1 /* Copyright 2008 - 2016 Freescale Semiconductor, Inc. 2 * 3 * Redistribution and use in source and binary forms, with or without 4 * modification, are permitted provided that the following conditions are met: 5 * * Redistributions of source code must retain the above copyright 6 * notice, this list of conditions and the following disclaimer. 7 * * Redistributions in binary form must reproduce the above copyright 8 * notice, this list of conditions and the following disclaimer in the 9 * documentation and/or other materials provided with the distribution. 10 * * Neither the name of Freescale Semiconductor nor the 11 * names of its contributors may be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * ALTERNATIVELY, this software may be distributed under the terms of the 15 * GNU General Public License ("GPL") as published by the Free Software 16 * Foundation, either version 2 of that License or (at your option) any 17 * later version. 18 * 19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY 20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY 23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include "qman_priv.h" 32 33 #define DQRR_MAXFILL 15 34 #define EQCR_ITHRESH 4 /* if EQCR congests, interrupt threshold */ 35 #define IRQNAME "QMan portal %d" 36 #define MAX_IRQNAME 16 /* big enough for "QMan portal %d" */ 37 #define QMAN_POLL_LIMIT 32 38 #define QMAN_PIRQ_DQRR_ITHRESH 12 39 #define QMAN_DQRR_IT_MAX 15 40 #define QMAN_ITP_MAX 0xFFF 41 #define QMAN_PIRQ_MR_ITHRESH 4 42 #define QMAN_PIRQ_IPERIOD 100 43 44 /* Portal register assists */ 45 46 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 47 /* Cache-inhibited register offsets */ 48 #define QM_REG_EQCR_PI_CINH 0x3000 49 #define QM_REG_EQCR_CI_CINH 0x3040 50 #define QM_REG_EQCR_ITR 0x3080 51 #define QM_REG_DQRR_PI_CINH 0x3100 52 #define QM_REG_DQRR_CI_CINH 0x3140 53 #define QM_REG_DQRR_ITR 0x3180 54 #define QM_REG_DQRR_DCAP 0x31C0 55 #define QM_REG_DQRR_SDQCR 0x3200 56 #define QM_REG_DQRR_VDQCR 0x3240 57 #define QM_REG_DQRR_PDQCR 0x3280 58 #define QM_REG_MR_PI_CINH 0x3300 59 #define QM_REG_MR_CI_CINH 0x3340 60 #define QM_REG_MR_ITR 0x3380 61 #define QM_REG_CFG 0x3500 62 #define QM_REG_ISR 0x3600 63 #define QM_REG_IER 0x3640 64 #define QM_REG_ISDR 0x3680 65 #define QM_REG_IIR 0x36C0 66 #define QM_REG_ITPR 0x3740 67 68 /* Cache-enabled register offsets */ 69 #define QM_CL_EQCR 0x0000 70 #define QM_CL_DQRR 0x1000 71 #define QM_CL_MR 0x2000 72 #define QM_CL_EQCR_PI_CENA 0x3000 73 #define QM_CL_EQCR_CI_CENA 0x3040 74 #define QM_CL_DQRR_PI_CENA 0x3100 75 #define QM_CL_DQRR_CI_CENA 0x3140 76 #define QM_CL_MR_PI_CENA 0x3300 77 #define QM_CL_MR_CI_CENA 0x3340 78 #define QM_CL_CR 0x3800 79 #define QM_CL_RR0 0x3900 80 #define QM_CL_RR1 0x3940 81 82 #else 83 /* Cache-inhibited register offsets */ 84 #define QM_REG_EQCR_PI_CINH 0x0000 85 #define QM_REG_EQCR_CI_CINH 0x0004 86 #define QM_REG_EQCR_ITR 0x0008 87 #define QM_REG_DQRR_PI_CINH 0x0040 88 #define QM_REG_DQRR_CI_CINH 0x0044 89 #define QM_REG_DQRR_ITR 0x0048 90 #define QM_REG_DQRR_DCAP 0x0050 91 #define QM_REG_DQRR_SDQCR 0x0054 92 #define QM_REG_DQRR_VDQCR 0x0058 93 #define QM_REG_DQRR_PDQCR 0x005c 94 #define QM_REG_MR_PI_CINH 0x0080 95 #define QM_REG_MR_CI_CINH 0x0084 96 #define QM_REG_MR_ITR 0x0088 97 #define QM_REG_CFG 0x0100 98 #define QM_REG_ISR 0x0e00 99 #define QM_REG_IER 0x0e04 100 #define QM_REG_ISDR 0x0e08 101 #define QM_REG_IIR 0x0e0c 102 #define QM_REG_ITPR 0x0e14 103 104 /* Cache-enabled register offsets */ 105 #define QM_CL_EQCR 0x0000 106 #define QM_CL_DQRR 0x1000 107 #define QM_CL_MR 0x2000 108 #define QM_CL_EQCR_PI_CENA 0x3000 109 #define QM_CL_EQCR_CI_CENA 0x3100 110 #define QM_CL_DQRR_PI_CENA 0x3200 111 #define QM_CL_DQRR_CI_CENA 0x3300 112 #define QM_CL_MR_PI_CENA 0x3400 113 #define QM_CL_MR_CI_CENA 0x3500 114 #define QM_CL_CR 0x3800 115 #define QM_CL_RR0 0x3900 116 #define QM_CL_RR1 0x3940 117 #endif 118 119 /* 120 * BTW, the drivers (and h/w programming model) already obtain the required 121 * synchronisation for portal accesses and data-dependencies. Use of barrier()s 122 * or other order-preserving primitives simply degrade performance. Hence the 123 * use of the __raw_*() interfaces, which simply ensure that the compiler treats 124 * the portal registers as volatile 125 */ 126 127 /* Cache-enabled ring access */ 128 #define qm_cl(base, idx) ((void *)base + ((idx) << 6)) 129 130 /* 131 * Portal modes. 132 * Enum types; 133 * pmode == production mode 134 * cmode == consumption mode, 135 * dmode == h/w dequeue mode. 136 * Enum values use 3 letter codes. First letter matches the portal mode, 137 * remaining two letters indicate; 138 * ci == cache-inhibited portal register 139 * ce == cache-enabled portal register 140 * vb == in-band valid-bit (cache-enabled) 141 * dc == DCA (Discrete Consumption Acknowledgment), DQRR-only 142 * As for "enum qm_dqrr_dmode", it should be self-explanatory. 143 */ 144 enum qm_eqcr_pmode { /* matches QCSP_CFG::EPM */ 145 qm_eqcr_pci = 0, /* PI index, cache-inhibited */ 146 qm_eqcr_pce = 1, /* PI index, cache-enabled */ 147 qm_eqcr_pvb = 2 /* valid-bit */ 148 }; 149 enum qm_dqrr_dmode { /* matches QCSP_CFG::DP */ 150 qm_dqrr_dpush = 0, /* SDQCR + VDQCR */ 151 qm_dqrr_dpull = 1 /* PDQCR */ 152 }; 153 enum qm_dqrr_pmode { /* s/w-only */ 154 qm_dqrr_pci, /* reads DQRR_PI_CINH */ 155 qm_dqrr_pce, /* reads DQRR_PI_CENA */ 156 qm_dqrr_pvb /* reads valid-bit */ 157 }; 158 enum qm_dqrr_cmode { /* matches QCSP_CFG::DCM */ 159 qm_dqrr_cci = 0, /* CI index, cache-inhibited */ 160 qm_dqrr_cce = 1, /* CI index, cache-enabled */ 161 qm_dqrr_cdc = 2 /* Discrete Consumption Acknowledgment */ 162 }; 163 enum qm_mr_pmode { /* s/w-only */ 164 qm_mr_pci, /* reads MR_PI_CINH */ 165 qm_mr_pce, /* reads MR_PI_CENA */ 166 qm_mr_pvb /* reads valid-bit */ 167 }; 168 enum qm_mr_cmode { /* matches QCSP_CFG::MM */ 169 qm_mr_cci = 0, /* CI index, cache-inhibited */ 170 qm_mr_cce = 1 /* CI index, cache-enabled */ 171 }; 172 173 /* --- Portal structures --- */ 174 175 #define QM_EQCR_SIZE 8 176 #define QM_DQRR_SIZE 16 177 #define QM_MR_SIZE 8 178 179 /* "Enqueue Command" */ 180 struct qm_eqcr_entry { 181 u8 _ncw_verb; /* writes to this are non-coherent */ 182 u8 dca; 183 __be16 seqnum; 184 u8 __reserved[4]; 185 __be32 fqid; /* 24-bit */ 186 __be32 tag; 187 struct qm_fd fd; 188 u8 __reserved3[32]; 189 } __packed __aligned(8); 190 #define QM_EQCR_VERB_VBIT 0x80 191 #define QM_EQCR_VERB_CMD_MASK 0x61 /* but only one value; */ 192 #define QM_EQCR_VERB_CMD_ENQUEUE 0x01 193 #define QM_EQCR_SEQNUM_NESN 0x8000 /* Advance NESN */ 194 #define QM_EQCR_SEQNUM_NLIS 0x4000 /* More fragments to come */ 195 #define QM_EQCR_SEQNUM_SEQMASK 0x3fff /* sequence number goes here */ 196 197 struct qm_eqcr { 198 struct qm_eqcr_entry *ring, *cursor; 199 u8 ci, available, ithresh, vbit; 200 #ifdef CONFIG_FSL_DPAA_CHECKING 201 u32 busy; 202 enum qm_eqcr_pmode pmode; 203 #endif 204 }; 205 206 struct qm_dqrr { 207 const struct qm_dqrr_entry *ring, *cursor; 208 u8 pi, ci, fill, ithresh, vbit; 209 #ifdef CONFIG_FSL_DPAA_CHECKING 210 enum qm_dqrr_dmode dmode; 211 enum qm_dqrr_pmode pmode; 212 enum qm_dqrr_cmode cmode; 213 #endif 214 }; 215 216 struct qm_mr { 217 union qm_mr_entry *ring, *cursor; 218 u8 pi, ci, fill, ithresh, vbit; 219 #ifdef CONFIG_FSL_DPAA_CHECKING 220 enum qm_mr_pmode pmode; 221 enum qm_mr_cmode cmode; 222 #endif 223 }; 224 225 /* MC (Management Command) command */ 226 /* "FQ" command layout */ 227 struct qm_mcc_fq { 228 u8 _ncw_verb; 229 u8 __reserved1[3]; 230 __be32 fqid; /* 24-bit */ 231 u8 __reserved2[56]; 232 } __packed; 233 234 /* "CGR" command layout */ 235 struct qm_mcc_cgr { 236 u8 _ncw_verb; 237 u8 __reserved1[30]; 238 u8 cgid; 239 u8 __reserved2[32]; 240 }; 241 242 #define QM_MCC_VERB_VBIT 0x80 243 #define QM_MCC_VERB_MASK 0x7f /* where the verb contains; */ 244 #define QM_MCC_VERB_INITFQ_PARKED 0x40 245 #define QM_MCC_VERB_INITFQ_SCHED 0x41 246 #define QM_MCC_VERB_QUERYFQ 0x44 247 #define QM_MCC_VERB_QUERYFQ_NP 0x45 /* "non-programmable" fields */ 248 #define QM_MCC_VERB_QUERYWQ 0x46 249 #define QM_MCC_VERB_QUERYWQ_DEDICATED 0x47 250 #define QM_MCC_VERB_ALTER_SCHED 0x48 /* Schedule FQ */ 251 #define QM_MCC_VERB_ALTER_FE 0x49 /* Force Eligible FQ */ 252 #define QM_MCC_VERB_ALTER_RETIRE 0x4a /* Retire FQ */ 253 #define QM_MCC_VERB_ALTER_OOS 0x4b /* Take FQ out of service */ 254 #define QM_MCC_VERB_ALTER_FQXON 0x4d /* FQ XON */ 255 #define QM_MCC_VERB_ALTER_FQXOFF 0x4e /* FQ XOFF */ 256 #define QM_MCC_VERB_INITCGR 0x50 257 #define QM_MCC_VERB_MODIFYCGR 0x51 258 #define QM_MCC_VERB_CGRTESTWRITE 0x52 259 #define QM_MCC_VERB_QUERYCGR 0x58 260 #define QM_MCC_VERB_QUERYCONGESTION 0x59 261 union qm_mc_command { 262 struct { 263 u8 _ncw_verb; /* writes to this are non-coherent */ 264 u8 __reserved[63]; 265 }; 266 struct qm_mcc_initfq initfq; 267 struct qm_mcc_initcgr initcgr; 268 struct qm_mcc_fq fq; 269 struct qm_mcc_cgr cgr; 270 }; 271 272 /* MC (Management Command) result */ 273 /* "Query FQ" */ 274 struct qm_mcr_queryfq { 275 u8 verb; 276 u8 result; 277 u8 __reserved1[8]; 278 struct qm_fqd fqd; /* the FQD fields are here */ 279 u8 __reserved2[30]; 280 } __packed; 281 282 /* "Alter FQ State Commands" */ 283 struct qm_mcr_alterfq { 284 u8 verb; 285 u8 result; 286 u8 fqs; /* Frame Queue Status */ 287 u8 __reserved1[61]; 288 }; 289 #define QM_MCR_VERB_RRID 0x80 290 #define QM_MCR_VERB_MASK QM_MCC_VERB_MASK 291 #define QM_MCR_VERB_INITFQ_PARKED QM_MCC_VERB_INITFQ_PARKED 292 #define QM_MCR_VERB_INITFQ_SCHED QM_MCC_VERB_INITFQ_SCHED 293 #define QM_MCR_VERB_QUERYFQ QM_MCC_VERB_QUERYFQ 294 #define QM_MCR_VERB_QUERYFQ_NP QM_MCC_VERB_QUERYFQ_NP 295 #define QM_MCR_VERB_QUERYWQ QM_MCC_VERB_QUERYWQ 296 #define QM_MCR_VERB_QUERYWQ_DEDICATED QM_MCC_VERB_QUERYWQ_DEDICATED 297 #define QM_MCR_VERB_ALTER_SCHED QM_MCC_VERB_ALTER_SCHED 298 #define QM_MCR_VERB_ALTER_FE QM_MCC_VERB_ALTER_FE 299 #define QM_MCR_VERB_ALTER_RETIRE QM_MCC_VERB_ALTER_RETIRE 300 #define QM_MCR_VERB_ALTER_OOS QM_MCC_VERB_ALTER_OOS 301 #define QM_MCR_RESULT_NULL 0x00 302 #define QM_MCR_RESULT_OK 0xf0 303 #define QM_MCR_RESULT_ERR_FQID 0xf1 304 #define QM_MCR_RESULT_ERR_FQSTATE 0xf2 305 #define QM_MCR_RESULT_ERR_NOTEMPTY 0xf3 /* OOS fails if FQ is !empty */ 306 #define QM_MCR_RESULT_ERR_BADCHANNEL 0xf4 307 #define QM_MCR_RESULT_PENDING 0xf8 308 #define QM_MCR_RESULT_ERR_BADCOMMAND 0xff 309 #define QM_MCR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */ 310 #define QM_MCR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */ 311 #define QM_MCR_TIMEOUT 10000 /* us */ 312 union qm_mc_result { 313 struct { 314 u8 verb; 315 u8 result; 316 u8 __reserved1[62]; 317 }; 318 struct qm_mcr_queryfq queryfq; 319 struct qm_mcr_alterfq alterfq; 320 struct qm_mcr_querycgr querycgr; 321 struct qm_mcr_querycongestion querycongestion; 322 struct qm_mcr_querywq querywq; 323 struct qm_mcr_queryfq_np queryfq_np; 324 }; 325 326 struct qm_mc { 327 union qm_mc_command *cr; 328 union qm_mc_result *rr; 329 u8 rridx, vbit; 330 #ifdef CONFIG_FSL_DPAA_CHECKING 331 enum { 332 /* Can be _mc_start()ed */ 333 qman_mc_idle, 334 /* Can be _mc_commit()ed or _mc_abort()ed */ 335 qman_mc_user, 336 /* Can only be _mc_retry()ed */ 337 qman_mc_hw 338 } state; 339 #endif 340 }; 341 342 struct qm_addr { 343 void *ce; /* cache-enabled */ 344 __be32 *ce_be; /* same value as above but for direct access */ 345 void __iomem *ci; /* cache-inhibited */ 346 }; 347 348 struct qm_portal { 349 /* 350 * In the non-CONFIG_FSL_DPAA_CHECKING case, the following stuff up to 351 * and including 'mc' fits within a cacheline (yay!). The 'config' part 352 * is setup-only, so isn't a cause for a concern. In other words, don't 353 * rearrange this structure on a whim, there be dragons ... 