destroy_fq(struct qman_fq *fq) 1791 { 1792 /* 1793 * We don't need to lock the FQ as it is a pre-condition that the FQ be 1794 * quiesced. Instead, run some checks. 1795 */ 1796 switch (fq->state) { 1797 case qman_fq_state_parked: 1798 case qman_fq_state_oos: 1799 if (fq_isset(fq, QMAN_FQ_FLAG_DYNAMIC_FQID)) 1800 qman_release_fqid(fq->fqid); 1801 1802 DPAA_ASSERT(fq_table[fq->idx]); 1803 fq_table[fq->idx] = NULL; 1804 return; 1805 default: 1806 break; 1807 } 1808 DPAA_ASSERT(NULL == "qman_free_fq() on unquiesced FQ!"); 1809 } 1810 EXPORT_SYMBOL(qman_destroy_fq); 1811 1812 u32 qman_fq_fqid(struct qman_fq *fq) 1813 { 1814 return fq->fqid; 1815 } 1816 EXPORT_SYMBOL(qman_fq_fqid); 1817 1818 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts) 1819 { 1820 union qm_mc_command *mcc; 1821 union qm_mc_result *mcr; 1822 struct qman_portal *p; 1823 u8 res, myverb; 1824 int ret = 0; 1825 1826 myverb = (flags & QMAN_INITFQ_FLAG_SCHED) 1827 ? QM_MCC_VERB_INITFQ_SCHED : QM_MCC_VERB_INITFQ_PARKED; 1828 1829 if (fq->state != qman_fq_state_oos && 1830 fq->state != qman_fq_state_parked) 1831 return -EINVAL; 1832 #ifdef CONFIG_FSL_DPAA_CHECKING 1833 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)) 1834 return -EINVAL; 1835 #endif 1836 if (opts && (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_OAC)) { 1837 /* And can't be set at the same time as TDTHRESH */ 1838 if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_TDTHRESH) 1839 return -EINVAL; 1840 } 1841 /* Issue an INITFQ_[PARKED|SCHED] management command */ 1842 p = get_affine_portal(); 1843 if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) || 1844 (fq->state != qman_fq_state_oos && 1845 fq->state != qman_fq_state_parked)) { 1846 ret = -EBUSY; 1847 goto out; 1848 } 1849 mcc = qm_mc_start(&p->p); 1850 if (opts) 1851 mcc->initfq = *opts; 1852 qm_fqid_set(&mcc->fq, fq->fqid); 1853 mcc->initfq.count = 0; 1854 /* 1855 * If the FQ does *not* have the TO_DCPORTAL flag, context_b is set as a 1856 * demux pointer. Otherwise, the caller-provided value is allowed to 1857 * stand, don't overwrite it. 1858 */ 1859 if (fq_isclear(fq, QMAN_FQ_FLAG_TO_DCPORTAL)) { 1860 dma_addr_t phys_fq; 1861 1862 mcc->initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTB); 1863 mcc->initfq.fqd.context_b = cpu_to_be32(fq_to_tag(fq)); 1864 /* 1865 * and the physical address - NB, if the user wasn't trying to 1866 * set CONTEXTA, clear the stashing settings. 1867 */ 1868 if (!(be16_to_cpu(mcc->initfq.we_mask) & 1869 QM_INITFQ_WE_CONTEXTA)) { 1870 mcc->initfq.we_mask |= 1871 cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1872 memset(&mcc->initfq.fqd.context_a, 0, 1873 sizeof(mcc->initfq.fqd.context_a)); 1874 } else { 1875 struct qman_portal *p = qman_dma_portal; 1876 1877 phys_fq = dma_map_single(p->config->dev, fq, 1878 sizeof(*fq), DMA_TO_DEVICE); 1879 if (dma_mapping_error(p->config->dev, phys_fq)) { 1880 dev_err(p->config->dev, "dma_mapping failed\n"); 1881 ret = -EIO; 1882 goto out; 1883 } 1884 1885 qm_fqd_stashing_set64(&mcc->initfq.fqd, phys_fq); 1886 } 1887 } 1888 if (flags & QMAN_INITFQ_FLAG_LOCAL) { 1889 int wq = 0; 1890 1891 if (!(be16_to_cpu(mcc->initfq.we_mask) & 1892 QM_INITFQ_WE_DESTWQ)) { 1893 mcc->initfq.we_mask |= 1894 cpu_to_be16(QM_INITFQ_WE_DESTWQ); 1895 wq = 4; 1896 } 1897 qm_fqd_set_destwq(&mcc->initfq.fqd, p->config->channel, wq); 1898 } 1899 qm_mc_commit(&p->p, myverb); 1900 if (!qm_mc_result_timeout(&p->p, &mcr)) { 1901 dev_err(p->config->dev, "MCR timeout\n"); 1902 ret = -ETIMEDOUT; 1903 goto out; 1904 } 1905 1906 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == myverb); 1907 res = mcr->result; 1908 if (res != QM_MCR_RESULT_OK) { 1909 ret = -EIO; 1910 goto out; 1911 } 1912 if (opts) { 1913 if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_FQCTRL) { 1914 if (be16_to_cpu(opts->fqd.fq_ctrl) & QM_FQCTRL_CGE) 1915 fq_set(fq, QMAN_FQ_STATE_CGR_EN); 1916 else 1917 fq_clear(fq, QMAN_FQ_STATE_CGR_EN); 1918 } 1919 if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_CGID) 1920 fq->cgr_groupid = opts->fqd.cgid; 1921 } 1922 fq->state = (flags & QMAN_INITFQ_FLAG_SCHED) ? 