354 */ 355 struct qm_addr addr; 356 struct qm_eqcr eqcr; 357 struct qm_dqrr dqrr; 358 struct qm_mr mr; 359 struct qm_mc mc; 360 } ____cacheline_aligned; 361 362 /* Cache-inhibited register access. */ 363 static inline u32 qm_in(struct qm_portal *p, u32 offset) 364 { 365 return ioread32be(p->addr.ci + offset); 366 } 367 368 static inline void qm_out(struct qm_portal *p, u32 offset, u32 val) 369 { 370 iowrite32be(val, p->addr.ci + offset); 371 } 372 373 /* Cache Enabled Portal Access */ 374 static inline void qm_cl_invalidate(struct qm_portal *p, u32 offset) 375 { 376 dpaa_invalidate(p->addr.ce + offset); 377 } 378 379 static inline void qm_cl_touch_ro(struct qm_portal *p, u32 offset) 380 { 381 dpaa_touch_ro(p->addr.ce + offset); 382 } 383 384 static inline u32 qm_ce_in(struct qm_portal *p, u32 offset) 385 { 386 return be32_to_cpu(*(p->addr.ce_be + (offset/4))); 387 } 388 389 /* --- EQCR API --- */ 390 391 #define EQCR_SHIFT ilog2(sizeof(struct qm_eqcr_entry)) 392 #define EQCR_CARRY (uintptr_t)(QM_EQCR_SIZE << EQCR_SHIFT) 393 394 /* Bit-wise logic to wrap a ring pointer by clearing the "carry bit" */ 395 static struct qm_eqcr_entry *eqcr_carryclear(struct qm_eqcr_entry *p) 396 { 397 uintptr_t addr = (uintptr_t)p; 398 399 addr &= ~EQCR_CARRY; 400 401 return (struct qm_eqcr_entry *)addr; 402 } 403 404 /* Bit-wise logic to convert a ring pointer to a ring index */ 405 static int eqcr_ptr2idx(struct qm_eqcr_entry *e) 406 { 407 return ((uintptr_t)e >> EQCR_SHIFT) & (QM_EQCR_SIZE - 1); 408 } 409 410 /* Increment the 'cursor' ring pointer, taking 'vbit' into account */ 411 static inline void eqcr_inc(struct qm_eqcr *eqcr) 412 { 413 /* increment to the next EQCR pointer and handle overflow and 'vbit' */ 414 struct qm_eqcr_entry *partial = eqcr->cursor + 1; 415 416 eqcr->cursor = eqcr_carryclear(partial); 417 if (partial != eqcr->cursor) 418 eqcr->vbit ^= QM_EQCR_VERB_VBIT; 419 } 420 421 static inline int qm_eqcr_init(struct qm_portal *portal, 422 enum qm_eqcr_pmode pmode, 423 unsigned int eq_stash_thresh, 424 int eq_stash_prio) 425 { 426 struct qm_eqcr *eqcr = &portal->eqcr; 427 u32 cfg; 428 u8 pi; 429 430 eqcr->ring = portal->addr.ce + QM_CL_EQCR; 431 eqcr->ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1); 432 qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA); 433 pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1); 434 eqcr->cursor = eqcr->ring + pi; 435 eqcr->vbit = (qm_in(portal, QM_REG_EQCR_PI_CINH) & QM_EQCR_SIZE) ? 436 QM_EQCR_VERB_VBIT : 0; 437 eqcr->available = QM_EQCR_SIZE - 1 - 438 dpaa_cyc_diff(QM_EQCR_SIZE, eqcr->ci, pi); 439 eqcr->ithresh = qm_in(portal, QM_REG_EQCR_ITR); 440 #ifdef CONFIG_FSL_DPAA_CHECKING 441 eqcr->busy = 0; 442 eqcr->pmode = pmode; 443 #endif 444 cfg = (qm_in(portal, QM_REG_CFG) & 0x00ffffff) | 445 (eq_stash_thresh << 28) | /* QCSP_CFG: EST */ 446 (eq_stash_prio << 26) | /* QCSP_CFG: EP */ 447 ((pmode & 0x3) << 24); /* QCSP_CFG::EPM */ 448 qm_out(portal, QM_REG_CFG, cfg); 449 return 0; 450 } 451 452 static inline void qm_eqcr_finish(struct qm_portal *portal) 453 { 454 struct qm_eqcr *eqcr = &portal->eqcr; 455 u8 pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1); 456 u8 ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1); 457 458 DPAA_ASSERT(!eqcr->busy); 459 if (pi != eqcr_ptr2idx(eqcr->cursor)) 460 pr_crit("losing uncommitted EQCR entries\n"); 461 if (ci != eqcr->ci) 462 pr_crit("missing existing EQCR completions\n"); 463 if (eqcr->ci != eqcr_ptr2idx(eqcr->cursor)) 464 pr_crit("EQCR destroyed unquiesced\n"); 465 } 466 467 static inline struct qm_eqcr_entry *qm_eqcr_start_no_stash(struct qm_portal 468 *portal) 469 { 470 struct qm_eqcr *eqcr = &portal->eqcr; 471 472 DPAA_ASSERT(!eqcr->busy); 473 if (!eqcr->available) 474 return NULL; 475 476 #ifdef CONFIG_FSL_DPAA_CHECKING 477 eqcr->busy = 1; 478 #endif 479 dpaa_zero(eqcr->cursor); 480 return eqcr->cursor; 481 } 482 483 static inline struct qm_eqcr_entry *qm_eqcr_start_stash(struct qm_portal 484 *portal) 485 { 486 struct qm_eqcr *eqcr = &portal->eqcr; 487 u8 diff, old_ci; 488 489 DPAA_ASSERT(!eqcr->busy); 490 if (!eqcr->available) { 491 old_ci = eqcr->ci; 492 eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) & 493 (QM_EQCR_SIZE - 1); 494 diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci); 495 eqcr->available += diff; 496 if (!diff) 497 return NULL; 498 } 499 #ifdef CONFIG_FSL_DPAA_CHECKING 500 eqcr->busy = 1; 501 #endif 502 dpaa_zero(eqcr->cursor); 503 return eqcr->cursor; 504 } 505 506 static inline void eqcr_commit_checks(struct qm_eqcr *eqcr) 507 { 508 DPAA_ASSERT(eqcr->busy); 509 DPAA_ASSERT(!(be32_to_cpu(eqcr->cursor->fqid) & ~QM_FQID_MASK)); 510 DPAA_ASSERT(eqcr->available >= 1); 511 } 512 513 static inline void qm_eqcr_pvb_commit(struct qm_portal *portal, u8 myverb) 514 { 515 struct qm_eqcr *eqcr = &portal->eqcr; 516 struct qm_eqcr_entry *eqcursor; 517 518 eqcr_commit_checks(eqcr); 519 DPAA_ASSERT(eqcr->pmode == qm_eqcr_pvb); 520 dma_wmb(); 521 eqcursor = eqcr->cursor; 522 eqcursor->_ncw_verb = myverb | eqcr->vbit; 523 dpaa_flush(eqcursor); 524 eqcr_inc(eqcr); 525 eqcr->available--; 526 #ifdef CONFIG_FSL_DPAA_CHECKING 527 eqcr->busy = 0; 528 #endif 529 } 530 531 static inline void qm_eqcr_cce_prefetch(struct qm_portal *portal) 532 { 533 qm_cl_touch_ro(portal, QM_CL_EQCR_CI_CENA); 534 } 535 536 static inline u8 qm_eqcr_cce_update(struct qm_portal *portal) 537 { 538 struct qm_eqcr *eqcr = &portal->eqcr; 539 u8 diff, old_ci = eqcr->ci; 540 541 eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) & (QM_EQCR_SIZE - 1); 542 qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA); 543 diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci); 544 eqcr->available += diff; 545 return diff; 546 } 547 548 static inline void qm_eqcr_set_ithresh(struct qm_portal *portal, u8 ithresh) 549 { 550 struct qm_eqcr *eqcr = &portal->eqcr; 551 552 eqcr->ithresh = ithresh; 553 qm_out(portal, QM_REG_EQCR_ITR, ithresh); 554 } 555 556 static inline u8 qm_eqcr_get_avail(struct qm_portal *portal) 557 { 558 struct qm_eqcr *eqcr = &portal->eqcr; 559 560 return eqcr->available; 561 } 562 563 static inline u8 qm_eqcr_get_fill(struct qm_portal *portal) 564 { 565 struct qm_eqcr *eqcr = &portal->eqcr; 566 567 return QM_EQCR_SIZE - 1 - eqcr->available; 568 } 569 570 /* --- DQRR API --- */ 571 572 #define DQRR_SHIFT ilog2(sizeof(struct qm_dqrr_entry)) 573 #define DQRR_CARRY (uintptr_t)(QM_DQRR_SIZE << DQRR_SHIFT) 574 575 static const struct qm_dqrr_entry *dqrr_carryclear( 576 const struct qm_dqrr_entry *p) 577 { 578 uintptr_t addr = (uintptr_t)p; 579 580 addr &= ~DQRR_CARRY; 581 582 return (const struct qm_dqrr_entry *)addr; 583 } 584 585 static inline int dqrr_ptr2idx(const struct qm_dqrr_entry *e) 586 { 587 return ((uintptr_t)e >> DQRR_SHIFT) & (QM_DQRR_SIZE - 1); 588 } 589 590 static const struct qm_dqrr_entry *dqrr_inc(const struct qm_dqrr_entry *e) 591 { 592 return dqrr_carryclear(e + 1); 593 } 594 595 static inline void qm_dqrr_set_maxfill(struct qm_portal *portal, u8 mf) 596 { 597 qm_out(portal, QM_REG_CFG, (qm_in(portal, QM_REG_CFG) & 0xff0fffff) | 598 ((mf & (QM_DQRR_SIZE - 1)) << 20)); 599 } 600 601 static inline int qm_dqrr_init(struct qm_portal *portal, 602 const struct qm_portal_config *config, 603 enum qm_dqrr_dmode dmode, 604 enum qm_dqrr_pmode pmode, 605 enum qm_dqrr_cmode cmode, u8 max_fill) 606 { 607 struct qm_dqrr *dqrr = &portal->dqrr; 608 u32 cfg; 609 610 /* Make sure the DQRR will be idle when we enable */ 611 qm_out(portal, QM_REG_DQRR_SDQCR, 0); 612 qm_out(portal, QM_REG_DQRR_VDQCR, 0); 613 qm_out(portal, QM_REG_DQRR_PDQCR, 0); 614 dqrr->ring = portal->addr.ce + QM_CL_DQRR; 615 dqrr->pi = qm_in(portal, QM_REG_DQRR_PI_CINH) & (QM_DQRR_SIZE - 1); 616 dqrr->ci = qm_in(portal, QM_REG_DQRR_CI_CINH) & (QM_DQRR_SIZE - 1); 617 dqrr->cursor = dqrr->ring + dqrr->ci; 618 dqrr->fill = dpaa_cyc_diff(QM_DQRR_SIZE, dqrr->ci, dqrr->pi); 619 dqrr->vbit = (qm_in(portal, QM_REG_DQRR_PI_CINH) & QM_DQRR_SIZE) ? 620 QM_DQRR_VERB_VBIT : 0; 621 dqrr->ithresh = qm_in(portal, QM_REG_DQRR_ITR); 622 #ifdef CONFIG_FSL_DPAA_CHECKING 623 dqrr->dmode = dmode; 624 dqrr->pmode = pmode; 625 dqrr->cmode = cmode; 626 #endif 627 /* Invalidate every ring entry before beginning */ 628 for (cfg = 0; cfg < QM_DQRR_SIZE; cfg++) 629 dpaa_invalidate(qm_cl(dqrr->ring, cfg)); 630 cfg = (qm_in(portal, QM_REG_CFG) & 0xff000f00) | 631 ((max_fill & (QM_DQRR_SIZE - 1)) << 20) | /* DQRR_MF */ 632 ((dmode & 1) << 18) | /* DP */ 633 ((cmode & 3) << 16) | /* DCM */ 634 0xa0 | /* RE+SE */ 635 (0 ? 0x40 : 0) | /* Ignore RP */ 636 (0 ? 0x10 : 0); /* Ignore SP */ 637 qm_out(portal, QM_REG_CFG, cfg); 638 qm_dqrr_set_maxfill(portal, max_fill); 639 return 0; 640 } 641 642 static inline void qm_dqrr_finish(struct qm_portal *portal) 643 { 644 #ifdef CONFIG_FSL_DPAA_CHECKING 645 struct qm_dqrr *dqrr = &portal->dqrr; 646 647 if (dqrr->cmode != qm_dqrr_cdc && 648 dqrr->ci != dqrr_ptr2idx(dqrr->cursor)) 649 pr_crit("Ignoring completed DQRR entries\n"); 650 #endif 651 } 652 653 static inline const struct qm_dqrr_entry *qm_dqrr_current( 654 struct qm_portal *portal) 655 { 656 struct qm_dqrr *dqrr = &portal->dqrr; 657 658 if (!dqrr->fill) 659 return NULL; 660 return dqrr->cursor; 661 } 662 663 static inline u8 qm_dqrr_next(struct qm_portal *portal) 664 { 665 struct qm_dqrr *dqrr = &portal->dqrr; 666 667 DPAA_ASSERT(dqrr->fill); 668 dqrr->cursor = dqrr_inc(dqrr->cursor); 669 return --dqrr->fill; 670 } 671 672 static inline void qm_dqrr_pvb_update(struct qm_portal *portal) 673 { 674 struct qm_dqrr *dqrr = &portal->dqrr; 675 struct qm_dqrr_entry *res = qm_cl(dqrr->ring, dqrr->pi); 676 677 DPAA_ASSERT(dqrr->pmode == qm_dqrr_pvb); 678 #ifndef CONFIG_FSL_PAMU 679 /* 680 * If PAMU is not available we need to invalidate the cache. 681 * When PAMU is available the cache is updated by stash 682 */ 683 dpaa_invalidate_touch_ro(res); 684 #endif 685 if ((res->verb & QM_DQRR_VERB_VBIT) == dqrr->vbit) { 686 dqrr->pi = (dqrr->pi + 1) & (QM_DQRR_SIZE - 1); 687 if (!dqrr->pi) 688 dqrr->vbit ^= QM_DQRR_VERB_VBIT; 689 dqrr->fill++; 690 } 691 } 692 693 static inline void qm_dqrr_cdc_consume_1ptr(struct qm_portal *portal, 694 const struct qm_dqrr_entry *dq, 695 int park) 696 { 697 __maybe_unused struct qm_dqrr *dqrr = &portal->dqrr; 698 int idx = dqrr_ptr2idx(dq); 699 700 DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc); 701 DPAA_ASSERT((dqrr->ring + idx) == dq); 702 DPAA_ASSERT(idx < QM_DQRR_SIZE); 703 qm_out(portal, QM_REG_DQRR_DCAP, (0 << 8) | /* DQRR_DCAP::S */ 704 ((park ? 