1923 qman_fq_state_sched : qman_fq_state_parked; 1924 1925 out: 1926 put_affine_portal(); 1927 return ret; 1928 } 1929 EXPORT_SYMBOL(qman_init_fq); 1930 1931 int qman_schedule_fq(struct qman_fq *fq) 1932 { 1933 union qm_mc_command *mcc; 1934 union qm_mc_result *mcr; 1935 struct qman_portal *p; 1936 int ret = 0; 1937 1938 if (fq->state != qman_fq_state_parked) 1939 return -EINVAL; 1940 #ifdef CONFIG_FSL_DPAA_CHECKING 1941 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)) 1942 return -EINVAL; 1943 #endif 1944 /* Issue a ALTERFQ_SCHED management command */ 1945 p = get_affine_portal(); 1946 if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) || 1947 fq->state != qman_fq_state_parked) { 1948 ret = -EBUSY; 1949 goto out; 1950 } 1951 mcc = qm_mc_start(&p->p); 1952 qm_fqid_set(&mcc->fq, fq->fqid); 1953 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_SCHED); 1954 if (!qm_mc_result_timeout(&p->p, &mcr)) { 1955 dev_err(p->config->dev, "ALTER_SCHED timeout\n"); 1956 ret = -ETIMEDOUT; 1957 goto out; 1958 } 1959 1960 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_SCHED); 1961 if (mcr->result != QM_MCR_RESULT_OK) { 1962 ret = -EIO; 1963 goto out; 1964 } 1965 fq->state = qman_fq_state_sched; 1966 out: 1967 put_affine_portal(); 1968 return ret; 1969 } 1970 EXPORT_SYMBOL(qman_schedule_fq); 1971 1972 int qman_retire_fq(struct qman_fq *fq, u32 *flags) 1973 { 1974 union qm_mc_command *mcc; 1975 union qm_mc_result *mcr; 1976 struct qman_portal *p; 1977 int ret; 1978 u8 res; 1979 1980 if (fq->state != qman_fq_state_parked && 1981 fq->state != qman_fq_state_sched) 1982 return -EINVAL; 1983 #ifdef CONFIG_FSL_DPAA_CHECKING 1984 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)) 1985 return -EINVAL; 1986 #endif 1987 p = get_affine_portal(); 1988 if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) || 1989 fq->state == qman_fq_state_retired || 1990 fq->state == qman_fq_state_oos) { 1991 ret = -EBUSY; 1992 goto out; 1993 } 1994 mcc = qm_mc_start(&p->p); 1995 qm_fqid_set(&mcc->fq, fq->fqid); 1996 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE); 1997 if (!qm_mc_result_timeout(&p->p, &mcr)) { 1998 dev_crit(p->config->dev, "ALTER_RETIRE timeout\n"); 1999 ret = -ETIMEDOUT; 2000 goto out; 2001 } 2002 2003 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_RETIRE); 2004 res = mcr->result; 2005 /* 2006 * "Elegant" would be to treat OK/PENDING the same way; set CHANGING, 2007 * and defer the flags until FQRNI or FQRN (respectively) show up. But 2008 * "Friendly" is to process OK immediately, and not set CHANGING. We do 2009 * friendly, otherwise the caller doesn't necessarily have a fully 2010 * "retired" FQ on return even if the retirement was immediate. However 2011 * this does mean some code duplication between here and 2012 * fq_state_change(). 2013 */ 2014 if (res == QM_MCR_RESULT_OK) { 2015 ret = 0; 2016 /* Process 'fq' right away, we'll ignore FQRNI */ 2017 if (mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY) 2018 fq_set(fq, QMAN_FQ_STATE_NE); 2019 if (mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT) 2020 fq_set(fq, QMAN_FQ_STATE_ORL); 2021 if (flags) 2022 *flags = fq->flags; 2023 fq->state = qman_fq_state_retired; 2024 if (fq->cb.fqs) { 2025 /* 2026 * Another issue with supporting "immediate" retirement 2027 * is that we're forced to drop FQRNIs, because by the 2028 * time they're seen it may already be "too late" (the 2029 * fq may have been OOS'd and free()'d already). But if 2030 * the upper layer wants a callback whether it's 2031 * immediate or not, we have to fake a "MR" entry to 2032 * look like an FQRNI... 