1 : 0) << 6) | /* DQRR_DCAP::PK */ 705 idx); /* DQRR_DCAP::DCAP_CI */ 706 } 707 708 static inline void qm_dqrr_cdc_consume_n(struct qm_portal *portal, u32 bitmask) 709 { 710 __maybe_unused struct qm_dqrr *dqrr = &portal->dqrr; 711 712 DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc); 713 qm_out(portal, QM_REG_DQRR_DCAP, (1 << 8) | /* DQRR_DCAP::S */ 714 (bitmask << 16)); /* DQRR_DCAP::DCAP_CI */ 715 } 716 717 static inline void qm_dqrr_sdqcr_set(struct qm_portal *portal, u32 sdqcr) 718 { 719 qm_out(portal, QM_REG_DQRR_SDQCR, sdqcr); 720 } 721 722 static inline void qm_dqrr_vdqcr_set(struct qm_portal *portal, u32 vdqcr) 723 { 724 qm_out(portal, QM_REG_DQRR_VDQCR, vdqcr); 725 } 726 727 static inline int qm_dqrr_set_ithresh(struct qm_portal *portal, u8 ithresh) 728 { 729 730 if (ithresh > QMAN_DQRR_IT_MAX) 731 return -EINVAL; 732 733 qm_out(portal, QM_REG_DQRR_ITR, ithresh); 734 735 return 0; 736 } 737 738 /* --- MR API --- */ 739 740 #define MR_SHIFT ilog2(sizeof(union qm_mr_entry)) 741 #define MR_CARRY (uintptr_t)(QM_MR_SIZE << MR_SHIFT) 742 743 static union qm_mr_entry *mr_carryclear(union qm_mr_entry *p) 744 { 745 uintptr_t addr = (uintptr_t)p; 746 747 addr &= ~MR_CARRY; 748 749 return (union qm_mr_entry *)addr; 750 } 751 752 static inline int mr_ptr2idx(const union qm_mr_entry *e) 753 { 754 return ((uintptr_t)e >> MR_SHIFT) & (QM_MR_SIZE - 1); 755 } 756 757 static inline union qm_mr_entry *mr_inc(union qm_mr_entry *e) 758 { 759 return mr_carryclear(e + 1); 760 } 761 762 static inline int qm_mr_init(struct qm_portal *portal, enum qm_mr_pmode pmode, 763 enum qm_mr_cmode cmode) 764 { 765 struct qm_mr *mr = &portal->mr; 766 u32 cfg; 767 768 mr->ring = portal->addr.ce + QM_CL_MR; 769 mr->pi = qm_in(portal, QM_REG_MR_PI_CINH) & (QM_MR_SIZE - 1); 770 mr->ci = qm_in(portal, QM_REG_MR_CI_CINH) & (QM_MR_SIZE - 1); 771 mr->cursor = mr->ring + mr->ci; 772 mr->fill = dpaa_cyc_diff(QM_MR_SIZE, mr->ci, mr->pi); 773 mr->vbit = (qm_in(portal, QM_REG_MR_PI_CINH) & QM_MR_SIZE) 774 ? QM_MR_VERB_VBIT : 0; 775 mr->ithresh = qm_in(portal, QM_REG_MR_ITR); 776 #ifdef CONFIG_FSL_DPAA_CHECKING 777 mr->pmode = pmode; 778 mr->cmode = cmode; 779 #endif 780 cfg = (qm_in(portal, QM_REG_CFG) & 0xfffff0ff) | 781 ((cmode & 1) << 8); /* QCSP_CFG:MM */ 782 qm_out(portal, QM_REG_CFG, cfg); 783 return 0; 784 } 785 786 static inline void qm_mr_finish(struct qm_portal *portal) 787 { 788 struct qm_mr *mr = &portal->mr; 789 790 if (mr->ci != mr_ptr2idx(mr->cursor)) 791 pr_crit("Ignoring completed MR entries\n"); 792 } 793 794 static inline const union qm_mr_entry *qm_mr_current(struct qm_portal *portal) 795 { 796 struct qm_mr *mr = &portal->mr; 797 798 if (!mr->fill) 799 return NULL; 800 return mr->cursor; 801 } 802 803 static inline int qm_mr_next(struct qm_portal *portal) 804 { 805 struct qm_mr *mr = &portal->mr; 806 807 DPAA_ASSERT(mr->fill); 808 mr->cursor = mr_inc(mr->cursor); 809 return --mr->fill; 810 } 811 812 static inline void qm_mr_pvb_update(struct qm_portal *portal) 813 { 814 struct qm_mr *mr = &portal->mr; 815 union qm_mr_entry *res = qm_cl(mr->ring, mr->pi); 816 817 DPAA_ASSERT(mr->pmode == qm_mr_pvb); 818 819 if ((res->verb & QM_MR_VERB_VBIT) == mr->vbit) { 820 mr->pi = (mr->pi + 1) & (QM_MR_SIZE - 1); 821 if (!mr->pi) 822 mr->vbit ^= QM_MR_VERB_VBIT; 823 mr->fill++; 824 res = mr_inc(res); 825 } 826 dpaa_invalidate_touch_ro(res); 827 } 828 829 static inline void qm_mr_cci_consume(struct qm_portal *portal, u8 num) 830 { 831 struct qm_mr *mr = &portal->mr; 832 833 DPAA_ASSERT(mr->cmode == qm_mr_cci); 834 mr->ci = (mr->ci + num) & (QM_MR_SIZE - 1); 835 qm_out(portal, QM_REG_MR_CI_CINH, mr->ci); 836 } 837 838 static inline void qm_mr_cci_consume_to_current(struct qm_portal *portal) 839 { 840 struct qm_mr *mr = &portal->mr; 841 842 DPAA_ASSERT(mr->cmode == qm_mr_cci); 843 mr->ci = mr_ptr2idx(mr->cursor); 844 qm_out(portal, QM_REG_MR_CI_CINH, mr->ci); 845 } 846 847 static inline void qm_mr_set_ithresh(struct qm_portal *portal, u8 ithresh) 848 { 849 qm_out(portal, QM_REG_MR_ITR, ithresh); 850 } 851 852 /* --- Management command API --- */ 853 854 static inline int qm_mc_init(struct qm_portal *portal) 855 { 856 u8 rr0, rr1; 857 struct qm_mc *mc = &portal->mc; 858 859 mc->cr = portal->addr.ce + QM_CL_CR; 860 mc->rr = portal->addr.ce + QM_CL_RR0; 861 /* 862 * The expected valid bit polarity for the next CR command is 0 863 * if RR1 contains a valid response, and is 1 if RR0 contains a 864 * valid response. If both RR contain all 0, this indicates either 865 * that no command has been executed since reset (in which case the 866 * expected valid bit polarity is 1) 867 */ 868 rr0 = mc->rr->verb; 869 rr1 = (mc->rr+1)->verb; 870 if ((rr0 == 0 && rr1 == 0) || rr0 != 0) 871 mc->rridx = 1; 872 else 873 mc->rridx = 0; 874 mc->vbit = mc->rridx ? QM_MCC_VERB_VBIT : 0; 875 #ifdef CONFIG_FSL_DPAA_CHECKING 876 mc->state = qman_mc_idle; 877 #endif 878 return 0; 879 } 880 881 static inline void qm_mc_finish(struct qm_portal *portal) 882 { 883 #ifdef CONFIG_FSL_DPAA_CHECKING 884 struct qm_mc *mc = &portal->mc; 885 886 DPAA_ASSERT(mc->state == qman_mc_idle); 887 if (mc->state != qman_mc_idle) 888 pr_crit("Losing incomplete MC command\n"); 889 #endif 890 } 891 892 static inline union qm_mc_command *qm_mc_start(struct qm_portal *portal) 893 { 894 struct qm_mc *mc = &portal->mc; 895 896 DPAA_ASSERT(mc->state == qman_mc_idle); 897 #ifdef CONFIG_FSL_DPAA_CHECKING 898 mc->state = qman_mc_user; 899 #endif 900 dpaa_zero(mc->cr); 901 return mc->cr; 902 } 903 904 static inline void qm_mc_commit(struct qm_portal *portal, u8 myverb) 905 { 906 struct qm_mc *mc = &portal->mc; 907 union qm_mc_result *rr = mc->rr + mc->rridx; 908 909 DPAA_ASSERT(mc->state == qman_mc_user); 910 dma_wmb(); 911 mc->cr->_ncw_verb = myverb | mc->vbit; 912 dpaa_flush(mc->cr); 913 dpaa_invalidate_touch_ro(rr); 914 #ifdef CONFIG_FSL_DPAA_CHECKING 915 mc->state = qman_mc_hw; 916 #endif 917 } 918 919 static inline union qm_mc_result *qm_mc_result(struct qm_portal *portal) 920 { 921 struct qm_mc *mc = &portal->mc; 922 union qm_mc_result *rr = mc->rr + mc->rridx; 923 924 DPAA_ASSERT(mc->state == qman_mc_hw); 925 /* 926 * The inactive response register's verb byte always returns zero until 927 * its command is submitted and completed. This includes the valid-bit, 928 * in case you were wondering... 929 */ 930 if (!rr->verb) { 931 dpaa_invalidate_touch_ro(rr); 932 return NULL; 933 } 934 mc->rridx ^= 1; 935 mc->vbit ^= QM_MCC_VERB_VBIT; 936 #ifdef CONFIG_FSL_DPAA_CHECKING 937 mc->state = qman_mc_idle; 938 #endif 939 return rr; 940 } 941 942 static inline int qm_mc_result_timeout(struct qm_portal *portal, 943 union qm_mc_result **mcr) 944 { 945 int timeout = QM_MCR_TIMEOUT; 946 947 do { 948 *mcr = qm_mc_result(portal); 949 if (*mcr) 950 break; 951 udelay(1); 952 } while (--timeout); 953 954 return timeout; 955 } 956 957 static inline void fq_set(struct qman_fq *fq, u32 mask) 958 { 959 fq->flags |= mask; 960 } 961 962 static inline void fq_clear(struct qman_fq *fq, u32 mask) 963 { 964 fq->flags &= ~mask; 965 } 966 967 static inline int fq_isset(struct qman_fq *fq, u32 mask) 968 { 969 return fq->flags & mask; 970 } 971 972 static inline int fq_isclear(struct qman_fq *fq, u32 mask) 973 { 974 return !(fq->flags & mask); 975 } 976 977 struct qman_portal { 978 struct qm_portal p; 979 /* PORTAL_BITS_*** - dynamic, strictly internal */ 980 unsigned long bits; 981 /* interrupt sources processed by portal_isr(), configurable */ 982 unsigned long irq_sources; 983 u32 use_eqcr_ci_stashing; 984 /* only 1 volatile dequeue at a time */ 985 struct qman_fq *vdqcr_owned; 986 u32 sdqcr; 987 /* probing time config params for cpu-affine portals */ 988 const struct qm_portal_config *config; 989 /* 2-element array. cgrs[0] is mask, cgrs[1] is snapshot. */ 990 struct qman_cgrs *cgrs; 991 /* linked-list of CSCN handlers. */ 992 struct list_head cgr_cbs; 993 /* list lock */ 994 spinlock_t cgr_lock; 995 struct work_struct congestion_work; 996 struct work_struct mr_work; 997 char irqname[MAX_IRQNAME]; 998 }; 999 1000 static cpumask_t affine_mask; 1001 static DEFINE_SPINLOCK(affine_mask_lock); 1002 static u16 affine_channels[NR_CPUS]; 1003 static DEFINE_PER_CPU(struct qman_portal, qman_affine_portal); 1004 struct qman_portal *affine_portals[NR_CPUS]; 1005 1006 static inline struct qman_portal *get_affine_portal(void) 1007 { 1008 return &get_cpu_var(qman_affine_portal); 1009 } 1010 1011 static inline void put_affine_portal(void) 1012 { 1013 put_cpu_var(qman_affine_portal); 1014 } 1015 1016 1017 static inline struct qman_portal *get_portal_for_channel(u16 channel) 1018 { 1019 int i; 1020 1021 for (i = 0; i < num_possible_cpus(); i++) { 1022 if (affine_portals[i] && 1023 affine_portals[i]->config->channel == channel) 1024 return affine_portals[i]; 1025 } 1026 1027 return NULL; 1028 } 1029 1030 static struct workqueue_struct *qm_portal_wq; 1031 1032 int qman_dqrr_set_ithresh(struct qman_portal *portal, u8 ithresh) 1033 { 1034 int res; 1035 1036 if (!portal) 1037 return -EINVAL; 1038 1039 res = qm_dqrr_set_ithresh(&portal->p, ithresh); 1040 if (res) 1041 return res; 1042 1043 portal->p.dqrr.ithresh = ithresh; 1044 1045 return 0; 1046 } 1047 EXPORT_SYMBOL(qman_dqrr_set_ithresh); 1048 1049 void qman_dqrr_get_ithresh(struct qman_portal *portal, u8 *ithresh) 1050 { 1051 if (portal && ithresh) 1052 *ithresh = qm_in(&portal->p, QM_REG_DQRR_ITR); 1053 } 1054 EXPORT_SYMBOL(qman_dqrr_get_ithresh); 1055 1056 void qman_portal_get_iperiod(struct qman_portal *portal, u32 *iperiod) 1057 { 1058 if (portal && iperiod) 1059 *iperiod = qm_in(&portal->p, QM_REG_ITPR); 1060 } 1061 EXPORT_SYMBOL(qman_portal_get_iperiod); 1062 1063 int qman_portal_set_iperiod(struct qman_portal *portal, u32 iperiod) 1064 { 1065 if (!portal || iperiod > QMAN_ITP_MAX) 1066 return -EINVAL; 1067 1068 qm_out(&portal->p, QM_REG_ITPR, iperiod); 1069 1070 return 0; 1071 } 1072 EXPORT_SYMBOL(qman_portal_set_iperiod); 1073 1074 int qman_wq_alloc(void) 1075 { 1076 qm_portal_wq = alloc_workqueue("qman_portal_wq", 0, 1); 1077 if (!qm_portal_wq) 1078 return -ENOMEM; 1079 return 0; 1080 } 1081 1082 1083 void qman_enable_irqs(void) 1084 { 1085 int i; 1086 1087 for (i = 0; i < num_possible_cpus(); i++) { 1088 if (affine_portals[i]) { 1089 qm_out(&affine_portals[i]->p, QM_REG_ISR, 0xffffffff); 1090 qm_out(&affine_portals[i]->p, QM_REG_IIR, 0); 1091 } 1092 1093 } 1094 } 1095 1096 /* 1097 * This is what everything can wait on, even if it migrates to a different cpu 1098 * to the one whose affine portal it is waiting on. 1099 */ 1100 static DECLARE_WAIT_QUEUE_HEAD(affine_queue); 1101 1102 static struct qman_fq **fq_table; 1103 static u32 num_fqids; 1104 1105 int qman_alloc_fq_table(u32 _num_fqids) 1106 { 1107 num_fqids = _num_fqids; 1108 1109 fq_table = vzalloc(array3_size(sizeof(struct qman_fq *), 1110 num_fqids, 2)); 1111 if (!fq_table) 1112 return -ENOMEM; 1113 1114 pr_debug("Allocated fq lookup table at %p, entry count %u\n", 1115 fq_table, num_fqids * 2); 1116 return 0; 1117 } 1118 1119 static struct qman_fq *idx_to_fq(u32 idx) 1120 { 1121 struct qman_fq *fq; 1122 1123 #ifdef CONFIG_FSL_DPAA_CHECKING 1124 if (WARN_ON(idx >= num_fqids * 2)) 1125 return NULL; 1126 #endif 1127 fq = fq_table[idx]; 1128 DPAA_ASSERT(!fq || idx == fq->idx); 1129 1130 return fq; 1131 } 1132 1133 /* 1134 * Only returns full-service fq objects, not enqueue-only 1135 * references (QMAN_FQ_FLAG_NO_MODIFY). 1136 */ 1137 static struct qman_fq *fqid_to_fq(u32 fqid) 1138 { 1139 return idx_to_fq(fqid * 2); 1140 } 1141 1142 static struct qman_fq *tag_to_fq(u32 tag) 1143 { 1144 #if BITS_PER_LONG == 64 1145 return idx_to_fq(tag); 1146 #else 1147 return (struct qman_fq *)tag; 1148 #endif 1149 } 1150 1151 static u32 fq_to_tag(struct qman_fq *fq) 1152 { 1153 #if BITS_PER_LONG == 64 1154 return fq->idx; 1155 #else 1156 return (u32)fq; 1157 #endif 1158 } 1159 1160 static u32 __poll_portal_slow(struct qman_portal *p, u32 is); 1161 static inline unsigned int __poll_portal_fast(struct qman_portal *p, 1162 unsigned int poll_limit, bool sched_napi); 1163 static void qm_congestion_task(struct work_struct *work); 1164 static void qm_mr_process_task(struct work_struct *work); 1165 1166 static irqreturn_t portal_isr(int irq, void *ptr) 1167 { 1168 struct qman_portal *p = ptr; 1169 u32 is = qm_in(&p->p, QM_REG_ISR) & p->irq_sources; 1170 u32 clear = 0; 1171 1172 if (unlikely(!is)) 1173 return IRQ_NONE; 1174 1175 /* DQRR-handling if it's interrupt-driven */ 1176 if (is & QM_PIRQ_DQRI) { 1177 __poll_portal_fast(p, QMAN_POLL_LIMIT, true); 1178 clear = QM_DQAVAIL_MASK | QM_PIRQ_DQRI; 1179 } 1180 /* Handling of anything else that's interrupt-driven */ 1181 clear |= __poll_portal_slow(p, is) & QM_PIRQ_SLOW; 1182 qm_out(&p->p, QM_REG_ISR, clear); 1183 return IRQ_HANDLED; 1184 } 1185 1186 static int drain_mr_fqrni(struct qm_portal *p) 1187 { 1188 const union qm_mr_entry *msg; 1189 loop: 1190 qm_mr_pvb_update(p); 1191 msg = qm_mr_current(p); 1192 if (!msg) { 1193 /* 1194 * if MR was full and h/w had other FQRNI entries to produce, we 1195 * need to allow it time to produce those entries once the 1196 * existing entries are consumed. A worst-case situation 1197 * (fully-loaded system) means h/w sequencers may have to do 3-4 1198 * other things before servicing the portal's MR pump, each of 1199 * which (if slow) may take ~50 qman cycles (which is ~200 1200 * processor cycles). So rounding up and then multiplying this 1201 * worst-case estimate by a factor of 10, just to be 1202 * ultra-paranoid, goes as high as 10,000 cycles. NB, we consume 1203 * one entry at a time, so h/w has an opportunity to produce new 1204 * entries well before the ring has been fully consumed, so 1205 * we're being *really* paranoid here. 1206 */ 1207 mdelay(1); 1208 qm_mr_pvb_update(p); 1209 msg = qm_mr_current(p); 1210 if (!msg) 1211 return 0; 1212 } 1213 if ((msg->verb & QM_MR_VERB_TYPE_MASK) != QM_MR_VERB_FQRNI) { 1214 /* We aren't draining anything but FQRNIs */ 1215 pr_err("Found verb 0x%x in MR\n", msg->verb); 1216 return -1; 1217 } 1218 qm_mr_next(p); 1219 qm_mr_cci_consume(p, 1); 1220 goto loop; 1221 } 1222 1223 static int qman_create_portal(struct qman_portal *portal, 1224 const struct qm_portal_config *c, 1225 const struct qman_cgrs *cgrs) 1226 { 1227 struct qm_portal *p; 1228 int ret; 1229 u32 isdr; 1230 1231 p = &portal->p; 1232 1233 #ifdef CONFIG_FSL_PAMU 1234 /* PAMU is required for stashing */ 1235 portal->use_eqcr_ci_stashing = ((qman_ip_rev >= QMAN_REV30) ? 1 : 0); 1236 #else 1237 portal->use_eqcr_ci_stashing = 0; 1238 #endif 1239 /* 1240 * prep the low-level portal struct with the mapped addresses from the 1241 * config, everything that follows depends on it and "config" is more 1242 * for (de)reference 1243 */ 1244 p->addr.ce = c->addr_virt_ce; 1245 p->addr.ce_be = c->addr_virt_ce; 1246 p->addr.ci = c->addr_virt_ci; 1247 /* 1248 * If CI-stashing is used, the current defaults use a threshold of 3, 1249 * and stash with high-than-DQRR priority. 1250 */ 1251 if (qm_eqcr_init(p, qm_eqcr_pvb, 1252 portal->use_eqcr_ci_stashing ? 3 : 0, 1)) { 1253 dev_err(c->dev, "EQCR initialisation failed\n"); 1254 goto fail_eqcr; 1255 } 1256 if (qm_dqrr_init(p, c, qm_dqrr_dpush, qm_dqrr_pvb, 1257 qm_dqrr_cdc, DQRR_MAXFILL)) { 1258 dev_err(c->dev, "DQRR initialisation failed\n"); 1259 goto fail_dqrr; 1260 } 1261 if (qm_mr_init(p, qm_mr_pvb, qm_mr_cci)) { 1262 dev_err(c->dev, "MR initialisation failed\n"); 1263 goto fail_mr; 1264 } 1265 if (qm_mc_init(p)) { 1266 dev_err(c->dev, "MC initialisation failed\n"); 1267 goto fail_mc; 1268 } 1269 /* static interrupt-gating controls */ 1270 qm_dqrr_set_ithresh(p, QMAN_PIRQ_DQRR_ITHRESH); 1271 qm_mr_set_ithresh(p, QMAN_PIRQ_MR_ITHRESH); 1272 qm_out(p, QM_REG_ITPR, QMAN_PIRQ_IPERIOD); 1273 portal->cgrs = kmalloc_array(2, sizeof(*cgrs), GFP_KERNEL); 1274 if (!portal->cgrs) 1275 goto fail_cgrs; 1276 /* initial snapshot is no-depletion */ 1277 qman_cgrs_init(&portal->cgrs[1]); 1278 if (cgrs) 1279 portal->cgrs[0] = *cgrs; 1280 else 1281 /* if the given mask is NULL, assume all CGRs can be seen */ 1282 qman_cgrs_fill(&portal->cgrs[0]); 1283 INIT_LIST_HEAD(&portal->cgr_cbs); 1284 spin_lock_init(&portal->cgr_lock); 1285 INIT_WORK(&portal->congestion_work, qm_congestion_task); 1286 INIT_WORK(&portal->mr_work, qm_mr_process_task); 1287 portal->bits = 0; 1288 portal->sdqcr = QM_SDQCR_SOURCE_CHANNELS | QM_SDQCR_COUNT_UPTO3 | 1289 QM_SDQCR_DEDICATED_PRECEDENCE | QM_SDQCR_TYPE_PRIO_QOS | 1290 QM_SDQCR_TOKEN_SET(0xab) | QM_SDQCR_CHANNELS_DEDICATED; 1291 isdr = 0xffffffff; 1292 qm_out(p, QM_REG_ISDR, isdr); 1293 portal->irq_sources = 0; 1294 qm_out(p, QM_REG_IER, 0); 1295 snprintf(portal->irqname, MAX_IRQNAME, IRQNAME, c->cpu); 1296 qm_out(p, QM_REG_IIR, 1); 1297 if (request_irq(c->irq, portal_isr, 0, portal->irqname, portal)) { 1298 dev_err(c->dev, "request_irq() failed\n"); 1299 goto fail_irq; 1300 } 1301 1302 if (dpaa_set_portal_irq_affinity(c->dev, c->irq, c->cpu)) 1303 goto fail_affinity; 1304 1305 /* Need EQCR to be empty before continuing */ 1306 isdr &= ~QM_PIRQ_EQCI; 1307 qm_out(p, QM_REG_ISDR, isdr); 1308 ret = qm_eqcr_get_fill(p); 1309 if (ret) { 1310 dev_err(c->dev, "EQCR unclean\n"); 1311 goto fail_eqcr_empty; 1312 } 1313 isdr &= ~(QM_PIRQ_DQRI | QM_PIRQ_MRI); 1314 qm_out(p, QM_REG_ISDR, isdr); 1315 if (qm_dqrr_current(p)) { 1316 dev_dbg(c->dev, "DQRR unclean\n"); 1317 qm_dqrr_cdc_consume_n(p, 0xffff); 1318 } 1319 if (qm_mr_current(p) && drain_mr_fqrni(p)) { 1320 /* special handling, drain just in case it's a few FQRNIs */ 1321 const union qm_mr_entry *e = qm_mr_current(p); 1322 1323 dev_err(c->dev, "MR dirty, VB 0x%x, rc 0x%x, addr 0x%llx\n", 1324 e->verb, e->ern.rc, qm_fd_addr_get64(&e->ern.fd)); 1325 goto fail_dqrr_mr_empty; 1326 } 1327 /* Success */ 1328 portal->config = c; 1329 qm_out(p, QM_REG_ISR, 0xffffffff); 1330 qm_out(p, QM_REG_ISDR, 0); 1331 if (!qman_requires_cleanup()) 1332 qm_out(p, QM_REG_IIR, 0); 1333 /* Write a sane SDQCR */ 1334 qm_dqrr_sdqcr_set(p, portal->sdqcr); 1335 return 0; 1336 1337 fail_dqrr_mr_empty: 1338 fail_eqcr_empty: 1339 fail_affinity: 1340 free_irq(c->irq, portal); 1341 fail_irq: 1342 kfree(portal->cgrs); 1343 fail_cgrs: 1344 qm_mc_finish(p); 1345 fail_mc: 1346 qm_mr_finish(p); 1347 fail_mr: 1348 qm_dqrr_finish(p); 1349 fail_dqrr: 1350 qm_eqcr_finish(p); 1351 fail_eqcr: 1352 return -EIO; 1353 } 1354 1355 struct qman_portal *qman_create_affine_portal(const struct qm_portal_config *c, 1356 const struct qman_cgrs *cgrs) 1357 { 1358 struct qman_portal *portal; 1359 int err; 1360 1361 portal = &per_cpu(qman_affine_portal, c->cpu); 1362 err = qman_create_portal(portal, c, cgrs); 1363 if (err) 1364 return NULL; 1365 1366 spin_lock(&affine_mask_lock); 1367 cpumask_set_cpu(c->cpu, &affine_mask); 1368 affine_channels[c->cpu] = c->channel; 1369 affine_portals[c->cpu] = portal; 1370 spin_unlock(&affine_mask_lock); 1371 1372 return portal; 1373 } 1374 1375 static void qman_destroy_portal(struct qman_portal *qm) 1376 { 1377 const struct qm_portal_config *pcfg; 1378 1379 /* Stop dequeues on the portal */ 1380 qm_dqrr_sdqcr_set(&qm->p, 0); 1381 1382 /* 1383 * NB we do this to "quiesce" EQCR. If we add enqueue-completions or 1384 * something related to QM_PIRQ_EQCI, this may need fixing. 1385 * Also, due to the prefetching model used for CI updates in the enqueue 1386 * path, this update will only invalidate the CI cacheline *after* 1387 * working on it, so we need to call this twice to ensure a full update 1388 * irrespective of where the enqueue processing was at when the teardown 1389 * began. 1390 */ 1391 qm_eqcr_cce_update(&qm->p); 1392 qm_eqcr_cce_update(&qm->p); 1393 pcfg = qm->config; 1394 1395 free_irq(pcfg->irq, qm); 1396 1397 kfree(qm->cgrs); 1398 qm_mc_finish(&qm->p); 1399 qm_mr_finish(&qm->p); 1400 qm_dqrr_finish(&qm->p); 1401 qm_eqcr_finish(&qm->p); 1402 1403 qm->config = NULL; 1404 } 1405 1406 const struct qm_portal_config *qman_destroy_affine_portal(void) 1407 { 1408 struct qman_portal *qm = get_affine_portal(); 1409 const struct qm_portal_config *pcfg; 1410 int cpu; 1411 1412 pcfg = qm->config; 1413 cpu = pcfg->cpu; 1414 1415 qman_destroy_portal(qm); 1416 1417 spin_lock(&affine_mask_lock); 1418 cpumask_clear_cpu(cpu, &affine_mask); 1419 spin_unlock(&affine_mask_lock); 1420 put_affine_portal(); 1421 return pcfg; 1422 } 1423 1424 /* Inline helper to reduce nesting in __poll_portal_slow() */ 1425 static inline void fq_state_change(struct qman_portal *p, struct qman_fq *fq, 1426 const union qm_mr_entry *msg, u8 verb) 1427 { 1428 switch (verb) { 1429 case QM_MR_VERB_FQRL: 1430 DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_ORL)); 1431 fq_clear(fq, QMAN_FQ_STATE_ORL); 1432 break; 1433 case QM_MR_VERB_FQRN: 1434 DPAA_ASSERT(fq->state == qman_fq_state_parked || 1435 fq->state == qman_fq_state_sched); 1436 DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_CHANGING)); 1437 fq_clear(fq, QMAN_FQ_STATE_CHANGING); 1438 if (msg->fq.fqs & QM_MR_FQS_NOTEMPTY) 1439 fq_set(fq, QMAN_FQ_STATE_NE); 1440 if (msg->fq.fqs & QM_MR_FQS_ORLPRESENT) 1441 fq_set(fq, QMAN_FQ_STATE_ORL); 1442 fq->state = qman_fq_state_retired; 1443 break; 1444 case QM_MR_VERB_FQPN: 1445 DPAA_ASSERT(fq->state == qman_fq_state_sched); 1446 DPAA_ASSERT(fq_isclear(fq, QMAN_FQ_STATE_CHANGING)); 1447 fq->state = qman_fq_state_parked; 1448 } 1449 } 1450 1451 static void qm_congestion_task(struct work_struct *work) 1452 { 1453 struct qman_portal *p = container_of(work, struct qman_portal, 1454 congestion_work); 1455 struct qman_cgrs rr, c; 1456 union qm_mc_result *mcr; 1457 struct qman_cgr *cgr; 1458 1459 spin_lock(&p->cgr_lock); 1460 qm_mc_start(&p->p); 1461 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCONGESTION); 1462 if (!qm_mc_result_timeout(&p->p, &mcr)) { 1463 spin_unlock(&p->cgr_lock); 1464 dev_crit(p->config->dev, "QUERYCONGESTION timeout\n"); 1465 qman_p_irqsource_add(p, QM_PIRQ_CSCI); 1466 return; 1467 } 1468 /* mask out the ones I'm not interested in */ 1469 qman_cgrs_and(&rr, (struct qman_cgrs *)&mcr->querycongestion.state, 1470 &p->cgrs[0]); 1471 /* check previous snapshot for delta, enter/exit congestion */ 1472 qman_cgrs_xor(&c, &rr, &p->cgrs[1]); 1473 /* update snapshot */ 1474 qman_cgrs_cp(&p->cgrs[1], &rr); 1475 /* Invoke callback */ 1476 list_for_each_entry(cgr, &p->cgr_cbs, node) 1477 if (cgr->cb && qman_cgrs_get(&c, cgr->cgrid)) 1478 cgr->cb(p, cgr, qman_cgrs_get(&rr, cgr->cgrid)); 1479 spin_unlock(&p->cgr_lock); 1480 qman_p_irqsource_add(p, QM_PIRQ_CSCI); 1481 } 1482 1483 static void qm_mr_process_task(struct work_struct *work) 1484 { 1485 struct qman_portal *p = container_of(work, struct qman_portal, 1486 mr_work); 1487 const union qm_mr_entry *msg; 1488 struct qman_fq *fq; 1489 u8 verb, num = 0; 1490 1491 preempt_disable(); 1492 1493 while (1) { 1494 qm_mr_pvb_update(&p->p); 1495 msg = qm_mr_current(&p->p); 1496 if (!msg) 1497 break; 1498 1499 verb = msg->verb & QM_MR_VERB_TYPE_MASK; 1500 /* The message is a software ERN iff the 0x20 bit is clear */ 1501 if (verb & 0x20) { 1502 switch (verb) { 1503 case QM_MR_VERB_FQRNI: 1504 /* nada, we drop FQRNIs on the floor */ 1505 break; 1506 case QM_MR_VERB_FQRN: 1507 case QM_MR_VERB_FQRL: 1508 /* Lookup in the retirement table */ 1509 fq = fqid_to_fq(qm_fqid_get(&msg->fq)); 1510 if (WARN_ON(!fq)) 1511 break; 1512 fq_state_change(p, fq, msg, verb); 1513 if (fq->cb.fqs) 1514 fq->cb.fqs(p, fq, msg); 1515 break; 1516 case QM_MR_VERB_FQPN: 1517 /* Parked */ 1518 fq = tag_to_fq(be32_to_cpu(msg->fq.context_b)); 1519 fq_state_change(p, fq, msg, verb); 1520 if (fq->cb.fqs) 1521 fq->cb.fqs(p, fq, msg); 1522 break; 1523 case QM_MR_VERB_DC_ERN: 1524 /* DCP ERN */ 1525 pr_crit_once("Leaking DCP ERNs!