2033 */ 2034 union qm_mr_entry msg; 2035 2036 msg.verb = QM_MR_VERB_FQRNI; 2037 msg.fq.fqs = mcr->alterfq.fqs; 2038 qm_fqid_set(&msg.fq, fq->fqid); 2039 msg.fq.context_b = cpu_to_be32(fq_to_tag(fq)); 2040 fq->cb.fqs(p, fq, &msg); 2041 } 2042 } else if (res == QM_MCR_RESULT_PENDING) { 2043 ret = 1; 2044 fq_set(fq, QMAN_FQ_STATE_CHANGING); 2045 } else { 2046 ret = -EIO; 2047 } 2048 out: 2049 put_affine_portal(); 2050 return ret; 2051 } 2052 EXPORT_SYMBOL(qman_retire_fq); 2053 2054 int qman_oos_fq(struct qman_fq *fq) 2055 { 2056 union qm_mc_command *mcc; 2057 union qm_mc_result *mcr; 2058 struct qman_portal *p; 2059 int ret = 0; 2060 2061 if (fq->state != qman_fq_state_retired) 2062 return -EINVAL; 2063 #ifdef CONFIG_FSL_DPAA_CHECKING 2064 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)) 2065 return -EINVAL; 2066 #endif 2067 p = get_affine_portal(); 2068 if (fq_isset(fq, QMAN_FQ_STATE_BLOCKOOS) || 2069 fq->state != qman_fq_state_retired) { 2070 ret = -EBUSY; 2071 goto out; 2072 } 2073 mcc = qm_mc_start(&p->p); 2074 qm_fqid_set(&mcc->fq, fq->fqid); 2075 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS); 2076 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2077 ret = -ETIMEDOUT; 2078 goto out; 2079 } 2080 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_OOS); 2081 if (mcr->result != QM_MCR_RESULT_OK) { 2082 ret = -EIO; 2083 goto out; 2084 } 2085 fq->state = qman_fq_state_oos; 2086 out: 2087 put_affine_portal(); 2088 return ret; 2089 } 2090 EXPORT_SYMBOL(qman_oos_fq); 2091 2092 int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd) 2093 { 2094 union qm_mc_command *mcc; 2095 union qm_mc_result *mcr; 2096 struct qman_portal *p = get_affine_portal(); 2097 int ret = 0; 2098 2099 mcc = qm_mc_start(&p->p); 2100 qm_fqid_set(&mcc->fq, fq->fqid); 2101 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ); 2102 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2103 ret = -ETIMEDOUT; 2104 goto out; 2105 } 2106 2107 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ); 2108 if (mcr->result == QM_MCR_RESULT_OK) 2109 *fqd = mcr->queryfq.fqd; 2110 else 2111 ret = -EIO; 2112 out: 2113 put_affine_portal(); 2114 return ret; 2115 } 2116 2117 int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np) 2118 { 2119 union qm_mc_command *mcc; 2120 union qm_mc_result *mcr; 2121 struct qman_portal *p = get_affine_portal(); 2122 int ret = 0; 2123 2124 mcc = qm_mc_start(&p->p); 2125 qm_fqid_set(&mcc->fq, fq->fqid); 2126 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP); 2127 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2128 ret = -ETIMEDOUT; 2129 goto out; 2130 } 2131 2132 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP); 2133 if (mcr->result == QM_MCR_RESULT_OK) 2134 *np = mcr->queryfq_np; 2135 else if (mcr->result == QM_MCR_RESULT_ERR_FQID) 2136 ret = -ERANGE; 2137 else 2138 ret = -EIO; 2139 out: 2140 put_affine_portal(); 2141 return ret; 2142 } 2143 EXPORT_SYMBOL(qman_query_fq_np); 2144 2145 static int qman_query_cgr(struct qman_cgr *cgr, 2146 struct qm_mcr_querycgr *cgrd) 2147 { 2148 union qm_mc_command *mcc; 2149 union qm_mc_result *mcr; 2150 struct qman_portal *p = get_affine_portal(); 2151 int ret = 0; 2152 2153 mcc = qm_mc_start(&p->p); 2154 mcc->cgr.cgid = cgr->cgrid; 2155 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCGR); 2156 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2157 ret = -ETIMEDOUT; 2158 goto out; 2159 } 2160 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_QUERYCGR); 2161 if (mcr->result == QM_MCR_RESULT_OK) 2162 *cgrd = mcr->querycgr; 2163 else { 2164 dev_err(p->config->dev, "QUERY_CGR failed: %s\n", 2165 mcr_result_str(mcr->result)); 2166 ret = -EIO; 2167 } 2168 out: 2169 put_affine_portal(); 2170 return ret; 2171 } 2172 2173 int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result) 2174 { 2175 struct qm_mcr_querycgr query_cgr; 2176 int err; 2177 2178 err = qman_query_cgr(cgr, &query_cgr); 2179 if (err) 2180 return err; 2181 2182 *result = !!query_cgr.cgr.cs; 2183 return 0; 2184 } 2185 EXPORT_SYMBOL(qman_query_cgr_congested); 2186 2187 /* internal function used as a wait_event() expression */ 2188 static int set_p_vdqcr(struct qman_portal *p, struct qman_fq *fq, u32 vdqcr) 2189 { 2190 unsigned long irqflags; 2191 int ret = -EBUSY; 2192 2193 local_irq_save(irqflags); 2194 if (p->vdqcr_owned) 2195 goto out; 2196 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR)) 2197 goto out; 2198 2199 fq_set(fq, QMAN_FQ_STATE_VDQCR); 2200 p->vdqcr_owned = fq; 2201 qm_dqrr_vdqcr_set(&p->p, vdqcr); 