\n"); 1526 break; 1527 default: 1528 pr_crit("Invalid MR verb 0x%02x\n", verb); 1529 } 1530 } else { 1531 /* Its a software ERN */ 1532 fq = tag_to_fq(be32_to_cpu(msg->ern.tag)); 1533 fq->cb.ern(p, fq, msg); 1534 } 1535 num++; 1536 qm_mr_next(&p->p); 1537 } 1538 1539 qm_mr_cci_consume(&p->p, num); 1540 qman_p_irqsource_add(p, QM_PIRQ_MRI); 1541 preempt_enable(); 1542 } 1543 1544 static u32 __poll_portal_slow(struct qman_portal *p, u32 is) 1545 { 1546 if (is & QM_PIRQ_CSCI) { 1547 qman_p_irqsource_remove(p, QM_PIRQ_CSCI); 1548 queue_work_on(smp_processor_id(), qm_portal_wq, 1549 &p->congestion_work); 1550 } 1551 1552 if (is & QM_PIRQ_EQRI) { 1553 qm_eqcr_cce_update(&p->p); 1554 qm_eqcr_set_ithresh(&p->p, 0); 1555 wake_up(&affine_queue); 1556 } 1557 1558 if (is & QM_PIRQ_MRI) { 1559 qman_p_irqsource_remove(p, QM_PIRQ_MRI); 1560 queue_work_on(smp_processor_id(), qm_portal_wq, 1561 &p->mr_work); 1562 } 1563 1564 return is; 1565 } 1566 1567 /* 1568 * remove some slowish-path stuff from the "fast path" and make sure it isn't 1569 * inlined. 1570 */ 1571 static noinline void clear_vdqcr(struct qman_portal *p, struct qman_fq *fq) 1572 { 1573 p->vdqcr_owned = NULL; 1574 fq_clear(fq, QMAN_FQ_STATE_VDQCR); 1575 wake_up(&affine_queue); 1576 } 1577 1578 /* 1579 * The only states that would conflict with other things if they ran at the 1580 * same time on the same cpu are: 1581 * 1582 * (i) setting/clearing vdqcr_owned, and 1583 * (ii) clearing the NE (Not Empty) flag. 1584 * 1585 * Both are safe. Because; 1586 * 1587 * (i) this clearing can only occur after qman_volatile_dequeue() has set the 1588 * vdqcr_owned field (which it does before setting VDQCR), and 1589 * qman_volatile_dequeue() blocks interrupts and preemption while this is 1590 * done so that we can't interfere. 1591 * (ii) the NE flag is only cleared after qman_retire_fq() has set it, and as 1592 * with (i) that API prevents us from interfering until it's safe. 1593 * 1594 * The good thing is that qman_volatile_dequeue() and qman_retire_fq() run far 1595 * less frequently (ie. per-FQ) than __poll_portal_fast() does, so the nett 1596 * advantage comes from this function not having to "lock" anything at all. 1597 * 1598 * Note also that the callbacks are invoked at points which are safe against the 1599 * above potential conflicts, but that this function itself is not re-entrant 1600 * (this is because the function tracks one end of each FIFO in the portal and 1601 * we do *not* want to lock that). So the consequence is that it is safe for 1602 * user callbacks to call into any QMan API. 1603 */ 1604 static inline unsigned int __poll_portal_fast(struct qman_portal *p, 1605 unsigned int poll_limit, bool sched_napi) 1606 { 1607 const struct qm_dqrr_entry *dq; 1608 struct qman_fq *fq; 1609 enum qman_cb_dqrr_result res; 1610 unsigned int limit = 0; 1611 1612 do { 1613 qm_dqrr_pvb_update(&p->p); 1614 dq = qm_dqrr_current(&p->p); 1615 if (!dq) 1616 break; 1617 1618 if (dq->stat & QM_DQRR_STAT_UNSCHEDULED) { 1619 /* 1620 * VDQCR: don't trust context_b as the FQ may have 1621 * been configured for h/w consumption and we're 1622 * draining it post-retirement. 1623 */ 1624 fq = p->vdqcr_owned; 1625 /* 1626 * We only set QMAN_FQ_STATE_NE when retiring, so we 1627 * only need to check for clearing it when doing 1628 * volatile dequeues. It's one less thing to check 1629 * in the critical path (SDQCR). 1630 */ 1631 if (dq->stat & QM_DQRR_STAT_FQ_EMPTY) 1632 fq_clear(fq, QMAN_FQ_STATE_NE); 1633 /* 1634 * This is duplicated from the SDQCR code, but we 1635 * have stuff to do before *and* after this callback, 1636 * and we don't want multiple if()s in the critical 1637 * path (SDQCR). 1638 */ 1639 res = fq->cb.dqrr(p, fq, dq, sched_napi); 1640 if (res == qman_cb_dqrr_stop) 1641 break; 1642 /* Check for VDQCR completion */ 1643 if (dq->stat & QM_DQRR_STAT_DQCR_EXPIRED) 1644 clear_vdqcr(p, fq); 1645 } else { 1646 /* SDQCR: context_b points to the FQ */ 1647 fq = tag_to_fq(be32_to_cpu(dq->context_b)); 1648 /* Now let the callback do its stuff */ 1649 res = fq->cb.dqrr(p, fq, dq, sched_napi); 1650 /* 1651 * The callback can request that we exit without 1652 * consuming this entry nor advancing; 1653 */ 1654 if (res == qman_cb_dqrr_stop) 1655 break; 1656 } 1657 /* Interpret 'dq' from a driver perspective. */ 1658 /* 1659 * Parking isn't possible unless HELDACTIVE was set. NB, 1660 * FORCEELIGIBLE implies HELDACTIVE, so we only need to 1661 * check for HELDACTIVE to cover both. 1662 */ 1663 DPAA_ASSERT((dq->stat & QM_DQRR_STAT_FQ_HELDACTIVE) || 1664 (res != qman_cb_dqrr_park)); 1665 /* just means "skip it, I'll consume it myself later on" */ 1666 if (res != qman_cb_dqrr_defer) 1667 qm_dqrr_cdc_consume_1ptr(&p->p, dq, 1668 res == qman_cb_dqrr_park); 1669 /* Move forward */ 1670 qm_dqrr_next(&p->p); 1671 /* 1672 * Entry processed and consumed, increment our counter. The 1673 * callback can request that we exit after consuming the 1674 * entry, and we also exit if we reach our processing limit, 1675 * so loop back only if neither of these conditions is met. 1676 */ 1677 } while (++limit < poll_limit && res != qman_cb_dqrr_consume_stop); 1678 1679 return limit; 1680 } 1681 1682 void qman_p_irqsource_add(struct qman_portal *p, u32 bits) 1683 { 1684 unsigned long irqflags; 1685 1686 local_irq_save(irqflags); 1687 p->irq_sources |= bits & QM_PIRQ_VISIBLE; 1688 qm_out(&p->p, QM_REG_IER, p->irq_sources); 1689 local_irq_restore(irqflags); 1690 } 1691 EXPORT_SYMBOL(qman_p_irqsource_add); 1692 1693 void qman_p_irqsource_remove(struct qman_portal *p, u32 bits) 1694 { 1695 unsigned long irqflags; 1696 u32 ier; 1697 1698 /* 1699 * Our interrupt handler only processes+clears status register bits that 1700 * are in p->irq_sources. As we're trimming that mask, if one of them 1701 * were to assert in the status register just before we remove it from 1702 * the enable register, there would be an interrupt-storm when we 1703 * release the IRQ lock. So we wait for the enable register update to 1704 * take effect in h/w (by reading it back) and then clear all other bits 1705 * in the status register. Ie. we clear them from ISR once it's certain 1706 * IER won't allow them to reassert. 1707 */ 1708 local_irq_save(irqflags); 1709 bits &= QM_PIRQ_VISIBLE; 1710 p->irq_sources &= ~bits; 1711 qm_out(&p->p, QM_REG_IER, p->irq_sources); 1712 ier = qm_in(&p->p, QM_REG_IER); 1713 /* 1714 * Using "~ier" (rather than "bits" or "~p->irq_sources") creates a 1715 * data-dependency, ie. to protect against re-ordering. 1716 */ 1717 qm_out(&p->p, QM_REG_ISR, ~ier); 1718 local_irq_restore(irqflags); 1719 } 1720 EXPORT_SYMBOL(qman_p_irqsource_remove); 1721 1722 const cpumask_t *qman_affine_cpus(void) 1723 { 1724 return &affine_mask; 1725 } 1726 EXPORT_SYMBOL(qman_affine_cpus); 1727 1728 u16 qman_affine_channel(int cpu) 1729 { 1730 if (cpu < 0) { 1731 struct qman_portal *portal = get_affine_portal(); 1732 1733 cpu = portal->config->cpu; 1734 put_affine_portal(); 1735 } 1736 WARN_ON(!cpumask_test_cpu(cpu, &affine_mask)); 1737 return affine_channels[cpu]; 1738 } 1739 EXPORT_SYMBOL(qman_affine_channel); 1740 1741 struct qman_portal *qman_get_affine_portal(int cpu) 1742 { 1743 return affine_portals[cpu]; 1744 } 1745 EXPORT_SYMBOL(qman_get_affine_portal); 1746 1747 int qman_start_using_portal(struct qman_portal *p, struct device *dev) 1748 { 1749 return (!device_link_add(dev, p->config->dev, 1750 DL_FLAG_AUTOREMOVE_CONSUMER)) ? -EINVAL : 0; 1751 } 1752 EXPORT_SYMBOL(qman_start_using_portal); 1753 1754 int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit) 1755 { 1756 return __poll_portal_fast(p, limit, false); 1757 } 1758 EXPORT_SYMBOL(qman_p_poll_dqrr); 1759 1760 void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools) 1761 { 1762 unsigned long irqflags; 1763 1764 local_irq_save(irqflags); 1765 pools &= p->config->pools; 1766 p->sdqcr |= pools; 1767 qm_dqrr_sdqcr_set(&p->p, p->sdqcr); 1768 local_irq_restore(irqflags); 1769 } 1770 EXPORT_SYMBOL(qman_p_static_dequeue_add); 1771 1772 /* Frame queue API */ 1773 1774 static const char *mcr_result_str(u8 result) 1775 { 1776 switch (result) { 1777 case QM_MCR_RESULT_NULL: 1778 return "QM_MCR_RESULT_NULL"; 1779 case QM_MCR_RESULT_OK: 1780 return "QM_MCR_RESULT_OK"; 1781 case QM_MCR_RESULT_ERR_FQID: 1782 return "QM_MCR_RESULT_ERR_FQID"; 1783 case QM_MCR_RESULT_ERR_FQSTATE: 1784 return "QM_MCR_RESULT_ERR_FQSTATE"; 1785 case QM_MCR_RESULT_ERR_NOTEMPTY: 1786 return "QM_MCR_RESULT_ERR_NOTEMPTY"; 1787 case QM_MCR_RESULT_PENDING: 1788 return "QM_MCR_RESULT_PENDING"; 1789 case QM_MCR_RESULT_ERR_BADCOMMAND: 1790 return "QM_MCR_RESULT_ERR_BADCOMMAND"; 1791 } 1792 return "<unknown MCR result>"; 1793 } 1794 1795 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq) 1796 { 1797 if (flags & QMAN_FQ_FLAG_DYNAMIC_FQID) { 1798 int ret = qman_alloc_fqid(&fqid); 1799 1800 if (ret) 1801 return ret; 1802 } 1803 fq->fqid = fqid; 1804 fq->flags = flags; 1805 fq->state = qman_fq_state_oos; 1806 fq->cgr_groupid = 0; 1807 1808 /* A context_b of 0 is allegedly special, so don't use that fqid */ 1809 if (fqid == 0 || fqid >= num_fqids) { 1810 WARN(1, "bad fqid %d\n", fqid); 1811 return -EINVAL; 1812 } 1813 1814 fq->idx = fqid * 2; 1815 if (flags & QMAN_FQ_FLAG_NO_MODIFY) 1816 fq->idx++; 1817 1818 WARN_ON(fq_table[fq->idx]); 1819 fq_table[fq->idx] = fq; 1820 1821 return 0; 1822 } 1823 EXPORT_SYMBOL(qman_create_fq); 1824 1825 void qman_destroy_fq(struct qman_fq *fq) 1826 { 1827 /* 1828 * We don't need to lock the FQ as it is a pre-condition that the FQ be 1829 * quiesced. Instead, run some checks. 1830 */ 1831 switch (fq->state) { 1832 case qman_fq_state_parked: 1833 case qman_fq_state_oos: 1834 if (fq_isset(fq, QMAN_FQ_FLAG_DYNAMIC_FQID)) 1835 qman_release_fqid(fq->fqid); 1836 1837 DPAA_ASSERT(fq_table[fq->idx]); 1838 fq_table[fq->idx] = NULL; 1839 return; 1840 default: 1841 break; 1842 } 1843 DPAA_ASSERT(NULL == "qman_free_fq() on unquiesced FQ!"); 1844 } 1845 EXPORT_SYMBOL(qman_destroy_fq); 1846 1847 u32 qman_fq_fqid(struct qman_fq *fq) 1848 { 1849 return fq->fqid; 1850 } 1851 EXPORT_SYMBOL(qman_fq_fqid); 1852 1853 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts) 1854 { 1855 union qm_mc_command *mcc; 1856 union qm_mc_result *mcr; 1857 struct qman_portal *p; 1858 u8 res, myverb; 1859 int ret = 0; 1860 1861 myverb = (flags & QMAN_INITFQ_FLAG_SCHED) 1862 ? QM_MCC_VERB_INITFQ_SCHED : QM_MCC_VERB_INITFQ_PARKED; 1863 1864 if (fq->state != qman_fq_state_oos && 1865 fq->state != qman_fq_state_parked) 1866 return -EINVAL; 1867 #ifdef CONFIG_FSL_DPAA_CHECKING 1868 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)) 1869 return -EINVAL; 1870 #endif 1871 if (opts && (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_OAC)) { 1872 /* And can't be set at the same time as TDTHRESH */ 1873 if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_TDTHRESH) 1874 return -EINVAL; 1875 } 1876 /* Issue an INITFQ_[PARKED|SCHED] management command */ 1877 p = get_affine_portal(); 1878 if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) || 1879 (fq->state != qman_fq_state_oos && 1880 fq->state != qman_fq_state_parked)) { 1881 ret = -EBUSY; 1882 goto out; 1883 } 1884 mcc = qm_mc_start(&p->p); 1885 if (opts) 1886 mcc->initfq = *opts; 1887 qm_fqid_set(&mcc->fq, fq->fqid); 1888 mcc->initfq.count = 0; 1889 /* 1890 * If the FQ does *not* have the TO_DCPORTAL flag, context_b is set as a 1891 * demux pointer. Otherwise, the caller-provided value is allowed to 1892 * stand, don't overwrite it. 1893 */ 1894 if (fq_isclear(fq, QMAN_FQ_FLAG_TO_DCPORTAL)) { 1895 dma_addr_t phys_fq; 1896 1897 mcc->initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTB); 1898 mcc->initfq.fqd.context_b = cpu_to_be32(fq_to_tag(fq)); 1899 /* 1900 * and the physical address - NB, if the user wasn't trying to 1901 * set CONTEXTA, clear the stashing settings. 1902 */ 1903 if (!(be16_to_cpu(mcc->initfq.we_mask) & 1904 QM_INITFQ_WE_CONTEXTA)) { 1905 mcc->initfq.we_mask |= 1906 cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1907 memset(&mcc->initfq.fqd.context_a, 0, 1908 sizeof(mcc->initfq.fqd.context_a)); 1909 } else { 1910 struct qman_portal *p = qman_dma_portal; 1911 1912 phys_fq = dma_map_single(p->config->dev, fq, 1913 sizeof(*fq), DMA_TO_DEVICE); 1914 if (dma_mapping_error(p->config->dev, phys_fq)) { 1915 dev_err(p->config->dev, "dma_mapping failed\n"); 1916 ret = -EIO; 1917 goto out; 1918 } 1919 1920 qm_fqd_stashing_set64(&mcc->initfq.fqd, phys_fq); 1921 } 1922 } 1923 if (flags & QMAN_INITFQ_FLAG_LOCAL) { 1924 int wq = 0; 1925 1926 if (!(be16_to_cpu(mcc->initfq.we_mask) & 1927 QM_INITFQ_WE_DESTWQ)) { 1928 mcc->initfq.we_mask |= 1929 cpu_to_be16(QM_INITFQ_WE_DESTWQ); 1930 wq = 4; 1931 } 1932 qm_fqd_set_destwq(&mcc->initfq.fqd, p->config->channel, wq); 1933 } 1934 qm_mc_commit(&p->p, myverb); 1935 if (!qm_mc_result_timeout(&p->p, &mcr)) { 1936 dev_err(p->config->dev, "MCR timeout\n"); 1937 ret = -ETIMEDOUT; 1938 goto out; 1939 } 1940 1941 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == myverb); 1942 res = mcr->result; 1943 if (res != QM_MCR_RESULT_OK) { 1944 ret = -EIO; 1945 goto out; 1946 } 1947 if (opts) { 1948 if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_FQCTRL) { 1949 if (be16_to_cpu(opts->fqd.fq_ctrl) & QM_FQCTRL_CGE) 1950 fq_set(fq, QMAN_FQ_STATE_CGR_EN); 1951 else 1952 fq_clear(fq, QMAN_FQ_STATE_CGR_EN); 1953 } 1954 if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_CGID) 1955 fq->cgr_groupid = opts->fqd.cgid; 1956 } 1957 fq->state = (flags & QMAN_INITFQ_FLAG_SCHED) ? 1958 qman_fq_state_sched : qman_fq_state_parked; 1959 1960 out: 1961 put_affine_portal(); 1962 return ret; 1963 } 1964 EXPORT_SYMBOL(qman_init_fq); 1965 1966 int qman_schedule_fq(struct qman_fq *fq) 1967 { 1968 union qm_mc_command *mcc; 1969 union qm_mc_result *mcr; 1970 struct qman_portal *p; 1971 int ret = 0; 1972 1973 if (fq->state != qman_fq_state_parked) 1974 return -EINVAL; 1975 #ifdef CONFIG_FSL_DPAA_CHECKING 1976 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)) 1977 return -EINVAL; 1978 #endif 1979 /* Issue a ALTERFQ_SCHED management command */ 1980 p = get_affine_portal(); 1981 if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) || 1982 fq->state != qman_fq_state_parked) { 1983 ret = -EBUSY; 1984 goto out; 1985 } 1986 mcc = qm_mc_start(&p->p); 1987 qm_fqid_set(&mcc->fq, fq->fqid); 1988 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_SCHED); 1989 if (!qm_mc_result_timeout(&p->p, &mcr)) { 1990 dev_err(p->config->dev, "ALTER_SCHED timeout\n"); 1991 ret = -ETIMEDOUT; 1992 goto out; 1993 } 1994 1995 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_SCHED); 1996 if (mcr->result != QM_MCR_RESULT_OK) { 1997 ret = -EIO; 1998 goto out; 1999 } 2000 fq->state = qman_fq_state_sched; 2001 out: 2002 put_affine_portal(); 2003 return ret; 2004 } 2005 EXPORT_SYMBOL(qman_schedule_fq); 2006 2007 int qman_retire_fq(struct qman_fq *fq, u32 *flags) 2008 { 2009 union qm_mc_command *mcc; 2010 union qm_mc_result *mcr; 2011 struct qman_portal *p; 2012 int ret; 2013 u8 res; 2014 2015 if (fq->state != qman_fq_state_parked && 2016 fq->state != qman_fq_state_sched) 2017 return -EINVAL; 2018 #ifdef CONFIG_FSL_DPAA_CHECKING 2019 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)) 2020 return -EINVAL; 2021 #endif 2022 p = get_affine_portal(); 2023 if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) || 2024 fq->state == qman_fq_state_retired || 2025 fq->state == qman_fq_state_oos) { 2026 ret = -EBUSY; 2027 goto out; 2028 } 2029 mcc = qm_mc_start(&p->p); 2030 qm_fqid_set(&mcc->fq, fq->fqid); 2031 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE); 2032 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2033 dev_crit(p->config->dev, "ALTER_RETIRE timeout\n"); 2034 ret = -ETIMEDOUT; 2035 goto out; 2036 } 2037 2038 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_RETIRE); 2039 res = mcr->result; 2040 /* 2041 * "Elegant" would be to treat OK/PENDING the same way; set CHANGING, 2042 * and defer the flags until FQRNI or FQRN (respectively) show up. But 2043 * "Friendly" is to process OK immediately, and not set CHANGING. We do 2044 * friendly, otherwise the caller doesn't necessarily have a fully 2045 * "retired" FQ on return even if the retirement was immediate. However 2046 * this does mean some code duplication between here and 2047 * fq_state_change(). 2048 */ 2049 if (res == QM_MCR_RESULT_OK) { 2050 ret = 0; 2051 /* Process 'fq' right away, we'll ignore FQRNI */ 2052 if (mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY) 2053 fq_set(fq, QMAN_FQ_STATE_NE); 2054 if (mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT) 2055 fq_set(fq, QMAN_FQ_STATE_ORL); 2056 if (flags) 2057 *flags = fq->flags; 2058 fq->state = qman_fq_state_retired; 2059 if (fq->cb.fqs) { 2060 /* 2061 * Another issue with supporting "immediate" retirement 2062 * is that we're forced to drop FQRNIs, because by the 2063 * time they're seen it may already be "too late" (the 2064 * fq may have been OOS'd and free()'d already). But if 2065 * the upper layer wants a callback whether it's 2066 * immediate or not, we have to fake a "MR" entry to 2067 * look like an FQRNI... 2068 */ 2069 union qm_mr_entry msg; 2070 2071 msg.verb = QM_MR_VERB_FQRNI; 2072 msg.fq.fqs = mcr->alterfq.fqs; 2073 qm_fqid_set(&msg.fq, fq->fqid); 2074 msg.fq.context_b = cpu_to_be32(fq_to_tag(fq)); 2075 fq->cb.fqs(p, fq, &msg); 2076 } 2077 } else if (res == QM_MCR_RESULT_PENDING) { 2078 ret = 1; 2079 fq_set(fq, QMAN_FQ_STATE_CHANGING); 2080 } else { 2081 ret = -EIO; 2082 } 2083 out: 2084 put_affine_portal(); 2085 return ret; 2086 } 2087 EXPORT_SYMBOL(qman_retire_fq); 2088 2089 int qman_oos_fq(struct qman_fq *fq) 2090 { 2091 union qm_mc_command *mcc; 2092 union qm_mc_result *mcr; 2093 struct qman_portal *p; 2094 int ret = 0; 2095 2096 if (fq->state != qman_fq_state_retired) 2097 return -EINVAL; 2098 #ifdef CONFIG_FSL_DPAA_CHECKING 2099 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)) 2100 return -EINVAL; 2101 #endif 2102 p = get_affine_portal(); 2103 if (fq_isset(fq, QMAN_FQ_STATE_BLOCKOOS) || 2104 fq->state != qman_fq_state_retired) { 2105 ret = -EBUSY; 2106 goto out; 2107 } 2108 mcc = qm_mc_start(&p->p); 2109 qm_fqid_set(&mcc->fq, fq->fqid); 2110 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS); 2111 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2112 ret = -ETIMEDOUT; 2113 goto out; 2114 } 2115 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_OOS); 2116 if (mcr->result != QM_MCR_RESULT_OK) { 2117 ret = -EIO; 2118 goto out; 2119 } 2120 fq->state = qman_fq_state_oos; 2121 out: 2122 put_affine_portal(); 2123 return ret; 2124 } 2125 EXPORT_SYMBOL(qman_oos_fq); 2126 2127 int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd) 2128 { 2129 union qm_mc_command *mcc; 2130 union qm_mc_result *mcr; 2131 struct qman_portal *p = get_affine_portal(); 2132 int ret = 0; 2133 2134 mcc = qm_mc_start(&p->p); 2135 qm_fqid_set(&mcc->fq, fq->fqid); 2136 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ); 2137 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2138 ret = -ETIMEDOUT; 2139 goto out; 2140 } 2141 2142 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ); 2143 if (mcr->result == QM_MCR_RESULT_OK) 2144 *fqd = mcr->queryfq.fqd; 2145 else 2146 ret = -EIO; 2147 out: 2148 put_affine_portal(); 2149 return ret; 2150 } 2151 2152 int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np) 2153 { 2154 union qm_mc_command *mcc; 2155 union qm_mc_result *mcr; 2156 struct qman_portal *p = get_affine_portal(); 2157 int ret = 0; 2158 2159 mcc = qm_mc_start(&p->p); 2160 qm_fqid_set(&mcc->fq, fq->fqid); 2161 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP); 2162 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2163 ret = -ETIMEDOUT; 2164 goto out; 2165 } 2166 2167 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP); 2168 if (mcr->result == QM_MCR_RESULT_OK) 2169 *np = mcr->queryfq_np; 2170 else if (mcr->result == QM_MCR_RESULT_ERR_FQID) 2171 ret = -ERANGE; 2172 else 2173 ret = -EIO; 2174 out: 2175 put_affine_portal(); 2176 return ret; 2177 } 2178 EXPORT_SYMBOL(qman_query_fq_np); 2179 2180 static int qman_query_cgr(struct qman_cgr *cgr, 2181 struct qm_mcr_querycgr *cgrd) 2182 { 2183 union qm_mc_command *mcc; 2184 union qm_mc_result *mcr; 2185 struct qman_portal *p = get_affine_portal(); 2186 int ret = 0; 2187 2188 mcc = qm_mc_start(&p->p); 2189 mcc->cgr.cgid = cgr->cgrid; 2190 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCGR); 2191 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2192 ret = -ETIMEDOUT; 2193 goto out; 2194 } 2195 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_QUERYCGR); 2196 if (mcr->result == QM_MCR_RESULT_OK) 2197 *cgrd = mcr->querycgr; 2198 else { 2199 dev_err(p->config->dev, "QUERY_CGR failed: %s\n", 2200 mcr_result_str(mcr->result)); 2201 ret = -EIO; 2202 } 2203 out: 2204 put_affine_portal(); 2205 return ret; 2206 } 2207 2208 int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result) 2209 { 2210 struct qm_mcr_querycgr query_cgr; 2211 int err; 2212 2213 err = qman_query_cgr(cgr, &query_cgr); 2214 if (err) 2215 return err; 2216 2217 *result = !!query_cgr.cgr.cs; 2218 return 0; 2219 } 2220 EXPORT_SYMBOL(qman_query_cgr_congested); 2221 2222 /* internal function used as a wait_event() expression */ 2223 static int set_p_vdqcr(struct qman_portal *p, struct qman_fq *fq, u32 vdqcr) 2224 { 2225 unsigned long irqflags; 2226 int ret = -EBUSY; 2227 2228 local_irq_save(irqflags); 2229 if (p->vdqcr_owned) 2230 goto out; 2231 