2202 ret = 0; 2203 out: 2204 local_irq_restore(irqflags); 2205 return ret; 2206 } 2207 2208 static int set_vdqcr(struct qman_portal **p, struct qman_fq *fq, u32 vdqcr) 2209 { 2210 int ret; 2211 2212 *p = get_affine_portal(); 2213 ret = set_p_vdqcr(*p, fq, vdqcr); 2214 put_affine_portal(); 2215 return ret; 2216 } 2217 2218 static int wait_vdqcr_start(struct qman_portal **p, struct qman_fq *fq, 2219 u32 vdqcr, u32 flags) 2220 { 2221 int ret = 0; 2222 2223 if (flags & QMAN_VOLATILE_FLAG_WAIT_INT) 2224 ret = wait_event_interruptible(affine_queue, 2225 !set_vdqcr(p, fq, vdqcr)); 2226 else 2227 wait_event(affine_queue, !set_vdqcr(p, fq, vdqcr)); 2228 return ret; 2229 } 2230 2231 int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr) 2232 { 2233 struct qman_portal *p; 2234 int ret; 2235 2236 if (fq->state != qman_fq_state_parked && 2237 fq->state != qman_fq_state_retired) 2238 return -EINVAL; 2239 if (vdqcr & QM_VDQCR_FQID_MASK) 2240 return -EINVAL; 2241 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR)) 2242 return -EBUSY; 2243 vdqcr = (vdqcr & ~QM_VDQCR_FQID_MASK) | fq->fqid; 2244 if (flags & QMAN_VOLATILE_FLAG_WAIT) 2245 ret = wait_vdqcr_start(&p, fq, vdqcr, flags); 2246 else 2247 ret = set_vdqcr(&p, fq, vdqcr); 2248 if (ret) 2249 return ret; 2250 /* VDQCR is set */ 2251 if (flags & QMAN_VOLATILE_FLAG_FINISH) { 2252 if (flags & QMAN_VOLATILE_FLAG_WAIT_INT) 2253 /* 2254 * NB: don't propagate any error - the caller wouldn't 2255 * know whether the VDQCR was issued or not. A signal 2256 * could arrive after returning anyway, so the caller 2257 * can check signal_pending() if that's an issue. 2258 */ 2259 wait_event_interruptible(affine_queue, 2260 !fq_isset(fq, QMAN_FQ_STATE_VDQCR)); 2261 else 2262 wait_event(affine_queue, 2263 !fq_isset(fq, QMAN_FQ_STATE_VDQCR)); 2264 } 2265 return 0; 2266 } 2267 EXPORT_SYMBOL(qman_volatile_dequeue); 2268 2269 static void update_eqcr_ci(struct qman_portal *p, u8 avail) 2270 { 2271 if (avail) 2272 qm_eqcr_cce_prefetch(&p->p); 2273 else 2274 qm_eqcr_cce_update(&p->p); 2275 } 2276 2277 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd) 2278 { 2279 struct qman_portal *p; 2280 struct qm_eqcr_entry *eq; 2281 unsigned long irqflags; 2282 u8 avail; 2283 2284 p = get_affine_portal(); 2285 local_irq_save(irqflags); 2286 2287 if (p->use_eqcr_ci_stashing) { 2288 /* 2289 * The stashing case is easy, only update if we need to in 2290 * order to try and liberate ring entries. 2291 */ 2292 eq = qm_eqcr_start_stash(&p->p); 2293 } else { 2294 /* 2295 * The non-stashing case is harder, need to prefetch ahead of 2296 * time. 2297 */ 2298 avail = qm_eqcr_get_avail(&p->p); 2299 if (avail < 2) 2300 update_eqcr_ci(p, avail); 2301 eq = qm_eqcr_start_no_stash(&p->p); 2302 } 2303 2304 if (unlikely(!eq)) 2305 goto out; 2306 2307 qm_fqid_set(eq, fq->fqid); 2308 eq->tag = cpu_to_be32(fq_to_tag(fq)); 2309 eq->fd = *fd; 2310 2311 qm_eqcr_pvb_commit(&p->p, QM_EQCR_VERB_CMD_ENQUEUE); 2312 out: 2313 local_irq_restore(irqflags); 2314 put_affine_portal(); 2315 return 0; 2316 } 2317 EXPORT_SYMBOL(qman_enqueue); 2318 2319 static int qm_modify_cgr(struct qman_cgr *cgr, u32 flags, 2320 struct qm_mcc_initcgr *opts) 2321 { 2322 union qm_mc_command *mcc; 2323 union qm_mc_result *mcr; 2324 struct qman_portal *p = get_affine_portal(); 2325 u8 verb = QM_MCC_VERB_MODIFYCGR; 2326 int ret = 0; 2327 2328 mcc = qm_mc_start(&p->p); 2329 if (opts) 2330 mcc->initcgr = *opts; 2331 mcc->initcgr.cgid = cgr->cgrid; 2332 if (flags & QMAN_CGR_FLAG_USE_INIT) 2333 verb = QM_MCC_VERB_INITCGR; 2334 qm_mc_commit(&p->p, verb); 2335 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2336 ret = -ETIMEDOUT; 2337 goto out; 2338 } 2339 2340 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == verb); 2341 if (mcr->result != QM_MCR_RESULT_OK) 2342 ret = -EIO; 2343 2344 out: 2345 put_affine_portal(); 2346 return ret; 2347 } 2348 2349 #define PORTAL_IDX(n) (n->config->channel - QM_CHANNEL_SWPORTAL0) 2350 2351 /* congestion state change notification target update control */ 2352 static void qm_cgr_cscn_targ_set(struct __qm_mc_cgr *cgr, int pi, u32 val) 2353 { 2354 if (qman_ip_rev >= QMAN_REV30) 2355 cgr->cscn_targ_upd_ctrl = cpu_to_be16(pi | 2356 QM_CGR_TARG_UDP_CTRL_WRITE_BIT); 2357 else 2358 cgr->cscn_targ = cpu_to_be32(val | QM_CGR_TARG_PORTAL(pi)); 2359 } 2360 2361 static void qm_cgr_cscn_targ_clear(struct __qm_mc_cgr *cgr, int pi, u32 val) 2362 { 2363 if (qman_ip_rev >= QMAN_REV30) 2364 cgr->cscn_targ_upd_ctrl = cpu_to_be16(pi); 2365 else 2366 cgr->cscn_targ = cpu_to_be32(val & ~QM_CGR_TARG_PORTAL(pi)); 2367 } 2368 2369 static u8 qman_cgr_cpus[CGR_NUM]; 2370 2371 void qman_init_cgr_all(void) 2372 { 2373 struct qman_cgr cgr; 2374 int err_cnt = 0; 2375 2376 for (cgr.cgrid = 0; cgr.cgrid < CGR_NUM; cgr.cgrid++) { 2377 if (qm_modify_cgr(&cgr, QMAN_CGR_FLAG_USE_INIT, NULL)) 2378 err_cnt++; 2379 } 2380 2381 if (err_cnt) 2382 pr_err("Warning: %d error%s while initialising CGR h/w\n", 2383 err_cnt, (err_cnt > 1) ? "s" : ""); 2384 } 2385 2386 int qman_create_cgr(struct qman_cgr *cgr, u32 flags, 2387 struct qm_mcc_initcgr *opts) 2388 { 2389 struct qm_mcr_querycgr cgr_state; 2390 int ret; 2391 struct qman_portal *p; 2392 2393 /* 2394 * We have to check that the provided CGRID is within the limits of the 2395 * data-structures, for obvious reasons. However we'll let h/w take 2396 * care of determining whether it's within the limits of what exists on 2397 * the SoC. 2398 */ 2399 if (cgr->cgrid >= CGR_NUM) 2400 return -EINVAL; 2401 2402 preempt_disable(); 2403 p = get_affine_portal(); 2404 qman_cgr_cpus[cgr->cgrid] = smp_processor_id(); 2405 preempt_enable(); 2406 2407 cgr->chan = p->config->channel; 2408 spin_lock(&p->cgr_lock); 2409 2410 if (opts) { 2411 struct qm_mcc_initcgr local_opts = *opts; 2412 2413 ret = qman_query_cgr(cgr, &cgr_state); 2414 if (ret) 2415 goto out; 2416 2417 qm_cgr_cscn_targ_set(&local_opts.cgr, PORTAL_IDX(p), 2418 be32_to_cpu(cgr_state.cgr.cscn_targ)); 2419 local_opts.we_mask |= cpu_to_be16(QM_CGR_WE_CSCN_TARG); 2420 2421 /* send init if flags indicate so */ 2422 if (flags & QMAN_CGR_FLAG_USE_INIT) 2423 ret = qm_modify_cgr(cgr, QMAN_CGR_FLAG_USE_INIT, 2424 &local_opts); 2425 else 2426 ret = qm_modify_cgr(cgr, 0, &local_opts); 2427 if (ret) 2428 goto out; 2429 } 2430 2431 list_add(&cgr->node, &p->cgr_cbs); 2432 2433 /* Determine if newly added object requires its callback to be called */ 2434 ret = qman_query_cgr(cgr, &cgr_state); 2435 if (ret) { 2436 /* we can't go back, so proceed and return success */ 2437 dev_err(p->config->dev, "CGR HW state partially modified\n"); 2438 ret = 0; 2439 goto out; 2440 } 2441 if (cgr->cb && cgr_state.cgr.cscn_en && 2442 qman_cgrs_get(&p->cgrs[1], cgr->cgrid)) 2443 cgr->cb(p, cgr, 1); 2444 out: 2445 spin_unlock(&p->cgr_lock); 2446 put_affine_portal(); 2447 return ret; 2448 } 2449 EXPORT_SYMBOL(qman_create_cgr); 2450 2451 int qman_delete_cgr(struct qman_cgr *cgr) 2452 { 2453 unsigned long irqflags; 2454 struct qm_mcr_querycgr cgr_state; 2455 struct qm_mcc_initcgr local_opts; 2456 int ret = 0; 2457 struct qman_cgr *i; 2458 struct qman_portal *p = get_affine_portal(); 2459 2460 if (cgr->chan != p->config->channel) { 2461 /* attempt to delete from other portal than creator */ 2462 dev_err(p->config->dev, "CGR not owned by current portal"); 2463 dev_dbg(p->config->dev, " create 0x%x, delete 0x%x\n", 2464 cgr->chan, p->config->channel); 2465 2466 ret = -EINVAL; 2467 goto put_portal; 2468 } 2469 memset(&local_opts, 0, sizeof(struct qm_mcc_initcgr)); 2470 spin_lock_irqsave(&p->cgr_lock, irqflags); 2471 list_del(&cgr->node); 2472 /* 2473 * If there are no other CGR objects for this CGRID in the list, 2474 * update CSCN_TARG accordingly 2475 */ 2476 list_for_each_entry(i, &p->cgr_cbs, node) 2477 if (i->cgrid == cgr->cgrid && i->cb) 2478 goto release_lock; 2479 ret = qman_query_cgr(cgr, &cgr_state); 2480 if (ret) { 2481 /* add back to the list */ 2482 list_add(&cgr->node, &p->cgr_cbs); 2483 goto release_lock; 2484 } 2485 2486 local_opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_TARG); 2487 qm_cgr_cscn_targ_clear(&local_opts.cgr, PORTAL_IDX(p), 2488 be32_to_cpu(cgr_state.cgr.cscn_targ)); 2489 