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR)) 2232 goto out; 2233 2234 fq_set(fq, QMAN_FQ_STATE_VDQCR); 2235 p->vdqcr_owned = fq; 2236 qm_dqrr_vdqcr_set(&p->p, vdqcr); 2237 ret = 0; 2238 out: 2239 local_irq_restore(irqflags); 2240 return ret; 2241 } 2242 2243 static int set_vdqcr(struct qman_portal **p, struct qman_fq *fq, u32 vdqcr) 2244 { 2245 int ret; 2246 2247 *p = get_affine_portal(); 2248 ret = set_p_vdqcr(*p, fq, vdqcr); 2249 put_affine_portal(); 2250 return ret; 2251 } 2252 2253 static int wait_vdqcr_start(struct qman_portal **p, struct qman_fq *fq, 2254 u32 vdqcr, u32 flags) 2255 { 2256 int ret = 0; 2257 2258 if (flags & QMAN_VOLATILE_FLAG_WAIT_INT) 2259 ret = wait_event_interruptible(affine_queue, 2260 !set_vdqcr(p, fq, vdqcr)); 2261 else 2262 wait_event(affine_queue, !set_vdqcr(p, fq, vdqcr)); 2263 return ret; 2264 } 2265 2266 int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr) 2267 { 2268 struct qman_portal *p; 2269 int ret; 2270 2271 if (fq->state != qman_fq_state_parked && 2272 fq->state != qman_fq_state_retired) 2273 return -EINVAL; 2274 if (vdqcr & QM_VDQCR_FQID_MASK) 2275 return -EINVAL; 2276 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR)) 2277 return -EBUSY; 2278 vdqcr = (vdqcr & ~QM_VDQCR_FQID_MASK) | fq->fqid; 2279 if (flags & QMAN_VOLATILE_FLAG_WAIT) 2280 ret = wait_vdqcr_start(&p, fq, vdqcr, flags); 2281 else 2282 ret = set_vdqcr(&p, fq, vdqcr); 2283 if (ret) 2284 return ret; 2285 /* VDQCR is set */ 2286 if (flags & QMAN_VOLATILE_FLAG_FINISH) { 2287 if (flags & QMAN_VOLATILE_FLAG_WAIT_INT) 2288 /* 2289 * NB: don't propagate any error - the caller wouldn't 2290 * know whether the VDQCR was issued or not. A signal 2291 * could arrive after returning anyway, so the caller 2292 * can check signal_pending() if that's an issue. 2293 */ 2294 wait_event_interruptible(affine_queue, 2295 !fq_isset(fq, QMAN_FQ_STATE_VDQCR)); 2296 else 2297 wait_event(affine_queue, 2298 !fq_isset(fq, QMAN_FQ_STATE_VDQCR)); 2299 } 2300 return 0; 2301 } 2302 EXPORT_SYMBOL(qman_volatile_dequeue); 2303 2304 static void update_eqcr_ci(struct qman_portal *p, u8 avail) 2305 { 2306 if (avail) 2307 qm_eqcr_cce_prefetch(&p->p); 2308 else 2309 qm_eqcr_cce_update(&p->p); 2310 } 2311 2312 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd) 2313 { 2314 struct qman_portal *p; 2315 struct qm_eqcr_entry *eq; 2316 unsigned long irqflags; 2317 u8 avail; 2318 2319 p = get_affine_portal(); 2320 local_irq_save(irqflags); 2321 2322 if (p->use_eqcr_ci_stashing) { 2323 /* 2324 * The stashing case is easy, only update if we need to in 2325 * order to try and liberate ring entries. 2326 */ 2327 eq = qm_eqcr_start_stash(&p->p); 2328 } else { 2329 /* 2330 * The non-stashing case is harder, need to prefetch ahead of 2331 * time. 2332 */ 2333 avail = qm_eqcr_get_avail(&p->p); 2334 if (avail < 2) 2335 update_eqcr_ci(p, avail); 2336 eq = qm_eqcr_start_no_stash(&p->p); 2337 } 2338 2339 if (unlikely(!eq)) 2340 goto out; 2341 2342 qm_fqid_set(eq, fq->fqid); 2343 eq->tag = cpu_to_be32(fq_to_tag(fq)); 2344 eq->fd = *fd; 2345 2346 qm_eqcr_pvb_commit(&p->p, QM_EQCR_VERB_CMD_ENQUEUE); 2347 out: 2348 local_irq_restore(irqflags); 2349 put_affine_portal(); 2350 return 0; 2351 } 2352 EXPORT_SYMBOL(qman_enqueue); 2353 2354 static int qm_modify_cgr(struct qman_cgr *cgr, u32 flags, 2355 struct qm_mcc_initcgr *opts) 2356 { 2357 union qm_mc_command *mcc; 2358 union qm_mc_result *mcr; 2359 struct qman_portal *p = get_affine_portal(); 2360 u8 verb = QM_MCC_VERB_MODIFYCGR; 2361 int ret = 0; 2362 2363 mcc = qm_mc_start(&p->p); 2364 if (opts) 2365 mcc->initcgr = *opts; 2366 mcc->initcgr.cgid = cgr->cgrid; 2367 if (flags & QMAN_CGR_FLAG_USE_INIT) 2368 verb = QM_MCC_VERB_INITCGR; 2369 qm_mc_commit(&p->p, verb); 2370 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2371 ret = -ETIMEDOUT; 2372 goto out; 2373 } 2374 2375 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == verb); 2376 if (mcr->result != QM_MCR_RESULT_OK) 2377 ret = -EIO; 2378 2379 out: 2380 put_affine_portal(); 2381 return ret; 2382 } 2383 2384 #define PORTAL_IDX(n) (n->config->channel - QM_CHANNEL_SWPORTAL0) 2385 2386 /* congestion state change notification target update control */ 2387 static void qm_cgr_cscn_targ_set(struct __qm_mc_cgr *cgr, int pi, u32 val) 2388 { 2389 if (qman_ip_rev >= QMAN_REV30) 2390 cgr->cscn_targ_upd_ctrl = cpu_to_be16(pi | 2391 QM_CGR_TARG_UDP_CTRL_WRITE_BIT); 2392 else 2393 cgr->cscn_targ = cpu_to_be32(val | QM_CGR_TARG_PORTAL(pi)); 2394 } 2395 2396 static void qm_cgr_cscn_targ_clear(struct __qm_mc_cgr *cgr, int pi, u32 val) 2397 { 2398 if (qman_ip_rev >= QMAN_REV30) 2399 cgr->cscn_targ_upd_ctrl = cpu_to_be16(pi); 2400 else 2401 cgr->cscn_targ = cpu_to_be32(val & ~QM_CGR_TARG_PORTAL(pi)); 2402 } 2403 2404 static u8 qman_cgr_cpus[CGR_NUM]; 2405 2406 void qman_init_cgr_all(void) 2407 { 2408 struct qman_cgr cgr; 2409 int err_cnt = 0; 2410 2411 for (cgr.cgrid = 0; cgr.cgrid < CGR_NUM; cgr.cgrid++) { 2412 if (qm_modify_cgr(&cgr, QMAN_CGR_FLAG_USE_INIT, NULL)) 2413 err_cnt++; 2414 } 2415 2416 if (err_cnt) 2417 pr_err("Warning: %d error%s while initialising CGR h/w\n", 2418 err_cnt, (err_cnt > 1) ? "s" : ""); 2419 } 2420 2421 int qman_create_cgr(struct qman_cgr *cgr, u32 flags, 2422 struct qm_mcc_initcgr *opts) 2423 { 2424 struct qm_mcr_querycgr cgr_state; 2425 int ret; 2426 struct qman_portal *p; 2427 2428 /* 2429 * We have to check that the provided CGRID is within the limits of the 2430 * data-structures, for obvious reasons. However we'll let h/w take 2431 * care of determining whether it's within the limits of what exists on 2432 * the SoC. 2433 */ 2434 if (cgr->cgrid >= CGR_NUM) 2435 return -EINVAL; 2436 2437 preempt_disable(); 2438 p = get_affine_portal(); 2439 qman_cgr_cpus[cgr->cgrid] = smp_processor_id(); 2440 preempt_enable(); 2441 2442 cgr->chan = p->config->channel; 2443 spin_lock(&p->cgr_lock); 2444 2445 if (opts) { 2446 struct qm_mcc_initcgr local_opts = *opts; 2447 2448 ret = qman_query_cgr(cgr, &cgr_state); 2449 if (ret) 2450 goto out; 2451 2452 qm_cgr_cscn_targ_set(&local_opts.cgr, PORTAL_IDX(p), 2453 be32_to_cpu(cgr_state.cgr.cscn_targ)); 2454 local_opts.we_mask |= cpu_to_be16(QM_CGR_WE_CSCN_TARG); 2455 2456 /* send init if flags indicate so */ 2457 if (flags & QMAN_CGR_FLAG_USE_INIT) 2458 ret = qm_modify_cgr(cgr, QMAN_CGR_FLAG_USE_INIT, 2459 &local_opts); 2460 else 2461 ret = qm_modify_cgr(cgr, 0, &local_opts); 2462 if (ret) 2463 goto out; 2464 } 2465 2466 list_add(&cgr->node, &p->cgr_cbs); 2467 2468 /* Determine if newly added object requires its callback to be called */ 2469 ret = qman_query_cgr(cgr, &cgr_state); 2470 if (ret) { 2471 /* we can't go back, so proceed and return success */ 2472 dev_err(p->config->dev, "CGR HW state partially modified\n"); 2473 ret = 0; 2474 goto out; 2475 } 2476 if (cgr->cb && cgr_state.cgr.cscn_en && 2477 qman_cgrs_get(&p->cgrs[1], cgr->cgrid)) 2478 cgr->cb(p, cgr, 1); 2479 out: 2480 spin_unlock(&p->cgr_lock); 2481 put_affine_portal(); 2482 return ret; 2483 } 2484 EXPORT_SYMBOL(qman_create_cgr); 2485 2486 static struct qman_portal *qman_cgr_get_affine_portal(struct qman_cgr *cgr) 2487 { 2488 struct qman_portal *p = get_affine_portal(); 2489 2490 if (cgr->chan != p->config->channel) { 2491 /* attempt to delete from other portal than creator */ 2492 dev_err(p->config->dev, "CGR not owned by current portal"); 2493 dev_dbg(p->config->dev, " create 0x%x, delete 0x%x\n", 2494 cgr->chan, p->config->channel); 2495 put_affine_portal(); 2496 return NULL; 2497 } 2498 2499 return p; 2500 } 2501 2502 int qman_delete_cgr(struct qman_cgr *cgr) 2503 { 2504 unsigned long irqflags; 2505 struct qm_mcr_querycgr cgr_state; 2506 struct qm_mcc_initcgr local_opts; 2507 int ret = 0; 2508 struct qman_cgr *i; 2509 struct qman_portal *p = qman_cgr_get_affine_portal(cgr); 2510 2511 if (!p) 2512 return -EINVAL; 2513 2514 memset(&local_opts, 0, sizeof(struct qm_mcc_initcgr)); 2515 spin_lock_irqsave(&p->cgr_lock, irqflags); 2516 list_del(&cgr->node); 2517 /* 2518 * If there are no other CGR objects for this CGRID in the list, 2519 * update CSCN_TARG accordingly 2520 */ 2521 list_for_each_entry(i, &p->cgr_cbs, node) 2522 if (i->cgrid == cgr->cgrid && i->cb) 2523 goto release_lock; 2524 ret = qman_query_cgr(cgr, &cgr_state); 2525 if (ret) { 2526 /* add back to the list */ 2527 list_add(&cgr->node, &p->cgr_cbs); 2528 goto release_lock; 2529 } 2530 2531 local_opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_TARG); 2532 qm_cgr_cscn_targ_clear(&local_opts.cgr, PORTAL_IDX(p), 2533 be32_to_cpu(cgr_state.cgr.cscn_targ)); 2534 2535 ret = qm_modify_cgr(cgr, 0, &local_opts); 2536 if (ret) 2537 /* add back to the list */ 2538 list_add(&cgr->node, &p->cgr_cbs); 2539 release_lock: 2540 spin_unlock_irqrestore(&p->cgr_lock, irqflags); 2541 put_affine_portal(); 2542 return ret; 2543 } 2544 EXPORT_SYMBOL(qman_delete_cgr); 2545 2546 struct cgr_comp { 2547 struct qman_cgr *cgr; 2548 struct completion completion; 2549 }; 2550 2551 static void qman_delete_cgr_smp_call(void *p) 2552 { 2553 qman_delete_cgr((struct qman_cgr *)p); 2554 } 2555 2556 void qman_delete_cgr_safe(struct qman_cgr *cgr) 2557 { 2558 preempt_disable(); 2559 if (qman_cgr_cpus[cgr->cgrid] != smp_processor_id()) { 2560 smp_call_function_single(qman_cgr_cpus[cgr->cgrid], 2561 qman_delete_cgr_smp_call, cgr, true); 2562 preempt_enable(); 2563 return; 2564 } 2565 2566 qman_delete_cgr(cgr); 2567 preempt_enable(); 2568 } 2569 EXPORT_SYMBOL(qman_delete_cgr_safe); 2570 2571 static int qman_update_cgr(struct qman_cgr *cgr, struct qm_mcc_initcgr *opts) 2572 { 2573 int ret; 2574 unsigned long irqflags; 2575 struct qman_portal *p = qman_cgr_get_affine_portal(cgr); 2576 2577 if (!p) 2578 return -EINVAL; 2579 2580 spin_lock_irqsave(&p->cgr_lock, irqflags); 2581 ret = qm_modify_cgr(cgr, 0, opts); 2582 spin_unlock_irqrestore(&p->cgr_lock, irqflags); 2583 put_affine_portal(); 2584 return ret; 2585 } 2586 2587 struct update_cgr_params { 2588 struct qman_cgr *cgr; 2589 struct qm_mcc_initcgr *opts; 2590 int ret; 2591 }; 2592 2593 static void qman_update_cgr_smp_call(void *p) 2594 { 2595 struct update_cgr_params *params = p; 2596 2597 params->ret = qman_update_cgr(params->cgr, params->opts); 2598 } 2599 2600 int qman_update_cgr_safe(struct qman_cgr *cgr, struct qm_mcc_initcgr *opts) 2601 { 2602 struct update_cgr_params params = { 2603 .cgr = cgr, 2604 .opts = opts, 2605 }; 2606 2607 preempt_disable(); 2608 if (qman_cgr_cpus[cgr->cgrid] != smp_processor_id()) 2609 smp_call_function_single(qman_cgr_cpus[cgr->cgrid], 2610 qman_update_cgr_smp_call, ¶ms, 2611 true); 2612 else 2613 params.ret = qman_update_cgr(cgr, opts); 2614 preempt_enable(); 2615 return params.ret; 2616 } 2617 EXPORT_SYMBOL(qman_update_cgr_safe); 2618 2619 /* Cleanup FQs */ 2620 2621 static int _qm_mr_consume_and_match_verb(struct qm_portal *p, int v) 2622 { 2623 const union qm_mr_entry *msg; 2624 int found = 0; 2625 2626 qm_mr_pvb_update(p); 2627 msg = qm_mr_current(p); 2628 while (msg) { 2629 if ((msg->verb & QM_MR_VERB_TYPE_MASK) == v) 2630 found = 1; 2631 qm_mr_next(p); 2632 qm_mr_cci_consume_to_current(p); 2633 qm_mr_pvb_update(p); 2634 msg = qm_mr_current(p); 2635 } 2636 return found; 2637 } 2638 2639 static int _qm_dqrr_consume_and_match(struct qm_portal *p, u32 fqid, int s, 2640 bool wait) 2641 { 2642 const struct qm_dqrr_entry *dqrr; 2643 int found = 0; 2644 2645 do { 2646 qm_dqrr_pvb_update(p); 2647 dqrr = qm_dqrr_current(p); 2648 if (!dqrr) 2649 cpu_relax(); 2650 } while (wait && !dqrr); 2651 2652 while (dqrr) { 2653 if (qm_fqid_get(dqrr) == fqid && (dqrr->stat & s)) 2654 found = 1; 2655 qm_dqrr_cdc_consume_1ptr(p, dqrr, 0); 2656 qm_dqrr_pvb_update(p); 2657 qm_dqrr_next(p); 2658 dqrr = qm_dqrr_current(p); 2659 } 2660 return found; 2661 } 2662 2663 #define qm_mr_drain(p, V) \ 2664 _qm_mr_consume_and_match_verb(p, QM_MR_VERB_##V) 2665 2666 #define qm_dqrr_drain(p, f, S) \ 2667 _qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, false) 2668 2669 #define qm_dqrr_drain_wait(p, f, S) \ 2670 _qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, true) 2671 2672 #define qm_dqrr_drain_nomatch(p) \ 2673 _qm_dqrr_consume_and_match(p, 0, 0, false) 2674 2675 int qman_shutdown_fq(u32 fqid) 2676 { 2677 struct qman_portal *p, *channel_portal; 2678 struct device *dev; 2679 union qm_mc_command *mcc; 2680 union qm_mc_result *mcr; 2681 int orl_empty, drain = 0, ret = 0; 2682 u32 channel, res; 2683 u8 state; 2684 2685 p = get_affine_portal(); 2686 dev = p->config->dev; 2687 /* Determine the state of the FQID */ 2688 mcc = qm_mc_start(&p->p); 2689 qm_fqid_set(&mcc->fq, fqid); 2690 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP); 2691 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2692 dev_err(dev, "QUERYFQ_NP timeout\n"); 2693 ret = -ETIMEDOUT; 2694 goto out; 2695 } 2696 2697 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP); 2698 state = mcr->queryfq_np.state & QM_MCR_NP_STATE_MASK; 2699 if (state == QM_MCR_NP_STATE_OOS) 2700 goto out; /* Already OOS, no need to do anymore checks */ 2701 2702 /* Query which channel the FQ is using */ 2703 mcc = qm_mc_start(&p->p); 2704 qm_fqid_set(&mcc->fq, fqid); 2705 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ); 2706 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2707 dev_err(dev, "QUERYFQ timeout\n"); 2708 ret = -ETIMEDOUT; 2709 goto out; 2710 } 2711 2712 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ); 2713 /* Need to store these since the MCR gets reused */ 2714 channel = qm_fqd_get_chan(&mcr->queryfq.fqd); 2715 qm_fqd_get_wq(&mcr->queryfq.fqd); 2716 2717 if (channel < qm_channel_pool1) { 2718 channel_portal = get_portal_for_channel(channel); 2719 if (channel_portal == NULL) { 2720 dev_err(dev, "Can't find portal for dedicated channel 0x%x\n", 2721 channel); 2722 ret = -EIO; 2723 goto out; 2724 } 2725 } else 2726 channel_portal = p; 2727 2728 switch (state) { 2729 case QM_MCR_NP_STATE_TEN_SCHED: 2730 case QM_MCR_NP_STATE_TRU_SCHED: 2731 case QM_MCR_NP_STATE_ACTIVE: 2732 case QM_MCR_NP_STATE_PARKED: 2733 orl_empty = 0; 2734 mcc = qm_mc_start(&channel_portal->p); 2735 qm_fqid_set(&mcc->fq, fqid); 2736 qm_mc_commit(&channel_portal->p, QM_MCC_VERB_ALTER_RETIRE); 2737 if (!qm_mc_result_timeout(&channel_portal->p, &mcr)) { 2738 dev_err(dev, "ALTER_RETIRE timeout\n"); 2739 ret = -ETIMEDOUT; 2740 goto out; 2741 } 2742 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == 2743 QM_MCR_VERB_ALTER_RETIRE); 2744 res = mcr->result; /* Make a copy as we reuse MCR below */ 2745 2746 if (res == QM_MCR_RESULT_OK) 2747 drain_mr_fqrni(&channel_portal->p); 2748 2749 if (res == QM_MCR_RESULT_PENDING) { 2750 /* 2751 * Need to wait for the FQRN in the message ring, which 2752 * will only occur once the FQ has been drained. In 2753 * order for the FQ to drain the portal needs to be set 2754 * to dequeue from the channel the FQ is scheduled on 2755 */ 2756 int found_fqrn = 0; 2757 2758 /* Flag that we need to drain FQ */ 2759 drain = 1; 2760 2761 if (channel >= qm_channel_pool1 && 2762 channel < qm_channel_pool1 + 15) { 2763 /* Pool channel, enable the bit in the portal */ 2764 } else if (channel < qm_channel_pool1) { 2765 /* Dedicated channel */ 2766 } else { 2767 dev_err(dev, "Can't recover FQ 0x%x, ch: 0x%x", 2768 fqid, channel); 2769 ret = -EBUSY; 2770 goto out; 2771 } 2772 /* Set the sdqcr to drain this channel */ 2773 if (channel < qm_channel_pool1) 2774 qm_dqrr_sdqcr_set(&channel_portal->p, 2775 QM_SDQCR_TYPE_ACTIVE | 2776 QM_SDQCR_CHANNELS_DEDICATED); 2777 else 2778 qm_dqrr_sdqcr_set(&channel_portal->p, 2779 QM_SDQCR_TYPE_ACTIVE | 2780 QM_SDQCR_CHANNELS_POOL_CONV 2781 (channel)); 2782 do { 2783 /* Keep draining DQRR while checking the MR*/ 2784 qm_dqrr_drain_nomatch(&channel_portal->p); 2785 /* Process message ring too */ 2786 found_fqrn = qm_mr_drain(&channel_portal->p, 2787 FQRN); 2788 cpu_relax(); 2789 } while (!found_fqrn); 2790 /* Restore SDQCR */ 2791 qm_dqrr_sdqcr_set(&channel_portal->p, 2792 channel_portal->sdqcr); 2793 2794 } 2795 if (res != QM_MCR_RESULT_OK && 2796 res != QM_MCR_RESULT_PENDING) { 2797 dev_err(dev, "retire_fq failed: FQ 0x%x, res=0x%x\n", 2798 fqid, res); 2799 ret = -EIO; 2800 goto out; 2801 } 2802 if (!(mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)) { 2803 /* 2804 * ORL had no entries, no need to wait until the 2805 * ERNs come in 2806 */ 2807 orl_empty = 1; 2808 } 2809 /* 2810 * Retirement succeeded, check to see if FQ needs 2811 * to be drained 2812 */ 2813 if (drain || mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY) { 2814 /* FQ is Not Empty, drain using volatile DQ commands */ 2815 do { 2816 u32 vdqcr = fqid | QM_VDQCR_NUMFRAMES_SET(3); 2817 2818 qm_dqrr_vdqcr_set(&p->p, vdqcr); 2819 /* 2820 * Wait for a dequeue and process the dequeues, 2821 * making sure to empty the ring completely 2822 */ 2823 } while (!qm_dqrr_drain_wait(&p->p, fqid, FQ_EMPTY)); 2824 } 2825 2826 while (!orl_empty) { 2827 /* Wait for the ORL to have been completely drained */ 2828 orl_empty = qm_mr_drain(&p->p, FQRL); 2829 cpu_relax(); 2830 } 2831 mcc = qm_mc_start(&p->p); 2832 qm_fqid_set(&mcc->fq, fqid); 2833 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS); 2834 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2835 ret = -ETIMEDOUT; 2836 goto out; 2837 } 2838 2839 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == 2840 QM_MCR_VERB_ALTER_OOS); 2841 if (mcr->result != QM_MCR_RESULT_OK) { 2842 dev_err(dev, "OOS after drain fail: FQ 0x%x (0x%x)\n", 2843 fqid, mcr->result); 2844 ret = -EIO; 2845 goto out; 2846 } 2847 break; 2848 2849 case QM_MCR_NP_STATE_RETIRED: 2850 /* Send OOS Command */ 2851 mcc = qm_mc_start(&p->p); 2852 qm_fqid_set(&mcc->fq, fqid); 2853 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS); 2854 if (!qm_mc_result_timeout(&p->p, &mcr)) { 2855 ret = -ETIMEDOUT; 2856 goto out; 2857 } 2858 2859 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == 2860 QM_MCR_VERB_ALTER_OOS); 2861 if (mcr->result != QM_MCR_RESULT_OK) { 2862 dev_err(dev, "OOS fail: FQ 0x%x (0x%x)\n", 2863 fqid, mcr->result); 2864 ret = -EIO; 2865 goto out; 2866 } 2867 break; 2868 2869 case QM_MCR_NP_STATE_OOS: 2870 /* Done */ 2871 break; 2872 2873 default: 2874 ret = -EIO; 2875 } 2876 2877 out: 2878 put_affine_portal(); 2879 return ret; 2880 } 2881 2882 const struct qm_portal_config *qman_get_qm_portal_config( 2883 struct qman_portal *portal) 2884 { 2885 return portal->config; 2886 } 2887 EXPORT_SYMBOL(qman_get_qm_portal_config); 2888 2889 struct gen_pool *qm_fqalloc; /* FQID allocator */ 2890 struct gen_pool *qm_qpalloc; /* pool-channel allocator */ 2891 struct gen_pool *qm_cgralloc; /* CGR ID allocator */ 2892 2893 static int qman_alloc_range(struct gen_pool *p, u32 *result, u32 cnt) 2894 { 2895 unsigned long addr; 2896 2897 if (!p) 2898 return -ENODEV; 2899 2900 addr = gen_pool_alloc(p, cnt); 2901 if (!addr) 2902 return -ENOMEM; 2903 2904 *result = addr & ~DPAA_GENALLOC_OFF; 2905 2906 return 0; 2907 } 2908 2909 int qman_alloc_fqid_range(u32 *result, u32 count) 2910 { 2911 return qman_alloc_range(qm_fqalloc, result, count); 2912 } 2913 EXPORT_SYMBOL(qman_alloc_fqid_range); 2914 2915 int qman_alloc_pool_range(u32 *result, u32 count) 2916 { 2917 return qman_alloc_range(qm_qpalloc, result, count); 2918 } 2919 EXPORT_SYMBOL(qman_alloc_pool_range); 2920 2921 int qman_alloc_cgrid_range(u32 *result, u32 count) 2922 { 2923 return qman_alloc_range(qm_cgralloc, result, count); 2924 } 2925 EXPORT_SYMBOL(qman_alloc_cgrid_range); 2926 2927 int qman_release_fqid(u32 fqid) 2928 { 2929 int ret = qman_shutdown_fq(fqid); 2930 2931 if (ret) { 2932 pr_debug("FQID %d leaked\n", fqid); 2933 return ret; 2934 } 2935 2936 gen_pool_free(qm_fqalloc, fqid | DPAA_GENALLOC_OFF, 1); 2937 return 0; 2938 } 2939 EXPORT_SYMBOL(qman_release_fqid); 2940 2941 static int qpool_cleanup(u32 qp) 2942 { 2943 /* 2944 * We query all FQDs starting from 2945 * FQID 1 until we get an "invalid FQID" error, looking for non-OOS FQDs 2946 * whose destination channel is the pool-channel being released. 2947 * When a non-OOS FQD is found we attempt to clean it up 2948 */ 2949 struct qman_fq fq = { 2950 .fqid = QM_FQID_RANGE_START 2951 }; 2952 int err; 2953 2954 do { 2955 struct qm_mcr_queryfq_np np; 2956 2957 err = qman_query_fq_np(&fq, &np); 2958 if (err == -ERANGE) 2959 /* FQID range exceeded, found no problems */ 2960 return 0; 2961 else if (WARN_ON(err)) 2962 return err; 2963 2964 if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) { 2965 struct qm_fqd fqd; 2966 2967 err = qman_query_fq(&fq, &fqd); 2968 if (WARN_ON(err)) 2969 return err; 2970 if (qm_fqd_get_chan(&fqd) == qp) { 2971 /* The channel is the FQ's target, clean it */ 2972 err = qman_shutdown_fq(fq.fqid); 2973 if (err) 2974 /* 2975 * Couldn't shut down the FQ 2976 * so the pool must be leaked 2977 */ 2978 return err; 2979 } 2980 } 2981 /* Move to the next FQID */ 2982 fq.fqid++; 2983 } while (1); 2984 } 2985 2986 int qman_release_pool(u32 qp) 2987 { 2988 int ret; 2989 2990 ret = qpool_cleanup(qp); 2991 if (ret) { 2992 pr_debug("CHID %d leaked\n", qp); 2993 return ret; 2994 } 2995 2996 gen_pool_free(qm_qpalloc, qp | DPAA_GENALLOC_OFF, 1); 2997 return 0; 2998 } 2999 EXPORT_SYMBOL(qman_release_pool); 3000 3001 static int cgr_cleanup(u32 cgrid) 3002 { 3003 /* 3004 * query all FQDs starting from FQID 1 until we get an "invalid FQID" 3005 * error, looking for non-OOS FQDs whose CGR is the CGR being released 3006 */ 3007 struct qman_fq fq = { 3008 .fqid = QM_FQID_RANGE_START 3009 }; 3010 int err; 3011 3012 do { 3013 struct qm_mcr_queryfq_np np; 3014 3015 err = qman_query_fq_np(&fq, &np); 3016 if (err == -ERANGE) 3017 /* FQID range exceeded, found no problems */ 3018 return 0; 3019 else if (WARN_ON(err)) 3020 return err; 3021 3022 if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) { 3023 struct qm_fqd fqd; 3024 3025 err = qman_query_fq(&fq, &fqd); 3026 if (WARN_ON(err)) 3027 return err; 3028 if (be16_to_cpu(fqd.fq_ctrl) & QM_FQCTRL_CGE && 3029 fqd.cgid == cgrid) { 3030 pr_err("CRGID 0x%x is being used by FQID 0x%x, CGR will be leaked\n", 3031 cgrid, fq.fqid); 3032 return -EIO; 3033 } 3034 } 3035 /* Move to the next FQID */ 3036 fq.fqid++; 3037 } while (1); 3038 } 3039 3040 int qman_release_cgrid(u32 cgrid) 3041 { 3042 int ret; 3043 3044 ret = cgr_cleanup(cgrid); 3045 if (ret) { 3046 pr_debug("CGRID %d leaked\n", cgrid); 3047 return ret; 3048 } 3049 3050 gen_pool_free(qm_cgralloc, cgrid | DPAA_GENALLOC_OFF, 1); 3051 return 0; 3052 } 3053 EXPORT_SYMBOL(qman_release_cgrid); 3054