2490 ret = qm_modify_cgr(cgr, 0, &local_opts); 2491 if (ret) 2492 /* add back to the list */ 2493 list_add(&cgr->node, &p->cgr_cbs); 2494 release_lock: 2495 spin_unlock_irqrestore(&p->cgr_lock, irqflags); 2496 put_portal: 2497 put_affine_portal(); 2498 return ret; 2499 } 2500 EXPORT_SYMBOL(qman_delete_cgr); 2501 2502 struct cgr_comp { 2503 struct qman_cgr *cgr; 2504 struct completion completion; 2505 }; 2506 2507 static void qman_delete_cgr_smp_call(void *p) 2508 { 2509 qman_delete_cgr((struct qman_cgr *)p); 2510 } 2511 2512 void qman_delete_cgr_safe(struct qman_cgr *cgr) 2513 { 2514 preempt_disable(); 2515 if (qman_cgr_cpus[cgr->cgrid] != smp_processor_id()) { 2516 smp_call_function_single(qman_cgr_cpus[cgr->cgrid], 2517 qman_delete_cgr_smp_call, cgr, true); 2518 preempt_enable(); 2519 return; 2520 } 2521 2522 qman_delete_cgr(cgr); 2523 preempt_enable(); 2524 } 2525 EXPORT_SYMBOL(qman_delete_cgr_safe); 2526 2527 /* Cleanup FQs */ 2528 2529 static int _qm_mr_consume_and_match_verb(struct qm_portal *p, int v) 2530 { 2531 const union qm_mr_entry *msg; 2532 int found = 0; 2533 2534 qm_mr_pvb_update(p); 2535 msg = qm_mr_current(p); 2536 while (msg) { 2537 if ((msg->verb & QM_MR_VERB_TYPE_MASK) == v) 2538 found = 1; 2539 qm_mr_next(p); 2540 qm_mr_cci_consume_to_current(p); 2541 qm_mr_pvb_update(p); 2542 msg = qm_mr_current(p); 2543 } 2544 return found; 2545 } 2546 2547 static int _qm_dqrr_consume_and_match(struct qm_portal *p, u32 fqid, int s, 2548 bool wait) 2549 { 2550 const struct qm_dqrr_entry *dqrr; 2551 int found = 0; 2552 2553 do { 2554 qm_dqrr_pvb_update(p); 2555 dqrr = qm_dqrr_current(p); 2556 if (!dqrr) 2557 cpu_relax(); 2558 } while (wait && !dqrr); 2559 2560 while (dqrr) { 2561 if (qm_fqid_get(dqrr) == fqid && (dqrr->stat & s)) 2562 found = 1; 2563 qm_dqrr_cdc_consume_1ptr(p, dqrr, 0); 2564 qm_dqrr_pvb_update(p); 2565 qm_dqrr_next(p); 2566 dqrr = qm_dqrr_current(p); 2567 } 2568 return found; 2569 } 2570 2571 #define qm_mr_drain(p, V) \ 2572 _qm_mr_consume_and_match_verb(p, QM_MR_VERB_##V) 2573 2574 #define qm_dqrr_drain(p, f, S) \ 2575 _qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, false) 2576 2577 #define qm_dqrr_drain_wait(p, f, S) \ 2578 _qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, true) 2579 2580 #define qm_dqrr_drain_nomatch(p) \ 2581 _qm_dqrr_consume_and_match(p, 0, 0, false) 2582 2583 static int qman_shutdown_fq(u32 fqid) 2584 { 2585 struct qman_portal *p; 2586 struct device *dev; 2587 union qm_mc_command *mcc; 2588 union qm_mc_result *mcr; 2589 int orl_empty, drain = 0, ret = 0; 2590 u32 channel, wq, res; 2591 u8 state; 2592 2593 p = get_affine_portal(); 2594 dev = p->config->dev; 2595 /* Determine the state of the FQID */ 2596 mcc = qm_mc_start(&p->p); 2597 qm_fqid_set(&mcc->fq, fqid); 2598 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP); 2599 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2600 dev_err(dev, "QUERYFQ_NP timeout\n"); 2601 ret = -ETIMEDOUT; 2602 goto out; 2603 } 2604 2605 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP); 2606 state = mcr->queryfq_np.state & QM_MCR_NP_STATE_MASK; 2607 if (state == QM_MCR_NP_STATE_OOS) 2608 goto out; /* Already OOS, no need to do anymore checks */ 2609 2610 /* Query which channel the FQ is using */ 2611 mcc = qm_mc_start(&p->p); 2612 qm_fqid_set(&mcc->fq, fqid); 2613 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ); 2614 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2615 dev_err(dev, "QUERYFQ timeout\n"); 2616 ret = -ETIMEDOUT; 2617 goto out; 2618 } 2619 2620 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ); 2621 /* Need to store these since the MCR gets reused */ 2622 channel = qm_fqd_get_chan(&mcr->queryfq.fqd); 2623 wq = qm_fqd_get_wq(&mcr->queryfq.fqd); 2624 2625 switch (state) { 2626 case QM_MCR_NP_STATE_TEN_SCHED: 2627 case QM_MCR_NP_STATE_TRU_SCHED: 2628 case QM_MCR_NP_STATE_ACTIVE: 2629 case QM_MCR_NP_STATE_PARKED: 2630 orl_empty = 0; 2631 mcc = qm_mc_start(&p->p); 2632 qm_fqid_set(&mcc->fq, fqid); 2633 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE); 2634 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2635 dev_err(dev, "QUERYFQ_NP timeout\n"); 2636 ret = -ETIMEDOUT; 2637 goto out; 2638 } 2639 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == 2640 QM_MCR_VERB_ALTER_RETIRE); 2641 res = mcr->result; /* Make a copy as we reuse MCR below */ 2642 2643 if (res == QM_MCR_RESULT_PENDING) { 2644 /* 2645 * Need to wait for the FQRN in the message ring, which 2646 * will only occur once the FQ has been drained. In 2647 * order for the FQ to drain the portal needs to be set 2648 * to dequeue from the channel the FQ is scheduled on 2649 */ 2650 int found_fqrn = 0; 2651 u16 dequeue_wq = 0; 2652 2653 /* Flag that we need to drain FQ */ 2654 drain = 1; 2655 2656 if (channel >= qm_channel_pool1 && 2657 channel < qm_channel_pool1 + 15) { 2658 /* Pool channel, enable the bit in the portal */ 2659 dequeue_wq = (channel - 2660 qm_channel_pool1 + 1)<<4 | wq; 2661 } else if (channel < qm_channel_pool1) { 2662 /* Dedicated channel */ 2663 dequeue_wq = wq; 2664 } else { 2665 dev_err(dev, "Can't recover FQ 0x%x, ch: 0x%x", 2666 fqid, channel); 2667 ret = -EBUSY; 2668 goto out; 2669 } 2670 /* Set the sdqcr to drain this channel */ 2671 if (channel < qm_channel_pool1) 2672 qm_dqrr_sdqcr_set(&p->p, 2673 QM_SDQCR_TYPE_ACTIVE | 2674 QM_SDQCR_CHANNELS_DEDICATED); 2675 else 2676 qm_dqrr_sdqcr_set(&p->p, 2677 QM_SDQCR_TYPE_ACTIVE | 2678 QM_SDQCR_CHANNELS_POOL_CONV 2679 (channel)); 2680 do { 2681 /* Keep draining DQRR while checking the MR*/ 2682 qm_dqrr_drain_nomatch(&p->p); 2683 /* Process message ring too */ 2684 found_fqrn = qm_mr_drain(&p->p, FQRN); 2685 cpu_relax(); 2686 } while (!found_fqrn); 2687 2688 } 2689 if (res != QM_MCR_RESULT_OK && 2690 res != QM_MCR_RESULT_PENDING) { 2691 dev_err(dev, "retire_fq failed: FQ 0x%x, res=0x%x\n", 2692 fqid, res); 2693 ret = -EIO; 2694 goto out; 2695 } 2696 if (!(mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)) { 2697 /* 2698 * ORL had no entries, no need to wait until the 2699 * ERNs come in 2700 */ 2701 orl_empty = 1; 2702 } 2703 /* 2704 * Retirement succeeded, check to see if FQ needs 2705 * to be drained 2706 */ 2707 if (drain || mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY) { 2708 /* FQ is Not Empty, drain using volatile DQ commands */ 2709 do { 2710 u32 vdqcr = fqid | QM_VDQCR_NUMFRAMES_SET(3); 2711 2712 qm_dqrr_vdqcr_set(&p->p, vdqcr); 2713 /* 2714 * Wait for a dequeue and process the dequeues, 2715 * making sure to empty the ring completely 2716 */ 2717 } while (qm_dqrr_drain_wait(&p->p, fqid, FQ_EMPTY)); 2718 } 2719 qm_dqrr_sdqcr_set(&p->p, 0); 2720 2721 while (!orl_empty) { 2722 /* Wait for the ORL to have been completely drained */ 2723 orl_empty = qm_mr_drain(&p->p, FQRL); 2724 cpu_relax(); 2725 } 2726 mcc = qm_mc_start(&p->p); 2727 qm_fqid_set(&mcc->fq, fqid); 2728 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS); 2729 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2730 ret = -ETIMEDOUT; 2731 goto out; 2732 } 2733 2734 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == 2735 QM_MCR_VERB_ALTER_OOS); 2736 if (mcr->result != QM_MCR_RESULT_OK) { 2737 dev_err(dev, "OOS after drain fail: FQ 0x%x (0x%x)\n", 2738 fqid, mcr->result); 2739 ret = -EIO; 2740 goto out; 2741 } 2742 break; 2743 2744 case QM_MCR_NP_STATE_RETIRED: 2745 /* Send OOS Command */ 2746 mcc = qm_mc_start(&p->p); 2747 qm_fqid_set(&mcc->fq, fqid); 2748 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS); 2749 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2750 ret = -ETIMEDOUT; 2751 goto out; 2752 } 2753 2754 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == 2755 QM_MCR_VERB_ALTER_OOS); 2756 if (mcr->result) { 2757 dev_err(dev, "OOS fail: FQ 0x%x (0x%x)\n", 2758 fqid, mcr->result); 2759 ret = -EIO; 2760 goto out; 2761 } 2762 break; 2763 2764 case QM_MCR_NP_STATE_OOS: 2765 /* Done */ 2766 break; 2767 2768 default: 2769 ret = -EIO; 2770 } 2771 2772 out: 2773 put_affine_portal(); 2774 return ret; 2775 } 2776 2777 const struct qm_portal_config *qman_get_qm_portal_config( 2778 struct qman_portal *portal) 2779 { 2780 return portal->config; 2781 } 2782 EXPORT_SYMBOL(qman_get_qm_portal_config); 2783 2784 struct gen_pool *qm_fqalloc; /* FQID allocator */ 2785 struct gen_pool *qm_qpalloc; /* pool-channel allocator */ 2786 struct gen_pool *qm_cgralloc; /* CGR ID allocator */ 2787 2788 static int qman_alloc_range(struct gen_pool *p, u32 *result, u32 cnt) 2789 { 2790 unsigned long addr; 2791 2792 if (!p) 2793 return -ENODEV; 2794 2795 addr = gen_pool_alloc(p, cnt); 2796 if (!addr) 2797 return -ENOMEM; 2798 2799 *result = addr & ~DPAA_GENALLOC_OFF; 2800 2801 return 0; 2802 } 2803 2804 int qman_alloc_fqid_range(u32 *result, u32 count) 2805 { 2806 return qman_alloc_range(qm_fqalloc, result, count); 2807 } 2808 EXPORT_SYMBOL(qman_alloc_fqid_range); 2809 2810 int qman_alloc_pool_range(u32 *result, u32 count) 2811 { 2812 return qman_alloc_range(qm_qpalloc, result, count); 2813 } 2814 EXPORT_SYMBOL(qman_alloc_pool_range); 2815 2816 int qman_alloc_cgrid_range(u32 *result, u32 count) 2817 { 2818 return qman_alloc_range(qm_cgralloc, result, count); 2819 } 2820 EXPORT_SYMBOL(qman_alloc_cgrid_range); 2821 2822 int qman_release_fqid(u32 fqid) 2823 { 2824 int ret = qman_shutdown_fq(fqid); 2825 2826 if (ret) { 2827 pr_debug("FQID %d leaked\n", fqid); 2828 return ret; 2829 } 2830 2831 gen_pool_free(qm_fqalloc, fqid | DPAA_GENALLOC_OFF, 1); 2832 return 0; 2833 } 2834 EXPORT_SYMBOL(qman_release_fqid); 2835 2836 static int qpool_cleanup(u32 qp) 2837 { 2838 /* 2839 * We query all FQDs starting from 2840 * FQID 1 until we get an "invalid FQID" error, looking for non-OOS FQDs 2841 * whose destination channel is the pool-channel being released. 2842 * When a non-OOS FQD is found we attempt to clean it up 2843 */ 2844 struct qman_fq fq = { 2845 .fqid = QM_FQID_RANGE_START 2846 }; 2847 int err; 2848 2849 do { 2850 struct qm_mcr_queryfq_np np; 2851 2852 err = qman_query_fq_np(&fq, &np); 2853 if (err == -ERANGE) 2854 /* FQID range exceeded, found no problems */ 2855 return 0; 2856 else if (WARN_ON(err)) 2857 return err; 2858 2859 if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) { 2860 struct qm_fqd fqd; 2861 2862 err = qman_query_fq(&fq, &fqd); 2863 if (WARN_ON(err)) 2864 return err; 2865 if (qm_fqd_get_chan(&fqd) == qp) { 2866 /* The channel is the FQ's target, clean it */ 2867 err = qman_shutdown_fq(fq.fqid); 2868 if (err) 2869 /* 2870 * Couldn't shut down the FQ 2871 * so the pool must be leaked 2872 */ 2873 return err; 2874 } 2875 } 2876 /* Move to the next FQID */ 2877 fq.fqid++; 2878 } while (1); 2879 } 2880 2881 int qman_release_pool(u32 qp) 2882 { 2883 int ret; 2884 2885 ret = qpool_cleanup(qp); 2886 if (ret) { 2887 pr_debug("CHID %d leaked\n", qp); 2888 return ret; 2889 } 2890 2891 gen_pool_free(qm_qpalloc, qp | DPAA_GENALLOC_OFF, 1); 2892 return 0; 2893 } 2894 EXPORT_SYMBOL(qman_release_pool); 2895 2896 static int cgr_cleanup(u32 cgrid) 2897 { 2898 /* 2899 * query all FQDs starting from FQID 1 until we get an "invalid FQID" 2900 * error, looking for non-OOS FQDs whose CGR is the CGR being released 2901 */ 2902 struct qman_fq fq = { 2903 .fqid = QM_FQID_RANGE_START 2904 }; 2905 int err; 2906 2907 do { 2908 struct qm_mcr_queryfq_np np; 2909 2910 err = qman_query_fq_np(&fq, &np); 2911 if (err == -ERANGE) 2912 /* FQID range exceeded, found no problems */ 2913 return 0; 2914 else if (WARN_ON(err)) 2915 return err; 2916 2917 if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) { 2918 struct qm_fqd fqd; 2919 2920 err = qman_query_fq(&fq, &fqd); 2921 if (WARN_ON(err)) 2922 return err; 2923 if (be16_to_cpu(fqd.fq_ctrl) & QM_FQCTRL_CGE && 2924 fqd.cgid == cgrid) { 2925 pr_err("CRGID 0x%x is being used by FQID 0x%x, CGR will be leaked\n", 2926 cgrid, fq.fqid); 2927 return -EIO; 2928 } 2929 } 2930 /* Move to the next FQID */ 2931 fq.fqid++; 2932 } while (1); 2933 } 2934 2935 int qman_release_cgrid(u32 cgrid) 2936 { 2937 int ret; 2938 2939 ret = cgr_cleanup(cgrid); 2940 if (ret) { 2941 pr_debug("CGRID %d leaked\n", cgrid); 2942 return ret; 2943 } 2944 2945 gen_pool_free(qm_cgralloc, cgrid | DPAA_GENALLOC_OFF, 1); 2946 return 0; 2947 } 2948 EXPORT_SYMBOL(qman_release_cgrid); 2949